51
|
Naeli P, Winter T, Hackett AP, Alboushi L, Jafarnejad SM. The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J 2022; 290:2508-2524. [PMID: 35247033 DOI: 10.1111/febs.16422] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Post-transcriptional regulation of messenger RNAs (mRNAs) (i.e., mechanisms that control translation, stability and localization) is a critical focal point in spatiotemporal regulation of gene expression in response to changes in environmental conditions. The human genome encodes ~ 2000 microRNAs (miRNAs), each of which could control the expression of hundreds of protein-coding mRNAs by inducing translational repression and/or promoting mRNA decay. While mRNA degradation is a terminal event, translational repression is reversible and can be employed for rapid response to internal or external cues. Recent years have seen significant progress in our understanding of how miRNAs induce degradation or translational repression of the target mRNAs. Here, we review the recent findings that illustrate the cellular machinery that contributes to miRNA-induced silencing, with a focus on the factors that could influence translational repression vs. decay.
Collapse
Affiliation(s)
- Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Timothy Winter
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | | |
Collapse
|
52
|
Abel Y, Charron C, Virciglio C, Bourguignon-Igel V, Quinternet M, Chagot ME, Robert MC, Verheggen C, Branlant C, Bertrand E, Manival X, Charpentier B, Rederstorff M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2172-2189. [PMID: 35150569 PMCID: PMC8887487 DOI: 10.1093/nar/gkac086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs silence mRNAs by guiding the RISC complex. RISC assembly occurs following cleavage of pre-miRNAs by Dicer, assisted by TRBP or PACT, and the transfer of miRNAs to AGO proteins. The R2TP complex is an HSP90 co-chaperone involved in the assembly of ribonucleoprotein particles. Here, we show that the R2TP component RPAP3 binds TRBP but not PACT. The RPAP3-TPR1 domain interacts with the TRBP-dsRBD3, and the 1.5 Å resolution crystal structure of this complex identifies key residues involved in the interaction. Remarkably, binding of TRBP to RPAP3 or Dicer is mutually exclusive. Additionally, we found that AGO(1/2), TRBP and Dicer are all sensitive to HSP90 inhibition, and that TRBP sensitivity is increased in the absence of RPAP3. Finally, RPAP3 seems to impede miRNA activity, raising the possibility that the R2TP chaperone might sequester TRBP to regulate the miRNA pathway.
Collapse
Affiliation(s)
| | | | | | | | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLOR, F-54000, Nancy, France
| | | | - Marie-Cécile Robert
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | - Céline Verheggen
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | | | - Edouard Bertrand
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | |
Collapse
|
53
|
Singh V, Kushwaha S, Ansari JA, Gangopadhyay S, Mishra SK, Dey RK, Giri AK, Patnaik S, Ghosh D. MicroRNA-129-5p-regulated microglial expression of the surface receptor CD200R1 controls neuroinflammation. J Biol Chem 2021; 298:101521. [PMID: 34952004 PMCID: PMC8762073 DOI: 10.1016/j.jbc.2021.101521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
CD200R1 is an inhibitory surface receptor expressed in microglia and blood macrophages. Microglial CD200R1 is known to control neuroinflammation by keeping the microglia in resting state, and therefore, tight regulation of its expression is important. CCAAT/enhancer-binding protein β (CEBPβ) is the known regulator of CD200R1 transcription. In the present study, our specific intention was to find a possible posttranscriptional regulatory mechanism of CD200R1 expression. Here we investigated a novel regulatory mechanism of CD200R1 expression following exposure to an environmental stressor, arsenic, combining in silico analysis, in vitro, and in vivo experiments, as well as validation in human samples. The in silico analysis and in vitro studies with primary neonatal microglia and BV2 microglia revealed that arsenic demethylates the promoter of a microRNA, miR-129-5p, thereby increasing its expression, which subsequently represses CD200R1 by binding to its 3′-untranslated region and shuttling the CD200R1 mRNA to the cytoplasmic-processing body in mouse microglia. The role of miR-129-5p was further validated in BALB/c mouse by stereotaxically injecting anti-miR-129. We found that anti-miR-129 reversed the expression of CD200R1, as well as levels of inflammatory molecules IL-6 and TNF-α. Experiments with a CD200R1 siRNA-induced loss-of-function mouse model confirmed an miR-129-5p→CD200R1→IL-6/TNF-α signaling axis. These main findings were replicated in a human cell line and validated in human samples. Taken together, our study revealed miR-129-5p as a novel posttranscriptional regulator of CD200R1 expression with potential implications in neuroinflammation and related complications.
Collapse
Affiliation(s)
- Vikas Singh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shaivya Kushwaha
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamal Ahmad Ansari
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Siddhartha Gangopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Shubhendra K Mishra
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Rajib K Dey
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok K Giri
- CSIR-Indian Institute of Chemical Biology, 4, Raja Subodh Chandra Mallick Rd, Poddar Nagar, Jadavpur, Kolkata, West Bengal 700032, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Debabrata Ghosh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
54
|
Marathon-Induced Cardiac Strain as Model for the Evaluation of Diagnostic microRNAs for Acute Myocardial Infarction. J Clin Med 2021; 11:jcm11010005. [PMID: 35011745 PMCID: PMC8745173 DOI: 10.3390/jcm11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The current gold standard biomarker for myocardial infarction (MI), cardiac troponin (cTn), is recognized for its high sensitivity and organ specificity; however, it lacks diagnostic specificity. Numerous studies have introduced circulating microRNAs as potential biomarkers for MI. This study investigates the MI-specificity of these serum microRNAs by investigating myocardial stress/injury due to strenuous exercise. Methods: MicroRNA biomarkers were retrieved by comprehensive review of 109 publications on diagnostic serum microRNAs for MI. MicroRNA levels were first measured by next-generation sequencing in pooled sera from runners (n = 46) before and after conducting a full competitive marathon. Hereafter, reverse transcription quantitative real-time PCR (qPCR) of 10 selected serum microRNAs in 210 marathon runners was performed (>10,000 qPCR measurements). Results: 27 potential diagnostic microRNA for MI were retrieved by the literature review. Eight microRNAs (miR-1-3p, miR-21-5p, miR-26a-5p, miR-122-5p, miR-133a-3p, miR-142-5p, miR-191-5p, miR-486-3p) showed positive correlations with cTnT in marathon runners, whereas two miRNAs (miR-134-5p and miR-499a-5p) showed no correlations. Upregulation of miR-133a-3p (p = 0.03) and miR-142-5p (p = 0.01) went along with elevated cTnT after marathon. Conclusion: Some MI-associated microRNAs (e.g., miR-133a-3p and miR-142-5p) have similar kinetics under strenuous exercise and MI as compared to cTnT, which suggests that their diagnostic specificity could be limited. In contrast, several MI-associated microRNAs (miR-26a-5p, miR-134-5p, miR-191-5p) showed different release behavior; hence, combining cTnT with these microRNAs within a multi-marker strategy may add diagnostic accuracy in MI.
Collapse
|
55
|
Das A, Basu S, Bandyopadhyay D, Mukherjee K, Datta D, Chakraborty S, Jana S, Adak M, Bose S, Chakrabarti S, Swarnakar S, Chakrabarti P, Bhattacharyya SN. Inhibition of extracellular vesicle-associated MMP2 abrogates intercellular hepatic miR-122 transfer to liver macrophages and curtails inflammation. iScience 2021; 24:103428. [PMID: 34877493 PMCID: PMC8633982 DOI: 10.1016/j.isci.2021.103428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatic miRNA, miR-122, plays an important role in controlling metabolic homeostasis in mammalian liver. Intercellular transfer of miR-122 was found to play a role in controlling tissue inflammation. miR-122, as part of extracellular vesicles released by lipid-exposed hepatic cells, are taken up by tissue macrophages to activate them and produce inflammatory cytokines. Matrix metalloprotease 2 or MMP2 was found to be essential for transfer of extracellular vesicles and their miRNA content from hepatic to non-hepatic cells. MMP2 was found to increase the movement of the extracellular vesicles along the extracellular matrix to enhance their uptake in recipient cells. Inhibition of MMP2 restricts functional transfer of hepatic miRNAs across the hepatic and non-hepatic cell boundaries, and by targeting MMP2, we could reduce the innate immune response in mammalian liver by preventing intra-tissue miR-122 transfer. MMP2 thus could be a useful target to restrict high-fat-diet-induced obesity-related metaflammation. Hepatocytes on exposure to high lipid export proinflammatory miR-122 in mouse liver Uptake of extracellular miR-122 induces inflammatory signals in liver macrophages MMP2 on extracellular vesicles is essential for intercellular transfer of miRNA Inhibition of MMP2 prevents miR-122 transfer and stops activation of macrophages
Collapse
Affiliation(s)
- Arnab Das
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Sudarshana Basu
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Diptankar Bandyopadhyay
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Kamalika Mukherjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Debduti Datta
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Sreemoyee Chakraborty
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, (CSIR-HRDC), Ghaziabad, India
| | - Sayantan Jana
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Moumita Adak
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Sarpita Bose
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Snehasikta Swarnakar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Partha Chakrabarti
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, (CSIR-HRDC), Ghaziabad, India
| |
Collapse
|
56
|
Shah A, Bhandari R. IP6K1 upregulates the formation of processing bodies by influencing protein-protein interactions on the mRNA cap. J Cell Sci 2021; 134:273758. [PMID: 34841428 DOI: 10.1242/jcs.259117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Inositol hexakisphosphate kinase 1 (IP6K1) is a small molecule kinase that catalyzes the conversion of the inositol phosphate IP6 to 5-IP7. We show that IP6K1 acts independently of its catalytic activity to upregulate the formation of processing bodies (P-bodies), which are cytoplasmic ribonucleoprotein granules that store translationally repressed mRNA. IP6K1 does not localise to P-bodies, but instead binds to ribosomes, where it interacts with the mRNA decapping complex - the scaffold protein EDC4, activator proteins DCP1A/B, decapping enzyme DCP2 and RNA helicase DDX6. Along with its partner 4E-T, DDX6 is known to nucleate protein-protein interactions on the 5' mRNA cap to facilitate P-body formation. IP6K1 binds the translation initiation complex eIF4F on the mRNA cap, augmenting the interaction of DDX6 with 4E-T (also known as EIF4ENIF1) and the cap-binding protein eIF4E. Cells with reduced IP6K1 show downregulated microRNA-mediated translational suppression and increased stability of DCP2-regulated transcripts. Our findings unveil IP6K1 as a novel facilitator of proteome remodelling on the mRNA cap, tipping the balance in favour of translational repression over initiation, thus leading to P-body assembly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India
| |
Collapse
|
57
|
Biswas K, Jolly MK, Ghosh A. First passage time properties of miRNA-mediated protein translation. J Theor Biol 2021; 529:110863. [PMID: 34400149 DOI: 10.1016/j.jtbi.2021.110863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023]
Abstract
An important function of microRNAs in gene regulation is to repress the protein synthesis in a multi-step process with implications in timing efficiency of the regulatory network. We propose a stochastic description of translation-initiation mechanism and solve for the steady state distribution of protein number in the linear regime. The time-dependent moments have been approximately calculated and the role of miRNAs in determining the First Passage Time (FPT) properties of protein dynamics has been established. We analytically show that the modulation of slow rates of the translation process will result in efficient and robust timing mechanism. For a general nonlinear model our numerical simulation results are in qualitative agreement with the linear model.
Collapse
Affiliation(s)
- Kuheli Biswas
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Anandamohan Ghosh
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India.
| |
Collapse
|
58
|
Frédérick PM, Simard MJ. Regulation and different functions of the animal microRNA-induced silencing complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1701. [PMID: 34725940 DOI: 10.1002/wrna.1701] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Among the different types of small RNAs, microRNAs (miRNAs) are key players in controlling gene expression at the mRNA level. To be active, they must associate with an Argonaute protein to form the miRNA induced silencing complex (miRISC) and binds to specific mRNA through complementarity sequences. The miRISC binding to an mRNA can lead to multiple outcomes, the most frequent being inhibition of the translation and/or deadenylation followed by decapping and mRNA decay. In the last years, several studies described different mechanisms modulating miRISC functions in animals. For instance, the regulation of the Argonaute protein through post-translational modifications can change the miRISC gene regulatory activity as well as modulate its binding to proteins, mRNA targets and miRISC stability. Furthermore, the presence of RNA binding proteins and multiple miRISCs at the targeted mRNA 3' untranslated region (3'UTR) can also affect its function through cooperation or competition mechanisms, underlying the importance of the 3'UTR environment in miRNA-mediated repression. Another way to regulate the miRISC function is by modulation of its interactors, forming different types of miRNA silencing complexes that affect gene regulation differently. It is also reported that the subcellular localization of several components of the miRNA pathway can modulate miRISC function, suggesting an important role for vesicular trafficking in the regulation of this essential silencing complex. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Pierre-Marc Frédérick
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.,Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Martin J Simard
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.,Université Laval Cancer Research Centre, Québec, QC, Canada
| |
Collapse
|
59
|
Host miRNA and immune cell interactions: relevance in nano-therapeutics for human health. Immunol Res 2021; 70:1-18. [PMID: 34716546 DOI: 10.1007/s12026-021-09247-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Around 2200 miRNA (microRNA) genes were found in the human genome. miRNAs are arranged in clusters within the genome and share the same transcriptional regulatory units. It has been revealed that approximately 50% of miRNAs elucidated in the genome are transcribed from non-protein-coding genes, and the leftover miRNAs are present in the introns of coding sequences. We are now approaching a stage in which miRNA diagnostics and therapies can be established confidently, and several commercial efforts are underway to carry these innovations from the bench to the clinic. MiRNAs control many of the significant cellular activities such as production, differentiation, growth, and metabolism. Particularly in the immune system, miRNAs have emerged as a crucial biological component during diseased state and homeostasis. miRNAs have been found to regulate inflammatory responses and autoimmune disorders. Moreover, each miRNA targets multiple genes simultaneously, making miRNAs promising tools as diagnostic biomarkers and as remedial targets. Still, one of the major obstacles in miRNA-based approaches is the achievement of specific and efficient systemic delivery of miRNAs. To overcome these challenges, nanoformulations have been synthesized to protect miRNAs from degradation and enhance cellular uptake. The current review deals with the miRNA-mediated regulation of the recruitment and activation of immune cells, especially in the tumor microenvironment, viral infection, inflammation, and autoimmunity. The nano-based miRNA delivery modes are also discussed here, especially in the context of immune modulation.
Collapse
|
60
|
Meta-Analysis of miRNA Variants Associated with Susceptibility to Autoimmune Disease. DISEASE MARKERS 2021; 2021:9978460. [PMID: 34659590 PMCID: PMC8519726 DOI: 10.1155/2021/9978460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Purpose Various studies have shown an association between miRNA polymorphisms and susceptibility to autoimmune disease (AD); however, the results are inconclusive. To evaluate whether miRNA polymorphisms account for a significant risk of AD, a total of 87 articles, including 39431 patients and 56708 controls, were identified to estimate their association with 12 AD subtypes. Methods Several electronic databases were searched to analyze population-based studies on the relationship between miRNA variants and AD risk. Fixed effects or random effect models were used in the meta-analysis for the risk assessment. Results In our meta-analysis, miR-146a rs2910164/rs57095329 conferred a marginally elevated risk for AD (allele model, OR = 1.08, 95% CI: 1.01-1.15, P = 0.019; allele model, OR = 1.09, 95 CI: 1.05-1.15, P < 0.001, respectively). Furthermore, miR-196a2 rs11614913 was also associated with AD risk (allele model, OR = 0.92, 95% CI: 0.88-0.97, P = 0.001) as well as miR-499 rs3746444 (allele model, OR = 1.16, 95% CI: 1.03-1.29, P = 0.011). In addition, associations were observed between miR-149 rs2292832/miR-27a rs895819 and AD susceptibility in the overall population (allele model, OR = 1.15, 95% CI: 1.06-1.24, P < 0.001; allele model, OR = 1.11, 95% CI:1.01-1.22, P = 0.043, respectively). Conclusions Evidence from our systematic review suggests that miR-146a, miR-196a2, miR-499, miR-149, and miR-27a polymorphisms are associated with susceptibility to AD.
Collapse
|
61
|
Polonio CM, Peron JPS. ZIKV Infection and miRNA Network in Pathogenesis and Immune Response. Viruses 2021; 13:v13101992. [PMID: 34696422 PMCID: PMC8541119 DOI: 10.3390/v13101992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Over the years, viral infections have caused severe illness in humans. Zika Virus (ZIKV) is a flavivirus transmitted by mosquito vectors that leads to notable neurological impairment, whose most dramatic impact is the Congenital ZIKV Syndrome (CZS). ZIKV targets neuronal precursor cells leading to apoptosis and further impairment of neuronal development, causing microcephaly, lissencephaly, ventriculomegaly, and calcifications. Several regulators of biological processes are involved in CZS development, and in this context, microRNAs (miRNAs) seem to have a fundamental role. miRNAs are important regulators of protein translation, as they form the RISC silencing complex and interact with complementary mRNA target sequences to further post-transcriptional repression. In this context, little is known about their participation in the pathogenesis of viral infections. In this review, we discuss how miRNAs could relate to ZIKV and other flavivirus infections.
Collapse
Affiliation(s)
- Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 01246-000, Brazil
- Correspondence:
| |
Collapse
|
62
|
Zelli V, Compagnoni C, Capelli R, Corrente A, Cornice J, Vecchiotti D, Di Padova M, Zazzeroni F, Alesse E, Tessitore A. Emerging Role of isomiRs in Cancer: State of the Art and Recent Advances. Genes (Basel) 2021; 12:genes12091447. [PMID: 34573429 PMCID: PMC8469436 DOI: 10.3390/genes12091447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The advent of Next Generation Sequencing technologies brought with it the discovery of several microRNA (miRNA) variants of heterogeneous lengths and/or sequences. Initially ascribed to sequencing errors/artifacts, these isoforms, named isomiRs, are now considered non-canonical variants that originate from physiological processes affecting the canonical miRNA biogenesis. To date, accurate IsomiRs abundance, biological activity, and functions are not completely understood; however, the study of isomiR biology is an area of great interest due to their high frequency in the human miRNome, their putative functions in cooperating with the canonical miRNAs, and potential for exhibiting novel functional roles. The discovery of isomiRs highlighted the complexity of the small RNA transcriptional landscape in several diseases, including cancer. In this field, the study of isomiRs could provide further insights into the miRNA biology and its implication in oncogenesis, possibly providing putative new cancer diagnostic, prognostic, and predictive biomarkers as well. In this review, a comprehensive overview of the state of research on isomiRs in different cancer types, including the most common tumors such as breast cancer, colorectal cancer, melanoma, and prostate cancer, as well as in the less frequent tumors, as for example brain tumors and hematological malignancies, will be summarized and discussed.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Jessica Cornice
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Monica Di Padova
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-0862433518; Fax: +39-0862433131
| |
Collapse
|
63
|
Shah JA, Khattak S, Rauf MA, Cai Y, Jin J. Potential Biomarkers of miR-371-373 Gene Cluster in Tumorigenesis. Life (Basel) 2021; 11:life11090984. [PMID: 34575133 PMCID: PMC8465240 DOI: 10.3390/life11090984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA transcripts (20–24 nucleotides) that bind to their complementary sequences in the 3′-untranslated regions (3′-UTR) of targeted genes to negatively or positively regulate their expression. miRNAs affect the expression of genes in cells, thereby contributing to several important biological processes, including tumorigenesis. Identifying the miRNA cluster as a human embryonic stem cell (hESC)-specific miRNAs initially led to the identification of miR-371, miR-372, miR-373, and miR-373*, which can ultimately be translated into mature miRNAs. Recent evidence suggests that miR-371–373 genes are abnormally expressed in various cancers and act either as oncogenes or tumor suppressors, indicating they may be suitable as molecular biomarkers for cancer diagnosis and prevention. In this article, we summarize recent studies linking miR-371–373 functions to tumorigenesis and speculate on the potential applications of miR-371–373 as biomarkers for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Junaid Ali Shah
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; or
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence:
| |
Collapse
|
64
|
Basyuk E, Rage F, Bertrand E. RNA transport from transcription to localized translation: a single molecule perspective. RNA Biol 2021; 18:1221-1237. [PMID: 33111627 PMCID: PMC8354613 DOI: 10.1080/15476286.2020.1842631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Transport of mRNAs is an important step of gene expression, which brings the genetic message from the DNA in the nucleus to a precise cytoplasmic location in a regulated fashion. Perturbation of this process can lead to pathologies such as developmental and neurological disorders. In this review, we discuss recent advances in the field of mRNA transport made using single molecule fluorescent imaging approaches. We present an overview of these approaches in fixed and live cells and their input in understanding the key steps of mRNA journey: transport across the nucleoplasm, export through the nuclear pores and delivery to its final cytoplasmic location. This review puts a particular emphasis on the coupling of mRNA transport with translation, such as localization-dependent translational regulation and translation-dependent mRNA localization. We also highlight the recently discovered translation factories, and how cellular and viral RNAs can hijack membrane transport systems to travel in the cytoplasm.
Collapse
Affiliation(s)
- Eugenia Basyuk
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Present address: Laboratoire de Microbiologie Fondamentale et Pathogénicité, CNRS-UMR 5234, Université de Bordeaux, Bordeaux, France
| | - Florence Rage
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
- Equipe Labélisée Ligue Nationale Contre Le Cancer, Montpellier, France
| |
Collapse
|
65
|
The multiscale and multiphase organization of the transcriptome. Emerg Top Life Sci 2021; 4:265-280. [PMID: 32542380 DOI: 10.1042/etls20190187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Gene expression must be co-ordinated to cellular activity. From transcription to decay, the expression of millions of RNA molecules is highly synchronized. RNAs are covered by proteins that regulate every aspect of their cellular life: expression, storage, translational status, localization, and decay. Many RNAs and their associated regulatory proteins can coassemble to condense into liquid droplets, viscoelastic hydrogels, freeze into disorganized glass-like aggregates, or harden into quasi-crystalline solids. Phase separations provide a framework for transcriptome organization where the single functional unit is no longer a transcript but instead an RNA regulon. Here, we will analyze the interaction networks that underlie RNA super-assemblies, assess the complex multiscale, multiphase architecture of the transcriptome, and explore how the biophysical state of an RNA molecule can define its fate. Phase separations are emerging as critical routes for the epitranscriptomic control of gene expression.
Collapse
|
66
|
Qu J, Wang CC, Cai SB, Zhao WD, Cheng XL, Ming Z. Biased Random Walk With Restart on Multilayer Heterogeneous Networks for MiRNA-Disease Association Prediction. Front Genet 2021; 12:720327. [PMID: 34447416 PMCID: PMC8384471 DOI: 10.3389/fgene.2021.720327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
Numerous experiments have proved that microRNAs (miRNAs) could be used as diagnostic biomarkers for many complex diseases. Thus, it is conceivable that predicting the unobserved associations between miRNAs and diseases is extremely significant for the medical field. Here, based on heterogeneous networks built on the information of known miRNA-disease associations, miRNA function similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases, we developed a computing model of biased random walk with restart on multilayer heterogeneous networks for miRNA-disease association prediction (BRWRMHMDA) through enforcing degree-based biased random walk with restart (BRWR). Assessment results reflected that an AUC of 0.8310 was gained in local leave-one-out cross-validation (LOOCV), which proved the calculation algorithm's good performance. Besides, we carried out BRWRMHMDA to prioritize candidate miRNAs for esophageal neoplasms based on HMDD v2.0. We further prioritize candidate miRNAs for breast neoplasms based on HMDD v1.0. The local LOOCV results and performance analysis of the case study all showed that the proposed model has good and stable performance.
Collapse
Affiliation(s)
- Jia Qu
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Chun-Chun Wang
- Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Shu-Bin Cai
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Wen-Di Zhao
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Xiao-Long Cheng
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Zhong Ming
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
67
|
Shi T, Zhu Y, Liu P, Ye L, Jiang X, Cao H, Yu L. Age and Behavior-Dependent Differential miRNAs Expression in the Hypopharyngeal Glands of Honeybees ( Apis mellifera L.). INSECTS 2021; 12:insects12090764. [PMID: 34564204 PMCID: PMC8466209 DOI: 10.3390/insects12090764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
This study aims to investigate the expression differences of miRNAs in the hypopharyngeal glands (HPGs) of honeybees at three developmental stages and to explore their regulation functions in the HPGs development. Small RNA sequencing was employed to analyze the miRNA profiles of HPGs in newly-emerged bees (NEB), nurse bees (NB), and forager bees (FB). Results showed that a total of 153 known miRNAs were found in the three stages, and ame-miR-276-3p, ame-miR-375-3p, ame-miR-14-3p, ame-miR-275-3p, and ame-miR-3477-5p were the top five most abundant ones. Furthermore, the expression of 11 miRNAs, 17 miRNAs, and 18 miRNAs were significantly different in NB vs. FB comparison, NB vs. NEB comparison, and in FB vs. NEB comparison, respectively, of which ame-miR-184-3p and ame-miR-252a-5p were downregulated in NB compared with that in both the FB and NEB, while ame-miR-11-3p, ame-miR-281-3p, and ame-miR-31a-5p had lower expression levels in FB compared with that in both the NB and NEB. Bioinformatic analysis showed that the potential target genes of the differentially expressed miRNAs (DEMs) were mainly enriched in several key signaling pathways, including mTOR signaling pathway, MAPK signaling pathway-fly, FoxO signaling pathway, Hippo signaling pathway-fly. Overall, our study characterized the miRNA profiles in the HPGs of honeybees at three different developmental stages and provided a basis for further study of the roles of miRNAs in HPGs development.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Yujie Zhu
- School of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Peng Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Liang Ye
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Xingchuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Linsheng Yu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
- Correspondence:
| |
Collapse
|
68
|
Malinowska AL, Laski A, Hall J. Design and Application of Mini-libraries of miRNA Probes for an Efficient and Versatile miRNA-mRNA Cross-linking. Chemistry 2021; 27:10193-10200. [PMID: 34000095 PMCID: PMC8362200 DOI: 10.1002/chem.202101171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 01/02/2023]
Abstract
MicroRNAs constitute a class of endogenous, non-coding RNAs that influence various processes within the cell. By base-pairing to partially-complementary sites located in the 3' untranslated region of target messenger RNAs, microRNAs participate in post-transcriptional regulation of the majority of human protein-coding genes. Their dysregulation has been related to many pathological processes and diseases. Thus, an in-depth understanding of the microRNA mechanisms of action is crucial. Here, we present a new concept of probe design to achieve an efficient and sequence-independent miRNA-mRNA cross-linking. The new strategy is based on the utilization of a controlled mixture of probes for a chosen miRNA, in which a trioxsalen moiety is introduced at the N4 -position of a selected cytidine through short oligoethylene glycol-based linkers. In vitro photo-cross-linking experiments with mini-libraries of probes for microRNAs of interest showed variable cross-linking efficiencies, demonstrating a general applicability of the presented approach.
Collapse
Affiliation(s)
- Anna L. Malinowska
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093Zurich
| | - Artur Laski
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093Zurich
| | - Jonathan Hall
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093Zurich
| |
Collapse
|
69
|
Wang Z, Zhang Y, Zhao C, Li Y, Hu X, Wu L, Chen M, Tong S. The miR-223-3p/MAP1B axis aggravates TGF-β-induced proliferation and migration of BPH-1 cells. Cell Signal 2021; 84:110004. [PMID: 33839256 DOI: 10.1016/j.cellsig.2021.110004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/15/2022]
Abstract
Uncontrolled proliferation and migration of benign prostatic hyperplasia (BPH) epithelial cells play a critical role in the pathogenesis of BPH. The regulatory roles of microRNAs (miRNAs) in multiple human diseases have been observed. This study was dedicated to investigating the regulatory effects of the miR-223-3p on the proliferation and migration of BPH progress. In the present study, the aberrant upregulation of miR-223-3p in BPH samples and BPH-1 cells was determined. TGF-β stimulation induced miR-223-3p expression, promoted BPH-1 cell viability and DNA synthesis, inhibited BPH-1 cell apoptosis, and decreased pro-apoptotic Bax/caspase 3. These changes induced by TGF-β stimulation were further enhanced the overexpression of miR-223-3p and attenuated via the inhibition of miR-223-3p. Under TGF-β stimulation, the overexpression of miR-223-3p enhanced, whereas the inhibition of miR-223-3p inhibited the EMT and MAPK signaling pathways. By targeting the MAP1B 3'UTR, miR-223-3p repressed MAP1B expression. In contrast to miR-223-3p overexpression, MAP1B overexpression attenuated TGF-β-induced changes in BPH-1 cell phenotypes, pro-apoptotic Bax/caspase 3, and the EMT and MAPK signaling pathways; more importantly, MAP1B overexpression significantly attenuated the roles of miR-223-3p overexpression in BPH-1 cell phenotypes, pro-apoptotic Bax/caspase 3, and the EMT and MAPK signaling pathways under TGF-β stimulation. In conclusion, miR-223-3p aggravates the uncontrolled proliferation and migration of BPH-1 cells through targeting MAP1B. The EMT and MAPK signaling pathways might be involved.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China; Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Yichuan Zhang
- Department of Urology Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Cheng Zhao
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yangle Li
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiheng Hu
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Longxiang Wu
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Minfeng Chen
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Shiyu Tong
- Department of Urology Surgery, Xiangya Hospital of Central South University, Changsha 410008, China.
| |
Collapse
|
70
|
Nagaraj S, Want A, Laskowska-Kaszub K, Fesiuk A, Vaz S, Logarinho E, Wojda U. Candidate Alzheimer's Disease Biomarker miR-483-5p Lowers TAU Phosphorylation by Direct ERK1/2 Repression. Int J Mol Sci 2021; 22:ijms22073653. [PMID: 33915734 PMCID: PMC8037306 DOI: 10.3390/ijms22073653] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs have been demonstrated as key regulators of gene expression in the etiology of a range of diseases including Alzheimer's disease (AD). Recently, we identified miR-483-5p as the most upregulated miRNA amongst a panel of miRNAs in blood plasma specific to prodromal, early-stage Alzheimer's disease patients. Here, we investigated the functional role of miR-483-5p in AD pathology. Using TargetScan and miRTarBase, we identified the microtubule-associated protein MAPT, often referred to as TAU, and the extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), known to phosphorylate TAU, as predicted direct targets of miR-483-5p. Employing several functional assays, we found that miR-483-5p regulates ERK1 and ERK2 at both mRNA and protein levels, resulting in lower levels of phosphorylated forms of both kinases. Moreover, miR-483-5p-mediated repression of ERK1/2 resulted in reduced phosphorylation of TAU protein at epitopes associated with TAU neurofibrillary pathology in AD. These results indicate that upregulation of miR-483-5p can decrease phosphorylation of TAU via ERK pathway, representing a compensatory neuroprotective mechanism in AD pathology. This miR-483-5p/ERK1/TAU axis thus represents a novel target for intervention in AD.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Andrew Want
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Aleksandra Fesiuk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
| | - Sara Vaz
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
| | - Elsa Logarinho
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
- Aging and Aneuploidy Laboratory, IBMC, Institute of Molecular and Cellular Biology, University of Porto, 4200-135 Porto, Portugal
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
- Correspondence: ; Tel.: +48-22-5892578
| |
Collapse
|
71
|
Yang Y, Liu KY, Liu Q, Cao Q. Androgen Receptor-Related Non-coding RNAs in Prostate Cancer. Front Cell Dev Biol 2021; 9:660853. [PMID: 33869227 PMCID: PMC8049439 DOI: 10.3389/fcell.2021.660853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in the United States. Androgen receptor (AR) signaling is the dominant oncogenic pathway in PCa and the main strategy of PCa treatment is to control the AR activity. A large number of patients acquire resistance to Androgen deprivation therapy (ADT) due to AR aberrant activation, resulting in castration-resistant prostate cancer (CRPC). Understanding the molecular mechanisms underlying AR signaling in the PCa is critical to identify new therapeutic targets for PCa patients. The recent advances in high-throughput RNA sequencing (RNA-seq) techniques identified an increasing number of non-coding RNAs (ncRNAs) that play critical roles through various mechanisms in different diseases. Some ncRNAs have shown great potentials as biomarkers and therapeutic targets. Many ncRNAs have been investigated to regulate PCa through direct association with AR. In this review, we aim to comprehensively summarize recent findings of the functional roles and molecular mechanisms of AR-related ncRNAs as AR regulators or targets in the progression of PCa.
Collapse
Affiliation(s)
- Yongyong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kilia Y Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
72
|
Abstract
MicroRNA-21 (miR-21) is one of the most abundant microRNAs in cancer tissues and is considered a strong prognostic biomarker. In situ hybridization (ISH) analyses using locked nucleic acid (LNA) probes have shown that miR-21 is expressed in stromal fibroblastic cells and in subsets of cancer cells. Image analysis of the miR-21 ISH signal has shown that increased expression estimate is associated with poor prognosis in colon cancer. However, assessment of the ISH signal by image analysis to obtain quantitative estimates has been done in retrospective studies without normalization of the expression estimates to reference parameters. The ISH signal output is sensitive to several experimental parameters, including hybridization temperature, probe concentration, and pretreatment, and therefore improved standardized procedures are warranted. We considered the use of paraffin-embedded cultured cells (PECCs) as reference standards that potentially can accompany staining of clinical cancer samples. We found that the cancer cell lines HT-29, CACO-2, and HeLa cells express miR-21 when measured by ISH, and used those cell lines to obtain PECCs. In this methods chapter we present a fixation and embedding procedure to obtain PECCs suitable for microRNA ISH and a double-fluorescence protocol to stain microRNAs together with protein markers in the PECCs.
Collapse
|
73
|
Liu S, Xie S, Chen H, Li B, Chen Z, Tan Y, Yang J, Zheng L, Xiao Z, Zhang Q, Qu L. The functional analysis of transiently upregulated miR-101 suggests a "braking" regulatory mechanism during myogenesis. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1612-1623. [PMID: 33521860 DOI: 10.1007/s11427-020-1856-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 11/27/2022]
Abstract
Skeletal muscle differentiation is a highly coordinated process that involves many cellular signaling pathways and microRNAs (miRNAs). A group of muscle-specific miRNAs has been reported to promote myogenesis by suppressing key signaling pathways for cell growth. However, the functional role and regulatory mechanism of most non-muscle-specific miRNAs with stage-specific changes during differentiation are largely unclear. Here, we describe the functional characterization of miR-101a/b, a pair of non-muscle-specific miRNAs that show the largest change among a group of transiently upregulated miRNAs during myogenesis in C2C12 cells. The overexpression of miR-101a/b inhibits myoblast differentiation by suppressing the p38/MAPK, Interferon Gamma, and Wnt pathways and enhancing the C/EBP pathway. Mef2a, a key protein in the p38/MAPK pathway, was identified as a direct target of miR-101a/b. Interestingly, we found that the long non-coding RNA (lncRNA) Malat1, which promotes muscle differentiation, interacts with miR-101a/b, and this interaction competes with Mef2a mRNA to relieve the inhibition of the p38/MAPK pathway during myogenesis. These results uncovered a "braking" role in differentiation of transiently upregulated miRNAs and provided new insights into the competing endogenous RNA (ceRNA) regulatory mechanism in myoblast differentiation and myogenesis.
Collapse
Affiliation(s)
- Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shujuan Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Vaccine Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Cell-Gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huafeng Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhirong Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yeya Tan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhendong Xiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Cell-Gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Zhang
- Vaccine Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Cell-Gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
74
|
Circulating microRNA: The Potential Novel Diagnostic Biomarkers to Predict Drug Resistance in Temporal Lobe Epilepsy, a Pilot Study. Int J Mol Sci 2021; 22:ijms22020702. [PMID: 33445780 PMCID: PMC7828221 DOI: 10.3390/ijms22020702] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that have emerged as new potential epigenetic biomarkers. Here, we evaluate the efficacy of six circulating miRNA previously described in the literature as biomarkers for the diagnosis of temporal lobe epilepsy (TLE) and/or as predictive biomarkers to antiepileptic drug response. We measured the differences in serum miRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays in a cohort of 27 patients (14 women and 13 men; mean ± SD age: 43.65 ± 17.07) with TLE compared to 20 healthy controls (HC) matched for sex, age and ethnicity (11 women and 9 men; mean ± SD age: 47.5 ± 9.1). Additionally, patients were classified according to whether they had drug-responsive (n = 17) or drug-resistant (n = 10) TLE. We have investigated any correlations between miRNAs and several electroclinical parameters. Three miRNAs (miR-142, miR-146a, miR-223) were significantly upregulated in patients (expressed as average expression ± SD). In detail, miR-142 expression was 0.40 ± 0.29 vs. 0.16 ± 0.10 in TLE patients compared to HC (t-test, p < 0.01), miR-146a expression was 0.15 ± 0.11 vs. 0.07 ± 0.04 (t-test, p < 0.05), and miR-223 expression was 6.21 ± 3.65 vs. 1.23 ± 0.84 (t-test, p < 0.001). Moreover, results obtained from a logistic regression model showed the good performance of miR-142 and miR-223 in distinguishing drug-sensitive vs. drug-resistant TLE. The results of this pilot study give evidence that miRNAs are suitable targets in TLE and offer the rationale for further confirmation studies in larger epilepsy cohorts.
Collapse
|
75
|
|
76
|
Chatterjee S, Chakrabarty Y, Banerjee S, Ghosh S, Bhattacharyya SN. Mitochondria control mTORC1 activity-linked compartmentalization of eIF4E to regulate extracellular export of microRNAs. J Cell Sci 2020; 133:jcs250241. [PMID: 33262313 DOI: 10.1242/jcs.250241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
Defective intracellular trafficking and export of microRNAs (miRNAs) have been observed in growth-retarded mammalian cells having impaired mitochondrial potential and dynamics. Here, we found that uncoupling protein 2 (Ucp2)-mediated depolarization of mitochondrial membrane also results in progressive sequestration of miRNAs within polysomes and lowers their release via extracellular vesicles. Interestingly, the impaired miRNA-trafficking process in growth-retarded human cells could be reversed in the presence of Genipin, an inhibitor of Ucp2. Mitochondrial detethering of endoplasmic reticulum (ER), observed in cells with depolarized mitochondria, was found to be responsible for defective compartmentalization of translation initiation factor eIF4E to polysomes attached to ER. This caused a retarded translation process accompanied by enhanced retention of miRNAs and target mRNAs within ER-attached polysomes to restrict extracellular export of miRNAs. Reduced compartment-specific activity of the mammalian target of rapamycin complex 1 (mTORC1), the master regulator of protein synthesis, in cells with defective mitochondria or detethered ER, caused reduced phosphorylation of eIF4E-BP1 and prevented eIF4E targeting to ER-attached polysomes and miRNA export. These data suggest how mitochondrial membrane potential and dynamics, by affecting mTORC1 activity and compartmentalization, determine the subcellular localization and export of miRNAs.
Collapse
Affiliation(s)
- Susanta Chatterjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Yogaditya Chakrabarty
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Saikat Banerjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Souvik Ghosh
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
77
|
Chen B, Liao Z, Qi Y, Zhang H, Su C, Liang H, Zhang B, Chen X. miR-631 Inhibits Intrahepatic Metastasis of Hepatocellular Carcinoma by Targeting PTPRE. Front Oncol 2020; 10:565266. [PMID: 33344226 PMCID: PMC7746836 DOI: 10.3389/fonc.2020.565266] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been reported to play critical roles in the pathological development of hepatocellular carcinoma (HCC), one of the most common cancers in the world. Our study aims to explore the expression, function and mechanism of miR-631 in HCC. Our findings are that expression of miR-631 is significantly down-regulated in HCC tissue compared with that in adjacent non-cancerous tissue, and low expression of miR-631 in HCC tissue is associated with cirrhosis, multiple tumors, incomplete tumor encapsulation, poor tumor differentiation, and high TNM stage. Our test results showed that miR-631 could inhibit migration, invasion, epithelial–mesenchymal transition (EMT) and intrahepatic metastasis of HCC. Receptor-type protein tyrosine phosphatase epsilon (PTPRE) as a downstream target of miR-631 could promote migration, invasion and EMT of HCC cells. Besides, the expression of PTPRE had a negative correlation with the expression of miR-631 both in vivo and in vitro, and increasing expression of PTPRE could reverse inhibitory effects of miR-631 in HCC cells. In sum, our study first demonstrated that miR-631 targeted PTPRE to inhibit intrahepatic metastasis in HCC. We gain insights from these findings into the mechanism of miRNAs regulation in HCC metastasis and further introduce a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Bingqing Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Yongqiang Qi
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
78
|
Collison AM, Sokulsky LA, Nightingale S, Percival E, LeFevre A, Meredith J, Krauss S, Foster PS, Mattes J. In vivo targeting of miR-223 in experimental eosinophilic oesophagitis. Clin Transl Immunology 2020; 9:e1210. [PMID: 33282292 PMCID: PMC7683276 DOI: 10.1002/cti2.1210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 08/19/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Objectives Eosinophilic oesophagitis (EoE) is characterised by oesophageal inflammation, fibrosis and dysfunction. Micro (mi)-RNAs interfere with pro-inflammatory and pro-fibrotic transcriptional programs, and miR-223 was upregulated in oesophageal mucosal biopsy specimens from EoE patients. The therapeutic potential of modulating miR-223 expression in vivo has not been determined. We aimed to elucidate the relevance of oesophageal miR-223 expression in an in vivo model of EoE by inhibiting miR-223 tissue expression. Methods The expression of miR-223 and the validated miR-223 target insulin-like growth factor receptor 1 (IGF1R) protein was determined in our paediatric cohort of EoE patients. A murine model of Aspergillus fumigatus-induced EoE was employed, and oesophagi were assessed for miR-233, IGF1R, T lymphocyte type 2 (T2) cytokine expression and eosinophil infiltration. Mice were treated with antagomirs targeting miR-223 or resveratrol targeting its upstream regulator Midline-1(MID-1). Results There was an inverse relationship between an increased expression of miR-223 and a decreased IGF1R protein concentration in biopsy specimens from EoE patients. TNF-related apoptosis-inducing ligand deficiency, MID-1 inhibition and resveratrol treatment suppressed miR-223 expression. Furthermore, inhibition of miR-223 and treatment with resveratrol in the oesophagus resulted in an amelioration of EoE hallmark features including eosinophilic infiltration, oesophageal circumference and a reduction in T2 cytokine expression. Conclusion miR-223 has a key role in the perpetuation of EoE hallmark features downstream of TNF-related apoptosis-inducing ligand and MID-1 in an experimental model. These studies highlight a potentially critical role of miRNA function in EoE aetiology. miR-223 expression in the oesophagus may be therapeutically modulated by resveratrol, providing a potential new therapeutic option to be explored in EoE patients for this increasingly prevalent condition.
Collapse
Affiliation(s)
- Adam M Collison
- Experimental and Translational Respiratory Medicine Group Newcastle NSW Australia.,Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Leon A Sokulsky
- Experimental and Translational Respiratory Medicine Group Newcastle NSW Australia.,Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia.,Priority Research Centre for Healthy Lungs The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Scott Nightingale
- Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia.,Paediatric Gastroenterology Department John Hunter Children's Hospital Newcastle NSW Australia
| | - Elizabeth Percival
- Experimental and Translational Respiratory Medicine Group Newcastle NSW Australia.,Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Anna LeFevre
- Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Joseph Meredith
- Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Sybille Krauss
- Faculty IV: School of Science and Technology Institute of Biology Department Human Biology/Neurobiology University of Siegen Siegen Germany
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia
| | - Joerg Mattes
- Experimental and Translational Respiratory Medicine Group Newcastle NSW Australia.,Priority Research Centre GrowUpWell The University of Newcastle and Hunter Medical Research Institute Newcastle NSW Australia.,Paediatric Respiratory & Sleep Medicine Department Newcastle Children's Hospital Kaleidoscope Newcastle NSW Australia
| |
Collapse
|
79
|
Ford LK, Fioriti L. Coiled-Coil Motifs of RNA-Binding Proteins: Dynamicity in RNA Regulation. Front Cell Dev Biol 2020; 8:607947. [PMID: 33330512 PMCID: PMC7710910 DOI: 10.3389/fcell.2020.607947] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 01/29/2023] Open
Abstract
Neuronal granules are biomolecular condensates that concentrate high quantities of RNAs and RNA-related proteins within neurons. These dense packets of information are trafficked from the soma to distal sites rich in polysomes, where local protein synthesis can occur. Movement of neuronal granules to distal sites, and local protein synthesis, play a critical role in synaptic plasticity. The formation of neuronal granules is intriguing; these granules lack a membrane and instead phase separate due to protein and RNA interactions. Low complexity motifs and RNA binding domains are highly prevalent in these proteins. Here, we introduce the role that coiled-coil motifs play in neuronal granule proteins, and investigate the structure-function relationship of coiled-coil proteins in RNA regulation. Interestingly, low complexity domains and coiled-coil motifs are highly dynamic, allowing for increased functional response to environmental influences. Finally, biomolecular condensates have been suggested to drive the formation of toxic, neurodegenerative proteins such as TDP-43 and tau. Here, we review the conversion of coiled-coil motifs to amyloid structures, and speculate a role that neuronal granules play in coiled-coil to amyloid conversions of neurodegenerative proteins.
Collapse
Affiliation(s)
- Lenzie K Ford
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, United States
| | - Luana Fioriti
- Laboratory of Molecular Mechanisms of Polyglutamine Disorders, Department of Neuroscience, Dulbecco Telethon Institute, Istituto di Ricerche Farmacologiche Mario Negri (IRCCS), Milan, Italy
| |
Collapse
|
80
|
Jiang SL, Mo JL, Peng J, Lei L, Yin JY, Zhou HH, Liu ZQ, Hong WX. Targeting translation regulators improves cancer therapy. Genomics 2020; 113:1247-1256. [PMID: 33189778 DOI: 10.1016/j.ygeno.2020.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Deregulation of protein synthesis may be involved in multiple aspects of cancer, such as gene expression, signal transduction and drive specific cell biological responses, resulting in promoting cancer growth, invasion and metastasis. Study the molecular mechanisms about translational control may help us to find more effective anti-cancer drugs and develop novel therapeutic opportunities. Recently, the researchers had focused on targeting translational machinery to overcome cancer, and various small molecular inhibitors targeting translation factors or pathways have been tested in clinical trials and exhibited improving outcomes in several cancer types. There is no doubt that an insight into the class of translation regulation protein would provide new target for pharmacologic intervention and further provide opportunities to develop novel anti-tumor therapeutic interventions. In this review, we summarized the developments of translational control in cancer survival and progression et al, and highlighted the therapeutic approach targeted translation regulation to overcome the cancer.
Collapse
Affiliation(s)
- Shi-Long Jiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Jun-Luan Mo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Lin Lei
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China.
| | - Wen-Xu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China.
| |
Collapse
|
81
|
Kataruka S, Modrak M, Kinterova V, Malik R, Zeitler DM, Horvat F, Kanka J, Meister G, Svoboda P. MicroRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes. Nucleic Acids Res 2020; 48:8050-8062. [PMID: 32609824 PMCID: PMC7430632 DOI: 10.1093/nar/gkaa543] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/17/2020] [Accepted: 06/15/2020] [Indexed: 12/05/2022] Open
Abstract
MicroRNAs (miRNAs) are ubiquitous small RNAs guiding post-transcriptional gene repression in countless biological processes. However, the miRNA pathway in mouse oocytes appears inactive and dispensable for development. We propose that marginalization of the miRNA pathway activity stems from the constraints and adaptations of RNA metabolism elicited by the diluting effects of oocyte growth. We report that miRNAs do not accumulate like mRNAs during the oocyte growth because miRNA turnover has not adapted to it. The most abundant miRNAs total tens of thousands of molecules in growing (∅ 40 μm) and fully grown (∅ 80 μm) oocytes, a number similar to that observed in much smaller fibroblasts. The lack of miRNA accumulation results in a 100-fold lower miRNA concentration in fully grown oocytes than in somatic cells. This brings a knock-down-like effect, where diluted miRNAs engage targets but are not abundant enough for significant repression. Low-miRNA concentrations were observed in rat, hamster, porcine and bovine oocytes, arguing that miRNA inactivity is not mouse-specific but a common mammalian oocyte feature. Injection of 250,000 miRNA molecules was sufficient to restore reporter repression in mouse and porcine oocytes, suggesting that miRNA inactivity comes from low-miRNA abundance and not from some suppressor of the pathway.
Collapse
Affiliation(s)
- Shubhangini Kataruka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martin Modrak
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Veronika Kinterova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Daniela M Zeitler
- RNA Biology, Biochemistry Center Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic.,Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Jiri Kanka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Gunter Meister
- RNA Biology, Biochemistry Center Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
82
|
Regulation of Glycolysis by Non-coding RNAs in Cancer: Switching on the Warburg Effect. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:218-239. [PMID: 33251334 PMCID: PMC7666327 DOI: 10.1016/j.omto.2020.10.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The “Warburg effect” describes the reprogramming of glucose metabolism away from oxidative phosphorylation toward aerobic glycolysis, and it is one of the hallmarks of cancer cells. Several factors can be involved in this process, but in this review, the roles of non-coding RNAs (ncRNAs) are highlighted in several types of human cancer. ncRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, can all affect metabolic enzymes and transcription factors to promote glycolysis and modulate glucose metabolism to enhance the progression of tumors. In particular, the 5′-AMP-activated protein kinase (AMPK) and the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathways are associated with alterations in ncRNAs. A better understanding of the roles of ncRNAs in the Warburg effect could ultimately lead to new therapeutic approaches for suppressing cancer.
Collapse
|
83
|
Yu AM, Choi YH, Tu MJ. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacol Rev 2020; 72:862-898. [PMID: 32929000 PMCID: PMC7495341 DOI: 10.1124/pr.120.019554] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA-based therapies, including RNA molecules as drugs and RNA-targeted small molecules, offer unique opportunities to expand the range of therapeutic targets. Various forms of RNAs may be used to selectively act on proteins, transcripts, and genes that cannot be targeted by conventional small molecules or proteins. Although development of RNA drugs faces unparalleled challenges, many strategies have been developed to improve RNA metabolic stability and intracellular delivery. A number of RNA drugs have been approved for medical use, including aptamers (e.g., pegaptanib) that mechanistically act on protein target and small interfering RNAs (e.g., patisiran and givosiran) and antisense oligonucleotides (e.g., inotersen and golodirsen) that directly interfere with RNA targets. Furthermore, guide RNAs are essential components of novel gene editing modalities, and mRNA therapeutics are under development for protein replacement therapy or vaccination, including those against unprecedented severe acute respiratory syndrome coronavirus pandemic. Moreover, functional RNAs or RNA motifs are highly structured to form binding pockets or clefts that are accessible by small molecules. Many natural, semisynthetic, or synthetic antibiotics (e.g., aminoglycosides, tetracyclines, macrolides, oxazolidinones, and phenicols) can directly bind to ribosomal RNAs to achieve the inhibition of bacterial infections. Therefore, there is growing interest in developing RNA-targeted small-molecule drugs amenable to oral administration, and some (e.g., risdiplam and branaplam) have entered clinical trials. Here, we review the pharmacology of novel RNA drugs and RNA-targeted small-molecule medications, with a focus on recent progresses and strategies. Challenges in the development of novel druggable RNA entities and identification of viable RNA targets and selective small-molecule binders are discussed. SIGNIFICANCE STATEMENT: With the understanding of RNA functions and critical roles in diseases, as well as the development of RNA-related technologies, there is growing interest in developing novel RNA-based therapeutics. This comprehensive review presents pharmacology of both RNA drugs and RNA-targeted small-molecule medications, focusing on novel mechanisms of action, the most recent progress, and existing challenges.
Collapse
MESH Headings
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/therapeutic use
- Betacoronavirus
- COVID-19
- Chemistry Techniques, Analytical/methods
- Chemistry Techniques, Analytical/standards
- Clustered Regularly Interspaced Short Palindromic Repeats
- Coronavirus Infections/drug therapy
- Drug Delivery Systems/methods
- Drug Development/organization & administration
- Drug Discovery
- Humans
- MicroRNAs/pharmacology
- MicroRNAs/therapeutic use
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- Pandemics
- Pneumonia, Viral/drug therapy
- RNA/adverse effects
- RNA/drug effects
- RNA/pharmacology
- RNA, Antisense/pharmacology
- RNA, Antisense/therapeutic use
- RNA, Messenger/drug effects
- RNA, Messenger/pharmacology
- RNA, Ribosomal/drug effects
- RNA, Ribosomal/pharmacology
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/therapeutic use
- RNA, Viral/drug effects
- Ribonucleases/metabolism
- Riboswitch/drug effects
- SARS-CoV-2
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Young Hee Choi
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| |
Collapse
|
84
|
Therapeutically Significant MicroRNAs in Primary and Metastatic Brain Malignancies. Cancers (Basel) 2020; 12:cancers12092534. [PMID: 32906592 PMCID: PMC7564168 DOI: 10.3390/cancers12092534] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The overall survival of brain cancer patients remains grim, with conventional therapies such as chemotherapy and radiotherapy only providing marginal benefits to patient survival. Cancers are complex, with multiple pathways being dysregulated simultaneously. Non-coding RNAs such as microRNA (miRNAs) are gaining importance due to their potential in regulating a variety of targets implicated in the pathology of cancers. This could be leveraged for the development of targeted and personalized therapies for cancers. Since miRNAs can upregulate and/or downregulate proteins, this review aims to understand the role of these miRNAs in primary and metastatic brain cancers. Here, we discuss the regulatory mechanisms of ten miRNAs that are highly dysregulated in glioblastoma and metastatic brain tumors. This will enable researchers to develop miRNA-based targeted cancer therapies and identify potential prognostic biomarkers. Abstract Brain cancer is one among the rare cancers with high mortality rate that affects both children and adults. The most aggressive form of primary brain tumor is glioblastoma. Secondary brain tumors most commonly metastasize from primary cancers of lung, breast, or melanoma. The five-year survival of primary and secondary brain tumors is 34% and 2.4%, respectively. Owing to poor prognosis, tumor heterogeneity, increased tumor relapse, and resistance to therapies, brain cancers have high mortality and poor survival rates compared to other cancers. Early diagnosis, effective targeted treatments, and improved prognosis have the potential to increase the survival rate of patients with primary and secondary brain malignancies. MicroRNAs (miRNAs) are short noncoding RNAs of approximately 18–22 nucleotides that play a significant role in the regulation of multiple genes. With growing interest in the development of miRNA-based therapeutics, it is crucial to understand the differential role of these miRNAs in the given cancer scenario. This review focuses on the differential expression of ten miRNAs (miR-145, miR-31, miR-451, miR-19a, miR-143, miR-125b, miR-328, miR-210, miR-146a, and miR-126) in glioblastoma and brain metastasis. These miRNAs are highly dysregulated in both primary and metastatic brain tumors, which necessitates a better understanding of their role in these cancers. In the context of the tumor microenvironment and the expression of different genes, these miRNAs possess both oncogenic and/or tumor-suppressive roles within the same cancer.
Collapse
|
85
|
Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev 2020; 32:65-81. [PMID: 32188559 DOI: 10.1071/rd19276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Procedures used in assisted reproduction have been under constant scrutiny since their inception with the goal of improving the number and quality of embryos produced. However, invitro production of embryos is not without complications because many fertilised oocytes fail to become blastocysts, and even those that do often differ in the genetic output compared with their invivo counterparts. Thus only a portion of those transferred complete normal fetal development. An unwanted consequence of bovine assisted reproductive technology (ART) is the induction of a syndrome characterised by fetal overgrowth and placental abnormalities, namely large offspring syndrome; a condition associated with inappropriate control of the epigenome. Epigenetics is the study of chromatin and its effects on genetic output. Establishment and maintenance of epigenetic marks during gametogenesis and embryogenesis is imperative for the maintenance of cell identity and function. ARTs are implemented during times of vast epigenetic reprogramming; as a result, many studies have identified ART-induced deviations in epigenetic regulation in mammalian gametes and embryos. This review describes the various layers of epigenetic regulation and discusses findings pertaining to the effects of ART on the epigenome of bovine gametes and the preimplantation embryo.
Collapse
Affiliation(s)
- Rocío Melissa Rivera
- Division of Animal Science University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
86
|
VCP Machinery Mediates Autophagic Degradation of Empty Argonaute. Cell Rep 2020; 28:1144-1153.e4. [PMID: 31365860 DOI: 10.1016/j.celrep.2019.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
The Argonaute subfamily of proteins (AGO) loads microRNAs (miRNAs) to form the effector complex that mediates target gene silencing. Empty AGO, but not miRNA-loaded AGO, is selectively degraded across species. We have reported that the degradation of empty AGO is part of a quality control pathway that eliminates dysfunctional AGO. However, how empty AGO is degraded remains unclear. Here we show that the empty state of Drosophila Ago1 is degraded by autophagy. Comprehensive LC-MS/MS analyses, together with manipulation of the Ago1 ubiquitination level, revealed that VCP, which mediates selective autophagy, recognizes empty Ago1 via the Ufd1-Npl4 heterodimer. Depletion of VCP-Ufd1-Npl4 machinery impairs degradation of empty Ago1 and miRNA-mediated target gene silencing. Our findings reveal a direct link between empty AGO degradation and selective autophagy that ensures efficient miRNA function.
Collapse
|
87
|
A Dual Protein-mRNA Localization Screen Reveals Compartmentalized Translation and Widespread Co-translational RNA Targeting. Dev Cell 2020; 54:773-791.e5. [PMID: 32783880 DOI: 10.1016/j.devcel.2020.07.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/01/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
Local translation allows spatial control of gene expression. Here, we performed a dual protein-mRNA localization screen, using smFISH on 523 human cell lines expressing GFP-tagged genes. 32 mRNAs displayed specific cytoplasmic localizations with local translation at unexpected locations, including cytoplasmic protrusions, cell edges, endosomes, Golgi, the nuclear envelope, and centrosomes, the latter being cell-cycle-dependent. Automated classification of mRNA localization patterns revealed a high degree of intercellular heterogeneity. Surprisingly, mRNA localization frequently required ongoing translation, indicating widespread co-translational RNA targeting. Interestingly, while P-body accumulation was frequent (15 mRNAs), four mRNAs accumulated in foci that were distinct structures. These foci lacked the mature protein, but nascent polypeptide imaging showed that they were specialized translation factories. For β-catenin, foci formation was regulated by Wnt, relied on APC-dependent polysome aggregation, and led to nascent protein degradation. Thus, translation factories uniquely regulate nascent protein metabolism and create a fine granular compartmentalization of translation.
Collapse
|
88
|
Choppavarapu L, Kandi SM. Circulating MicroRNAs as Potential Biomarkers in Glioma: A Mini-Review. Endocr Metab Immune Disord Drug Targets 2020; 21:195-202. [PMID: 32744979 DOI: 10.2174/1871530320666200730230422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
Glioma comprises of a group of heterogeneous brain tumors originating from glial cells. Primary glioblastoma is among the most common glial cells that have a characteristic clinical and molecular profile. Advancement in the field of cancer research and inventions of various clinical methodologies could not improve the median survival of this deadly tumor from 12 months. The development of a non-invasive prognostic biomarker in blood would be a revolution in the diagnosis and therapeutic monitoring of this tumor. Extracellular vesicles (Evs) are released from the tumor microenvironment into the blood, which contains the genetic material that represents the genetics of tumor cells. It is also seen that these Evs contain a variety of RNA populations, including miRNAs. Several studies identified that circulating cell-free miRNAs, either free or present in Evs, could be considered as a potential biomarker in early diagnosis and prognosis of glioblastoma. Micro RNA studies in glioblastoma have found to be promising, as it reveals the biological pathway behind pathogenesis and helps in predicting the treatment targets. The literature says that various treatment methods change the type and quantity of miRNAs in biological fluids, which can be used to monitor the therapy. This review paper focuses on the role of circulating miRNAs as potential biomarkers in the diagnosis and clinical management of glioma patients.
Collapse
Affiliation(s)
| | - Sibin M Kandi
- Department of Biochemistry, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
89
|
Chen Q, Meng X, Liao Q, Chen M. Versatile interactions and bioinformatics analysis of noncoding RNAs. Brief Bioinform 2020; 20:1781-1794. [PMID: 29939215 DOI: 10.1093/bib/bby050] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Advances in RNA sequencing technologies and computational methodologies have provided a huge impetus to noncoding RNA (ncRNA) study. Once regarded as inconsequential results of transcriptional promiscuity, ncRNAs were later found to exert great roles in various aspects of biological functions. They are emerging as key players in gene regulatory networks by interacting with other biomolecules (DNA, RNA or protein). Here, we provide an overview of ncRNA repertoire and highlight recent discoveries of their versatile interactions. To better investigate the ncRNA-mediated regulation, it is necessary to make full use of innovative sequencing techniques and computational tools. We further describe a comprehensive workflow for in silico ncRNA analysis, providing up-to-date platforms, databases and tools dedicated to ncRNA identification and functional annotation.
Collapse
Affiliation(s)
- Qi Chen
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Xianwen Meng
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Qi Liao
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Ming Chen
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
90
|
Artificial miRNAs targeting CAG repeat expansion in ORFs cause rapid deadenylation and translation inhibition of mutant transcripts. Cell Mol Life Sci 2020; 78:1577-1596. [PMID: 32696070 PMCID: PMC7904544 DOI: 10.1007/s00018-020-03596-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are incurable neurological disorders caused by CAG repeat expansion in the open reading frames (ORFs) of specific genes. This type of mutation in the HTT gene is responsible for Huntington’s disease (HD). CAG repeat-targeting artificial miRNAs (art-miRNAs) were shown as attractive therapeutic approach for polyQ disorders as they caused allele-selective decrease in the level of mutant proteins. Here, using polyQ disease models, we aimed to demonstrate how miRNA-based gene expression regulation is dependent on target sequence features. We show that the silencing efficiency and selectivity of art-miRNAs is influenced by the localization of the CAG repeat tract within transcript and the specific sequence context. Furthermore, we aimed to reveal the events leading to downregulation of mutant polyQ proteins and found very rapid activation of translational repression and HTT transcript deadenylation. Slicer-activity of AGO2 was dispensable in this process, as determined in AGO2 knockout cells generated with CRISPR-Cas9 technology. We also showed highly allele-selective downregulation of huntingtin in human HD neural progenitors (NPs). Taken together, art-miRNA activity may serve as a model of the cooperative activity and targeting of ORF regions by endogenous miRNAs.
Collapse
|
91
|
Dave P, Chao JA. Insights into mRNA degradation from single-molecule imaging in living cells. Curr Opin Struct Biol 2020; 65:89-95. [PMID: 32659634 DOI: 10.1016/j.sbi.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Single-molecule fluorescence microscopy techniques have enabled the lifecycle of individual RNA transcripts to be quantitatively measured in living cells. The application of these approaches to monitor mRNA degradation, however, has presented a challenge to unequivocally detect these events due to the inherent loss-of-signal resulting from decay of a transcript. Here, we highlight the recent technological developments that have enabled the spatial and temporal dynamics of mRNA degradation of individual transcripts to be visualized within living cells.
Collapse
Affiliation(s)
- Pratik Dave
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.
| |
Collapse
|
92
|
Shen ZJ, Liu YJ, Zhu F, Cai LM, Liu XM, Tian ZQ, Cheng J, Li Z, Liu XX. MicroRNA-277 regulates dopa decarboxylase to control larval-pupal and pupal-adult metamorphosis of Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103391. [PMID: 32360955 DOI: 10.1016/j.ibmb.2020.103391] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/28/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Insect metamorphosis is a complex process involving many metabolic pathways, such as juvenile hormones and molting hormones, bioamines, microRNAs (miRNAs), etc. However, relatively little is known about the biogenic amines and their miRNAs to regulate cotton bollworm metamorphosis. Here we show that one miRNA, miR-277 regulates larval-pupal and pupal-adult metamorphosis of cotton bollworm by targeting the 3'UTR of Dopa decarboxylase (DDC), a synthetic catalytic enzyme of dopamine. Injection of miR-277 agomir inhibited the expression of DDC at the mRNA and protein levels, leading to defects in the pupation and emergence of H. armigera that was consistent with the phenotype obtained by injection of DDC double-stranded RNA (dsRNA). Injection of miR-277 antagomir induced the mRNA and protein expression of DDC and rescued the phenotype of pupation failure caused by DDC gene silencing. Unexpectedly, miR-277 antagomir can also cause failure of emergence of H. armigera and both agomir and antagomir of miR-277 injection could cause abnormal phenotypes in wing veins. This study reveals that elaborate regulation of miRNA and its target gene expression is prerequisite for insect development, which provides a new insight to study the developmental mechanisms of insect wing veins.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yan-Jun Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Li-Mei Cai
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiao-Ming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhi-Qiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Cheng
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiao-Xia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
93
|
Liu S, Li B, Liang Q, Liu A, Qu L, Yang J. Classification and function of RNA-protein interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1601. [PMID: 32488992 DOI: 10.1002/wrna.1601] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Almost all RNAs need to interact with proteins to fully exert their functions, and proteins also bind to RNAs to act as regulators. It has now become clear that RNA-protein interactions play important roles in many biological processes among organisms. Despite the great progress that has been made in the field, there is still no precise classification system for RNA-protein interactions, which makes it challenging to further decipher the functions and mechanisms of these interactions. In this review, we propose four different categories of RNA-protein interactions according to their basic characteristics: RNA motif-dependent RNA-protein interactions, RNA structure-dependent RNA-protein interactions, RNA modification-dependent RNA-protein interactions, and RNA guide-based RNA-protein interactions. Moreover, the integration of different types of RNA-protein interactions and the regulatory factors implicated in these interactions are discussed. Furthermore, we emphasize the functional diversity of these four types of interactions in biological processes and disease development and assess emerging trends in this exciting research field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiaoxia Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anrui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
94
|
Zhou R, Joshi P, Katsushima K, Liang W, Liu W, Goldenberg NA, Dover G, Perera RJ. The Emerging Field of Noncoding RNAs and Their Importance in Pediatric Diseases. J Pediatr 2020; 221S:S11-S19. [PMID: 32482229 PMCID: PMC9003624 DOI: 10.1016/j.jpeds.2020.02.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Rui Zhou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD; Johns Hopkins All Children's Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL.
| | - Piyush Joshi
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL
| | - Keisuke Katsushima
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL
| | - Weihong Liang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL
| | - Wei Liu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL
| | - Neil A. Goldenberg
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Institute for Clinical and Translational Research, St. Petersburg, FL
| | - George Dover
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ranjan J. Perera
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD,Johns Hopkins All Children’s Hospital Institute for Fundamental Biomedical Research, St. Petersburg, FL
| |
Collapse
|
95
|
Bah I, Alkhateeb T, Kumbhare A, Youssef D, Yao ZQ, Hawkin GA, McCall CE, El Gazzar M. HuR promotes miRNA-mediated upregulation of NFI-A protein expression in MDSCs during murine sepsis. Mol Immunol 2020; 123:97-105. [PMID: 32474254 DOI: 10.1016/j.molimm.2020.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/04/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) contribute to high mortality rates during sepsis, but how sepsis induces MDSCs is unclear. Previously we reported that microRNA (miR)-21 and miR-181b reprogram MDSCs in septic mice by increasing levels of DNA binding transcription factor, nuclear factor 1 (NFI-A). Here, we provide evidence that miR-21 and miR-181b stabilize NFI-A mRNA and increase NFI-A protein levels by recruiting RNA-binding proteins HuR and Ago1 to its 3' untranslated region (3'UTR). We also find that the NFI-A GU-rich element (GRE)-binding protein CUGBP1 counters miR-21 and miR-181b dependent NFI-A mRNA stabilization and decreases protein production by replacing 3'UTR bound Ago1 with Ago2. We confirmed the miR-21 and miR-181b dependent reprogramming pathway in MDSCs transfected with a luciferase reporter construct containing an NFI-A 3'UTR fragment with point mutations in the miRNA binding sites. These results suggest that targeting NFI-A in MDSCs during sepsis may enhance resistance to uncontrolled infection.
Collapse
Affiliation(s)
- Isatou Bah
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA
| | - Tuqa Alkhateeb
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA
| | - Ajinkya Kumbhare
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA
| | - Dima Youssef
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA
| | - Zhi Q Yao
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA
| | - Gregory A Hawkin
- Department of Biochemistry and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Charles E McCall
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mohamed El Gazzar
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, 37614, USA.
| |
Collapse
|
96
|
Christoforidou E, Joilin G, Hafezparast M. Potential of activated microglia as a source of dysregulated extracellular microRNAs contributing to neurodegeneration in amyotrophic lateral sclerosis. J Neuroinflammation 2020; 17:135. [PMID: 32345319 PMCID: PMC7187511 DOI: 10.1186/s12974-020-01822-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron degeneration in adults, and several mechanisms underlying the disease pathology have been proposed. It has been shown that glia communicate with other cells by releasing extracellular vesicles containing proteins and nucleic acids, including microRNAs (miRNAs), which play a role in the post-transcriptional regulation of gene expression. Dysregulation of miRNAs is commonly observed in ALS patients, together with inflammation and an altered microglial phenotype. However, the role of miRNA-containing vesicles in microglia-to-neuron communication in the context of ALS has not been explored in depth. This review summarises the evidence for the presence of inflammation, pro-inflammatory microglia and dysregulated miRNAs in ALS, then explores how microglia may potentially be responsible for this miRNA dysregulation. The possibility of pro-inflammatory ALS microglia releasing miRNAs which may then enter neuronal cells to contribute to degeneration is also explored. Based on the literature reviewed here, microglia are a likely source of dysregulated miRNAs and potential mediators of neurodegenerative processes. Therefore, dysregulated miRNAs may be promising candidates for the development of therapeutic strategies.
Collapse
Affiliation(s)
| | - Greig Joilin
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Majid Hafezparast
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
97
|
Caudron-Herger M, Wassmer E, Nasa I, Schultz AS, Seiler J, Kettenbach AN, Diederichs S. Identification, quantification and bioinformatic analysis of RNA-dependent proteins by RNase treatment and density gradient ultracentrifugation using R-DeeP. Nat Protoc 2020; 15:1338-1370. [PMID: 32094787 PMCID: PMC7212772 DOI: 10.1038/s41596-019-0261-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Analysis of RNA-protein complexes is central to understanding the molecular circuitry governing cellular processes. In recent years, several proteome-wide studies have been dedicated to the identification of RNA-binding proteins. Here, we describe in detail R-DeeP, an approach built on RNA dependence, defined as the ability of a protein to engage in protein complexes only in the presence of RNA, involving direct or indirect interaction with RNA. This approach provides-for the first time, to our knowledge-quantitative information on the fraction of a protein associated with RNA-protein complexes. R-DeeP is independent of any potentially biased purification procedures. It is based on cellular lysate fractionation by density gradient ultracentrifugation and subsequent analysis by proteome-wide mass spectrometry (MS) or individual western blotting. The comparison of lysates with and without previous RNase treatment enables the identification of differences in the apparent molecular weight and, hence, the size of the complexes. In combination with information from databases of protein-protein complexes, R-DeeP facilitates the computational reconstruction of protein complexes from proteins migrating in the same fraction. In addition, we developed a pipeline for the statistical analysis of the MS dataset to automatically identify RNA-dependent proteins (proteins whose interactome depends on RNA). With this protocol, the individual analysis of proteins of interest by western blotting can be completed within 1-2 weeks. For proteome-wide studies, additional time is needed for the integration of the proteomic and statistical analyses. In the future, R-DeeP can be extended to other fractionation techniques, such as chromatography.
Collapse
Affiliation(s)
- Maiwen Caudron-Herger
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Elsa Wassmer
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Astrid-Solveig Schultz
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK)-Partner Site Freiburg, Freiburg, Germany
| | - Jeanette Seiler
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK)-Partner Site Freiburg, Freiburg, Germany.
- National Center for Tumor Diseases (NCT)-Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
98
|
Li X, Wang X, Cheng Z, Zhu Q. AGO2 and its partners: a silencing complex, a chromatin modulator, and new features. Crit Rev Biochem Mol Biol 2020; 55:33-53. [DOI: 10.1080/10409238.2020.1738331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaojing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
99
|
Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velázquez IA, González-Barrios R, Contreras-Espinosa L, Montiel-Manríquez R, Castro-Hernández C, Fragoso-Ontiveros V, Álvarez-Gómez RM, Herrera LA. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:409-420. [PMID: 32244168 PMCID: PMC7118281 DOI: 10.1016/j.omtn.2020.03.003] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding transcripts that posttranscriptionally regulate gene expression via base-pairing complementarity. Their role in cancer can be related to tumor suppression or oncogenic function. Moreover, they have been linked to processes recognized as hallmarks of cancer, such as apoptosis, invasion, metastasis, and proliferation. Particularly, one of the first oncomiRs found upregulated in a variety of cancers, such as gliomas, breast cancer, and colorectal cancer, was microRNA-21 (miR-21). Some of its target genes associated with cancer are PTEN (phosphatase and tensin homolog), PDCD4 (programmed cell death protein 4), RECK (reversion-inducing cysteine-rich protein with Kazal motifs), and STAT3 (signal transducer activator of transcription 3). As a result, miR-21 has been proposed as a plausible diagnostic and prognostic biomarker, as well as a therapeutic target for several types of cancer. Currently, research and clinical trials to inhibit miR-21 through anti-miR-21 oligonucleotides and ADM-21 are being conducted. As all of the evidence suggests, miR-21 is involved in carcinogenic processes; therefore, inhibiting it could have effects on more than one type of cancer. However, whether miR-21 can be used as a tissue-specific biomarker should be analyzed with caution. Consequently, the purpose of this review is to outline the available information and recent advances regarding miR-21 as a potential biomarker in the clinical setting and as a therapeutic target in cancer to highlight its importance in the era of precision medicine.
Collapse
Affiliation(s)
- Diana Bautista-Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Abraham Pedroza-Torres
- CONACYT-Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | | | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Verónica Fragoso-Ontiveros
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico; Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico.
| |
Collapse
|
100
|
Chowdhury MR, Basak J, Bahadur RP. Elucidating the Functional Role of Predicted miRNAs in Post- Transcriptional Gene Regulation Along with Symbiosis in Medicago truncatula. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191003114202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background:
microRNAs are small non-coding RNAs which inhibit translational and
post-transcriptional processes whereas long non-coding RNAs are found to regulate both
transcriptional and post-transcriptional gene expression. Medicago truncatula is a well-known
model plant for studying legume biology and is also used as a forage crop. In spite of its
importance in nitrogen fixation and soil fertility improvement, little information is available about
Medicago non-coding RNAs that play important role in symbiosis.
Objective:
In this study we have tried to understand the role of Medicago ncRNAs in symbiosis
and regulation of transcription factors.
Methods:
We have identified novel miRNAs by computational methods considering various
parameters like length, MFEI, AU content, SSR signatures and tried to establish an interaction
model with their targets obtained through psRNATarget server.
Results:
149 novel miRNAs are predicted along with their 770 target proteins. We have also
shown that 51 of these novel miRNAs are targeting 282 lncRNAs.
Conclusion:
In this study role of Medicago miRNAs in the regulation of various transcription
factors are elucidated. Knowledge gained from this study will have a positive impact on the
nitrogen fixing ability of this important model plant, which in turn will improve the soil fertility.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Jolly Basak
- Laboratory of Plant Stress Biology, Department of Biotechnology, Visva-Bharati, Santiniketan-731235, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|