51
|
Wilson KA, Bouchard JJ, Peng JW. Interdomain interactions support interdomain communication in human Pin1. Biochemistry 2013; 52:6968-81. [PMID: 24020391 PMCID: PMC3794440 DOI: 10.1021/bi401057x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
Pin1 is an essential mitotic regulator
consisting of a peptidyl–prolyl
isomerase (PPIase) domain flexibly tethered to a smaller Trp–Trp
(WW) binding domain. Communication between these domains is important
for Pin1 in vivo activity; however, the atomic basis for this communication
has remained elusive. Our previous nuclear magnetic resonance (NMR)
studies of Pin1 functional dynamics suggested that weak interdomain
contacts within Pin1 enable allosteric communication between the domain
interface and the distal active site of the PPIase domain.1,2 A necessary condition for this hypothesis is that the intrinsic
properties of the PPIase domain should be sensitive to interdomain
contact. Here, we test this sensitivity by generating a Pin1 mutant,
I28A, which weakens the wild-type interdomain contact while maintaining
the overall folds of the two domains. Using NMR, we show that I28A
leads to altered substrate binding affinity and isomerase activity.
Moreover, I28A causes long-range perturbations to conformational flexibility
in both domains, for both the apo and substrate-complexed states of
the protein. These results show that the distribution of conformations
sampled by the PPIase domain is sensitive to interdomain contact and
strengthen the hypothesis that such contact supports interdomain allosteric
communication in Pin1. Other modular systems may exploit interdomain
interactions in a similar manner.
Collapse
Affiliation(s)
- Kimberly A Wilson
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | |
Collapse
|
52
|
Gagné D, Doucet N. Structural and functional importance of local and global conformational fluctuations in the RNase A superfamily. FEBS J 2013; 280:5596-607. [PMID: 23763751 DOI: 10.1111/febs.12371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 12/11/2022]
Abstract
Understanding the relationship between protein structure and flexibility is of utmost importance for deciphering the tremendous rates of reactions catalyzed by enzyme biocatalysts. It has been postulated that protein homologs have evolved similar dynamic fluctuations to promote catalytic function, a property that would presumably be encoded in their structural fold. Using one of the best-characterized enzyme systems of the past century, we explore this hypothesis by comparing the numerous and diverse flexibility reports available for a number of structural and functional homologs of the pancreatic-like RNase A superfamily. Using examples from the literature and from our own work, we cover recent and historical evidence pertaining to the highly dynamic nature of this important structural fold, as well as the presumed importance of local and global concerted motions on the ribonucleolytic function. This minireview does not pretend to cover the overwhelming RNase A literature in a comprehensive manner; rather, efforts have been made to focus on the characterization of multiple timescale motions observed in the free and/or ligand-bound structural homologs as they proceed along the reaction coordinates. Although each characterized enzyme of this architectural fold shows unique motional features on a local scale, accumulating evidence from X-ray crystallography, NMR spectroscopy and molecular dynamics simulations suggests that global dynamic fluctuations, such as the functionally relevant hinge-bending motion observed in the prototypical RNase A, are shared between homologs of the pancreatic-like RNase superfamily. These observations support the hypothesis that analogous dynamic residue clusters are evolutionarily conserved among structural and functional homologs catalyzing similar enzymatic reactions.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | | |
Collapse
|
53
|
Real-time single-molecule co-immunoprecipitation analyses reveal cancer-specific Ras signalling dynamics. Nat Commun 2013; 4:1505. [PMID: 23422673 PMCID: PMC3586730 DOI: 10.1038/ncomms2507] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/16/2013] [Indexed: 01/07/2023] Open
Abstract
Co-immunoprecipitation (co-IP) has become a standard technique, but its protein-band output provides only static, qualitative information about protein–protein interactions. Here we demonstrate a real-time single-molecule co-IP technique that generates real-time videos of individual protein–protein interactions as they occur in unpurified cell extracts. By analysing single Ras–Raf interactions with a 50-ms time resolution, we have observed transient intermediates of the protein–protein interaction and determined all the essential kinetic rates. Using this technique, we have quantified the active fraction of native Ras proteins in xenograft tumours, normal tissue and cancer cell lines. We demonstrate that the oncogenic Ras mutations selectively increase the active-Ras fraction by one order of magnitude, without affecting total Ras levels or single-molecule signalling kinetics. Our approach allows us to probe the previously hidden, dynamic aspects of weak protein–protein interactions. It also suggests a path forward towards precision molecular diagnostics at the protein–protein interaction level. Co-immunoprecipitation provides static and qualitative information about protein–protein interactions. Lee et al. create real-time movies of single protein–protein interactions during co-immunoprecipitation, and use them to assess the dynamics of mutant Ras proteins derived from tumours.
Collapse
|
54
|
Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 2013; 138:333-408. [PMID: 23384594 PMCID: PMC3647006 DOI: 10.1016/j.pharmthera.2013.01.016] [Citation(s) in RCA: 512] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 02/02/2023]
Abstract
Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only give a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The "central hit strategy" selectively targets central nodes/edges of the flexible networks of infectious agents or cancer cells to kill them. The "network influence strategy" works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved by targeting the neighbors of central nodes/edges. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary.
| | | | | | | | | |
Collapse
|
55
|
Zhou Y, Simmons G. Development of novel entry inhibitors targeting emerging viruses. Expert Rev Anti Infect Ther 2013. [PMID: 23199399 DOI: 10.1586/eri.12.104] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Emerging viral diseases pose a unique risk to public health, and thus there is a need to develop therapies. A current focus of funding agencies, and hence research, is the development of broad-spectrum antivirals, and in particular, those targeting common cellular pathways. The scope of this article is to review screening strategies and recent advances in this area, with a particular emphasis on antivirals targeting the step of viral entry for emerging lipid-enveloped viruses such as Ebola virus and SARS-coronavirus.
Collapse
Affiliation(s)
- Yanchen Zhou
- Blood Systems Research Institute and Department of Laboratory Medicine, University of California, San Francisco, 270 Masonic Avenue, San Francisco, CA 94118, USA
| | | |
Collapse
|
56
|
Tzeng SR, Kalodimos CG. Allosteric inhibition through suppression of transient conformational states. Nat Chem Biol 2013; 9:462-5. [DOI: 10.1038/nchembio.1250] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/01/2013] [Indexed: 11/09/2022]
|
57
|
Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change. ACTA ACUST UNITED AC 2013; 20:701-12. [PMID: 23623350 DOI: 10.1016/j.chembiol.2013.03.019] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/27/2013] [Accepted: 03/19/2013] [Indexed: 11/24/2022]
Abstract
Actin-related protein 2/3 (Arp2/3) complex is a seven-subunit assembly that nucleates branched actin filaments. Small molecule inhibitors CK-666 and CK-869 bind to Arp2/3 complex and inhibit nucleation, but their modes of action are unknown. Here, we use biochemical and structural methods to determine the mechanism of each inhibitor. Our data indicate that CK-666 stabilizes the inactive state of the complex, blocking movement of the Arp2 and Arp3 subunits into the activated filament-like (short pitch) conformation, while CK-869 binds to a serendipitous pocket on Arp3 and allosterically destabilizes the short pitch Arp3-Arp2 interface. These results provide key insights into the relationship between conformation and activity in Arp2/3 complex and will be critical for interpreting the influence of the inhibitors on actin filament networks in vivo.
Collapse
|
58
|
Berneman A, Montout L, Goyard S, Chamond N, Cosson A, d’Archivio S, Gouault N, Uriac P, Blondel A, Minoprio P. Combined approaches for drug design points the way to novel proline racemase inhibitor candidates to fight Chagas' disease. PLoS One 2013; 8:e60955. [PMID: 23613764 PMCID: PMC3628851 DOI: 10.1371/journal.pone.0060955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/04/2013] [Indexed: 11/18/2022] Open
Abstract
Chagas' disease is caused by Trypanosoma cruzi, a protozoan transmitted to humans by blood-feeding insects, blood transfusion or congenitally. Previous research led us to discover a parasite proline racemase (TcPRAC) and to establish its validity as a target for the design of new chemotherapies against the disease, including its chronic form. A known inhibitor of proline racemases, 2-pyrrolecarboxylic acid (PYC), is water-insoluble. We synthesized soluble pyrazole derivatives, but they proved weak or inactive TcPRAC inhibitors. TcPRAC catalytic site is too small and constrained when bound to PYC to allow efficient search for new inhibitors by virtual screening. Forty-nine intermediate conformations between the opened enzyme structure and the closed liganded one were built by calculating a transition path with a method we developed. A wider range of chemical compounds could dock in the partially opened intermediate active site models in silico. Four models were selected for known substrates and weak inhibitors could dock in them and were used to screen chemical libraries. Two identified soluble compounds, (E)-4-oxopent-2-enoic acid (OxoPA) and its derivative (E)-5-bromo-4-oxopent-2-enoic acid (Br-OxoPA), are irreversible competitive inhibitors that presented stronger activity than PYC on TcPRAC. We show here that increasing doses of OxoPA and Br-OxoPA hamper T. cruzi intracellular differentiation and fate in mammalian host cells. Our data confirm that through to their binding mode, these molecules are interesting and promising as lead compounds for the development of chemotherapies against diseases where active proline racemases play essential roles.
Collapse
Affiliation(s)
- Armand Berneman
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Lory Montout
- Unité de Bioinformatique Structurale, CNRS-UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Sophie Goyard
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Nathalie Chamond
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Alain Cosson
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Simon d’Archivio
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Nicolas Gouault
- Equipe Produits Naturels, Synthèses et Chimie Médicinale, UMR 6226 Sciences Chimiques de Rennes, Université de Rennes 1, Rennes, France
| | - Philippe Uriac
- Equipe Produits Naturels, Synthèses et Chimie Médicinale, UMR 6226 Sciences Chimiques de Rennes, Université de Rennes 1, Rennes, France
| | - Arnaud Blondel
- Unité de Bioinformatique Structurale, CNRS-UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Paola Minoprio
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| |
Collapse
|
59
|
Tiefenbrunn T, Forli S, Baksh MM, Chang MW, Happer M, Lin YC, Perryman AL, Rhee JK, Torbett BE, Olson AJ, Elder JH, Finn MG, Stout CD. Small molecule regulation of protein conformation by binding in the Flap of HIV protease. ACS Chem Biol 2013; 8:1223-31. [PMID: 23540839 DOI: 10.1021/cb300611p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fragment indole-6-carboxylic acid (1F1), previously identified as a flap site binder in a fragment-based screen against HIV protease (PR), has been cocrystallized with pepstatin-inhibited PR and with apo-PR. Another fragment, 3-indolepropionic acid (1F1-N), predicted by AutoDock calculations and confirmed in a novel inhibition of nucleation crystallization assay, exploits the same interactions in the flap site in two crystal structures. Both 1F1 and 1F1-N bind to the closed form of apo-PR and to pepstatin:PR. In solution, 1F1 and 1F1-N raise the Tm of apo-PR by 3.5-5 °C as assayed by differential scanning fluorimetry (DSF) and show equivalent low-micromolar binding constants to both apo-PR and pepstatin:PR, assayed by backscattering interferometry (BSI). The observed signal intensities in BSI are greater for each fragment upon binding to apo-PR than to pepstatin-bound PR, consistent with greater conformational change in the former binding event. Together, these data indicate that fragment binding in the flap site favors a closed conformation of HIV PR.
Collapse
Affiliation(s)
- Theresa Tiefenbrunn
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Stefano Forli
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Michael M. Baksh
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Max W. Chang
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Meaghan Happer
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Ying-Chuan Lin
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Alexander L. Perryman
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Jin-Kyu Rhee
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Bruce E. Torbett
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Arthur J. Olson
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - John H. Elder
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - M. G. Finn
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - C. David Stout
- Deparatment
of Integrative Structural and Computational Biology, ‡Department of Chemistry, §Department of Molecular
and Experimental Medicine, ∥Department of Immunology and Microbial Science, The Scripps Research Institute, 10550
N. Torrey Pines Rd., La Jolla, California 92037, United States
| |
Collapse
|
60
|
Novikov VV, Varzatskii OA, Negrutska VV, Bubnov YN, Palchykovska LG, Dubey IY, Voloshin YZ. Size matters, so does shape: Inhibition of transcription of T7 RNA polymerase by iron(II) clathrochelates. J Inorg Biochem 2013; 124:42-5. [PMID: 23598064 DOI: 10.1016/j.jinorgbio.2013.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/15/2022]
Abstract
Coordination and organoelement compounds are rarely proposed as the drug candidates despite their vast potential in the area owing to their strictly controlled geometry and rather extensive surface. This is the first example of the inhibition of transcription in the system of T7 RNA polymerase by cage metal complexes. Their IC50 values reach as low as the nanomolar range, placing them among the most potent metal-based transcription inhibitors.
Collapse
|
61
|
Merdanovic M, Mönig T, Ehrmann M, Kaiser M. Diversity of allosteric regulation in proteases. ACS Chem Biol 2013. [PMID: 23181429 DOI: 10.1021/cb3005935] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allostery is a fundamental regulatory mechanism that is based on a functional modulation of a site by a distant site. Allosteric regulation can be triggered by binding of diverse allosteric effectors, ranging from small molecules to macromolecules, and is therefore offering promising opportunities for functional modulation in a wide range of applications including the development of chemical probes or drug discovery. Here, we provide an overview of key classes of allosteric protease effectors, their corresponding molecular mechanisms, and their practical implications.
Collapse
Affiliation(s)
- Melisa Merdanovic
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Timon Mönig
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Michael Ehrmann
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Microbiology
II and ‡Department
of Chemical Biology, Center for Medical Biotechnology,
Faculty of Biology, University of Duisburg-Essen, Universtitätsstr.
2, 45117 Essen, Germany
| |
Collapse
|
62
|
Druggability predictions: methods, limitations, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
63
|
Gagné D, Charest LA, Morin S, Kovrigin EL, Doucet N. Conservation of flexible residue clusters among structural and functional enzyme homologues. J Biol Chem 2012; 287:44289-300. [PMID: 23135272 DOI: 10.1074/jbc.m112.394866] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Conformational flexibility between structural ensembles is an essential component of enzyme function. Although the broad dynamical landscape of proteins is known to promote a number of functional events on multiple time scales, it is yet unknown whether structural and functional enzyme homologues rely on the same concerted residue motions to perform their catalytic function. It is hypothesized that networks of contiguous and flexible residue motions occurring on the biologically relevant millisecond time scale evolved to promote and/or preserve optimal enzyme catalysis. In this study, we use a combination of NMR relaxation dispersion, model-free analysis, and ligand titration experiments to successfully capture and compare the role of conformational flexibility between two structural homologues of the pancreatic ribonuclease family: RNase A and eosinophil cationic protein (or RNase 3). In addition to conserving the same catalytic residues and structural fold, both homologues show similar yet functionally distinct clusters of millisecond dynamics, suggesting that conformational flexibility can be conserved among analogous protein folds displaying low sequence identity. Our work shows that the reduced conformational flexibility of eosinophil cationic protein can be dynamically and functionally reproduced in the RNase A scaffold upon creation of a chimeric hybrid between the two proteins. These results support the hypothesis that conformational flexibility is partly required for catalytic function in homologous enzyme folds, further highlighting the importance of dynamic residue sectors in the structural organization of proteins.
Collapse
Affiliation(s)
- Donald Gagné
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec H7V 1B7, Canada
| | | | | | | | | |
Collapse
|
64
|
Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery. Q Rev Biophys 2012; 45:383-426. [PMID: 22971516 DOI: 10.1017/s0033583512000108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug discovery has classically targeted the active sites of enzymes or ligand-binding sites of receptors and ion channels. In an attempt to improve selectivity of drug candidates, modulation of protein-protein interfaces (PPIs) of multiprotein complexes that mediate conformation or colocation of components of cell-regulatory pathways has become a focus of interest. However, PPIs in multiprotein systems continue to pose significant challenges, as they are generally large, flat and poor in distinguishing features, making the design of small molecule antagonists a difficult task. Nevertheless, encouragement has come from the recognition that a few amino acids - so-called hotspots - may contribute the majority of interaction-free energy. The challenges posed by protein-protein interactions have led to a wellspring of creative approaches, including proteomimetics, stapled α-helical peptides and a plethora of antibody inspired molecular designs. Here, we review a more generic approach: fragment-based drug discovery. Fragments allow novel areas of chemical space to be explored more efficiently, but the initial hits have low affinity. This means that they will not normally disrupt PPIs, unless they are tethered, an approach that has been pioneered by Wells and co-workers. An alternative fragment-based approach is to stabilise the uncomplexed components of the multiprotein system in solution and employ conventional fragment-based screening. Here, we describe the current knowledge of the structures and properties of protein-protein interactions and the small molecules that can modulate them. We then describe the use of sensitive biophysical methods - nuclear magnetic resonance, X-ray crystallography, surface plasmon resonance, differential scanning fluorimetry or isothermal calorimetry - to screen and validate fragment binding. Fragment hits can subsequently be evolved into larger molecules with higher affinity and potency. These may provide new leads for drug candidates that target protein-protein interactions and have therapeutic value.
Collapse
|
65
|
Davey JA, Chica RA. Multistate approaches in computational protein design. Protein Sci 2012; 21:1241-52. [PMID: 22811394 DOI: 10.1002/pro.2128] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/04/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022]
Abstract
Computational protein design (CPD) is a useful tool for protein engineers. It has been successfully applied towards the creation of proteins with increased thermostability, improved binding affinity, novel enzymatic activity, and altered ligand specificity. Traditionally, CPD calculations search and rank sequences using a single fixed protein backbone template in an approach referred to as single-state design (SSD). While SSD has enjoyed considerable success, certain design objectives require the explicit consideration of multiple conformational and/or chemical states. Cases where a "multistate" approach may be advantageous over the SSD approach include designing conformational changes into proteins, using native ensembles to mimic backbone flexibility, and designing ligand or oligomeric association specificities. These design objectives can be efficiently tackled using multistate design (MSD), an emerging methodology in CPD that considers any number of protein conformational or chemical states as inputs instead of a single protein backbone template, as in SSD. In this review article, recent examples of the successful design of a desired property into proteins using MSD are described. These studies employing MSD are divided into two categories--those that utilized multiple conformational states, and those that utilized multiple chemical states. In addition, the scoring of competing states during negative design is discussed as a current challenge for MSD.
Collapse
Affiliation(s)
- James A Davey
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
66
|
Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 2012; 14:e16. [PMID: 22831787 DOI: 10.1017/erm.2012.10] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein-protein interactions (PPIs) control the assembly of multi-protein complexes and, thus, these contacts have enormous potential as drug targets. However, the field has produced a mix of both exciting success stories and frustrating challenges. Here, we review known examples and explore how the physical features of a PPI, such as its affinity, hotspots, off-rates, buried surface area and topology, might influence the chances of success in finding inhibitors. This analysis suggests that concise, tight binding PPIs are most amenable to inhibition. However, it is also clear that emerging technical methods are expanding the repertoire of 'druggable' protein contacts and increasing the odds against difficult targets. In particular, natural product-like compound libraries, high throughput screens specifically designed for PPIs and approaches that favour discovery of allosteric inhibitors appear to be attractive routes. The first group of PPI inhibitors has entered clinical trials, further motivating the need to understand the challenges and opportunities in pursuing these types of targets.
Collapse
|
67
|
Michel J, Cuchillo R. The impact of small molecule binding on the energy landscape of the intrinsically disordered protein C-myc. PLoS One 2012; 7:e41070. [PMID: 22815918 PMCID: PMC3397933 DOI: 10.1371/journal.pone.0041070] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins are attractive therapeutic targets owing to their prevalence in several diseases. Yet their lack of well-defined structure renders ligand discovery a challenging task. An intriguing example is provided by the oncoprotein c-Myc, a transcription factor that is over expressed in a broad range of cancers. Transcriptional activity of c-Myc is dependent on heterodimerization with partner protein Max. This protein-protein interaction is disrupted by the small molecule 10058-F4 (1), that binds to monomeric and disordered c-Myc. To rationalize the mechanism of inhibition, structural ensembles for the segment of the c-Myc domain that binds to 1 were computed in the absence and presence of the ligand using classical force fields and explicit solvent metadynamics molecular simulations. The accuracy of the computed structural ensembles was assessed by comparison of predicted and measured NMR chemical shifts. The small molecule 1 was found to perturb the composition of the apo equilibrium ensemble and to bind weakly to multiple distinct c-Myc conformations. Comparison of the apo and holo equilibrium ensembles reveals that the c-Myc conformations binding 1 are already partially formed in the apo ensemble, suggesting that 1 binds to c-Myc through an extended conformational selection mechanism. The present results have important implications for rational ligand design efforts targeting intrinsically disordered proteins.
Collapse
Affiliation(s)
- Julien Michel
- EastCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom.
| | | |
Collapse
|
68
|
Abstract
Phosphorylation is a reversible post-translational modification that regulates many proteins and enzymes, including proteases, as shown by two recent publications. Huang and colleagues and Velázquez-Delgado and Hardy (this issue of Structure) describe how phosphorylation activates the protease activity of the deubiquitinating enzyme DUBA and how it inhibits caspase-6, respectively.
Collapse
Affiliation(s)
- Martin Renatus
- Novartis Institutes for BioMedical Research, Forum 1, Novartis Campus, CH-4002 Basel, Switzerland.
| | | |
Collapse
|
69
|
Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 2012; 6:155-76. [PMID: 22440008 PMCID: PMC3476506 DOI: 10.1016/j.molonc.2012.02.004] [Citation(s) in RCA: 384] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 02/07/2023] Open
Abstract
The discovery and development of small molecule cancer drugs has been revolutionised over the last decade. Most notably, we have moved from a one-size-fits-all approach that emphasized cytotoxic chemotherapy to a personalised medicine strategy that focuses on the discovery and development of molecularly targeted drugs that exploit the particular genetic addictions, dependencies and vulnerabilities of cancer cells. These exploitable characteristics are increasingly being revealed by our expanding understanding of the abnormal biology and genetics of cancer cells, accelerated by cancer genome sequencing and other high-throughput genome-wide campaigns, including functional screens using RNA interference. In this review we provide an overview of contemporary approaches to the discovery of small molecule cancer drugs, highlighting successes, current challenges and future opportunities. We focus in particular on four key steps: Target validation and selection; chemical hit and lead generation; lead optimization to identify a clinical drug candidate; and finally hypothesis-driven, biomarker-led clinical trials. Although all of these steps are critical, we view target validation and selection and the conduct of biology-directed clinical trials as especially important areas upon which to focus to speed progress from gene to drug and to reduce the unacceptably high attrition rate during clinical development. Other challenges include expanding the envelope of druggability for less tractable targets, understanding and overcoming drug resistance, and designing intelligent and effective drug combinations. We discuss not only scientific and technical challenges, but also the assessment and mitigation of risks as well as organizational, cultural and funding problems for cancer drug discovery and development, together with solutions to overcome the 'Valley of Death' between basic research and approved medicines. We envisage a future in which addressing these challenges will enhance our rapid progress towards truly personalised medicine for cancer patients.
Collapse
|
70
|
Binolfi A, Fernández CO, Sica MP, Delfino JM, Santos J. Recognition between a short unstructured peptide and a partially folded fragment leads to the thioredoxin fold sharing native-like dynamics. Proteins 2012; 80:1448-64. [DOI: 10.1002/prot.24043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/27/2011] [Accepted: 01/11/2012] [Indexed: 11/09/2022]
|
71
|
Pandini A, Fornili A, Fraternali F, Kleinjung J. Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics. FASEB J 2012; 26:868-81. [PMID: 22071506 PMCID: PMC3290435 DOI: 10.1096/fj.11-190868] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Allostery offers a highly specific way to modulate protein function. Therefore, understanding this mechanism is of increasing interest for protein science and drug discovery. However, allosteric signal transmission is difficult to detect experimentally and to model because it is often mediated by local structural changes propagating along multiple pathways. To address this, we developed a method to identify communication pathways by an information-theoretical analysis of molecular dynamics simulations. Signal propagation was described as information exchange through a network of correlated local motions, modeled as transitions between canonical states of protein fragments. The method was used to describe allostery in two-component regulatory systems. In particular, the transmission from the allosteric site to the signaling surface of the receiver domain NtrC was shown to be mediated by a layer of hub residues. The location of hubs preferentially connected to the allosteric site was found in close agreement with key residues experimentally identified as involved in the signal transmission. The comparison with the networks of the homologues CheY and FixJ highlighted similarities in their dynamics. In particular, we showed that a preorganized network of fragment connections between the allosteric and functional sites exists already in the inactive state of all three proteins.
Collapse
Affiliation(s)
- Alessandro Pandini
- Division of Mathematical Biology, Medical Research Council National Institute for Medical Research, London, UK; ,Randall Division of Cell and Molecular Biophysics, King's College London, London, UK; and , Correspondence: Division of Mathematical Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA London, UK. E-mail: A.P., ; J.K.,
| | - Arianna Fornili
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK; and
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK; and ,The Thomas Young Centre for Theory and Simulation of Materials, London, UK
| | - Jens Kleinjung
- Division of Mathematical Biology, Medical Research Council National Institute for Medical Research, London, UK; , Correspondence: Division of Mathematical Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA London, UK. E-mail: A.P., ; J.K.,
| |
Collapse
|
72
|
Shen A. Clostridium difficile toxins: mediators of inflammation. J Innate Immun 2012; 4:149-58. [PMID: 22237401 DOI: 10.1159/000332946] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/06/2011] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a significant problem in hospital settings as the most common cause of nosocomial diarrhea worldwide. C. difficile infections (CDIs) are characterized by an acute intestinal inflammatory response with neutrophil infiltration. These symptoms are primarily caused by the glucosylating toxins, TcdA and TcdB. In the past decade, the frequency and severity of CDIs have increased markedly due to the emergence of so-called hypervirulent strains that overproduce cytotoxic glucosylating toxins relative to historical strains. In addition, these strains produce a third toxin, binary toxin or C. difficile transferase (CDT), that may contribute to hypervirulence. Both the glucosylating toxins and CDT covalently modify target cell proteins to cause disassembly of the actin cytoskeleton and induce severe inflammation. This review summarizes our current knowledge of the mechanisms by which glucosylating toxins and CDT disrupt target cell function, alter host physiology and stimulate immune responses.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vt. 05401, USA.
| |
Collapse
|
73
|
In Silico Strategies Toward Enzyme Function and Dynamics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012. [DOI: 10.1016/b978-0-12-398312-1.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
74
|
Craik CS, Shahian T. A screening strategy for trapping the inactive conformer of a dimeric enzyme with a small molecule inhibitor. Methods Mol Biol 2012; 928:119-131. [PMID: 22956137 PMCID: PMC3739972 DOI: 10.1007/978-1-62703-008-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), the most common cancer in AIDS patients. All herpesviruses express a conserved dimeric serine protease that is required for generating infectious virions and is therefore of pharmaceutical interest. Given the past challenges of developing drug-like active-site inhibitors to this class of proteases, small-molecules targeting allosteric sites are of great value. In light of evidence supporting a strong structural linkage between the dimer interface and the protease active site, we have focused our efforts on the dimer interface for identifying dimer disrupting inhibitors. Here, we describe a high throughput screening approach for identifying small molecule dimerization inhibitors of KSHV protease. The helical mimetic, small molecule library used, as well as general strategies for selecting compound libraries for this application will also be discussed. This methodology can be applicable to other systems where an alpha helical moiety plays a dominant role at the interaction site of interest, and in vitro assays to monitor function are in place.
Collapse
Affiliation(s)
- Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
75
|
Nussinov R, Tsai CJ, Csermely P. Allo-network drugs: harnessing allostery in cellular networks. Trends Pharmacol Sci 2011; 32:686-93. [PMID: 21925743 PMCID: PMC7380718 DOI: 10.1016/j.tips.2011.08.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
Allosteric drugs are increasingly used because they produce fewer side effects. Allosteric signal propagation does not stop at the 'end' of a protein, but may be dynamically transmitted across the cell. We propose here that the concept of allosteric drugs can be broadened to 'allo-network drugs' - whose effects can propagate either within a protein, or across several proteins, to enhance or inhibit specific interactions along a pathway. We posit that current allosteric drugs are a special case of allo-network drugs, and suggest that allo-network drugs can achieve specific, limited changes at the systems level, and in this way can achieve fewer side effects and lower toxicity. Finally, we propose steps and methods to identify allo-network drug targets and sites that outline a new paradigm in systems-based drug design.
Collapse
Affiliation(s)
- Ruth Nussinov
- Center for Cancer Research Nanobiology Program, Science Applications International Corporation-Frederick, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
76
|
Schneider EL, Lee MS, Baharuddin A, Goetz DH, Farady CJ, Ward M, Wang CI, Craik CS. A reverse binding motif that contributes to specific protease inhibition by antibodies. J Mol Biol 2011; 415:699-715. [PMID: 22154938 DOI: 10.1016/j.jmb.2011.11.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/12/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
Abstract
The type II transmembrane serine protease family consists of 18 closely related serine proteases that are implicated in multiple functions. To identify selective, inhibitory antibodies against one particular type II transmembrane serine protease, matriptase [MT-SP1 (membrane-type serine protease 1)], a phage display library was created with a natural repertoire of Fabs [fragment antigen binding (Fab)] from human naïve B cells. Fab A11 was identified with a 720 pM inhibition constant and high specificity for matriptase over other trypsin-fold serine proteases. A Trichoderma reesei system expressed A11 with a yield of ∼200 mg/L. The crystal structure of A11 in complex with matriptase has been determined and compared to the crystal structure of another antibody inhibitor (S4) in complex with matriptase. Previously discovered from a synthetic single-chain variable fragment library, S4 is also a highly selective and potent matriptase inhibitor. The crystal structures of the A11/matriptase and S4/matriptase complexes were solved to 2.1 Å and 1.5 Å, respectively. Although these antibodies, discovered from separate libraries, interact differently with the protease surface loops for their specificity, the structures reveal a similar novel mechanism of protease inhibition. Through the insertion of the H3 variable loop in a reverse orientation at the substrate-binding pocket, these antibodies bury a large surface area for potent inhibition and avoid proteolytic inactivation. This discovery highlights the critical role that the antibody scaffold plays in positioning loops to bind and inhibit protease function in a highly selective manner. Additionally, Fab A11 is a fully human antibody that specifically inhibits matriptase over other closely related proteases, suggesting that this approach could be useful for clinical applications.
Collapse
Affiliation(s)
- Eric L Schneider
- Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, San Francisco, CA 94143-2280, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Dixit A, Verkhivker GM. Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. PLoS Comput Biol 2011; 7:e1002179. [PMID: 21998569 PMCID: PMC3188506 DOI: 10.1371/journal.pcbi.1002179] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/16/2011] [Indexed: 12/15/2022] Open
Abstract
The emerging structural information about allosteric kinase complexes and the growing number of allosteric inhibitors call for a systematic strategy to delineate and classify mechanisms of allosteric regulation and long-range communication that control kinase activity. In this work, we have investigated mechanistic aspects of long-range communications in ABL and EGFR kinases based on the results of multiscale simulations of regulatory complexes and computational modeling of signal propagation in proteins. These approaches have been systematically employed to elucidate organizing molecular principles of allosteric signaling in the ABL and EGFR multi-domain regulatory complexes and analyze allosteric signatures of the gate-keeper cancer mutations. We have presented evidence that mechanisms of allosteric activation may have universally evolved in the ABL and EGFR regulatory complexes as a product of a functional cross-talk between the organizing αF-helix and conformationally adaptive αI-helix and αC-helix. These structural elements form a dynamic network of efficiently communicated clusters that may control the long-range interdomain coupling and allosteric activation. The results of this study have unveiled a unifying effect of the gate-keeper cancer mutations as catalysts of kinase activation, leading to the enhanced long-range communication among allosterically coupled segments and stabilization of the active kinase form. The results of this study can reconcile recent experimental studies of allosteric inhibition and long-range cooperativity between binding sites in protein kinases. The presented study offers a novel molecular insight into mechanistic aspects of allosteric kinase signaling and provides a quantitative picture of activation mechanisms in protein kinases at the atomic level. Despite recent progress in computational and experimental studies of dynamic regulation in protein kinases, a mechanistic understanding of long-range communication and mechanisms of mutation-induced signaling controlling kinase activity remains largely qualitative. In this study, we have performed a systematic modeling and analysis of allosteric activation in ABL and EGFR kinases at the increasing level of complexity - from catalytic domain to multi-domain regulatory complexes. The results of this study have revealed organizing structural and mechanistic principles of allosteric signaling in protein kinases. Although activation mechanisms in ABL and EGFR kinases have evolved through acquisition of structurally different regulatory complexes, we have found that long-range interdomain communication between common functional segments (αF-helix and αC-helix) may be important for allosteric activation. The results of study have revealed molecular signatures of activating cancer mutations and have shed the light on general mechanistic aspects of mutation-induced signaling in protein kinases. An advanced understanding and further characterization of molecular signatures of kinase mutations may aid in a better rationalization of mutational effects on clinical outcomes and facilitate molecular-based therapeutic strategies to combat kinase mutation-dependent tumorigenesis.
Collapse
Affiliation(s)
- Anshuman Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gennady M. Verkhivker
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
78
|
Understanding the allosteric trigger for the fructose-1,6-bisphosphate regulation of the ADP-glucose pyrophosphorylase from Escherichia coli. Biochimie 2011; 93:1816-23. [DOI: 10.1016/j.biochi.2011.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/24/2011] [Indexed: 11/19/2022]
|
79
|
Abstract
Inhibition of enzyme activity at high substrate concentrations, so-called "substrate inhibition," is commonly observed and has been recognized in drug metabolism reactions since the last decade. Although the importance of such "atypical" kinetics in vivo remains poorly understood, a substrate with substrate inhibition kinetics has been shown to unconventionally alter the metabolism of other substrates. In recent years, it is becoming increasingly evident that the mechanisms for substrate inhibition are highly complex, which are possibly contributed by multiple (at least two) binding sites within the enzyme protein, the formation of a ternary dead-end enzyme complex, and/or the ligand-induced changes in enzyme conformation. This review primarily discusses the mechanisms for substrate inhibition displayed by the important drug-metabolizing enzymes, such as cytochrome p450s, UDP-glucuronyltransferases, and sulfotransferases. Kinetic modeling of substrate inhibition in the absence or presence of a modifier is another central issue in this review because of its importance in the determination of kinetic parameters and in vitro/in vivo predictions.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas, USA.
| |
Collapse
|
80
|
Reingewertz TH, Shalev DE, Sukenik S, Blatt O, Rotem-Bamberger S, Lebendiker M, Larisch S, Friedler A. Mechanism of the interaction between the intrinsically disordered C-terminus of the pro-apoptotic ARTS protein and the Bir3 domain of XIAP. PLoS One 2011; 6:e24655. [PMID: 21949740 PMCID: PMC3176765 DOI: 10.1371/journal.pone.0024655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/15/2011] [Indexed: 11/18/2022] Open
Abstract
ARTS (Sept4_i2) is a mitochondrial pro-apoptotic protein that functions as a tumor suppressor. Its expression is significantly reduced in leukemia and lymphoma patients. ARTS binds and inhibits XIAP (X-linked Inhibitor of Apoptosis protein) by interacting with its Bir3 domain. ARTS promotes degradation of XIAP through the proteasome pathway. By doing so, ARTS removes XIAP inhibition of caspases and enables apoptosis to proceed. ARTS contains 27 unique residues in its C-terminal domain (CTD, residues 248–274) which are important for XIAP binding. Here we characterized the molecular details of this interaction. Biophysical and computational methods were used to show that the ARTS CTD is intrinsically disordered under physiological conditions. Direct binding of ARTS CTD to Bir3 was demonstrated using NMR and fluorescence spectroscopy. The Bir3 interacting region in ARTS CTD was mapped to ARTS residues 266–274, which are the nine C-terminal residues in the protein. Alanine scan of ARTS 266–274 showed the importance of several residues for Bir3 binding, with His268 and Cys273 contributing the most. Adding a reducing agent prevented binding to Bir3. A dimer of ARTS 266–274 formed by oxidation of the Cys residues into a disulfide bond bound with similar affinity and was probably required for the interaction with Bir3. The detailed analysis of the ARTS – Bir3 interaction provides the basis for setting it as a target for anti cancer drug design: It will enable the development of compounds that mimic ARTS CTD, remove IAPs inhibition of caspases, and thereby induce apoptosis.
Collapse
Affiliation(s)
- Tali H. Reingewertz
- Institute of Chemistry, Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Deborah E. Shalev
- The Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Shahar Sukenik
- Institute of Chemistry, Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Ofrah Blatt
- Institute of Chemistry, Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Shahar Rotem-Bamberger
- Institute of Chemistry, Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Sarit Larisch
- Cell Death Research Laboratory, Department of Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Assaf Friedler
- Institute of Chemistry, Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
81
|
Sajadi M, Furse KE, Zhang XX, Dehmel L, Kovalenko SA, Corcelli SA, Ernsting NP. Beobachtung einer DNA-Ligand-Schwingung über zeitaufgelöste Fluoreszenzmessung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
82
|
Sajadi M, Furse KE, Zhang XX, Dehmel L, Kovalenko SA, Corcelli SA, Ernsting NP. Detection of DNA-Ligand Binding Oscillations by Stokes-Shift Measurements. Angew Chem Int Ed Engl 2011; 50:9501-5. [DOI: 10.1002/anie.201102942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/24/2011] [Indexed: 11/10/2022]
|
83
|
Lee GM, Shahian T, Baharuddin A, Gable JE, Craik CS. Enzyme inhibition by allosteric capture of an inactive conformation. J Mol Biol 2011; 411:999-1016. [PMID: 21723875 DOI: 10.1016/j.jmb.2011.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
All members of the human herpesvirus protease (HHV Pr) family are active as weakly associating dimers but inactive as monomers. A small-molecule allosteric inhibitor of Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) traps the enzyme in an inactive monomeric state where the C-terminal helices are unfolded and the hydrophobic dimer interface is exposed. NMR titration studies demonstrate that the inhibitor binds to KSHV Pr monomers with low micromolar affinity. A 2.0-Å-resolution X-ray crystal structure of a C-terminal truncated KSHV Pr-inhibitor complex locates the binding pocket at the dimer interface and displays significant conformational perturbations at the active site, 15 Å from the allosteric site. NMR and CD data suggest that the small molecule inhibits human cytomegalovirus protease via a similar mechanism. As all HHV Prs are functionally and structurally homologous, the inhibitor represents a class of compounds that may be developed into broad-spectrum therapeutics that allosterically regulate enzymatic activity by disrupting protein-protein interactions.
Collapse
Affiliation(s)
- Gregory M Lee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280, USA
| | | | | | | | | |
Collapse
|
84
|
Laine E, Chauvot de Beauchêne I, Perahia D, Auclair C, Tchertanov L. Mutation D816V alters the internal structure and dynamics of c-KIT receptor cytoplasmic region: implications for dimerization and activation mechanisms. PLoS Comput Biol 2011; 7:e1002068. [PMID: 21698178 PMCID: PMC3116893 DOI: 10.1371/journal.pcbi.1002068] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/11/2011] [Indexed: 12/02/2022] Open
Abstract
The type III receptor tyrosine kinase (RTK) KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD) simulations, normal modes analysis (NMA) and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop) upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites. Protein kinases are involved in a huge amount of cellular processes through phosphorylation, a crucial mechanism in cell signaling, and their misregulation often results in disease. The deactivation of protein tyrosine kinases (PTKs) or their oncogenic activation arises from mutations which affect the protein primary structure and the configuration of the enzymatic site apparently by stabilizing the activation loop (A-loop) extended conformation. Particularly, mutation D816V of receptor tyrosine kinase (RTK) KIT, found in patients with pediatric mastocytosis, acute leukemia or germ cell tumors, can be considered as the archetype of mutation inducing a displacement of the population equilibrium toward the active conformation. We present a comprehensive computational study of the activating mechanism(s) of this mutation. Our multi-approach in silico procedure evidenced a local alteration of the A-loop structure, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. Our results provided a plausible conception of how the observed departure of JMR from kinase domain in the mutant promotes kinase mutant dimerization without requiring extra-cellular ligand binding. The pocket profiles we obtained suggested putative allosteric binding sites that could be targeted by ligands/modulators that trap the mutated enzyme.
Collapse
Affiliation(s)
- Elodie Laine
- LBPA, CNRS - ENS de Cachan, Cachan, France
- * E-mail: (EL); (LT)
| | | | | | | | - Luba Tchertanov
- LBPA, CNRS - ENS de Cachan, Cachan, France
- * E-mail: (EL); (LT)
| |
Collapse
|
85
|
Liu X, Zhu F, Ma X, Tao L, Zhang J, Yang S, Wei Y, Chen YZ. The Therapeutic Target Database: an internet resource for the primary targets of approved, clinical trial and experimental drugs. Expert Opin Ther Targets 2011; 15:903-12. [PMID: 21619487 DOI: 10.1517/14728222.2011.586635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Increasing numbers of proteins, nucleic acids and other molecular entities have been explored as therapeutic targets. A challenge in drug discovery is to decide which targets to pursue from an increasing pool of potential targets, given the fact that few innovative targets have made it to the approval list each year. Knowledge of existing drug targets (both approved and within clinical trials) is highly useful for facilitating target discovery, selection, exploration and tool development. The Therapeutic Target Database (TTD) has been developed and updated to provide information on 358 successful targets, 251 clinical trial targets and 1254 research targets in addition to 1511 approved drugs, 1118 clinical trials drugs and 2331 experimental drugs linked to their primary targets (3257 drugs with available structure data). This review briefly describes the TTD database and illustrates how its data can be explored for facilitating target and drug searches, the study of the mechanism of multi-target drugs and the development of in silico target discovery tools.
Collapse
|
86
|
Deng NJ, Zheng W, Gallicchio E, Levy RM. Insights into the dynamics of HIV-1 protease: a kinetic network model constructed from atomistic simulations. J Am Chem Soc 2011; 133:9387-94. [PMID: 21561098 DOI: 10.1021/ja2008032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational dynamics in the flaps of HIV-1 protease plays a crucial role in the mechanism of substrate binding. We develop a kinetic network model, constructed from detailed atomistic simulations, to determine the kinetic mechanisms of the conformational transitions in HIV-1 PR. To overcome the time scale limitation of conventional molecular dynamics (MD) simulations, our method combines replica exchange MD with transition path theory (TPT) to study the diversity and temperature dependence of the pathways connecting functionally important states of the protease. At low temperatures the large-scale flap opening is dominated by a small number of paths; at elevated temperatures the transition occurs through many structurally heterogeneous routes. The expanded conformation in the crystal structure 1TW7 is found to closely mimic a key intermediate in the flap-opening pathways at low temperature. We investigated the different transition mechanisms between the semi-open and closed forms. The calculated relaxation times reveal fast semi-open ↔ closed transitions, and infrequently the flaps fully open. The ligand binding rate predicted from this kinetic model increases by 38-fold from 285 to 309 K, which is in general agreement with experiments. To our knowledge, this is the first application of a network model constructed from atomistic simulations together with TPT to analyze conformational changes between different functional states of a natively folded protein.
Collapse
Affiliation(s)
- Nan-jie Deng
- BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
87
|
|
88
|
Carroll MJ, Gromova AV, Miller KR, Tang H, Wang XS, Tripathy A, Singleton SF, Collins EJ, Lee AL. Direct detection of structurally resolved dynamics in a multiconformation receptor-ligand complex. J Am Chem Soc 2011; 133:6422-8. [PMID: 21469679 DOI: 10.1021/ja2005253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structure-based drug design relies on static protein structures despite significant evidence for the need to include protein dynamics as a serious consideration. In practice, dynamic motions are neglected because they are not understood well enough to model, a situation resulting from a lack of explicit experimental examples of dynamic receptor-ligand complexes. Here, we report high-resolution details of pronounced ~1 ms time scale motions of a receptor-small molecule complex using a combination of NMR and X-ray crystallography. Large conformational dynamics in Escherichia coli dihydrofolate reductase are driven by internal switching motions of the drug-like, nanomolar-affinity inhibitor. Carr-Purcell-Meiboom-Gill relaxation dispersion experiments and NOEs revealed the crystal structure to contain critical elements of the high energy protein-ligand conformation. The availability of accurate, structurally resolved dynamics in a protein-ligand complex should serve as a valuable benchmark for modeling dynamics in other receptor-ligand complexes and prediction of binding affinities.
Collapse
Affiliation(s)
- Mary J Carroll
- Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Rational design of inhibitors and activity-based probes targeting Clostridium difficile virulence factor TcdB. ACTA ACUST UNITED AC 2011; 17:1201-11. [PMID: 21095570 DOI: 10.1016/j.chembiol.2010.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 01/05/2023]
Abstract
Clostridium difficile is a leading cause of nosocomial infections. The major virulence factors of this pathogen are the multi-domain toxins TcdA and TcdB. These toxins contain a cysteine protease domain (CPD) that autoproteolytically releases a cytotoxic effector domain upon binding intracellular inositol hexakisphosphate. Currently, there are no known inhibitors of this protease. Here, we describe the rational design of covalent small molecule inhibitors of TcdB CPD. We identified compounds that inactivate TcdB holotoxin function in cells and solved the structure of inhibitor-bound protease to 2.0 Å. This structure reveals the molecular basis of CPD substrate recognition and informed the synthesis of activity-based probes for this enzyme. The inhibitors presented will guide the development of therapeutics targeting C. difficile, and the probes will serve as tools for studying the unique activation mechanism of bacterial toxin CPDs.
Collapse
|
90
|
Brokaw JB, Chu JW. On the roles of substrate binding and hinge unfolding in conformational changes of adenylate kinase. Biophys J 2011; 99:3420-9. [PMID: 21081091 DOI: 10.1016/j.bpj.2010.09.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/09/2010] [Accepted: 09/21/2010] [Indexed: 11/28/2022] Open
Abstract
We characterized the conformational change of adenylate kinase (AK) between open and closed forms by conducting five all-atom molecular-dynamics simulations, each of 100 ns duration. Different initial structures and substrate binding configurations were used to probe the pathways of AK conformational change in explicit solvent, and no bias potential was applied. A complete closed-to-open and a partial open-to-closed transition were observed, demonstrating the direct impact of substrate-mediated interactions on shifting protein conformation. The sampled configurations suggest two possible pathways for connecting the open and closed structures of AK, affirming the prediction made based on available x-ray structures and earlier works of coarse-grained modeling. The trajectories of the all-atom molecular-dynamics simulations revealed the complexity of protein dynamics and the coupling between different domains during conformational change. Calculations of solvent density and density fluctuations surrounding AK did not show prominent variation during the transition between closed and open forms. Finally, we characterized the effects of local unfolding of an important hinge near Pro(177) on the closed-to-open transition of AK and identified a novel mechanism by which hinge unfolding modulates protein conformational change. The local unfolding of Pro(177) hinge induces alternative tertiary contacts that stabilize the closed structure and prevent the opening transition.
Collapse
Affiliation(s)
- Jason B Brokaw
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | |
Collapse
|
91
|
Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nat Struct Mol Biol 2011; 18:364-71. [PMID: 21317893 PMCID: PMC3076311 DOI: 10.1038/nsmb.1990] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/24/2010] [Indexed: 01/04/2023]
Abstract
An internal cysteine protease domain (CPD) autoproteolytically regulates Clostridium difficile glucosylating toxins by releasing a cytotoxic effector domain into target cells. CPD activity is itself allosterically regulated by the eukaryotic-specific molecule inositol hexakisphosphate (InsP6). Although allostery controls the function of most proteins, the molecular details underlying this regulatory mechanism are often difficult to characterize. Here we use chemical probes to show that apo-CPD is in dynamic equilibrium between active and inactive states. InsP6 dramatically shifts this equilibrium towards an active conformer that is further restrained upon binding a suicide substrate. Structural analyses combined with systematic mutational and disulfide bond engineering studies reveal that residues within a β-hairpin region functionally couple the InsP6 binding site to the active site. Collectively, our results identify an allosteric circuit that allows bacterial virulence factors to sense and respond to the eukaryotic environment.
Collapse
|
92
|
|
93
|
Kar G, Keskin O, Gursoy A, Nussinov R. Allostery and population shift in drug discovery. Curr Opin Pharmacol 2010; 10:715-22. [PMID: 20884293 PMCID: PMC7316380 DOI: 10.1016/j.coph.2010.09.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 02/07/2023]
Abstract
Proteins can exist in a large number of conformations around their native states that can be characterized by an energy landscape. The landscape illustrates individual valleys, which are the conformational substates. From the functional standpoint, there are two key points: first, all functionally relevant substates pre-exist; and second, the landscape is dynamic and the relative populations of the substates will change following allosteric events. Allosteric events perturb the structure, and the energetic strain propagates and shifts the population. This can lead to changes in the shapes and properties of target binding sites. Here we present an overview of dynamic conformational ensembles focusing on allosteric events in signaling. We propose that combining equilibrium fluctuation concepts with genomic screens could help drug discovery.
Collapse
Affiliation(s)
- Gozde Kar
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | | | | | | |
Collapse
|
94
|
Kleckner IR, Foster MP. An introduction to NMR-based approaches for measuring protein dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:942-68. [PMID: 21059410 DOI: 10.1016/j.bbapap.2010.10.012] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 01/15/2023]
Abstract
Proteins are inherently flexible at ambient temperature. At equilibrium, they are characterized by a set of conformations that undergo continuous exchange within a hierarchy of spatial and temporal scales ranging from nanometers to micrometers and femtoseconds to hours. Dynamic properties of proteins are essential for describing the structural bases of their biological functions including catalysis, binding, regulation and cellular structure. Nuclear magnetic resonance (NMR) spectroscopy represents a powerful technique for measuring these essential features of proteins. Here we provide an introduction to NMR-based approaches for studying protein dynamics, highlighting eight distinct methods with recent examples, contextualized within a common experimental and analytical framework. The selected methods are (1) Real-time NMR, (2) Exchange spectroscopy, (3) Lineshape analysis, (4) CPMG relaxation dispersion, (5) Rotating frame relaxation dispersion, (6) Nuclear spin relaxation, (7) Residual dipolar coupling, (8) Paramagnetic relaxation enhancement. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Ian R Kleckner
- The Ohio State University Biophysics Program, 484 West 12th Ave Room 776, Columbus, OH 43210, USA
| | | |
Collapse
|
95
|
Doucet N, Jayasundera TB, Simonović M, Loria JP. The crystal structure of ribonuclease A in complex with thymidine-3'-monophosphate provides further insight into ligand binding. Proteins 2010; 78:2459-68. [PMID: 20602460 DOI: 10.1002/prot.22754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Thymidine-3'-monophosphate (3'-TMP) is a competitive inhibitor analogue of the 3'-CMP and 3'-UMP natural product inhibitors of bovine pancreatic ribonuclease A (RNase A). Isothermal titration calorimetry experiments show that 3'-TMP binds the enzyme with a dissociation constant (K(d)) of 15 microM making it one of the strongest binding members of the five natural bases found in nucleic acids (A, C, G, T, and U). To further investigate the molecular properties of this potent natural affinity, we have determined the crystal structure of bovine pancreatic RNase A in complex with 3'-TMP at 1.55 A resolution and we have performed NMR binding experiments with 3'-CMP and 3'-TMP. Our results show that binding of 3'-TMP is very similar to other natural and non-natural pyrimidine ligands, demonstrating that single nucleotide affinity is independent of the presence or absence of a 2'-hydroxyl on the ribose moiety of pyrimidines and suggesting that the pyrimidine binding subsite of RNase A is not a significant contributor of inhibitor discrimination. Accumulating evidence suggests that very subtle structural, chemical, and potentially motional variations contribute to ligand discrimination in this enzyme.
Collapse
Affiliation(s)
- Nicolas Doucet
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
96
|
Abstract
The binding states of the substrates and the environment have significant influence on protein motion. We present the analysis of such motion derived from anisotropic atomic displacement parameters (ADPs) in a set of atomic resolution protein structures. Local structural motion caused by ligand binding as well as functional loops showing cooperative patterns of motion could be inferred. The results are in line with proposed protonation states, hydrogen bonding patterns and the location of distinctly flexible regions: we could locate the mobile active site loop in a virus integrase, distinguish the subdomains in RNAse A and hydroxynitrile lyase, and reconstruct the molecular architecture in a xylanase. We demonstrate that the ADP-based motion analysis provides information at high level of detail and that the structural changes needed for substrate attachment or release may be derived from single X-ray structures.
Collapse
Affiliation(s)
- Andrea Schmidt
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | | |
Collapse
|
97
|
Dynameomics: a comprehensive database of protein dynamics. Structure 2010; 18:423-35. [PMID: 20399180 DOI: 10.1016/j.str.2010.01.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/17/2010] [Accepted: 01/21/2010] [Indexed: 12/15/2022]
Abstract
The dynamic behavior of proteins is important for an understanding of their function and folding. We have performed molecular dynamics simulations of the native state and unfolding pathways of over 2000 protein/peptide systems (approximately 11,000 independent simulations) representing the majority of folds in globular proteins. These data are stored and organized using an innovative database approach, which can be mined to obtain both general and specific information about the dynamics and folding/unfolding of proteins, relevant subsets thereof, and individual proteins. Here we describe the project in general terms and the type of information contained in the database. Then we provide examples of mining the database for information relevant to protein folding, structure building, the effect of single-nucleotide polymorphisms, and drug design. The native state simulation data and corresponding analyses for the 100 most populated metafolds, together with related resources, are publicly accessible through http://www.dynameomics.org.
Collapse
|
98
|
Metallo SJ. Intrinsically disordered proteins are potential drug targets. Curr Opin Chem Biol 2010; 14:481-8. [PMID: 20598937 DOI: 10.1016/j.cbpa.2010.06.169] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 01/01/2023]
Abstract
Intrinsically disordered (ID) proteins that lack stable secondary and tertiary structure in substantial regions (or throughout) are prevalent in eukaryotes. They exist as ensembles of rapidly fluctuating structures and many undergo coupled folding and binding reactions. Because ID proteins are overrepresented in major disease pathways they are desirable targets for inhibition; however, the feasibility of targeting proteins without defined structures was unclear. Recently, small molecules have been found that bind to the disordered regions of c-Myc, Abeta, EWS-Fli1, and various peptides. As with structured targets, initial hits were further optimized to increase specificity and affinity. Given the number and biological importance of ID proteins, the ability to inhibit their interactions opens tremendous potential in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Steven J Metallo
- Department of Chemistry, Georgetown University, 37th & O Streets, NW, Washington, DC 20057, United States.
| |
Collapse
|
99
|
Wisén S, Bertelsen EB, Thompson AD, Patury S, Ung P, Chang L, Evans CG, Walter GM, Wipf P, Carlson HA, Brodsky JL, Zuiderweg ERP, Gestwicki JE. Binding of a small molecule at a protein-protein interface regulates the chaperone activity of hsp70-hsp40. ACS Chem Biol 2010; 5:611-22. [PMID: 20481474 PMCID: PMC2950966 DOI: 10.1021/cb1000422] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heat shock protein 70 (Hsp70) is a highly conserved molecular chaperone that plays multiple roles in protein homeostasis. In these various tasks, the activity of Hsp70 is shaped by interactions with co-chaperones, such as Hsp40. The Hsp40 family of co-chaperones binds to Hsp70 through a conserved J-domain, and these factors stimulate ATPase and protein-folding activity. Using chemical screens, we identified a compound, 115-7c, which acts as an artificial co-chaperone for Hsp70. Specifically, the activities of 115-7c mirrored those of a Hsp40; the compound stimulated the ATPase and protein-folding activities of a prokaryotic Hsp70 (DnaK) and partially compensated for a Hsp40 loss-of-function mutation in yeast. Consistent with these observations, NMR and mutagenesis studies indicate that the binding site for 115-7c is adjacent to a region on DnaK that is required for J-domain-mediated stimulation. Interestingly, we found that 115-7c and the Hsp40 do not compete for binding but act in concert. Using this information, we introduced additional steric bulk to 115-7c and converted it into an inhibitor. Thus, these chemical probes either promote or inhibit chaperone functions by regulating Hsp70-Hsp40 complex assembly at a native protein-protein interface. This unexpected mechanism may provide new avenues for exploring how chaperones and co-chaperones cooperate to shape protein homeostasis.
Collapse
Affiliation(s)
- Susanne Wisén
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Eric B. Bertelsen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Andrea D. Thompson
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Srikanth Patury
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Peter Ung
- Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Lyra Chang
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Christopher G. Evans
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Gladis M. Walter
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jason E. Gestwicki
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
- Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
100
|
Shen A. Allosteric regulation of protease activity by small molecules. MOLECULAR BIOSYSTEMS 2010; 6:1431-43. [PMID: 20539873 DOI: 10.1039/c003913f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteases regulate a plethora of biological processes. Because they irreversibly cleave peptide bonds, the activity of proteases is strictly controlled. While there are many ways to regulate protease activity, an emergent mechanism is the modulation of protease function by small molecules acting at allosteric sites. This mode of regulation holds the potential to allow for the specific and temporal control of a given biological process using small molecules. These compounds also serve as useful tools for studying protein dynamics and function. This review highlights recent advances in identifying and characterizing natural and synthetic small molecule allosteric regulators of proteases and discusses their utility in studies of protease function, drug discovery and protein engineering.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Pathology, Stanford School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|