51
|
Qu R, Li X, Liu Y, Zhai H, Zhao S, Feng L, Wei Y. Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruixiang Qu
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiangyu Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yanan Liu
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Huajun Zhai
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shuaiheng Zhao
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Lin Feng
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yen Wei
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
52
|
Okada K, Miura Y, Chiya T, Tokudome Y, Takahashi M. Thermo-responsive wettability via surface roughness change on polymer-coated titanate nanorod brushes toward fast and multi-directional droplet transport. RSC Adv 2020; 10:28032-28036. [PMID: 35519096 PMCID: PMC9055642 DOI: 10.1039/d0ra05471b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 01/13/2023] Open
Abstract
A novel approach for thermo-responsive wettability has been accomplished by surface roughness change induced by thermal expansion of paraffin coated on titanate nanostructures. The surface exhibits thermo-responsive and reversible wettability change in a hydrophobic regime; the surface shows superhydrophobicity with contact angles of ∼157° below 50 °C and ∼118° above 50 °C due to a decrease of surface roughness caused by thermally-expanded paraffin at higher temperatures. Reversible wettability change of ∼40° of a contact angle allows for fast and multi-directional droplet transport. The present approach affords a versatile selection of materials and wide variety of contact angles, promoting both scientific advancement and technology innovation in the field of smart surfaces.
Collapse
Affiliation(s)
- Kenji Okada
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Yoko Miura
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Tomoya Chiya
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Yasuaki Tokudome
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| |
Collapse
|
53
|
Experimental Investigation and Performance Evaluation of Modified Viscoelastic Surfactant (VES) as a New Thickening Fracturing Fluid. Polymers (Basel) 2020; 12:polym12071470. [PMID: 32629958 PMCID: PMC7408097 DOI: 10.3390/polym12071470] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022] Open
Abstract
In hydraulic fracturing, fracturing fluids are used to create fractures in a hydrocarbon reservoir throughout transported proppant into the fractures. The application of many fields proves that conventional fracturing fluid has the disadvantages of residue(s), which causes serious clogging of the reservoir’s formations and, thus, leads to reduce the permeability in these hydrocarbon reservoirs. The development of clean (and cost-effective) fracturing fluid is a main driver of the hydraulic fracturing process. Presently, viscoelastic surfactant (VES)-fluid is one of the most widely used fracturing fluids in the hydraulic fracturing development of unconventional reservoirs, due to its non-residue(s) characteristics. However, conventional single-chain VES-fluid has a low temperature and shear resistance. In this study, two modified VES-fluid are developed as new thickening fracturing fluids, which consist of more single-chain coupled by hydrotropes (i.e., ionic organic salts) through non-covalent interaction. This new development is achieved by the formulation of mixing long chain cationic surfactant cetyltrimethylammonium bromide (CTAB) with organic acids, which are citric acid (CA) and maleic acid (MA) at a molar ratio of (3:1) and (2:1), respectively. As an innovative approach CTAB and CA are combined to obtain a solution (i.e., CTAB-based VES-fluid) with optimal properties for fracturing and this behaviour of the CTAB-based VES-fluid is experimentally corroborated. A rheometer was used to evaluate the visco-elasticity and shear rate & temperature resistance, while sand-carrying suspension capability was investigated by measuring the settling velocity of the transported proppant in the fluid. Moreover, the gel breaking capability was investigated by determining the viscosity of broken VES-fluid after mixing with ethanol, and the degree of core damage (i.e., permeability performance) caused by VES-fluid was evaluated while using core-flooding test. The experimental results show that, at pH-value (6.17), 30 (mM) VES-fluid (i.e., CTAB-CA) possesses the highest visco-elasticity as the apparent viscosity at zero shear-rate reached nearly to 106 (mPa·s). Moreover, the apparent viscosity of the 30 (mM) CTAB-CA VES-fluid remains 60 (mPa·s) at (90 ∘C) and 170 (s−1) after shearing for 2-h, indicating that CTAB-CA fluid has excellent temperature and shear resistance. Furthermore, excellent sand suspension and gel breaking ability of 30 (mM) CTAB-CA VES-fluid at 90 (∘C) was shown; as the sand suspension velocity is 1.67 (mm/s) and complete gel breaking was achieved within 2 h after mixing with the ethanol at the ratio of 10:1. The core flooding experiments indicate that the core damage rate caused by the CTAB-CA VES-fluid is (7.99%), which indicate that it does not cause much damage. Based on the experimental results, it is expected that CTAB-CA VES-fluid under high-temperature will make the proposed new VES-fluid an attractive thickening fracturing fluid.
Collapse
|
54
|
Su H, Zhou W, Zhang H, Zhou W, Zhao X, Li Y, Liu M, Cheng W, Liu Q. Dynamic Evolution of Solid–Liquid Electrochemical Interfaces over Single-Atom Active Sites. J Am Chem Soc 2020; 142:12306-12313. [DOI: 10.1021/jacs.0c04231] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hui Su
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui P. R. China
| | - Wanlin Zhou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui P. R. China
| | - Hui Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui P. R. China
| | - Wu Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, P. R. China
| | - Xu Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui P. R. China
| | - Yuanli Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui P. R. China
| | - Meihuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui P. R. China
| | - Weiren Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui P. R. China
| |
Collapse
|
55
|
Xiong H, Devegowda D, Huang L. Oil–water
transport in
clay‐hosted
nanopores: Effects of
long‐range
electrostatic forces. AIChE J 2020. [DOI: 10.1002/aic.16276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hao Xiong
- Mewbourne School of Petroleum and Geological EngineeringThe University of Oklahoma Norman Oklahoma USA
| | - Deepak Devegowda
- Mewbourne School of Petroleum and Geological EngineeringThe University of Oklahoma Norman Oklahoma USA
| | - Liangliang Huang
- Chemical, Biological & Materials EngineeringThe University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
56
|
Qu R, Li X, Liu Y, Zhai H, Zhao S, Feng L, Wei Y. Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angew Chem Int Ed Engl 2020; 59:13437-13443. [PMID: 32368822 DOI: 10.1002/anie.202005030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 01/02/2023]
Abstract
Superwetting membranes with responsive properties have attracted heightened attention because of their fine-tunable surface wettability. However, their functional diversity is severely limited by the "black-or-white" wettability transition. Herein, we describe a coating strategy to fabricate multifunctional responsive superwetting membranes with SiO2 /octadecylamine patterns. The adjustable patterns in the responsive region are the key factor for functional diversity. Specifically, the coated part of the membrane displayed a superhydrophobicity/superhydrophilicity transition at different pH values, whereas the uncoated part exhibited invariant superhydrophilicity. On the basis of this anisotropy/isotropy transition, the membranes can serve as either responsive permeable membranes or signal-expression membranes, thus enabling the responsive separation and permeation of liquids with satisfactory separation efficiency (>99.90 %) and flux (ca. 60 L m-2 h), as well as real-time liquid signal expression with alterable signals.
Collapse
Affiliation(s)
- Ruixiang Qu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiangyu Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanan Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huajun Zhai
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
57
|
Ludwicki JM, Robinson FL, Steen PH. Switchable Wettability for Condensation Heat Transfer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22115-22119. [PMID: 32347701 DOI: 10.1021/acsami.0c01523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Condensation proceeds as dropwise or filmwise depending on the wettability of the condensing surface. These two modes of condensation have disparate heat transfer coefficients, with dropwise often exceeding filmwise. This work reports a surface with switchable superhydrophilic to hydrophobic wetting behavior that can exhibit both modes of condensation. Relative to the highly wetting state, which yields filmwise condensation, the nonwetting state exhibits dropwise condensation and twice the heat transfer coefficient. Relevance to thermal management is additionally discussed.
Collapse
Affiliation(s)
- Jonathan M Ludwicki
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Franklin L Robinson
- Thermal Engineering Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Paul H Steen
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
58
|
Lamarche RM, DeWolf C. ω-Thiolation of Phenolic Surfactants Enables Controlled Conversion between Extended, Bolaform, and Multilayer Conformations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2847-2857. [PMID: 32101013 DOI: 10.1021/acs.langmuir.9b03670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The self-assembly of ω-thiolated surfactants onto gold is a well-studied phenomenon; however, control over the final organization within the thin films is either limited or requires extensive pre- and post-deposition chemical modifications. On the other hand, Langmuir-Blodgett deposition from the air-water interfaces affords a high degree of control over lateral organization within the film, yet it is generally employed to create physisorbed, soft matter films. Despite this, relatively little is known about the impact of the ω-thiolation on either the air-water of deposited film organization. Here, we show that the introduction of a terminal hydrophilic thiol on a phenolic surfactant does not necessarily disrupt a highly organized film nor does it necessarily induce a bolaform conformation at the interface. We show that the relative proportions of different conformations can be controlled using pH, relaxation time, surface pressure, and combinations thereof. Moreover, at high pH, the system undergoes a monolayer-to-multilayer transition wherein well-defined multilayer structures and morphologies are generated. These multilayers appear to comprise a single bolaform conformation atop an extended-chain condensed phase. We demonstrate that these structures can be transferred using Langmuir-Blodgett deposition demonstrating that combining these two approaches has the potential to achieve greater control over the functional properties of robust, chemisorbed films.
Collapse
Affiliation(s)
- Renaud Miclette Lamarche
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
59
|
Fast E, Schlimm A, Lautenschläger I, Clausen KU, Strunskus T, Spormann C, Lindhorst TK, Tuczek F. Improving the Switching Capacity of Glyco-Self-Assembled Monolayers on Au(111). Chemistry 2020; 26:485-501. [PMID: 31660639 PMCID: PMC6973251 DOI: 10.1002/chem.201903644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/21/2019] [Indexed: 11/26/2022]
Abstract
Self-assembled monolayers (SAMs) decorated with photoisomerizable azobenzene glycosides are useful tools for investigating the effect of ligand orientation on carbohydrate recognition. However, photoswitching of SAMs between two specific states is characterized by a limited capacity. The goal of this study is the improvement of photoswitchable azobenzene glyco-SAMs. Different concepts, in particular self-dilution and rigid biaryl backbones, have been investigated. The required SH-functionalized azobenzene glycoconjugates were synthesized through a modular approach, and the respective glyco-SAMs were fabricated on Au(111). Their photoswitching properties have been extensively investigated by applying a powerful set of methods (IRRAS, XPS, and NEXAFS). Indeed, the combination of tailor-made biaryl-azobenzene glycosides and suitable diluent molecules led to photoswitchable glyco-SAMs with a significantly enhanced and unprecedented switching capacity.
Collapse
Affiliation(s)
- Ellen Fast
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-University KielOtto-Hahn-Platz 424118KielGermany
| | - Alexander Schlimm
- Institute of Inorganic ChemistryChristian-Albrechts-University KielMax-Eyth Straße 224118KielGermany
| | - Irene Lautenschläger
- Institute of Inorganic ChemistryChristian-Albrechts-University KielMax-Eyth Straße 224118KielGermany
| | - Kai Uwe Clausen
- Institute of Inorganic ChemistryChristian-Albrechts-University KielMax-Eyth Straße 224118KielGermany
| | - Thomas Strunskus
- Institute for Materials Science—Multicomponent MaterialsChristian-Albrechts-University KielKaisertr. 224143KielGermany
| | - Carina Spormann
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-University KielOtto-Hahn-Platz 424118KielGermany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic ChemistryChristian-Albrechts-University KielOtto-Hahn-Platz 424118KielGermany
| | - Felix Tuczek
- Institute of Inorganic ChemistryChristian-Albrechts-University KielMax-Eyth Straße 224118KielGermany
| |
Collapse
|
60
|
Zhang W, Mao J, Yang X, Zhang Y, Zhang H, Tian J, Lin C, Mao J, Zhao J. Effect of propylene glycol substituted group on salt tolerance of a cationic viscoelastic surfactant and its application for brine-based clean fracturing fluid. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
61
|
Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci 2019; 98. [DOI: 10.1016/j.progpolymsci.2019.101147] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
62
|
Liu Y, Zhao L, Lin J, Yang S. Electrodeposited surfaces with reversibly switching interfacial properties. SCIENCE ADVANCES 2019; 5:eaax0380. [PMID: 31701000 PMCID: PMC6824854 DOI: 10.1126/sciadv.aax0380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/16/2019] [Indexed: 05/16/2023]
Abstract
Engineered surfaces with reversibly switching interfacial properties, such as wettability and liquid repellency, are highly desirable in diverse application fields but are rare. We have developed a general concept to prepare metallic porous surfaces with exceptionally powerful wettability switch capabilities and liquid-repellent properties through an extremely simple one-step electrochemical deposition process. The wettability switch and manipulative liquid-repellent properties are enabled by orientation change of the dodecyl sulfate ions ionically bonded to the porous membranes during electrodeposition. The porous membrane with adjustable wettability enables it to trap different lubricants on demand within the pores to form liquid-infused porous surfaces with varied liquid-repellent properties. We have demonstrated the application of the (liquid-infused) porous membrane in encryption, controllable droplet transfer, and water harvesting. Moreover, the silver porous membrane can be coated onto a copper mesh, forming a smart antifouling liquid gate capable of allowing water or oil to pass through on request.
Collapse
Affiliation(s)
- Yue Liu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Liyan Zhao
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianjian Lin
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Corresponding author.
| |
Collapse
|
63
|
Wang F, Pi J, Li JY, Song F, Feng R, Wang XL, Wang YZ. Highly-efficient separation of oil and water enabled by a silica nanoparticle coating with pH-triggered tunable surface wettability. J Colloid Interface Sci 2019; 557:65-75. [PMID: 31514094 DOI: 10.1016/j.jcis.2019.08.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 11/29/2022]
Abstract
Environmentally switched superwetting surfaces that can be used for separating various oil/water mixtures are of particular interest due to the increasing difficulty and complexity in oily wastewater treatment. Here, a novel fluorine-free pH-responsive coating is prepared by surface modification of SiO2 nanoparticles with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride and (N, N-dimethyl-3-aminopropyl) trimethoxysilane. With the assistance of polyethylene imine as a binder, such coating can be used for different porous substrates, e. g. cotton fabric and filter paper, to develop separation materials having tunable superhydrophilicity/superhydrophobicity and high antibacterial property. Due to the well-controlled surface wettability upon the pH variation, the as-prepared materials can effectively separate various types of oil/water mixtures with efficiency higher than 99.9%, including the layered oil/water mixture, water-in-oil emulsions and oil-in-water emulsions stabilized by different types of surfactants. Additionally, the materials can resist strong acid/base solutions and various organic solvents as well as 50-cycle mechanical abrasion and 120-cycle tape-peeling without losing anti-wetting performance. Featuring the tunable surface wettability, chemical/mechanical robustness, and antibacterial activity, such coating holds promising applications for treating various oil/water mixtures in harsh and biological-contamination conditions.
Collapse
Affiliation(s)
- Fang Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Pi
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing-Yu Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Rui Feng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
64
|
Soulignac C, Cornelio B, Brégier F, Le Derf F, Brière J, Clamens T, Lesouhaitier O, Estour F, Vieillard J. Heterogeneous-phase Sonogashira cross-coupling reaction on COC surface for the grafting of biomolecules – Application to isatin. Colloids Surf B Biointerfaces 2019; 181:639-647. [DOI: 10.1016/j.colsurfb.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 01/28/2023]
|
65
|
Chen C, Huang Z, Jiao Y, Shi LA, Zhang Y, Li J, Li C, Lv X, Wu S, Hu Y, Zhu W, Wu D, Chu J, Jiang L. In Situ Reversible Control between Sliding and Pinning for Diverse Liquids under Ultra-Low Voltage. ACS NANO 2019; 13:5742-5752. [PMID: 31051072 DOI: 10.1021/acsnano.9b01180] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thermally responsive paraffin-infused slippery surfaces have demonstrated intriguing performance in manipulating the behaviors of versatile droplets. However, present methods have been limited to ex situ rigid heat sources with a high voltage of 220 V or certain specific photothermal materials, which greatly hinders its practical applications. To solve this problem, an intelligent droplet motion control actuator (DMCA) composed of paraffin wax, hydrophobic micropillar-arrayed ZnO film, and a flexible transparent silver nanowire heater (SNWH) is reported in this work. Due to the good portability of DMCA, in situ switchable wettability for several liquid droplets with different surface tensions can be achieved by simply loading and unloading Joule heat at an ultra-low voltage (12 V). The relationship among sliding velocity and droplet volume and inclined angles was quantitatively investigated. By virtue of the flexible and mechanical endurance, this smart DMCA is dramatically functional for droplet motion manipulation ( e.g., reversible control between sliding and pinning) on complex 3D surfaces. Significantly, an impressive self-healing ability within 22 s is also demonstrated through the in situ application of Joule heat on the scratched DMCA, which renders its practical usability in various harsh conditions. This work provides insights for designing intelligent, flexible, and portable actuators dealing with the challenges of smart temperature-responsive surfaces.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuanzong Li
- School of Instrument Science and Optoelectronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Xiaodong Lv
- School of Instrument Science and Optoelectronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Sizhu Wu
- School of Instrument Science and Optoelectronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | | | | | | | | | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
66
|
Abstract
AbstractThe ability to control the movement of molecules is both fascinating scientifically as well as being critically important to the well-being of our planet and its people. In particular, the sustained release of molecules over prolonged periods at controlled rates has had and will continue to have enormous implications for the delivery of substances in medicine, agriculture, the environment, nutrition, aquaculture, household consumer products, and numerous other areas. This field is advancing at a rapidly accelerating pace. In this article, I largely discuss our own work, starting 45 years ago, in enabling the controlled release of macromolecules from biocompatible polymers. I also discuss the synthesis of novel materials to affect molecular movement and I then examine external approaches for controlling the movement of molecules through materials, using forces such as electric, acoustic, and magnetic fields. I further discuss approaches for controlling molecular movement through physiologic barriers, such as the skin, lung, and intestine. Finally, I outline several future areas of this field, including how it can affect the developing world, the ability to control the movement of molecules into mammalian cells, and the design of intelligent approaches to control molecular delivery.
Collapse
|
67
|
Hou L, Wang N, Man X, Cui Z, Wu J, Liu J, Li S, Gao Y, Li D, Jiang L, Zhao Y. Interpenetrating Janus Membrane for High Rectification Ratio Liquid Unidirectional Penetration. ACS NANO 2019; 13:4124-4132. [PMID: 30883094 DOI: 10.1021/acsnano.8b08753] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Anisotropic interfaces with opposite properties provide numerous unusual physical chemical properties that have played irreplaceable roles in broad domains. Here, we rationally designed an anisotropic Janus membrane with opposite wettability and special interpenetrating interface microstructure, which shows a unidirectional liquid penetration "diode" performance. Liquid is allowed to penetrate from lyophobic to lyophilic direction but is blocked in the reverse direction. Although conventional works suggested the liquid unidirectional penetration is driven by anisotropic wettability in heterogeneous interfaces, here, we theoretically and experimentally reveal that special interpenetrating topology plays another important role in liquid unidirectional penetration. This insight gives a general guide to build a series of Janus membranes for liquid unidirectional penetration with high hydraulic pressure rectification ratio. The liquid diode Janus membrane indicates great promise for liquid manipulation, smart separation membranes, functional textiles, and other fields.
Collapse
Affiliation(s)
- Lanlan Hou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Xingkun Man
- Center of Soft Matter Physics and Its Applications, School of Physics and Nuclear Energy Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Zhimin Cui
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Jing Wu
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering , Beijing Institute of Fashion Technology , Beijing 100029 , P.R. China
| | - Jingchong Liu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Shuai Li
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Yuan Gao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Dianming Li
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P.R. China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P.R. China
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , P.R. China
| |
Collapse
|
68
|
Guan ZY, Wu CY, Chen TY, Huang ST, Chiang YC, Chen HY. Clickable and Photo-Erasable Surface Functionalities by Using Vapor-Deposited Polymer Coatings. ACS Biomater Sci Eng 2019; 5:1753-1761. [PMID: 33405551 DOI: 10.1021/acsbiomaterials.9b00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A prospective design for interface properties is enabled to perform precise functionalization, erasure capability for existing properties, reactivation of surface functionality to a second divergent property. A vapor-deposited, 2-nitro-5-(prop-2-yn-1-yloxy)methylbenzyl carbamate-functionalized poly-para-xylylene coating is synthesized in this study to realize such tasks by offering the accessibility of the azide/alkyne click reaction, an integrated photochemical decomposition/cleavage moiety, and the reactivation sites of amines behind the cleavage that allow the installation of a second surface function. With the benefits from the mild processing conditions used for the coatings and the rapid response of the photochemical reaction, the creation of sophisticated interface properties and localized chemical compositions was elegantly demonstrated with a hybrid functionality including a confined hydrophlic/hydrophobic wetting property and/or a cell adherent/repellent platform on such a coating surface.
Collapse
Affiliation(s)
| | | | - Ting-Yo Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sheng-Tung Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yu-Chih Chiang
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei 10048, Taiwan
| | | |
Collapse
|
69
|
Targeting immune cells for cancer therapy. Redox Biol 2019; 25:101174. [PMID: 30917934 PMCID: PMC6859550 DOI: 10.1016/j.redox.2019.101174] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 12/29/2022] Open
Abstract
Recent years have seen a renaissance in the research linking inflammation and cancer with immune cells playing a central role in smouldering inflammation in the tumor microenvironment. Diverse immune cell types infiltrate the tumor microenvironment, and the dynamic tumor-immune cell interplay gives rise to a rich milieu of cytokines and growth factors. Fundamentally, this intricate cross-talk creates the conducive condition for tumor cell proliferation, survival and metastasis. Interestingly, the prominent impact of immune cells is expounded in their contrary pro-tumoral role, as well as their potential anti-cancer cellular weaponry. The latter is known as immunotherapy, a concept born out of evidence that tumors are susceptible to immune defence and that by manipulating the immune system, tumor growth can be successfully restrained. Naturally, a deeper understanding of the multifaceted roles of various immune cell types thus contributes toward developing innovative anti-cancer strategies. Therefore, in this review we first outline the roles played by the major immune cell types, such as macrophages, neutrophils, natural killer cells, T cells and B cells. We then explain the recently-explored strategies of immunomodulation and discuss some important approaches via an immunology perspective.
Collapse
|
70
|
Wang Q, Xu B, Hao Q, Wang D, Liu H, Jiang L. In situ reversible underwater superwetting transition by electrochemical atomic alternation. Nat Commun 2019; 10:1212. [PMID: 30872585 PMCID: PMC6418196 DOI: 10.1038/s41467-019-09201-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/27/2019] [Indexed: 11/09/2022] Open
Abstract
Materials with in situ reversible wettability have attractive properties but remain a challenge to use since the inverse process of liquid spreading is normally energetically unfavorable. Here, we propose a general electrochemical strategy that enables the in situ reversible superwetting transition between underwater superoleophilicity and superoleophobicity by constructing a binary textured surface. Taking the copper/tin system as an example, the surface energy of the copper electrode can be lowered significantly by electrodeposited tin, and be brought back to the initial high-energy state as a result of dissolving tin by removing the potential. Tin atoms with the water depletion layer inhibit the formation of a hydrogen-bonding network, causing oil droplets to spread over the surface, while copper atoms, with a high affinity for hydroxyl groups, facilitate replacing the oil layer with the aqueous electrolyte. The concept is applicable to other systems, such as copper/lead, copper/antimony, gold/tin, gold/lead and gold/antimony, for both polar and nonpolar oils, representing a potentially useful class of switchable surfaces. Materials with in situ reversible wettability have attractive properties for switching applications, but are a challenge to use especially for the inverse process of liquid spreading. Here, the authors propose an electrochemical strategy enabling in situ reversible superwetting conversion between underwater superoleophilicity and superoleophobicity by constructing a binary textured surface.
Collapse
Affiliation(s)
- Qianbin Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China
| | - Bojie Xu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China
| | - Qing Hao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Huan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China.
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100191, Beijing, P. R. China.,CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| |
Collapse
|
71
|
Zhang P, Ren S, Shan Y, Zhang L, Liu Y, Huang L, Pei S. Enhanced stability and high temperature-tolerance of CO 2 foam based on a long-chain viscoelastic surfactant for CO 2 foam flooding. RSC Adv 2019; 9:8672-8683. [PMID: 35518694 PMCID: PMC9061887 DOI: 10.1039/c9ra00237e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/08/2019] [Indexed: 11/21/2022] Open
Abstract
CO2 switchable foams have gained increasing attention recently for their smart properties. However, their performance at high temperature and high pressure has been less documented. In this study, a long-chain viscoelastic surfactant, N1-(3-aminopropyl)-N3-octadecylpropane-1,3-diamine bicarbonate (ODPTA) has been studied as a CO2 foam agent for its application in CO2 flooding in complex and harsh reservoir conditions, and the foam performance under static and dynamic conditions was tested up to 160 °C and 10.5 MPa using a visualized foam-meter and in sand-pack flooding experiments. The viscosity of the ODPTA and conventional surfactant solutions saturated with dissolved CO2 was measured using a long coiled-tube viscometer at HTHP, and its effect on the high temperature-tolerance of CO2 foams has been analyzed. The experimental results show that CO2 foam generated using ODPTA is much more stable than the conventional surfactants (such as SDS and alkylphenol ethoxylates) and has high temperature-tolerance up to 160 °C, and has also exhibited excellent mobility control in CO2 flooding experiments. The viscosity of the ODPTA–CO2 bulk phase can be maintained as high as 12 mPa s under 160 °C and 10.5 MPa, which is much higher than that of the conventional surfactant solutions (similar to water). ODPTA's good foam performance with extremely high temperature-tolerance can be attributed to its high bulk phase viscosity in the brine water saturated with CO2. CO2 switchable foams have gained increasing attention recently for their smart properties.![]()
Collapse
Affiliation(s)
- Panfeng Zhang
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education No. 66, Changjiang West Road, Huangdao District Qingdao 266580 P. R. China .,School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Shaoran Ren
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education No. 66, Changjiang West Road, Huangdao District Qingdao 266580 P. R. China .,School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Yu Shan
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education No. 66, Changjiang West Road, Huangdao District Qingdao 266580 P. R. China .,School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Liang Zhang
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education No. 66, Changjiang West Road, Huangdao District Qingdao 266580 P. R. China .,School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Yizhe Liu
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education No. 66, Changjiang West Road, Huangdao District Qingdao 266580 P. R. China .,School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Lijuan Huang
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education No. 66, Changjiang West Road, Huangdao District Qingdao 266580 P. R. China .,School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Shufeng Pei
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education No. 66, Changjiang West Road, Huangdao District Qingdao 266580 P. R. China .,School of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| |
Collapse
|
72
|
Du L, Quan X, Fan X, Chen S, Yu H. Electro-responsive carbon membranes with reversible superhydrophobicity/superhydrophilicity switch for efficient oil/water separation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.05.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
73
|
Gao D, Cao J, Guo Z. Underwater manipulation of oil droplets and bubbles on superhydrophobic surfaces via switchable adhesion. Chem Commun (Camb) 2019; 55:3394-3397. [DOI: 10.1039/c9cc00271e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UV light-responsive reversible switching of oil droplet and bubble adhesion underwater is realized to manipulate oil droplet or bubble motion and transportation.
Collapse
Affiliation(s)
- Dejun Gao
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
- State Key Laboratory of Solid Lubrication
| | - Jian Cao
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| |
Collapse
|
74
|
Yan S, Li W, Bi H, Wang M, Sun D, Wei Q, Wang S, Wang Z, Zhang M. Wettability control of conjugated polymer films by electric-field polarization technique. Chem Commun (Camb) 2019; 55:3274-3277. [DOI: 10.1039/c8cc09363f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The wettability of conjugated polymer poly(3-hexylthiophene) (P3HT) films was accurately controlled by an electric field polarization technique, and transition of the films from being hydrophobic to hydrophilic was successfully achieved.
Collapse
Affiliation(s)
- Su Yan
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - Wei Li
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
| | - Huan Bi
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - Mian Wang
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - De Sun
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
| | - Qi Wei
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - Shiwei Wang
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - Zhe Wang
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
- Advanced Institute of Materials Science
| | - Mingyao Zhang
- School of Chemical Engineering
- Changchun University of Technology
- Changchun
- P. R. China
| |
Collapse
|
75
|
Zhang D, Cheng Z, Liu Y. Smart Wetting Control on Shape Memory Polymer Surfaces. Chemistry 2018; 25:3979-3992. [DOI: 10.1002/chem.201804192] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Dongjie Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy, Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P.R. China
| | - Zhongjun Cheng
- Academy of Fundamental and Interdisciplinary SciencesHarbin Institute of Technology Harbin 150090 P.R. China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy, Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 P.R. China
| |
Collapse
|
76
|
Yamashita H, Mori K, Kuwahara Y, Kamegawa T, Wen M, Verma P, Che M. Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. Chem Soc Rev 2018; 47:8072-8096. [PMID: 29892768 DOI: 10.1039/c8cs00341f] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Silica-based micro-, meso-, macro-porous materials offer attractive routes for designing single-site photocatalysts, supporting semiconducting nanoparticles, anchoring light-responsive metal complexes, and encapsulating metal nanoparticles to drive photochemical reactions by taking advantage of their large surface area, controllable pore channels, remarkable transparency to UV/vis and tailorable physicochemical surface characteristics. This review mainly focuses on the fascinating photocatalytic properties of silica-supported Ti catalysts from single-site catalysts to nanoparticles, their surface-chemistry engineering, such as the hydrophobic modification and synthesis of thin films, and the fabrication of nanocatalysts including morphology controlled plasmonic nanostructures with localized surface plasmon resonance. The hybridization of visible-light responsive metal complexes with porous materials for the construction of functional inorganic-organic supramolecular photocatalysts is also included. In addition, the latest progress in the application of MOFs as excellent hosts for designing photocatalytic systems is described.
Collapse
Affiliation(s)
- Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
The interactions of adherent cells with their insoluble extracellular matrices are complex and challenging to study in the laboratory. Approaches from interface science have been important to preparing models of the biological matrix wherein discreet ligands are immobilized and interact with cellular receptors. A recent theme has been to develop dynamic substrates, where the activities of immobilized ligands can be modulated in real-time during cell culture. This short opinion reviews the strategies to manipulate ligand activity, highlights recent work that has advanced the field and discusses the applications that have been enabled. This work suggests that dynamic substrates will continue to find important uses in basic and applied biointerfaces.
Collapse
Affiliation(s)
- Pradeep Bugga
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208 United States
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208 United States
| |
Collapse
|
78
|
Tan S, Saito K, Hearn MTW. Stimuli-responsive polymeric materials for separation of biomolecules. Curr Opin Biotechnol 2018; 53:209-223. [DOI: 10.1016/j.copbio.2018.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
|
79
|
Kohri M, Yanagimoto K, Kohaku K, Shiomoto S, Kobayashi M, Imai A, Shiba F, Taniguchi T, Kishikawa K. Magnetically Responsive Polymer Network Constructed by Poly(acrylic acid) and Holmium. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | - Shohei Shiomoto
- Department of Applied Chemistry, Graduate School of Engineering, and School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo 192-0015, Japan
| | | | - Akira Imai
- Technical Services Department, Quantum Design Japan, Inc., Nishiikebukuro Fujita Bldg. 1F,
1-11-16 Takamatsu, Toshima-ku, Tokyo 171-0042, Japan
| | | | | | | |
Collapse
|
80
|
Effect of electrochemical oxidation and reduction on cell de-adhesion at the conducting polymer–live cell interface as revealed by single cell force spectroscopy. Biointerphases 2018; 13:041004. [DOI: 10.1116/1.5022713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
81
|
Yang C, Wu L, Li G. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20150-20158. [PMID: 29806941 DOI: 10.1021/acsami.8b04190] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A smart, magnetically responsive superhydrophobic surface was facilely prepared by combining spray coating and magnetic-field-directed self-assembly. The surface comprised a dense array of magnetorheological elastomer micropillars (MREMPs). Benefitting from the magnetic field-stiffening effect of the MREMPs, the surface exhibited reversible switching of the wettability and adhesion that was responsive to an on/off magnetic field. The wettability and adhesion properties of the surfaces with MREMPs were investigated under different magnetic fields. The results revealed that the adhesion force and sliding behaviors of these surfaces were strongly dependent on the intensity of the applied magnetic field and the mixing ratio of poly(dimethylsiloxane) (PDMS), iron particles, and solvent (in solution) used for preparation of the magnetically responsive superhydrophobic surfaces. The adhesion transition was attributed to the tunable mechanical properties of the MREMPs, which was easily controlled by an external magnetic field. It was also demonstrated that the magnetically responsive superhydrophobic surface can be used as a "mechanical hand" for no-loss liquid droplet transportation. This magnetically responsive superhydrophobic surface not only provides a novel interface for microfluidic control and droplet transportation, but also opens up new avenues for achieving smart liquid-repellent skin, programmable fluid collection and transport, and smart microfluidic devices.
Collapse
Affiliation(s)
- Chao Yang
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education , Chongqing University , Chongqing 400044 , China
| | - Lei Wu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Gang Li
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education , Chongqing University , Chongqing 400044 , China
| |
Collapse
|
82
|
Agbolaghi S, Abbaspoor S, Abbasi F. A comprehensive review on polymer single crystals—From fundamental concepts to applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
83
|
Mahmoudi M, Agbolaghi S, Mozaffari Z, Abbaspoor S, Massoumi B, Sarvari R, Hosseinzadeh N. Star‐Like Poly(
N
‐isopropylacrylamide) and Poly(ethylene glycol) Copolymers Self‐Arranged in Newfound Single Crystals and Associated Novel Class of Polymer Brush Regimes with V‐Type Tethers. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mojgan Mahmoudi
- Faculty of Polymer Engineering and Institute of Polymeric MaterialsSahand University of Technology Tabriz 5331711111 Iran
| | - Samira Agbolaghi
- Chemical Engineering DepartmentFaculty of EngineeringAzarbaijan Shahid Madani University Tabriz 5375171379 Iran
| | - Zahra Mozaffari
- Department of ChemistryPayame Noor University Tehran 19395−3697 Iran
| | - Saleheh Abbaspoor
- Faculty of Polymer Engineering and Institute of Polymeric MaterialsSahand University of Technology Tabriz 5331711111 Iran
| | | | - Raana Sarvari
- Department of ChemistryPayame Noor University Tehran 19395−3697 Iran
| | - Nasrin Hosseinzadeh
- Faculty of Polymer Engineering and Institute of Polymeric MaterialsSahand University of Technology Tabriz 5331711111 Iran
| |
Collapse
|
84
|
Electric field induced proton transfer at α,ω-mercaptoalkanecarboxylic acids self-assembled monolayers of different chain length. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
85
|
Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY. A Materials Roadmap to Functional Neural Interface Design. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701269. [PMID: 29805350 PMCID: PMC5963731 DOI: 10.1002/adfm.201701269] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Advancement in neurotechnologies for electrophysiology, neurochemical sensing, neuromodulation, and optogenetics are revolutionizing scientific understanding of the brain while enabling treatments, cures, and preventative measures for a variety of neurological disorders. The grand challenge in neural interface engineering is to seamlessly integrate the interface between neurobiology and engineered technology, to record from and modulate neurons over chronic timescales. However, the biological inflammatory response to implants, neural degeneration, and long-term material stability diminish the quality of interface overtime. Recent advances in functional materials have been aimed at engineering solutions for chronic neural interfaces. Yet, the development and deployment of neural interfaces designed from novel materials have introduced new challenges that have largely avoided being addressed. Many engineering efforts that solely focus on optimizing individual probe design parameters, such as softness or flexibility, downplay critical multi-dimensional interactions between different physical properties of the device that contribute to overall performance and biocompatibility. Moreover, the use of these new materials present substantial new difficulties that must be addressed before regulatory approval for use in human patients will be achievable. In this review, the interdependence of different electrode components are highlighted to demonstrate the current materials-based challenges facing the field of neural interface engineering.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - James R Eles
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Kip A Ludwig
- Department of Neurologic Surgery, 200 First St. SW, Rochester, MN 55905
| | - John P Seymour
- Electrical & Computer Engineering, 1301 Beal Ave., 2227 EECS, Ann Arbor, MI 48109
| | - Nicholas J Michelson
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - William E McFadden
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Alberto L Vazquez
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Takashi D Y Kozai
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| |
Collapse
|
86
|
Hall AR, Geoghegan M. Polymers and biopolymers at interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:036601. [PMID: 29368695 DOI: 10.1088/1361-6633/aa9e9c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This review updates recent progress in the understanding of the behaviour of polymers at surfaces and interfaces, highlighting examples in the areas of wetting, dewetting, crystallization, and 'smart' materials. Recent developments in analysis tools have yielded a large increase in the study of biological systems, and some of these will also be discussed, focussing on areas where surfaces are important. These areas include molecular binding events and protein adsorption as well as the mapping of the surfaces of cells. Important techniques commonly used for the analysis of surfaces and interfaces are discussed separately to aid the understanding of their application.
Collapse
Affiliation(s)
- A R Hall
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom. Fraunhofer Project Centre for Embedded Bioanalytical Systems, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | |
Collapse
|
87
|
Zhang D, Cheng Z, Kang H, Yu J, Liu Y, Jiang L. A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure. Angew Chem Int Ed Engl 2018; 57:3701-3705. [DOI: 10.1002/anie.201800416] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/05/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Dongjie Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P. R. China
| | - Zhongjun Cheng
- Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Harbin 150090 P. R. China
| | - Hongjun Kang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P. R. China
| | - Jianxin Yu
- Center of Analysis and Measurement; Harbin Institute of Technology; Harbin 150090 P. R. China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P. R. China
| | - Lei Jiang
- Institute of Chemistry; Chinese Academy of Sciences; Beijing 100080 P. R. China
| |
Collapse
|
88
|
Zhang D, Cheng Z, Kang H, Yu J, Liu Y, Jiang L. A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800416] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dongjie Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P. R. China
| | - Zhongjun Cheng
- Academy of Fundamental and Interdisciplinary Sciences; Harbin Institute of Technology; Harbin 150090 P. R. China
| | - Hongjun Kang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P. R. China
| | - Jianxin Yu
- Center of Analysis and Measurement; Harbin Institute of Technology; Harbin 150090 P. R. China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 P. R. China
| | - Lei Jiang
- Institute of Chemistry; Chinese Academy of Sciences; Beijing 100080 P. R. China
| |
Collapse
|
89
|
Kang H, Liu Y, Lai H, Yu X, Cheng Z, Jiang L. Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO 2 Nanotube Arrays. ACS NANO 2018; 12:1074-1082. [PMID: 29338192 DOI: 10.1021/acsnano.7b05813] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recently, smart interfacial materials that can reversibly transit between the superhydrophobicity and superhydrophilicity have aroused much attention. However, all present performances happen in air, and to realize such a smart transition in complex environments, such as oil, is still a challenge. Herein, TiO2 nanotube arrays with switchable transition between the superhydrophobicity and superhydrophilicity in oil are reported. The switching can be observed by alternation of UV irradiation and heating process, and the smart controllability can be ascribed to the cooperative effect between the surface nanostructures and the chemical composition variation. By using the controllable wetting performances, some applications such as under-oil droplet-based microreaction and water-removal from oil were demonstrated on our surface. This paper reports a surface with smart water wettability in oil, which could start some fresh ideas for wetting control on interfacial materials.
Collapse
Affiliation(s)
- Hongjun Kang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Hua Lai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Xiaoyan Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Zhongjun Cheng
- Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Lei Jiang
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100080, P. R. China
| |
Collapse
|
90
|
Meng C, Tseng M, Tang S, Kwok H. Optical rewritable liquid crystal displays without a front polarizer. OPTICS LETTERS 2018; 43:899-902. [PMID: 29444022 DOI: 10.1364/ol.43.000899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
A front polarizer-free optically rewritable (ORW) liquid crystal display (LCD) has been made via a hybrid alignment configuration with dye-doped LCs. The hybrid structure consists of one optically active planar and one optically passive homeotropic alignment layer. The rewritability of the device is achieved by photo-reorienting the azo dye molecules in the active planar alignment layer. The dye is doped in LCs to function as a polarizer by following the LCs' direction via a guest-host effect so that the front polarizer can be eliminated. This makes the device more compact and easier to operate for image erasing and rewriting. The image rewriting time only requires ∼9.0 s, which is determined by the exposure energy and LC parameters. The hybrid-mode dye-doped ORW LCD devices could find applications in E-paper, transparent display, and various photonics devices.
Collapse
|
91
|
Abstract
Since its discovery in 1988, B-type natriuretic peptide (BNP) has been recognized as a powerful cardiovascular biomarker for a number of disease states, specifically heart failure. Concurrent with such a discovery, much effort has been allocated to the precise monitoring of physiological BNP levels. Thus, it can be used to guide the therapy of heart failure and determine the patient's stage of disease. Thus, we discuss in this article BNP as a potent biomarker. Subsequently, we will review the progress of biosensing devices as they could be applied to monitor BNP levels as assays, benchtop biosensors and implantable biosensors. The analytical characteristics of commercially available BNP assays are presented. Still emerging as a field, we define four obstacles that present opportunity for the future development of implantable biosensor: foreign body response, sensor renewability, sensitivity and selectivity.
Collapse
|
92
|
Hong L, Nishihara T, Hijikata Y, Miyauchi Y, Itami K. Unidirectional molecular assembly alignment on graphene enabled by nanomechanical symmetry breaking. Sci Rep 2018; 8:2333. [PMID: 29402969 PMCID: PMC5799215 DOI: 10.1038/s41598-018-20760-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 11/10/2022] Open
Abstract
Precise fabrication of molecular assemblies on a solid surface has long been of central interest in surface science. Their perfectly oriented growth only along a desired in-plane direction, however, remains a challenge, because of the thermodynamical equivalence of multiple axis directions on a solid-surface lattice. Here we demonstrate the successful fabrication of an in-plane, unidirectional molecular assembly on graphene. Our methodology relies on nanomechanical symmetry breaking effects under atomic force microscopy tip scanning, which has never been used in molecular alignment. Individual one-dimensional (1D) molecular assemblies were aligned along a selected symmetry axis of the graphene lattice under finely-tuned scanning conditions after removing initially-adsorbed molecules. Experimental statistics and computational simulations suggest that the anisotropic tip scanning locally breaks the directional equivalence of the graphene surface, which enables nucleation of the unidirectional 1D assemblies. Our findings will open new opportunities in the molecular alignment control on various atomically flat surfaces.
Collapse
Affiliation(s)
- Liu Hong
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Taishi Nishihara
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yuh Hijikata
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yuhei Miyauchi
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan. .,Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan. .,Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| | - Kenichiro Itami
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan. .,Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan. .,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
93
|
Modulation of wettability, gradient and adhesion on self-assembled monolayer by counterion exchange and pH. J Colloid Interface Sci 2018; 512:511-521. [DOI: 10.1016/j.jcis.2017.10.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 11/22/2022]
|
94
|
Su X, Li H, Lai X, Zhang L, Liao X, Wang J, Chen Z, He J, Zeng X. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4213-4221. [PMID: 29323869 DOI: 10.1021/acsami.7b15909] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe3O4) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe3O4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie He
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | | |
Collapse
|
95
|
Zhao T, Zhu X, Zhang L, Cang H, Zhang X, Li C, Wei H, Ma N. Dual-Responsive Self-Propulsion Smart Device Steadily Driven by CO 2 and H 2O 2. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4095-4101. [PMID: 29308646 DOI: 10.1021/acsami.7b16930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we introduce a kind of tertiary amine-based CO2-responsive material combining with the H2O2-responsive material to develop a dual-responsive self-propulsion smart device which can convert the chemical energy of H2O2 into mechanical energy steadily through diving-surfacing cycles. In this dual-responsive device, the CO2-responsive material is designed as a wettability conversion species, which is wrapped with a strip of platinum to catalyze the decomposition of H2O2 to generate gaseous O2 to realize surfacing. In deionized water, the device floats on the surface of the water initially and can perform a diving-surfacing cycle when CO2 and H2O2 stimuli are alternately applied to the aqueous solution. The cyclic movement of the device can be realized by the generation and release of the inner gas through the hydrophobic cover, leading to a new controllable transition of different kinds of energy.
Collapse
Affiliation(s)
- Tingting Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Xu Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Lijie Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Hongyuan Cang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Xinyue Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Cancan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Hao Wei
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Ning Ma
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| |
Collapse
|
96
|
Choi I, Lee J, Kim W, Kang H, Bae SW, Chang R, Kim S, Yeo WS. On-Demand Modulation of Bacterial Cell Fates on Multifunctional Dynamic Substrates. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4324-4332. [PMID: 29318876 DOI: 10.1021/acsami.7b18132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper reports unprecedented dynamic surfaces based on zwitterionic low-density self-assembled monolayers (LDSAMs) of alkanethiolates on gold, which integrate three interconvertible states-bacteria-adherable, bactericidal, and nonfouling states-through electrical modulations. The conformations of alkanethiolates were electrically modulated to generate zwitterionic, anionic, and cationic surfaces, which responded differently to bacteria and determined the fate of bacteria. Furthermore, the reversible switching of multifunctions of the surface was realized for killing bacteria and subsequently releasing dead bacteria from the surface. For practical application of our strategy, we examined the selective antibacterial effect of our surface for eradication of mycoplasma contaminants in contaminated mammalian cell cultures.
Collapse
Affiliation(s)
| | | | - Wontae Kim
- Department of Chemistry, Kwangwoon University , Seoul 139-741, Republic of Korea
| | | | - Se Won Bae
- Green Materials and Process Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology , Cheonan 31056, Korea
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University , Seoul 139-741, Republic of Korea
| | | | | |
Collapse
|
97
|
Bouravleuv A, Ilkiv I, Reznik R, Kotlyar K, Soshnikov I, Cirlin G, Brunkov P, Kirilenko D, Bondarenko L, Nepomnyaschiy A, Gruznev D, Zotov A, Saranin A, Dhaka V, Lipsanen H. New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles. NANOTECHNOLOGY 2018; 29:045602. [PMID: 29135463 DOI: 10.1088/1361-6528/aa9ab1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a new method for the deposition of colloidal Au nanoparticles on the surface of silicon substrates based on short-time Ar plasma treatment without the use of any polymeric layers. The elaborated method is compatible with molecular beam epitaxy, which allowed us to carry out the detailed study of GaAs nanowire synthesis on Si(111) substrates using colloidal Au nanoparticles as seeds for their growth. The results obtained elucidated the causes of the difference between the initial nanoparticle sizes and the diameters of the grown nanowires.
Collapse
Affiliation(s)
- A Bouravleuv
- St. Petersburg Academic University RAS, Khlopina 8/3, 194021 St. Petersburg, Russia. Ioffe Institute RAS, Politekhnicheskaya 29, 194021 St.Petersburg, Russia. Institute for Analytical Instrumentation RAS, Ivana Chernykh 31-33, 198095 St. Petersburg, Russia. St. Petersburg Electrotechnical University, Professora Popova 5, 197376 St. Petersburg, Russia. Aalto University, Tietotie 3, FI-02150 Espoo, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Pashazanusi L, Oguntoye M, Oak S, Albert JNL, Pratt LR, Pesika NS. Anomalous Potential-Dependent Friction on Au(111) Measured by AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:801-806. [PMID: 28976763 DOI: 10.1021/acs.langmuir.7b03023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present an exploratory study of the tribological properties between an AFM probe and a Au(111) surface in an aqueous environment while subjected to applied surface potentials. Using a three-electrode setup, the electrical potential and interfacial electric field on a Au(111) working electrode are controlled. Lateral force microscopy is used to measure the friction forces between the AFM probe and the Au surface. As the AFM probe approaches the surface, normal forces are also measured to gain insight into the interfacial forces. When a positive potential is applied to the Au surface, the friction is found to rise sharply at a critical potential and level off at a relatively high value. However, when a negative potential is applied, the friction forces are low, even lower compared to the open circuit potential case. These changes in friction, by a factor of approximately 35, as a function of the applied potential are found to be reversible over multiple cycles. We attribute the origin of the high friction at positive potentials to the formation of a highly confined, ordered icelike water layer at the Au/electrolyte interface that results in effective hydrogen bonding with the AFM probe. At negative potentials, the icelike water layer is disrupted, resulting in the water molecules acting as boundary lubricants and providing low friction. Such friction experiments can provide valuable insight into the structure and properties of water at charged surfaces under various conditions and can potentially impact a variety of technologies relying on molecular-level friction such as MEMs.
Collapse
Affiliation(s)
- Leila Pashazanusi
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | - Moses Oguntoye
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | - Shreyas Oak
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | - Julie N L Albert
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University , New Orleans, Louisiana 70112, United States
| | - Lawrence R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | - Noshir S Pesika
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University , New Orleans, Louisiana 70112, United States
| |
Collapse
|
99
|
Liu X, Carbonell C, Braunschweig AB. Towards scanning probe lithography-based 4D nanoprinting by advancing surface chemistry, nanopatterning strategies, and characterization protocols. Chem Soc Rev 2018; 45:6289-6310. [PMID: 27460011 DOI: 10.1039/c6cs00349d] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biointerfaces direct some of the most complex biological events, including cell differentiation, hierarchical organization, and disease progression, or are responsible for the remarkable optical, electronic, and biological behavior of natural materials. Chemical information encoded within the 4D nanostructure of biointerfaces - comprised of the three Cartesian coordinates (x, y, z), and chemical composition of each molecule within a given volume - dominates their interfacial properties. As such, there is a strong interest in creating printing platforms that can emulate the 4D nanostructure - including both the chemical composition and architectural complexity - of biointerfaces. Current nanolithography technologies are unable to recreate 4D nanostructures with the chemical or architectural complexity of their biological counterparts because of their inability to position organic molecules in three dimensions and with sub-1 micrometer resolution. Achieving this level of control over the interfacial structure requires transformational advances in three complementary research disciplines: (1) the scope of organic reactions that can be successfully carried out on surfaces must be increased, (2) lithography tools are needed that are capable of positioning soft organic and biologically active materials with sub-1 micrometer resolution over feature diameter, feature-to-feature spacing, and height, and (3) new techniques for characterizing the 4D structure of interfaces should be developed and validated. This review will discuss recent advances in these three areas, and how their convergence is leading to a revolution in 4D nanomanufacturing.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Carlos Carbonell
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA and Advanced Science Research Center (ASRC), City University of New York, New York, New York 10031, USA
| | - Adam B Braunschweig
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA and Advanced Science Research Center (ASRC), City University of New York, New York, New York 10031, USA and Department of Chemistry and Biochemistry, City University of New York, Hunter College, 695 Park Avenue, New York, New York 10065, USA.
| |
Collapse
|
100
|
Chavan SN, Padhan AK, Mandal D. Self-assembly of fluorous amphiphilic copolymers with ionogels and surface switchable wettability. Polym Chem 2018. [DOI: 10.1039/c8py00273h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorous amphiphilic ionic copolymers of 1H,1H,2H-Perfluoro-1-octene and vinyl imidazole self-assembled in different solvents to form ionogels and exhibits tunable substrate switching wettability.
Collapse
Affiliation(s)
- Santosh N. Chavan
- Department of Chemistry
- Indian Institute of Technology Ropar
- Punjab 140001
- India
| | - Anil K. Padhan
- Department of Chemistry
- Indian Institute of Technology Ropar
- Punjab 140001
- India
| | - Debaprasad Mandal
- Department of Chemistry
- Indian Institute of Technology Ropar
- Punjab 140001
- India
| |
Collapse
|