51
|
Wojnarowicz PM, Lima E Silva R, Ohnaka M, Lee SB, Chin Y, Kulukian A, Chang SH, Desai B, Garcia Escolano M, Shah R, Garcia-Cao M, Xu S, Kadam R, Goldgur Y, Miller MA, Ouerfelli O, Yang G, Arakawa T, Albanese SK, Garland WA, Stoller G, Chaudhary J, Norton L, Soni RK, Philip J, Hendrickson RC, Iavarone A, Dannenberg AJ, Chodera JD, Pavletich N, Lasorella A, Campochiaro PA, Benezra R. A Small-Molecule Pan-Id Antagonist Inhibits Pathologic Ocular Neovascularization. Cell Rep 2019; 29:62-75.e7. [PMID: 31577956 PMCID: PMC6896334 DOI: 10.1016/j.celrep.2019.08.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/09/2019] [Accepted: 08/23/2019] [Indexed: 02/01/2023] Open
Abstract
Id helix-loop-helix (HLH) proteins (Id1-4) bind E protein bHLH transcription factors, preventing them from forming active transcription complexes that drive changes in cell states. Id proteins are primarily expressed during development to inhibit differentiation, but they become re-expressed in adult tissues in diseases of the vasculature and cancer. We show that the genetic loss of Id1/Id3 reduces ocular neovascularization in mouse models of wet age-related macular degeneration (AMD) and retinopathy of prematurity (ROP). An in silico screen identifies AGX51, a small-molecule Id antagonist. AGX51 inhibits the Id1-E47 interaction, leading to ubiquitin-mediated degradation of Ids, cell growth arrest, and reduced viability. AGX51 is well-tolerated in mice and phenocopies the genetic loss of Id expression in AMD and ROP models by inhibiting retinal neovascularization. Thus, AGX51 is a first-in-class compound that antagonizes an interaction formerly considered undruggable and that may have utility in the management of multiple diseases.
Collapse
Affiliation(s)
- Paulina M Wojnarowicz
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raquel Lima E Silva
- Departments of Ophthalmology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Masayuki Ohnaka
- Departments of Ophthalmology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sang Bae Lee
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Yvette Chin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anita Kulukian
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sung-Hee Chang
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bina Desai
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marta Garcia Escolano
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Riddhi Shah
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marta Garcia-Cao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sijia Xu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rashmi Kadam
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Meredith A Miller
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guangli Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, a Division of KBI Biopharma, San Diego, CA 92121, USA
| | - Steven K Albanese
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Glenn Stoller
- Ophthalmic Consultants of Long Island, Lynbrook, NY 11563, USA
| | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Larry Norton
- Evelyn H. Lauder Breast Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rajesh Kumar Soni
- Proteomics & Microchemistry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John Philip
- Proteomics & Microchemistry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Proteomics & Microchemistry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Antonio Iavarone
- Department of Neurology, Department of Pathology, Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Andrew J Dannenberg
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - John D Chodera
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikola Pavletich
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Lasorella
- Department of Pediatrics, Department of Pathology, Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter A Campochiaro
- Departments of Ophthalmology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
52
|
Rossari F, Zucchinetti C, Buda G, Orciuolo E. Tumor dormancy as an alternative step in the development of chemoresistance and metastasis - clinical implications. Cell Oncol (Dordr) 2019; 43:155-176. [PMID: 31392521 DOI: 10.1007/s13402-019-00467-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The ability of a tumor to become dormant in response to suboptimal conditions has recently been recognized as a key step in tumor progression. Tumor dormancy has been found to be implicated in several tumor types as the culprit of therapy resistance and metastasis development, the deadliest features of a cancer. Several lines of evidence indicate that the development of these traits may rely on the de-differentiation of committed tumor cells that regain stem-like properties during a dormant state. Presently, dormancy is classified into cell- and population-level, according to the preponderance of cellular mechanisms that keep tumor cells quiescent or to a balance between overall cell division and death, respectively. Cellular dormancy is characterized by autophagy, stress-tolerance signaling, microenvironmental cues and, of prime relevance, epigenetic modifications. It has been found that the epigenome alters during cellular quiescence, thus representing the driving force for short-term cancer progression. Population-level dormancy is characterized by processes that counteract proliferation, such as inappropriate blood supply and intense immune responses. The latter two mechanisms are not mutually exclusive and may affect tumor masses both simultaneously and subsequently. CONCLUSIONS Overall, tumor dormancy may represent an additional step in the acquisition of cancer characteristics, and its comprehension may clarify both theoretical and practical aspects of cancer development. Clinically, only a deep understanding of dormancy may explain the course of tumor development in different patients, thus representing a process that may be targeted to prevent and/or treat advanced-stage cancers. That is especially the case for breast cancer, against which the mTOR inhibitor everolimus displays potent antitumor activity in patients with metastatic disease by impeding autophagy and tumor dormancy onset. Here we will also discuss other targeted therapies directed towards tumor dormancy onset, e.g. specific inhibitors of SFK and MEK, or aimed at keeping tumor cells dormant, e.g. prosaposin derivatives, that may shortly enter clinical assessment in breast, and possibly other cancer types.
Collapse
Affiliation(s)
- Federico Rossari
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy. .,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126, Pisa, Italy.
| | - Cristina Zucchinetti
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126, Pisa, Italy
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, 56126, Pisa, Italy
| | - Enrico Orciuolo
- Hematology Unit, Azienda Ospedaliera Universitaria Pisana, 56126, Pisa, Italy
| |
Collapse
|
53
|
Cervantes-Villagrana RD, Color-Aparicio VM, Reyes-Cruz G, Vázquez-Prado J. Protumoral bone marrow-derived cells migrate via Gβγ-dependent signaling pathways and exhibit a complex repertoire of RhoGEFs. J Cell Commun Signal 2019; 13:179-191. [PMID: 30612298 PMCID: PMC6498369 DOI: 10.1007/s12079-018-00502-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Reciprocal communication among cells of the tumor microenvironment contributes to cancer progression. Here, we show that a protumoral population of cultured bone marrow-derived cells (BMDC) containing Tie2+/CD45+/CD11b + cells responded to lung carcinoma cells and reciprocally stimulated them. These cells migrated via heterotrimeric G protein-dependent signaling pathways and strongly activated the PI3K/AKT, ERK and mTOR signaling cascades in response to conditioned media and chemotactic agonists. To get insight into the molecular machinery involved in BMDC migration, we revealed their repertoire of guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) and G proteins in comparison with fresh bone marrow cells, proven that these cell populations had contrasting effects on tumor growth. BMDC exhibited a higher expression of G protein regulated RhoGEFs including P-Rex1, PDZ-RhoGEF, LARG, Trio and some less well characterized RhoGEFs such as ARHGEF5, ARHGEF17 and PLEKHG6. G proteins such as Gα12/13, Gαq, and the small GTPase RhoJ were also highly expressed in BMDC. Our results indicate that Tie2+/CD45+/CD11b + BMDC express a unique variety of chemotactic transducers and effectors potentially linked to their protumoral effect, warranting further studies to their characterization as molecular targets.
Collapse
Affiliation(s)
| | - Víctor Manuel Color-Aparicio
- Department of Pharmacology, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508., Col. San Pedro Zacatenco, 14740, Mexico City, Mexico
| | | | - José Vázquez-Prado
- Department of Pharmacology, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508., Col. San Pedro Zacatenco, 14740, Mexico City, Mexico.
| |
Collapse
|
54
|
Putative endothelial progenitor cells do not promote vascular repair but attenuate pericyte-myofibroblast transition in UUO-induced renal fibrosis. Stem Cell Res Ther 2019; 10:104. [PMID: 30898157 PMCID: PMC6429829 DOI: 10.1186/s13287-019-1201-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023] Open
Abstract
Background Putative endothelial progenitor cells (pEPCs) have been confirmed to participate in alleviation of renal fibrosis in several ischaemic diseases. However, their mechanistic effect on renal fibrosis, which is characterized by vascular regression and further rarefaction-related pathology, remains unknown. Methods To explore the effect and molecular mechanisms by which pEPCs act on unilateral ureteral obstruction (UUO)-induced renal fibrosis, we isolated pEPCs from murine bone marrow. In vivo, pEPCs (2 × 105 cells/day) and pEPC-MVs (microvesicles) were injected into UUO mice via the tail vein. In vitro, pEPCs were co-cultured with renal-derived pericytes. Pericyte-myofibroblast transition was evaluated using the myofibroblast marker α-smooth muscle actin (α-SMA) and pericyte marker platelet-derived growth factor receptor β (PDGFR-β). Results Exogenous supply of bone marrow-derived pEPCs attenuated renal fibrosis by decreasing pericyte-myofibroblast transition without significant vascular repair in the UUO model. Our results indicated that pEPCs regulated pericytes and their transition into myofibroblasts via pEPC-MVs. Co-culture of pericytes with pEPCs in vitro suggested that pEPCs inhibit transforming growth factor-β (TGF-β)-induced pericyte–myofibroblast transition via a paracrine pathway. Conclusion pEPCs effectively attenuated UUO-induced renal fibrosis by inhibiting pericyte–myofibroblast transition via a paracrine pathway, without promoting vascular repair. Electronic supplementary material The online version of this article (10.1186/s13287-019-1201-5) contains supplementary material, which is available to authorized users.
Collapse
|
55
|
Bianchini F, De Santis A, Portioli E, Russo Krauss I, Battistini L, Curti C, Peppicelli S, Calorini L, D'Errico G, Zanardi F, Sartori A. Integrin-targeted AmpRGD sunitinib liposomes as integrated antiangiogenic tools. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:135-145. [PMID: 30849548 DOI: 10.1016/j.nano.2019.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 01/01/2023]
Abstract
We report here the preparation, physico-chemical characterization, and biological evaluation of a new liposome formulation as a tool for tumor angiogenesis inhibition. Liposomes are loaded with sunitinib, a tyrosine kinase inhibitor, and decorated with cyclo-aminoprolineRGD units (cAmpRGD), efficient and selective ligands for integrin αVβ3. The RGD units play multiple roles since they target the nanovehicles at the integrin αVβ3-overexpressing cells (e.g. activated endothelial cells), favor their active cell internalization, providing drug accumulation in the cytoplasm, and likely take part in the angiogenesis inhibition by interfering in the αVβ3-VEGFR2 cross-talk. Both in vitro and in vivo studies show a better efficacy of this integrated antiangiogenic tool with respect to the free sunitinib and untargeted sunitinib-loaded liposomes. This system could allow a lower administration of the drug and, by increasing the vector specificity, reduce side-effects in a prolonged antiangiogenic therapy.
Collapse
Affiliation(s)
- Francesca Bianchini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Firenze, Italy
| | - Augusta De Santis
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Elisabetta Portioli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Irene Russo Krauss
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Lucia Battistini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Claudio Curti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Silvia Peppicelli
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Firenze, Italy
| | - Lido Calorini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Firenze, Italy
| | - Gerardino D'Errico
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Franca Zanardi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| | - Andrea Sartori
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| |
Collapse
|
56
|
Affiliation(s)
- Shiqun Shao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Jingxing Si
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceClinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou 310014 China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
57
|
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T, Mittal V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 2019; 19:9-31. [PMID: 30532012 PMCID: PMC6749995 DOI: 10.1038/s41568-018-0081-9] [Citation(s) in RCA: 705] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is a major global health problem, as it is the leading cause of cancer-related deaths worldwide. Major advances in the identification of key mutational alterations have led to the development of molecularly targeted therapies, whose efficacy has been limited by emergence of resistance mechanisms. US Food and Drug Administration (FDA)-approved therapies targeting angiogenesis and more recently immune checkpoints have reinvigorated enthusiasm in elucidating the prognostic and pathophysiological roles of the tumour microenvironment in lung cancer. In this Review, we highlight recent advances and emerging concepts for how the tumour-reprogrammed lung microenvironment promotes both primary lung tumours and lung metastasis from extrapulmonary neoplasms by contributing to inflammation, angiogenesis, immune modulation and response to therapies. We also discuss the potential of understanding tumour microenvironmental processes to identify biomarkers of clinical utility and to develop novel targeted therapies against lung cancer.
Collapse
Affiliation(s)
- Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey L Port
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ashish Saxena
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Brendon Stiles
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Timothy McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
58
|
Chan CYK, Yuen VWH, Wong CCL. Hypoxia and the Metastatic Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:97-112. [PMID: 31201719 DOI: 10.1007/978-3-030-12734-3_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metastasis is considered the latest stage of cancer development; however, metastasis occurs earlier than it can be detected. Metastatic sites are actively remodeled by secretory factors including growth factors, chemokines and cytokines, extracellular matrix (ECM) enzymes, and exosomes produced by the primary cancer tissues. Many of the associated-secretory factors are abundantly induced by inflammation and hypoxia. These secretory factors modify the ECM, immune composition, and blood vessel permeability of the future metastatic sites, a process termed 'metastatic niche formation.' In general, ECM is modified to enhance the attachment of other cell types or cancer cells to establish a growth-factor rich metastatic niche. Immune-suppressive cells such as tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) dominate the metastatic niche to allow metastatic cancer cells to bypass immune surveillance and propagate. Endothelial cell-to-cell junctions of blood vessels are loosened to enhance the penetrance of metastatic cancer cells to the metastatic sites. Different metastatic tissues have unique ECM constituents, resident immune cells, and anatomical positions linked with the circulatory system; therefore, many cancer types have their own metastatic pattern, and they favor metastasis to specific organs. Some of the remodeling events represent the earliest step of metastasis, even preceding the detachment of cancer cells from the primary tumor site. Understanding how the metastatic niche is formed is important for the development of drugs to prevent the earliest step of metastasis and advance our understanding of organotrophic metastasis. This review summarizes the major findings in the field of metastatic niche highlighting the role of hypoxia.
Collapse
|
59
|
Jamshidi-Parsian A, Griffin RJ, Kore RA, Todorova VK, Makhoul I. Tumor-endothelial cell interaction in an experimental model of human hepatocellular carcinoma. Exp Cell Res 2018; 372:16-24. [PMID: 30205087 DOI: 10.1016/j.yexcr.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a densely vascularized tumor that is highly dependent on angiogenic pathways to direct arterial blood flow to the growing neoplasm, though little is known about how the interaction of tumor and endothelial cells drives these processes and the degree of clinical importance. To this end, we examined the intercellular cross-talk between HepG2 (human HCC) and human endothelial progenitor cells (EPC) in a co-culture system that mimics some aspects of initial tumor parenchyma and stroma interactions. The results showed that the remote cell-to-cell (paracrine) interactions between HepG2 cells and EPC play a critical role in the differentiation and angiogenic activity of endothelial cells, possibly through intercellular signaling function of the exosomes released in the medium by HepG2 cells. The tumor-cell activated phenotype of EPC was associated with increased migration and elevated expression of ephrin-B2, and Delta-like 4 ligand (DLL4). Furthermore, ephrin-B2 was found to be overexpressed in HCC and cholangiocarcinoma tissue samples taken from humans. Overall, our results demonstrate that ephrin-B2 and Dll4 mediated co-dependence of HCC and EPC intercellular crosstalk in the initial stages of HCC establishment and development, a promising target for new clinical strategies.
Collapse
Affiliation(s)
- Azemat Jamshidi-Parsian
- The Radiation Oncology Department, Radiation Biology, The University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, United States
| | - Robert J Griffin
- The Radiation Oncology Department, Radiation Biology, The University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, United States
| | - Rajshekhar A Kore
- The Radiation Oncology Department, Radiation Biology, The University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, United States
| | - Valentina K Todorova
- The Department of Internal Medicine, Hematology/Oncology Division, The University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, United States
| | - Issam Makhoul
- The Department of Internal Medicine, Hematology/Oncology Division, The University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, United States.
| |
Collapse
|
60
|
Singhal M, Liu X, Inverso D, Jiang K, Dai J, He H, Bartels S, Li W, Abdul Pari AA, Gengenbacher N, Besemfelder E, Hui L, Augustin HG, Hu J. Endothelial cell fitness dictates the source of regenerating liver vasculature. J Exp Med 2018; 215:2497-2508. [PMID: 30194265 PMCID: PMC6170182 DOI: 10.1084/jem.20180008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 12/29/2022] Open
Abstract
Employing a broad array of genetic lineage–tracing protocols including parabiotic pairs, Singhal et al. reveal that the fitness of liver endothelial cells (ECs) determines whether resident ECs or bone marrow–derived mononuclear cells will be adopted for vascular regeneration. Neoangiogenesis plays a key role in diverse pathophysiological conditions, including liver regeneration. Yet, the source of new endothelial cells (ECs) remains elusive. By analyzing the regeneration of the liver vasculature in irradiation-based myeloablative and nonmyeloablative bone marrow transplantation mouse models, we discovered that neoangiogenesis in livers with intact endothelium was solely mediated by proliferation of resident ECs. However, following irradiation-induced EC damage, bone marrow–derived mononuclear cells were recruited and incorporated into the vasculature. Further experiments with direct bone marrow infusion or granulocyte colony–stimulating factor (G-CSF)–mediated progenitor cell mobilization, which resembles clinically relevant stem cell therapy, demonstrated that bone marrow–derived cells did not contribute to the regeneration of liver vasculature after two-thirds partial hepatectomy (PHx). Taken together, the data reconcile many of the discrepancies in the literature and highlight that the cellular source of regenerating endothelium depends on the fitness of the residual vasculature.
Collapse
Affiliation(s)
- Mahak Singhal
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Xiaoting Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Donato Inverso
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Kai Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jianing Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Susanne Bartels
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Weiping Li
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ashik Ahmed Abdul Pari
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany .,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
61
|
Stroma-derived IL-6, G-CSF and Activin-A mediated dedifferentiation of lung carcinoma cells into cancer stem cells. Sci Rep 2018; 8:11573. [PMID: 30069023 PMCID: PMC6070555 DOI: 10.1038/s41598-018-29947-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSCs) are a small population of resistant cells inhabiting the tumors. Although comprising only nearly 3% of the tumor mass, these cells were demonstrated to orchestrate tumorigenesis and differentiation, underlie tumors’ heterogeneity and mediate therapy resistance and tumor relapse. Here we show that CSCs may be formed by dedifferentiation of terminally differentiated tumor cells under stress conditions. Using a elegant co-culture cellular system, we were able to prove that nutrients and oxygen deprivation activated non-malignant stromal fibroblasts, which in turn established with tumor cells a paracrine loop mediated by Interleukine-6 (IL-6), Activin-A and Granulocyte colony-stimulating factor (G-CSF), that drove subsequent tumor formation and cellular dedifferentiation. However, by scavenging these cytokines from the media and/or blocking exosomes’ mediated communication it was possible to abrogate dedifferentiation thus turning these mechanisms into potential therapeutic targets against cancer progression.
Collapse
|
62
|
Wang H, Huang H, Ding SF. Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of Endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway. Cell Biol Int 2018; 42:1492-1502. [PMID: 29790626 DOI: 10.1002/cbin.10991] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hang Wang
- Department of Cardiology; Wuhan General Hospital of PLA; Wuhan 430070 China
- Clinic Center; China Life Health Industry Group; Shenzhen 515000 China
| | - Hao Huang
- Medical Project Department; Livzon Pharmaceutical Group Inc.; Zhuhai 519045 China
| | - Shi-Fang Ding
- Department of Cardiology; Wuhan General Hospital of PLA; Wuhan 430070 China
| |
Collapse
|
63
|
Qian N, Li X, Wang X, Wu C, Yin L, Zhi X. Tryptase promotes breast cancer angiogenesis through PAR-2 mediated endothelial progenitor cell activation. Oncol Lett 2018; 16:1513-1520. [PMID: 30008831 PMCID: PMC6036543 DOI: 10.3892/ol.2018.8856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 04/19/2018] [Indexed: 01/08/2023] Open
Abstract
Mast cells have been demonstrated to accumulate around and within solid tumors of numerous types, and express a number of pro-angiogenic compounds, including tryptase. They may serve an early role in angiogenesis within developing tumors. In the present study, the role and mechanism of tryptase in the activation of endothelial progenitor cells (EPCs) in breast cancer angiogenesis were evaluated. Human umbilical cord blood EPCs were isolated and cultured. MB-MDA-231 breast cancer cells were then pretreated with tryptase, and the conditioned medium was collected. The effects of tryptase on the migratory and angiogenesis abilities of EPCs were determined using wound-healing and tube formation assays, respectively. The effect of tryptase on the proliferation of EPCs was detected using a Cell Counting Kit-8 assay. Alterations in proteinase activated receptor (PAR)-2, phosphorylated (p)-protein kinase B (AKT), p-extracellular signal-regulated kinase (p-ERK) and vascular endothelial growth factor receptor (VEGFR)-2 expression were analyzed, in tryptase or conditioned medium-treated EPCs, by western blot analysis and reverse transcription-quantitative polymerase chain reaction. It was confirmed that the EPCs expressed PAR-2; and that tryptase treatment promoted the migration and tube formation of EPCs. Treatment with a PAR-2 agonist had a similar effect to tryptase, whereas treatment with a tryptase inhibitor, APC366, or a PAR-2 inhibitor, SAM 11, inhibited the effect of tryptase treatment. Tryptase and PAR-2 agonists did not affect the rate of EPC proliferation. MB-MDA-231 cells also expressed PAR-2. Treatment with tryptase or conditioned medium increased the expression of PAR-2, p-AKT, p-ERK and VEGFR-2 in EPCs. In conclusion, tryptase activated EPCs via PAR-2-mediated AKT and ERK signaling pathway activation, thereby enhancing angiogenesis in breast cancer.
Collapse
Affiliation(s)
- Neng Qian
- School of Basic Medicine, Shanghai University of Medicine and Health Science, Shanghai 201318, P.R. China
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Chungen Wu
- Laboratory of Medical Molecular Biology, Training Center of Medical Experiments, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Lianhua Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Xiuling Zhi
- Laboratory of Medical Molecular Biology, Training Center of Medical Experiments, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
64
|
An R, Schmid R, Klausing A, Robering JW, Weber M, Bäuerle T, Detsch R, Boccaccini AR, Horch RE, Boos AM, Weigand A. Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model. FASEB J 2018; 32:5587-5601. [PMID: 29746168 DOI: 10.1096/fj.201800135rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial progenitor cells (EPCs) contribute to neovascularization in tumors. However, the relationship of EPCs and tumor-induced angiogenesis still remains to be clarified. The present study aimed at investigating the influence of 4 different tumor types on angiogenic properties of EPCs in an in vitro and in vivo rat model. It could be demonstrated that in vitro proliferation, migration, and angiogenic abilities and genetic modifications of EPCs are controlled in a tumor-type-dependent manner. The proangiogenic effect of mammary carcinoma, osteosarcoma, and rhabdomyosarcoma cells was more pronounced compared to colon carcinoma cells. Coinjection of encapsulated tumor cells, especially mammary carcinoma cells, and EPCs in a rat model confirmed a contributing effect of EPCs in tumor vascularization. Cytokines secreted by tumors such as monocyte chemoattractant protein 1, macrophage inflammatory protein 2, and TNF-related apoptosis-inducing ligand play a pivotal role in the tumor cell-EPC interaction, leading to enhanced migration and angiogenesis. With the present study, we were able to decipher possible underlying mechanisms by which EPCs are stimulated by tumor cells and contribute to tumor vascularization. The present study will contribute to a better understanding of tumor-induced vascularization, thus facilitating the development of therapeutic strategies targeting tumor-EPC interactions.-An, R., Schmid, R., Klausing, A., Robering, J. W., Weber, M., Bäuerle, T., Detsch, R., Boccaccini, A. R., Horch, R. E., Boos, A. M., Weigand, A. Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model.
Collapse
Affiliation(s)
- Ran An
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Union Plastic and Aesthetic Hospital, Huazhong University of Science and Technology, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Rafael Schmid
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anne Klausing
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan W Robering
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Weber
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Rainer Detsch
- Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja M Boos
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Annika Weigand
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
65
|
Wei Y, Zhou F, Zhou H, Huang J, Yu D, Wu G. Endothelial progenitor cells contribute to neovascularization of non-small cell lung cancer via histone deacetylase 7-mediated cytoskeleton regulation and angiogenic genes transcription. Int J Cancer 2018; 143:657-667. [PMID: 29490434 DOI: 10.1002/ijc.31349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 12/19/2022]
Abstract
To supply tumor tissues with nutrients and oxygen, endothelial progenitor cells (EPCs) home to tumor sites and contribute to neovascularization. Although the precise mechanism of EPCs-induced neovascularization remains poorly understood in non-small cell lung cancer (NSCLC), histone deacetylase 7 (HDAC7) is considered as a critical regulator. To explore the function of HDAC7 in neovascularization induced by EPCs, tube formation assay, immunofluorescence, microarray, Western blot analysis and animal models were performed. In vitro, HDAC7 abrogation led to the activation of Rho-associated coiled-coil containing protein kinase/myosin light chain 2 pathway concomitant with ERK dephosphorylation, causing the instability of cytoskeleton and collapse of tube formation. In vivo, absence of HDAC7 impaired the vascular lumen integrity and decreased the functional blood perfusion, inhibiting the growth of tumor. At the level of transcription, HDAC7 silencing upregulated antiangiogenic genes and suppressed proangiogenic genes collectively, turning off the angiogenic switch during vessel formation. Taken together, HDAC7 plays a dual role in maintaining the structural and nonstructural functions of EPCs. Our work demonstrates the molecular mechanism by which HDAC7 contributes to the angiogenic property of EPCs and provides a rational basis for specific targeting of antiangiogenic strategies in lung cancer.
Collapse
Affiliation(s)
- Ye Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangzheng Zhou
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Haibo Zhou
- The First College of Clinical Medical Science, China Three Gorges University and Department of Oncology, Yichang Central People's Hospital, Yichang, Hubei, People's Republic of China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
66
|
Yadav AS, Pandey PR, Butti R, Radharani NNV, Roy S, Bhalara SR, Gorain M, Kundu GC, Kumar D. The Biology and Therapeutic Implications of Tumor Dormancy and Reactivation. Front Oncol 2018; 8:72. [PMID: 29616190 PMCID: PMC5868535 DOI: 10.3389/fonc.2018.00072] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/02/2018] [Indexed: 01/06/2023] Open
Abstract
Advancements in the early detection of cancer coupled with improved surgery, radiotherapy, and adjuvant therapy led to substantial increase in patient survival. Nevertheless, cancer metastasis is the leading cause of death in several cancer patients. The majority of these deaths are associated with metastatic relapse kinetics after a variable period of clinical remission. Most of the cancer recurrences are thought to be associated with the reactivation of dormant disseminated tumor cells (DTCs). In this review, we have summarized the cellular and molecular mechanisms related to DTCs and the role of microenvironmental niche. These mechanisms regulate the dormant state and help in the reactivation, which leads to metastatic outgrowth. Identification of novel therapeutic targets to eliminate these dormant tumor cells will be highly useful in controlling the metastatic relapse-related death with several cancers.
Collapse
Affiliation(s)
- Amit S. Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, India
| | - Poonam R. Pandey
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, India
| | - N. N. V. Radharani
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, India
| | - Shamayita Roy
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, India
| | - Shaileshkumar R. Bhalara
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, India
| | - Gopal C. Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, India
| | - Dhiraj Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, India
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
67
|
Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci 2018; 25:20. [PMID: 29506506 PMCID: PMC5838954 DOI: 10.1186/s12929-018-0426-4] [Citation(s) in RCA: 574] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are subpopulations of cancer cells sharing similar characteristics as normal stem or progenitor cells such as self-renewal ability and multi-lineage differentiation to drive tumour growth and heterogeneity. Throughout the cancer progression, CSC can further be induced from differentiated cancer cells via the adaptation and cross-talks with the tumour microenvironment as well as a response from therapeutic pressures, therefore contributes to their heterogeneous phenotypes. Challengingly, conventional cancer treatments target the bulk of the tumour and are unable to target CSCs due to their highly resistance nature, leading to metastasis and tumour recurrence. MAIN BODY This review highlights the roles of CSCs in tumour initiation, progression and metastasis with a focus on the cellular and molecular regulators that influence their phenotypical changes and behaviours in the different stages of cancer progression. We delineate the cross-talks between CSCs with the tumour microenvironment that support their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation in response to therapeutic pressure. An insight into the distinct roles of CSCs in promoting angiogenesis and metastasis has been captured based on in vitro and in vivo evidences. CONCLUSION Given dynamic cellular events along the cancer progression and contributions of resistance nature by CSCs, understanding their molecular and cellular regulatory mechanism in a heterogeneous nature, provides significant cornerstone for the development of CSC-specific therapeutics.
Collapse
Affiliation(s)
- Ain Zubaidah Ayob
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
- Cell and Molecular Laboratory (CMBL), The Dean’s Office, Faculty of Medicine, University of Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
68
|
Sax MJ, Gasch C, Athota VR, Freeman R, Rasighaemi P, Westcott DE, Day CJ, Nikolic I, Elsworth B, Wei M, Rogers K, Swarbrick A, Mittal V, Pouliot N, Mellick AS. Cancer cell CCL5 mediates bone marrow independent angiogenesis in breast cancer. Oncotarget 2018; 7:85437-85449. [PMID: 27863423 PMCID: PMC5356747 DOI: 10.18632/oncotarget.13387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023] Open
Abstract
It has recently been suggested that the chemokine receptor (CCR5) is required for bone marrow (BM) derived endothelial progenitor cell (EPC) mediated angiogenesis. Here we show that suppression of either cancer cell produced CCL5, or host CCR5 leads to distinctive vascular and tumor growth defects in breast cancer. Surprisingly, CCR5 restoration in the BM alone was not sufficient to rescue the wild type phenotype, suggesting that impaired tumor growth associated with inhibiting CCL5/CCR5 is not due to defects in EPC biology. Instead, to promote angiogenesis cancer cell CCL5 may signal directly to endothelium in the tumor-stroma. In support of this hypothesis, we have also shown: (i) that endothelial cell CCR5 levels increases in response to tumor-conditioned media; (ii) that the amount of CCR5+ tumor vasculature correlates with invasive grade; and (iii) that inhibition of CCL5/CCR5 signaling impairs endothelial cell migration, associated with a decrease in activation of mTOR/AKT pathway members. Finally, we show that treatment with CCR5 antagonist results in less vasculature, impaired tumor growth, reduced metastases and improved survival. Taken as a whole, this work demonstrates that directly inhibiting CCR5 expressing vasculature constitutes a novel strategy for inhibiting angiogenesis and blocking metastatic progression in breast cancer.
Collapse
Affiliation(s)
- Michael John Sax
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Christin Gasch
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Vineel Rag Athota
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Ruth Freeman
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Parisa Rasighaemi
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | | | - Iva Nikolic
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Benjamin Elsworth
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Ming Wei
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kelly Rogers
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute for Medical Research, Parkville Victoria, Australia
| | - Alexander Swarbrick
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Vivek Mittal
- Cardiothoracic Surgery and Neuberger Berman Lung Cancer Centre, Weill Cornell Medical College, New York, NY, USA
| | - Normand Pouliot
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Albert Sleiman Mellick
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.,Faculty of Medicine, University of New South Wales, NSW, Australia.,School of Medicine, Western Sydney University, Campbelltown NSW, Australia.,Translational Oncology Unit, Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
| |
Collapse
|
69
|
Huang J, Guo P, Moses MA. A Time-lapse, Label-free, Quantitative Phase Imaging Study of Dormant and Active Human Cancer Cells. J Vis Exp 2018. [PMID: 29553530 DOI: 10.3791/57035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The acquisition of the angiogenic phenotype is an essential component of the escape from tumor dormancy. Although several classic in vitro assays (e.g., proliferation, migration, and others) and in vivo models have been developed to investigate and characterize angiogenic and non-angiogenic cell phenotypes, these methods are time and labor intensive, and often require expensive reagents and instruments, as well as significant expertise. In a recent study, we used a novel quantitative phase imaging (QPI) technique to conduct time-lapse and labeling-free characterizations of angiogenic and non-angiogenic human osteosarcoma KHOS cells. A panel of cellular parameters, including cell morphology, proliferation, and motility, were quantitatively measured and analyzed using QPI. This novel and quantitative approach provides the opportunity to continuously and non-invasively study relevant cellular processes, behaviors, and characteristics of cancer cells and other cell types in a simple and integrated manner. This report describes our experimental protocol, including cell preparation, QPI acquisition, and data analysis.
Collapse
Affiliation(s)
- Jing Huang
- Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital
| | - Peng Guo
- Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital;
| |
Collapse
|
70
|
Laurenzana A, Margheri F, Chillà A, Biagioni A, Margheri G, Calorini L, Fibbi G, Del Rosso M. Endothelial Progenitor Cells as Shuttle of Anticancer Agents. Hum Gene Ther 2018; 27:784-791. [PMID: 27502560 DOI: 10.1089/hum.2016.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cell therapies are treatments in which stem or progenitor cells are stimulated to differentiate into specialized cells able to home to and repair damaged tissues. After their discovery, endothelial progenitor cells (EPCs) stimulated worldwide interest as possible vehicles to perform autologous cell therapy of tumors. Taking into account the tumor-homing properties of EPCs, two different approaches to control cancer progression have been pursued by combining cell-based therapy with gene therapy or with nanomedicine. The first approach is based on the possibility of engineering EPCs to express different transgenes, and the second is based on the capacity of EPCs to take up nanomaterials. Here we review the most important progress covering the following issues: the characterization of bona fide endothelial progenitor cells, their role in tumor vascularization and metastasis, and preclinical data about their use in cell-based tumor therapy, considering antiangiogenic, suicide, immune-stimulating, and oncolytic virus gene therapy. The mixed approach of EPC cell therapy and nanomedicine is discussed in terms of plasmonic-dependent thermoablation and molecular imaging.
Collapse
Affiliation(s)
- Anna Laurenzana
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Francesca Margheri
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Anastasia Chillà
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Alessio Biagioni
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Giancarlo Margheri
- 2 Institute for Complex Systems , National Research Council, Sesto Fiorentino, Italy
| | - Lido Calorini
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy.,3 Center of Excellence for the Study at Molecular and Clinical Levels of Chronic, Degenerative, and Neoplastic Diseases to Develop Novel Therapies (DENOTHE) , Florence, Italy
| | - Gabriella Fibbi
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Mario Del Rosso
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy.,3 Center of Excellence for the Study at Molecular and Clinical Levels of Chronic, Degenerative, and Neoplastic Diseases to Develop Novel Therapies (DENOTHE) , Florence, Italy
| |
Collapse
|
71
|
Affiliation(s)
- Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
72
|
Abstract
Liver transplantation is the most effective treatment for selected patients with hepatocellular carcinoma. However, cancer recurrence, posttransplantation, remains to be the critical issue that affects the long-term outcome of hepatocellular carcinoma recipients. In addition to tumor biology itself, increasing evidence demonstrates that acute-phase liver graft injury is a result of hepatic ischemia reperfusion injury (which is an inevitable consequence during liver transplantation) and may promote cancer recurrence at late phase posttransplantation. The liver grafts from living donors, donors after cardiac death, and steatotic donors have been considered as promising sources of organs for liver transplantation and are associated with high incidence of liver graft injury. The acute-phase liver graft injury will trigger a series of inflammatory cascades, which may not only activate the cell signaling pathways regulating the tumor cell invasion and migration but also mobilize the circulating progenitor and immune cells to facilitate tumor recurrence and metastasis. The injured liver graft may also provide the favorable microenvironment for tumor cell growth, migration, and invasion through the disturbance of microcirculatory barrier function, induction of hypoxia and angiogenesis. This review aims to summarize the latest findings about the role and mechanisms of liver graft injury resulted from hepatic ischemia reperfusion injury on tumor recurrence posttransplantation, both in clinical and animal cohorts.
Collapse
|
73
|
Man K. Recurrent malignancy: Are we pushing the envelope? Liver Transpl 2017; 23:S81-S84. [PMID: 28834148 DOI: 10.1002/lt.24853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Kwan Man
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
74
|
Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer 2017; 17:620-632. [PMID: 28943640 DOI: 10.1038/nrc.2017.78] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The integrity and composition of the tumour microenvironment (TME) is highly plastic, undergoing constant remodelling in response to instructive signals derived from alterations in the availability and nature of systemic host factors. This 'systemic milieu' is directly modulated by host exposure to modifiable lifestyle factors such as exercise. Host exposure to regular exercise markedly reduces the risk of the primary development of several cancers and might improve clinical outcomes following a diagnosis of a primary disease. However, the molecular mechanisms that underpin the apparent antitumour effects of exercise are poorly understood. In this Opinion article, we explore the putative effects of exercise in reprogramming the interaction between the host and the TME. Specifically, we speculate on the possible effects of exercise on reprogramming 'distant' tissue microenvironments (those not directly involved in the exercise response) by analysing how alterations in the systemic milieu might modulate key TME components to influence cancer hallmarks.
Collapse
Affiliation(s)
- Graeme J Koelwyn
- NYU Langone Medical Center, Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Daniela F Quail
- Goodman Cancer Research Centre, McGill University; and at the Department of Physiology, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Xiang Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine; and at the Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Lee W Jones
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA; and at the Weil Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
75
|
A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nat Biomed Eng 2017; 1:745-757. [DOI: 10.1038/s41551-017-0130-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 08/01/2017] [Indexed: 11/08/2022]
|
76
|
Tenascin C in colorectal cancer stroma is a predictive marker for liver metastasis and is a potent target of miR-198 as identified by microRNA analysis. Br J Cancer 2017; 117:1360-1370. [PMID: 29065427 PMCID: PMC5672932 DOI: 10.1038/bjc.2017.291] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/12/2023] Open
Abstract
Background: Tumour stroma has important roles in the development of colorectal cancer (CRC) metastasis. We aimed to clarify the roles of microRNAs (miRNAs) and their target genes in CRC stroma in the development of liver metastasis. Methods: Tumour stroma was isolated from formalin-fixed, paraffin-embedded tissues of primary CRCs with or without liver metastasis by laser capture microdissection, and miRNA expression was analysed using TaqMan miRNA arrays. Results: Hierarchical clustering classified 16 CRCs into two groups according to the existence of synchronous liver metastasis. Combinatory target prediction identified tenascin C as a predicted target of miR-198, one of the top 10 miRNAs downregulated in tumour stroma of CRCs with synchronous liver metastasis. Immunohistochemical analysis of tenascin C in 139 primary CRCs revealed that a high staining intensity was correlated with synchronous liver metastasis (P<0.001). Univariate and multivariate analyses revealed that the tenascin C staining intensity was an independent prognostic factor to predict postoperative overall survival (P=0.005; n=139) and liver metastasis-free survival (P=0.001; n=128). Conclusions: Alterations of miRNAs in CRC stroma appear to form a metastasis-permissive environment that can elevate tenascin C to promote liver metastasis. Tenascin C in primary CRC stroma has the potential to be a novel biomarker to predict postoperative prognosis.
Collapse
|
77
|
Cutler SJ, Doecke JD, Ghazawi I, Yang J, Griffiths LR, Spring KJ, Ralph SJ, Mellick AS. Novel STAT binding elements mediate IL-6 regulation of MMP-1 and MMP-3. Sci Rep 2017; 7:8526. [PMID: 28819304 PMCID: PMC5561029 DOI: 10.1038/s41598-017-08581-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/24/2017] [Indexed: 01/30/2023] Open
Abstract
Dynamic remodelling of the extracellular matrix (ECM) is a key feature of cancer progression. Enzymes that modify the ECM, such as matrix metalloproteinases (MMPs), have long been recognised as important targets of anticancer therapy. Inflammatory cytokines are known to play a key role in regulating protease expression in cancer. Here we describe the identification of gamma-activated site (GAS)-like, signal transducer and activator of transcription (STAT) binding elements (SBEs) within the proximal promoters of the MMP-1 and MMP-3 genes, which in association with AP-1 components (c-Fos or Jun), bind STAT-1 in a homodimer like complex (HDLC). We further demonstrate that MMP expression and binding of this complex to SBEs can either be enhanced by interleukin (IL)-6, or reduced by interferon gamma (IFN-γ), and that IL-6 regulation of MMPs is not STAT-3 dependent. Collectively, this data adds to existing understanding of the mechanism underlying cytokine regulation of MMP expression via STAT-1, and increases our understanding of the links between inflammation and malignancy in colon cancer.
Collapse
Affiliation(s)
- Samuel J Cutler
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - James D Doecke
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - Ibtisam Ghazawi
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - Jinbo Yang
- Department of Molecular Genetics, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio, 44195, USA
| | - Lyn R Griffiths
- Institute for Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Kevin J Spring
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.,Ingham Institute for Applied Medical Research, South Western Sydney Clinical School UNSW & CONCERT Translational Cancer Research Centre, 1 Campbell Street, Liverpool, NSW 2170, Australia
| | - Stephen J Ralph
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia.
| | - Albert S Mellick
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia. .,School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia. .,Ingham Institute for Applied Medical Research, South Western Sydney Clinical School UNSW & CONCERT Translational Cancer Research Centre, 1 Campbell Street, Liverpool, NSW 2170, Australia.
| |
Collapse
|
78
|
Lodola F, Laforenza U, Cattaneo F, Ruffinatti FA, Poletto V, Massa M, Tancredi R, Zuccolo E, Khdar DA, Riccardi A, Biggiogera M, Rosti V, Guerra G, Moccia F. VEGF-induced intracellular Ca 2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells. Oncotarget 2017; 8:95223-95246. [PMID: 29221123 PMCID: PMC5707017 DOI: 10.18632/oncotarget.20255] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Endothelial colony forming cells (ECFCs) represent a population of truly endothelial precursors that promote the angiogenic switch in solid tumors, such as breast cancer (BC). The intracellular Ca2+ toolkit, which drives the pro-angiogenic response to VEGF, is remodelled in tumor-associated ECFCs such that they are seemingly insensitive to this growth factor. This feature could underlie the relative failure of anti-VEGF therapies in cancer patients. Herein, we investigated whether and how VEGF uses Ca2+ signalling to control angiogenesis in BC-derived ECFCs (BC-ECFCs). Although VEGFR-2 was normally expressed, VEGF failed to induce proliferation and in vitro tubulogenesis in BC-ECFCs. Likewise, VEGF did not trigger robust Ca2+ oscillations in these cells. Similar to normal cells, VEGF-induced intracellular Ca2+ oscillations were triggered by inositol-1,4,5-trisphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER) and maintained by store-operated Ca2+ entry (SOCE). However, InsP3-dependent Ca2+ release was significantly lower in BC-ECFCs due to the down-regulation of ER Ca2+ levels, while there was no remarkable difference in the amplitude, pharmacological profile and molecular composition of SOCE. Thus, the attenuation of the pro-angiogenic Ca2+ response to VEGF was seemingly due to the reduction in ER Ca2+ concentration, which prevents VEGF from triggering robust intracellular Ca2+ oscillations. However, the pharmacological inhibition of SOCE prevented BC-ECFC proliferation and in vitro tubulogenesis. These findings demonstrate for the first time that BC-ECFCs are insensitive to VEGF, which might explain at cellular and molecular levels the failure of anti-VEGF therapies in BC patients, and hint at SOCE as a novel molecular target for this disease.
Collapse
Affiliation(s)
- Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy.,Current address: Italian Institute of Technology, Center for Nano Science and Technology, Milano 20133, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | | | - Valentina Poletto
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Margherita Massa
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Richard Tancredi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy
| | - Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Dlzar Alì Khdar
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Alberto Riccardi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy.,Department of Internal Medicine, University of Pavia, Pavia 27100, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| |
Collapse
|
79
|
Mulcrone PL, Campbell JP, Clément-Demange L, Anbinder AL, Merkel AR, Brekken RA, Sterling JA, Elefteriou F. Skeletal Colonization by Breast Cancer Cells Is Stimulated by an Osteoblast and β2AR-Dependent Neo-Angiogenic Switch. J Bone Miner Res 2017; 32:1442-1454. [PMID: 28300321 PMCID: PMC5489363 DOI: 10.1002/jbmr.3133] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022]
Abstract
The skeleton is a common site for breast cancer metastasis. Although significant progress has been made to manage osteolytic bone lesions, the mechanisms driving the early steps of the bone metastatic process are still not sufficiently understood to design efficacious strategies needed to inhibit this process and offer preventative therapeutic options. Progression and recurrence of breast cancer, as well as reduced survival of patients with breast cancer, are associated with chronic stress, a condition known to stimulate sympathetic nerve outflow. In this study, we show that stimulation of the beta 2-adrenergic receptor (β2AR) by isoproterenol, used as a pharmacological surrogate of sympathetic nerve activation, led to increased blood vessel density and Vegf-a expression in bone. It also raised levels of secreted Vegf-a in osteoblast cultures, and accordingly, the conditioned media from isoproterenol-treated osteoblast cultures promoted new vessel formation in two ex vivo models of angiogenesis. Blocking the interaction between Vegf-a and its receptor, Vegfr2, blunted the increase in vessel density induced by isoproterenol. Genetic loss of the β2AR globally, or specifically in type 1 collagen-expressing osteoblasts, diminished the increase in Vegf-positive osteoblast number and bone vessel density induced by isoproterenol, and reduced the higher incidence of bone metastatic lesions induced by isoproterenol after intracardiac injection of an osteotropic variant of MDA-MB-231 breast cancer cells. Inhibition of the interaction between Vegf-a and Vegfr2 with the blocking antibody mcr84 also prevented the increase in bone vascular density and bone metastasis triggered by isoproterenol. Together, these results indicate that stimulation of the β2AR in osteoblasts triggers a Vegf-dependent neo-angiogenic switch that promotes bone vascular density and the colonization of the bone microenvironment by metastatic breast cancer cells. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Patrick L Mulcrone
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
| | | | | | - Ana Lia Anbinder
- Department of Biosciences and Oral Diagnosis, São José dos Campos School of Dentistry, Univ. Estadual Paulista-UNESP, São José dos Campos, Brazil
| | - Alyssa R Merkel
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Rolf A Brekken
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, TX, USA
| | - Julie A Sterling
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
80
|
Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20:409-426. [PMID: 28660302 DOI: 10.1007/s10456-017-9562-9] [Citation(s) in RCA: 964] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022]
Abstract
Tumor blood vessels are a key target for cancer therapeutic management. Tumor cells secrete high levels of pro-angiogenic factors which contribute to the creation of an abnormal vascular network characterized by disorganized, immature and permeable blood vessels, resulting in poorly perfused tumors. The hypoxic microenvironment created by impaired tumor perfusion can promote the selection of more invasive and aggressive tumor cells and can also impede the tumor-killing action of immune cells. Furthermore, abnormal tumor perfusion also reduces the diffusion of chemotherapeutic drugs and radiotherapy efficiency. To fight against this defective phenotype, the normalization of the tumor vasculature has emerged as a new therapeutic strategy. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. In this review, we investigate the mechanisms involved in tumor angiogenesis and describe strategies used to achieve vascular normalization.
Collapse
|
81
|
Sanchez E, Li M, Wang CS, Tang G, Gillespie A, Chen H, Berenson JR. Anti-angiogenic and anti-multiple myeloma effects of oprozomib (OPZ) alone and in combination with pomalidomide (Pom) and/or dexamethasone (Dex). Leuk Res 2017; 57:45-54. [DOI: 10.1016/j.leukres.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
|
82
|
c-Kit-Positive Adipose Tissue-Derived Mesenchymal Stem Cells Promote the Growth and Angiogenesis of Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7407168. [PMID: 28573141 PMCID: PMC5442334 DOI: 10.1155/2017/7407168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/10/2023]
Abstract
Background Adipose tissue-derived mesenchymal stem cells (ASCs) improve the regenerative ability and retention of fat grafts for breast reconstruction in cancer patients following mastectomy. However, ASCs have also been shown to promote breast cancer cell growth and metastasis. For the safety of ASC application, we aimed to identify specific markers for the subpopulation of ASCs that enhance the growth of breast cancer. Methods ASCs and bone marrow-derived vascular endothelial progenitor cells (EPCs) were isolated from Balb/c mice. c-Kit-positive (c-Kit+) or c-Kit-negative (c-Kit−) ASCs were cocultured with 4T1 breast cancer cells. Orthotropic murine models of 4T1, EPCs + 4T1, and c-Kit+/-ASCs + 4T1/EPCs were established in Balb/c mice. Results In coculture, c-Kit+ ASCs enhanced the viability and proliferation of 4T1 cells and stimulated c-Kit expression and interleukin-3 (IL-3) release. In mouse models, c-Kit+ASCs + 4T1/EPCs coinjection increased the tumor volume and vessel formation. Moreover, IL-3, stromal cell-derived factor-1, and vascular endothelial growth factor A in the c-Kit+ASCs + 4T1/EPCs coinjection group were higher than those in the 4T1, EPCs + 4T1, and c-Kit−ASCs + 4T1/EPCs groups. Conclusions c-Kit+ ASCs may promote breast cancer growth and angiogenesis by a synergistic effect of c-Kit and IL-3. Our findings suggest that c-Kit+ subpopulations of ASCs should be eliminated in fat grafts for breast reconstruction of cancer patients following mastectomy.
Collapse
|
83
|
Zigdon-Giladi H, Elimelech R, Michaeli-Geller G, Rudich U, Machtei EE. Safety profile and long-term engraftment of human CD31 + blood progenitors in bone tissue engineering. Cytotherapy 2017; 19:895-908. [PMID: 28495397 DOI: 10.1016/j.jcyt.2017.03.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) participate in angiogenesis and induce favorable micro-environments for tissue regeneration. The efficacy of EPCs in regenerative medicine is extensively studied; however, their safety profile remains unknown. Therefore, our aims were to evaluate the safety profile of human peripheral blood-derived EPCs (hEPCs) and to assess the long-term efficacy of hEPCs in bone tissue engineering. METHODS hEPCs were isolated from peripheral blood, cultured and characterized. β tricalcium phosphate scaffold (βTCP, control) or 106 hEPCs loaded onto βTCP were transplanted in a nude rat calvaria model. New bone formation and blood vessel density were analyzed using histomorphometry and micro-computed tomography (CT). Safety of hEPCs using karyotype analysis, tumorigenecity and biodistribution to target organs was evaluated. RESULTS On the cellular level, hEPCs retained their karyotype during cell expansion (seven passages). Five months following local hEPC transplantation, on the tissue and organ level, no inflammatory reaction or dysplastic change was evident at the transplanted site or in distant organs. Direct engraftment was evident as CD31 human antigens were detected lining vessel walls in the transplanted site. In distant organs human antigens were absent, negating biodistribution. Bone area fraction and bone height were doubled by hEPC transplantation without affecting mineral density and bone architecture. Additionally, local transplantation of hEPCs increased blood vessel density by nine-fold. CONCLUSIONS Local transplantation of hEPCs showed a positive safety profile. Furthermore, enhanced angiogenesis and osteogenesis without mineral density change was found. These results bring us one step closer to first-in-human trials using hEPCs for bone regeneration.
Collapse
Affiliation(s)
- Hadar Zigdon-Giladi
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel; Research Institute for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Rappaport Family Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Rina Elimelech
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel; Research Institute for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Gal Michaeli-Geller
- Research Institute for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Utai Rudich
- Orthopedic Department, Rambam Health Care Campus, Haifa, Israel
| | - Eli E Machtei
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel; Research Institute for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Rappaport Family Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
84
|
Moccia F, Fotia V, Tancredi R, Della Porta MG, Rosti V, Bonetti E, Poletto V, Marchini S, Beltrame L, Gallizzi G, Da Prada GA, Pedrazzoli P, Riccardi A, Porta C, Zambelli A, D'Incalci M. Breast and renal cancer—Derived endothelial colony forming cells share a common gene signature. Eur J Cancer 2017; 77:155-164. [DOI: 10.1016/j.ejca.2017.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022]
|
85
|
Zhang F, Lu YX, Chen Q, Zou HM, Zhang JM, Hu YH, Li XM, Zhang WJ, Zhang W, Lin C, Li XN. Identification of NCK1 as a novel downstream effector of STAT3 in colorectal cancer metastasis and angiogenesis. Cell Signal 2017; 36:67-78. [PMID: 28455144 DOI: 10.1016/j.cellsig.2017.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is known to activate targets associated with invasion, proliferation, and angiogenesis in a wide variety of cancers. The adaptor protein NCK1 is involved in cytoskeletal movement and was identified as a STAT3-associated target in human tumors. However, the underlying molecular mechanism associated with colorectal cancer (CRC) metastasis is not yet completely understood. In this study, we report a novel STAT3 to NCK1 signaling pathway in colorectal cancer (CRC). We investigated the expression of NCK1 and its potential clinical and biological significance in CRC. NCK1 was noticeably up-regulated in human CRC tissues. NCK1 was also significantly associated with serosal invasion, lymph metastasis, and tumor-node-metastasis classification but was inversely correlated with differentiation. Gain-of-function and loss-of-function studies have shown that ectopic expression of NCK1 enhanced metastasis and angiogenesis in CRC cells. By gene expression analyses, we revealed a high co-overexpression of STAT3 and NCK1 in CRC tissues. Ectopic overexpression of STAT3 in CRC cells induced the expression of NCK1, whereas STAT3 knockdown decreased the expression of NCK1. Promoter activation and binding analyses demonstrated that STAT3 promoted the expression of NCK1 via direct action on the NCK1 promoter. The knock down of NCK1 partially reduced the CRC cell metastasis and angiogenesis promoted by STAT3. Additionally, by co-immunoprecipitation assays, we verified that NCK1 interacted with PAK1, which resulted in the activation of the PAK1/ERK pathway. STAT3 induced the transcription of NCK1 and triggered a PAK1/ERK cascade in CRC. These findings suggest a novel STAT3 to NCK1 to PAK1/ERK signaling mechanism that is potentially critical for CRC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yan-Xia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Qing Chen
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hui-Mei Zou
- School of Nursing, University of South China, Hengyang 421001, China.
| | - Jian-Ming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yu-Han Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiao-Min Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wen-Juan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chun Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
86
|
Fukuta T, Asai T, Kiyokawa Y, Nakada T, Bessyo-Hirashima K, Fukaya N, Hyodo K, Takase K, Kikuchi H, Oku N. Targeted delivery of anticancer drugs to tumor vessels by use of liposomes modified with a peptide identified by phage biopanning with human endothelial progenitor cells. Int J Pharm 2017; 524:364-372. [PMID: 28359814 DOI: 10.1016/j.ijpharm.2017.03.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 01/29/2023]
Abstract
As tumor angiogenic vessels are critical for tumor growth and express different molecules on their surface from those on normal vessels, these vessels are expected to be an ideal target for anticancer drug delivery systems. It was previously reported that endothelial progenitor cells (EPCs) are involved in angiogenesis, tumor growth, and metastasis, and that EPCs show gene expression patterns similar to those of tumor endothelial cells. In the present study, a tumor vessel-targeting peptide, ASSHN, was identified from a phage-display peptide library by in vitro biopanning with human EPCs (hEPCs) and in vivo biopanning using angiogenesis model mice prepared by the dorsal air sac method. Phage clones displaying ASSHN peptide showed a marked affinity for hEPCs in vitro, and also for tumor vessels in vivo. PEGylated liposomes modified with the ASSHN peptide (ASSHN-Lip) were designed and prepared for the delivery of anticancer agents. Confocal images showed that ASSHN-Lip clearly bound to hEPCs in vitro and tumor vessels, and also showed extravasation from the vessels. The administration of doxorubicin-encapsulated ASSHN-Lip into Colon26 NL-17-bearing mice significantly suppressed tumor growth compared with doxorubicin-encapsulated PEGylated liposomes. These results suggest that the delivery of anticancer agents with ASSHN-Lip could be useful for targeted cancer therapy.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuri Kiyokawa
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takashi Nakada
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Koji Bessyo-Hirashima
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Natsuki Fukaya
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenji Hyodo
- Tsukuba Research Laboratories, Eisai Co. Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Kazuma Takase
- Tsukuba Research Laboratories, Eisai Co. Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Hiroshi Kikuchi
- Tsukuba Research Laboratories, Eisai Co. Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
87
|
Mechanisms governing metastatic dormancy in breast cancer. Semin Cancer Biol 2017; 44:72-82. [PMID: 28344165 DOI: 10.1016/j.semcancer.2017.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is a systemic disease characterized by early dissemination of tumor cells to distant organs. In this foreign environment, tumor cells may stay in a dormant state as single cells or as micrometastases for many years before growing out into a macrometastatic lesion. As metastasis is the primary cause for breast cancer-related death, it is important to understand the mechanisms underlying the maintenance of dormancy and dormancy escape to find druggable targets to eradicate metastatic tumor cells. Metastatic dormancy is regulated by complex interactions between tumor cells and the local microenvironment. In addition, cancer-directed immunity and systemic instigation play a crucial role.
Collapse
|
88
|
Guo P, Huang J, Moses MA. Characterization of dormant and active human cancer cells by quantitative phase imaging. Cytometry A 2017; 91:424-432. [PMID: 28314083 DOI: 10.1002/cyto.a.23083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 01/14/2023]
Abstract
The switch of tumor cells from a dormant, non-angiogenic phenotype to an active, angiogenic phenotype is a critical step in early cancer progression. To date, relatively little is known about the cellular behaviors of angiogenic and non-angiogenic tumor cell phenotypes. In this study, holographic imaging cytometry, a quantitative phase imaging (QPI) technique was used to continuously and non-invasively analyze, quantify, and compare a panel of fundamental cellular behaviors of angiogenic and non-angiogenic human osteosarcoma cells (KHOS) in a simple and economical way. Results revealed that angiogenic KHOS cells (KHOS-A) have significantly higher cell motility speeds than their non-angiogenic counterpart (KHOS-N) while no difference in their cell proliferation rates and cell cycle lengths were observed. KHOS-A cells were also found to have significantly smaller cell areas and greater cell optical thicknesses when compared with the non-angiogenic KHOS-N cells. No difference in average cell volumes was observed. These studies demonstrate that the morphology and behavior of angiogenic and non-angiogenic cells can be continuously, efficiently, and non-invasively monitored using a simple, quantitative, and economical system that does not require tedious and time-consuming assays to provide useful information about tumor dormancy. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Peng Guo
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115
| |
Collapse
|
89
|
Jin K, Li T, van Dam H, Zhou F, Zhang L. Molecular insights into tumour metastasis: tracing the dominant events. J Pathol 2017; 241:567-577. [PMID: 28035672 DOI: 10.1002/path.4871] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
Metastasis of malignant cells to vital organs remains the major cause of mortality in many types of cancers. The tumour invasion-metastasis cascade is a stepwise and multistage process whereby tumour cells disseminate from primary sites and spread to colonize distant sites through the systemic haematogenous or lymphatic circulations. The general steps of metastasis may be similar in almost all tumour types, but metastasis to different tissues seems to require distinct sets of regulators and/or an 'educated' microenvironment which may facilitate the infiltration and colonization of tumour cells to specific tissues. Moreover, interactions of tumour cells with stromal cells, endothelial cells, and immune cells that they encounter will also aid them to gain survival advantages, evade immune surveillance, and adapt to the new host microenvironment. Due to the high correlation between tumour metastasis and survival rate of patients, a deeper understanding of the molecular participants and processes involved in metastasis could pave the way towards novel, more effective and targeted approaches to prevent and treat tumour metastasis. In this review, we provide an update on the regulation networks orchestrated by the dominant regulators of different stages throughout the metastatic process including, but not limited to, epithelial-mesenchymal transition in local invasion, resistance to anoikis during migration, and colonization of different distant sites. We also put forward some suggestions and problems concerning the treatment of tumour metastasis that should be solved and/or improved for better therapies in the near future. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ke Jin
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Tong Li
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300, RC, Leiden, The Netherlands
| | - Fangfang Zhou
- Department of Molecular Cell Biology, Cancer Genomics Centre and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300, RC, Leiden, The Netherlands.,Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, PR China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.,Department of Molecular Cell Biology, Cancer Genomics Centre and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300, RC, Leiden, The Netherlands
| |
Collapse
|
90
|
Vahdat LT, Layman R, Yardley DA, Gradishar W, Salkeni MA, Joy A, Garcia AA, Ward P, Khatcheressian J, Sparano J, Rodriguez G, Tang S, Gao L, Dalal RP, Kauh J, Miller K. Randomized Phase II Study of Ramucirumab or Icrucumab in Combination with Capecitabine in Patients with Previously Treated Locally Advanced or Metastatic Breast Cancer. Oncologist 2017; 22:245-254. [PMID: 28220020 PMCID: PMC5344637 DOI: 10.1634/theoncologist.2016-0265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Icrucumab (ICR) and ramucirumab (RAM) bind vascular endothelial growth factor (VEGF) receptors 1 and 2 (VEGFR-1 and -2), respectively. This open-label, randomized phase II study evaluated their efficacy and safety in combination with capecitabine (CAP) in patients with previously treated unresectable, locally advanced or metastatic breast cancer. METHODS Patients were randomly assigned (1:1:1) to receive CAP (1,000 mg/m2 orally twice daily, days 1-14) alone or in combination with RAM (10 mg/kg intravenously [IV], days 1 and 8) (RAM + CAP) or ICR (12 mg/kg IV, days 1 and 8) (ICR + CAP) every 21 days. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), tumor response, safety, and pharmacokinetics. RESULTS Of 153 patients randomized, 150 received treatment. Median PFS (95% confidence interval) was 22.1 (12.1-36.1) weeks on RAM + CAP, 7.3 (6.3-13.0) weeks on ICR + CAP, and 19.0 (12.1-24.3) weeks on CAP (hazard ratios [HRs]: 0.691, p = .1315, RAM + CAP versus CAP; 1.480, p = .0851, ICR + CAP versus CAP). Median OS was 67.4 weeks on RAM + CAP, 62.1 weeks on ICR + CAP, and 71.6 weeks on CAP (HRs: 1.833, p = .0283, RAM + CAP versus CAP; 1.468, p = .1550, ICR + CAP versus CAP). There was no statistically significant difference in PFS or OS between either combination arm and CAP. Treatment-related adverse events more frequent (by ≥10%) on RAM + CAP than on CAP were constipation, decreased appetite, headache, epistaxis, and hypertension. Those more frequent (by ≥10%) on ICR + CAP than CAP were anemia, increased lacrimation, periorbital edema, nausea, vomiting, peripheral edema, facial edema, dehydration, and dyspnea. CONCLUSION Combining RAM or ICR with CAP did not improve PFS in the targeted study population. The Oncologist 2017;22:245-254 IMPLICATIONS FOR PRACTICE: Icrucumab and ramucirumab are recombinant human IgG1 monoclonal antibodies that bind vascular endothelial growth factor (VEGF) receptors 1 and 2 (VEGFR-1 and -2), respectively. VEGFR-1 activation on endothelial and tumor cell surfaces increases tumor vascularization and growth and supports tumor growth via multiple mechanisms, including contributions to angiogenesis and direct promotion of cancer cell proliferation. Strong preclinical and clinical evidence suggests key roles for VEGF and angiogenesis in breast cancer growth, invasion, and metastasis. This randomized phase II study evaluated the efficacy and safety of each antibody in combination with capecitabine in patients with previously treated unresectable, locally advanced or metastatic breast cancer.
Collapse
Affiliation(s)
- Linda T Vahdat
- Weill Cornell Breast Center, Weill Cornell Medicine, New York, New York, USA
| | | | | | - William Gradishar
- Northwestern University Feinburg School of Medicine, Chicago, Illinois, USA
| | - Mohamad A Salkeni
- Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Anil Joy
- University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Agustin A Garcia
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Patrick Ward
- Oncology Hematology Care Incorporated, Cincinnati, Ohio, USA
| | | | - Joseph Sparano
- Weiler Division, Montefiore Medical Center, Bronx, New York, USA
| | | | - Shande Tang
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Ling Gao
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Rita P Dalal
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - John Kauh
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Kathy Miller
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
91
|
Jin E, Chae DS, Son M, Kim SW. Angiogenic characteristics of human stromal vascular fraction in ischemic hindlimb. Int J Cardiol 2017; 234:38-47. [PMID: 28258850 DOI: 10.1016/j.ijcard.2017.02.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
INTRODUCTION In this study, we sought to characterize the angio-vasculogenic property of human adipose tissue-derived stromal vascular fraction (SVF) and to determine the therapeutic potential of SVF in the context of experimental ischemia. Although human SVF is used for cell therapy, its angiogenic and vasculogenic characteristics have not been fully elucidated. METHODS AND RESULTS We conducted flow cytometry, microarray, quantitative (q)-PCR, Matrigel tube formation assays and in vivo therapeutic assays using an ischemic hind limb mouse model. Gene/micro RNA microarray, quantitative (q)-PCR results revealed that the representative pro-angiogenic factors were highly upregulated in SVF compared with human adipose-derived mesenchymal stem cells (ASCs). In addition, SVF exhibited high expression of endothelium-specific genes and showed robust in vitro micro-vascular formation. SVF was transplanted into ischemic mouse hind limbs and compared with ASC transplantation. SVF transplantation prevented limb loss and augmented blood perfusion, indicating that SVF promotes neovascularization in hind limb ischemia. Transplanted SVF showed high vasculogenic potential in vivo compared with transplanted ASCs. CONCLUSIONS Our data indicate that SVF has remarkable therapeutic effects on hind limb ischemia via robust angiogenic and vasculogenic activity.
Collapse
Affiliation(s)
- Enze Jin
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Mina Son
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sung-Whan Kim
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.
| |
Collapse
|
92
|
Kuchta K, Xiang Y, Huang S, Tang Y, Peng X, Wang X, Zhu Y, Li J, Xu J, Lin Z, Pan T. Celastrol, an active constituent of the TCM plant Tripterygium wilfordii Hook.f., inhibits prostate cancer bone metastasis. Prostate Cancer Prostatic Dis 2017; 20:156-164. [PMID: 28195223 DOI: 10.1038/pcan.2016.61] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Treatment failure of prostate cancer (PCa) is often due to bone metastasis. Celastrol, an active constituent of Tripterygium wilfordii roots, has shown anti-tumor effects in previous studies in accordance with its indication in traditional Chinese medicine. METHODS Using a PC-3 cell model, in vitro assays were performed to evaluate the effects of celastrol on proliferation, migration (wound healing assay), tissues invasion (Transwell-Matrigel penetration assay) and vascular endothelial growth factor (VEGF) secretion (enzyme-linked immunosorbent assay). An intra-tibia injection mouse model was used to assess the effect of celastrol on PCa bone metastasis in vivo. RESULTS Pretreatment with celastrol significantly reduced proliferation of PC-3 cells in a dose-dependent manner and cell migration was much slower than in controls. Significantly fewer cells penetrated the gel-membrane after celastrol administration and their skeletal invasive ability was significantly reduced in a dose-dependent manner. Correspondingly, a significant, dose-dependent decrease in VEGF secretion was observed. In the in vivo mouse model, pretreatment with celastrol (8 μmol l-1) inhibited the tumorigenicity of PC-3 cells so that almost no bone invasion occurred as compared with control injections. Histological examinations using hematoxylin and eosin staining showed that tibiae injected with celastrol pretreated PC-3 cells retained their natural bone structure. CONCLUSIONS Celastrol may have preventive potential against PCa bone metastasis.
Collapse
Affiliation(s)
- K Kuchta
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Y Xiang
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - S Huang
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Y Tang
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - X Peng
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - X Wang
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Y Zhu
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - J Li
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - J Xu
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Z Lin
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - T Pan
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
93
|
Chan N, Willis A, Kornhauser N, Ward MM, Lee SB, Nackos E, Seo BR, Chuang E, Cigler T, Moore A, Donovan D, Vallee Cobham M, Fitzpatrick V, Schneider S, Wiener A, Guillaume-Abraham J, Aljom E, Zelkowitz R, Warren JD, Lane ME, Fischbach C, Mittal V, Vahdat L. Influencing the Tumor Microenvironment: A Phase II Study of Copper Depletion Using Tetrathiomolybdate in Patients with Breast Cancer at High Risk for Recurrence and in Preclinical Models of Lung Metastases. Clin Cancer Res 2017; 23:666-676. [PMID: 27769988 DOI: 10.1158/1078-0432.ccr-16-1326] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/13/2016] [Accepted: 09/26/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Bone marrow-derived progenitor cells, including VEGFR2+ endothelial progenitor cells (EPCs) and copper-dependent pathways, model the tumor microenvironment. We hypothesized that copper depletion using tetrathiomolybdate would reduce EPCs in high risk for patients with breast cancer who have relapsed. We investigated the effect of tetrathiomolybdate on the tumor microenvironment in preclinical models. EXPERIMENTAL DESIGN Patients with stage II triple-negative breast cancer (TNBC), stage III and stage IV without any evidence of disease (NED), received oral tetrathiomolybdate to maintain ceruloplasmin (Cp) between 8 and 17 mg/dL for 2 years or until relapse. Endpoints were effect on EPCs and other biomarkers, safety, event-free (EFS), and overall survival (OS). For laboratory studies, MDA-LM2-luciferase cells were implanted into CB17-SCID mice and treated with tetrathiomolybdate or water. Tumor progression was quantified by bioluminescence imaging (BLI), copper depletion status by Cp oxidase levels, lysyl oxidase (LOX) activity by ELISA, and collagen deposition. RESULTS Seventy-five patients enrolled; 51 patients completed 2 years (1,396 cycles). Most common grade 3/4 toxicity was neutropenia (3.7%). Lower Cp levels correlated with reduced EPCs (P = 0.002) and LOXL-2 (P < 0.001). Two-year EFS for patients with stage II-III and stage IV NED was 91% and 67%, respectively. For patients with TNBC, EFS was 90% (adjuvant patients) and 69% (stage IV NED patients) at a median follow-up of 6.3 years, respectively. In preclinical models, tetrathiomolybdate decreased metastases to lungs (P = 0.04), LOX activity (P = 0.03), and collagen crosslinking (P = 0.012). CONCLUSIONS Tetrathiomolybdate is safe, well tolerated, and affects copper-dependent components of the tumor microenvironment. Biomarker-driven clinical trials in high risk for patients with recurrent breast cancer are warranted. Clin Cancer Res; 23(3); 666-76. ©2016 AACR.
Collapse
Affiliation(s)
- Nancy Chan
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Amy Willis
- Department of Statistical Science, Cornell University, Ithaca, New York
| | - Naomi Kornhauser
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Maureen M Ward
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Sharrell B Lee
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, New York
| | - Eleni Nackos
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Bo Ri Seo
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Ellen Chuang
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Tessa Cigler
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Anne Moore
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Diana Donovan
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | | | | | - Sarah Schneider
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Alysia Wiener
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | | | - Elnaz Aljom
- Investigational Pharmacy, New York Presbyterian Hospital, New York, New York
| | | | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, New York, New York
| | - Maureen E Lane
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, New York.
| | - Linda Vahdat
- Department of Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
94
|
Hashemi ZS, Khalili S, Forouzandeh Moghadam M, Sadroddiny E. Lung cancer and miRNAs: a possible remedy for anti-metastatic, therapeutic and diagnostic applications. Expert Rev Respir Med 2017; 11:147-157. [DOI: 10.1080/17476348.2017.1279403] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zahra Sadat Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Saeed Khalili
- Department of Clinical Laboratory Sciences, Dezful University of Medical Sciences, Dezful, Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
95
|
Lee MS, Wang SW, Wang GJ, Pang KL, Lee CK, Kuo YH, Cha HJ, Lin RK, Lee TH. Angiogenesis Inhibitors and Anti-Inflammatory Agents from Phoma sp. NTOU4195. JOURNAL OF NATURAL PRODUCTS 2016; 79:2983-2990. [PMID: 27976895 DOI: 10.1021/acs.jnatprod.6b00407] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Seven new polyketides, phomaketides A-E (1-5) and pseurotins A3 (6) and G (7), along with the known compounds FR-111142, pseurotins A, A1, A2, D, and F2, 14-norpseurotin A, α-carbonylcarbene, tyrosol, cyclo(-l-Pro-l-Leu), and cyclo(-l-Pro-l-Phe), were purified from the fermentation broth and mycelium of the endophytic fungal strain Phoma sp. NTOU4195 isolated from the marine red alga Pterocladiella capillacea. The structures were established through interpretation of spectroscopic data. The antiangiogenic and anti-inflammatory effects of 1-7 and related analogues were evaluated using human endothelial progenitor cells (EPCs) and lipopolysaccharide (LPS)-activated murine macrophage RAW264.7 cells, respectively. Of the compounds tested, compound 1 exhibited the most potent antiangiogenic activity by suppressing the tube formation of EPCs with an IC50 of 8.1 μM, and compound 3 showed the most selective inhibitory activity of LPS-induced NO production in RAW264.7 macrophages with an IC50 value of 8.8 μM.
Collapse
Affiliation(s)
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College , New Taipei City 25245, Taiwan
| | - Guei-Jane Wang
- School of Medicine, Graduate Institute of Clinical Medical Science, China Medical University , Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital , Taichung 40447, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University , Taichung 41354, Taiwan
| | - Ka-Lai Pang
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University , Keelung 20224, Taiwan
| | | | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University , Taichung 40447, Taiwan
- Department of Biotechnology, Asia University , Taichung 41354, Taiwan
| | - Hyo-Jung Cha
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University , Keelung 20224, Taiwan
| | | | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University , Taipei 10617, Taiwan
| |
Collapse
|
96
|
Biomarkers Discovery for Colorectal Cancer: A Review on Tumor Endothelial Markers as Perspective Candidates. DISEASE MARKERS 2016; 2016:4912405. [PMID: 27965519 PMCID: PMC5124654 DOI: 10.1155/2016/4912405] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/02/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. The early detection of CRC, during the promotion/progression stages, is an enormous challenge for a successful outcome and remains a fundamental problem in clinical approach. Despite the continuous advancement in diagnostic and therapeutic methods, there is a need for discovery of sensitive and specific, noninvasive biomarkers. Tumor endothelial markers (TEMs) are associated with tumor-specific angiogenesis and are potentially useful to discriminate between tumor and normal endothelium. The most promising TEMs for oncogenic signaling in CRC appeared to be the TEM1, TEM5, TEM7, and TEM8. Overexpression of TEMs especially TEM1, TEM7, and TEM8 in colorectal tumor tissue compared to healthy tissue suggests their role in tumor blood vessels formation. Thus TEMs appear to be perspective candidates for early detection, monitoring, and treatment of CRC patients. This review provides an update on recent data on tumor endothelial markers and their possible use as biomarkers for screening, diagnosis, and therapy of colorectal cancer patients.
Collapse
|
97
|
Chen X, Wang Y, Nelson D, Tian S, Mulvey E, Patel B, Conti I, Jaen J, Rollins BJ. CCL2/CCR2 Regulates the Tumor Microenvironment in HER-2/neu-Driven Mammary Carcinomas in Mice. PLoS One 2016; 11:e0165595. [PMID: 27820834 PMCID: PMC5098736 DOI: 10.1371/journal.pone.0165595] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 10/16/2016] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation is a hallmark of cancer. Inflammatory chemokines, such as C-C chemokine ligand 2 (CCL2), are often present in tumors but their roles in cancer initiation and maintenance are not clear. Here we report that CCL2 promotes mammary carcinoma development in a clinically relevant murine model of breast cancer. Targeted disruption of Ccl2 slowed the growth of activated Her2/neu-driven mammary tumors and prolonged host survival. Disruption of Ccl2 was associated with a decrease in the development and mobilization of endothelial precursor cells (EPCs) which can contribute to tumor neovascularization. In contrast, disruption of Ccr2, which encodes CCL2's sole signaling receptor, accelerated tumor development, shortened host survival, and mobilized EPCs. However, pharmacological inhibition of CCR2 phenocopied Ccl2 disruption rather than Ccr2 disruption, suggesting that the Ccr2-/- phenotype is a consequence of unanticipated alterations not linked to intact CCL2/CCR2 signaling. Consistent with this explanation, Ccr2-/- monocytes are more divergent from wild type monocytes than Ccl2-/- monocytes in their expression of genes involved in key developmental and functional pathways. Taken together, our data suggest a tumor-promoting role for CCL2 acting through CCR2 on the tumor microenvironment and support the targeting of this chemokine/receptor pair in breast cancer.
Collapse
Affiliation(s)
- Xuguang Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
- Harvard Medical School, Boston, Massachusetts 02115, United States of America
| | - Yunyue Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
- Harvard Medical School, Boston, Massachusetts 02115, United States of America
| | - David Nelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
| | - Sara Tian
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
| | - Erin Mulvey
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
| | - Bhumi Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
| | - Ilaria Conti
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
| | - Juan Jaen
- ChemoCentryx, Inc., Mountain View, California 94043, United States of America
| | - Barrett J. Rollins
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts 02215, United States of America
- Harvard Medical School, Boston, Massachusetts 02115, United States of America
- * E-mail:
| |
Collapse
|
98
|
Gomis RR, Gawrzak S. Tumor cell dormancy. Mol Oncol 2016; 11:62-78. [PMID: 28017284 PMCID: PMC5423221 DOI: 10.1016/j.molonc.2016.09.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/13/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022] Open
Abstract
Metastasis is the primary cause of death in cancer patients and current treatments fail to provide durable responses. Efforts to treat metastatic disease are hindered by the fact that metastatic cells often remain dormant for prolonged intervals of years, or even decades. Tumor dormancy reflects the capability of disseminated tumor cells (DTCs), or micrometastases, to evade treatment and remain at low numbers after primary tumor resection. Unfortunately, dormant cells will eventually produce overt metastasis. Innovations are needed to understand metastatic dormancy and improve cancer detection and treatment. Currently, few models exist that faithfully recapitulate metastatic dormancy and metastasis to clinically relevant tissues, such as the bone. Herein, we discuss recent advances describing genetic cell‐autonomous and systemic or local changes in the microenvironment that have been shown to endow DTCs with properties to survive and eventually colonize distant organs.
Collapse
Affiliation(s)
- Roger R Gomis
- Oncology Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.
| | - Sylwia Gawrzak
- Oncology Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
99
|
Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana RD, Reyes-Cruz G. Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 2016; 90:573-586. [DOI: 10.1124/mol.116.105338] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022] Open
|
100
|
Yang X, Hao J, Mao Y, Jin ZQ, Cao R, Zhu CH, Liu XH, Liu C, Ding XL, Wang XD, Chen D, Wu XZ. bFGF Promotes Migration and Induces Cancer-Associated Fibroblast Differentiation of Mouse Bone Mesenchymal Stem Cells to Promote Tumor Growth. Stem Cells Dev 2016; 25:1629-1639. [PMID: 27484709 DOI: 10.1089/scd.2016.0217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumors recruit bone mesenchymal stem cells (BMSCs) to localize to tumor sites, which induces their conversion into cancer-associated fibroblasts (CAFs) that facilitate tumor progression. However, this process is poorly understood on the molecular level. In this study, we found that 4T1 breast cancer cells promoted the migration of BMSCs, and bFGF neutralizing antibody inhibited the migration of BMSCs induced by a tumor-conditioned medium. In addition, exogenous bFGF enhanced the migration of BMSCs in a dose-dependent manner in vitro. Furthermore, BMSCs promoted the proliferation of 4T1 tumor cells under BMSC-conditioned medium and in tumor xenograft model. Dramatically, BMSCs expressed CAF markers and produced collagen in the tumor microenvironment, and this transition was blocked by bFGF antibody. In addition, exogenous bFGF induced CAF differentiation of BMSCs. And bFGF increased phosphorylation of Erk1/2 and Smad3 in BMSCs and Erk inhibitor PD98059 was shown to block bFGF-induced Erk and Smad3 phosphorylation, suggesting that Erk/Smad3 signaling pathway involved in BMSC transdifferentiation induced by bFGF. Collectively, our results indicate that bFGF signaling plays indispensable roles in BMSC recruitment and transdifferentiation into CAFs and the consequent protumor effects, and targeting tumor stroma through bFGF inhibition maybe a promising strategy to suppress tumor progression.
Collapse
Affiliation(s)
- Xue Yang
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Jian Hao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Yu Mao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Zi-Qi Jin
- 2 Tianjin Medical University , Tianjin, China
| | - Rui Cao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Cui-Hong Zhu
- 3 Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiao-Hui Liu
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Chang Liu
- 3 Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiu-Li Ding
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiao-Dong Wang
- 4 Tianjin Medical University General Hospital , Tianjin, China
| | - Dan Chen
- 2 Tianjin Medical University , Tianjin, China
| | - Xiong-Zhi Wu
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| |
Collapse
|