51
|
Gautam C, Srivastava D, Kociok-Köhn G, Gosavi SW, Sharma VK, Chauhan R, Late DJ, Kumar A, Muddassir M. Copper(ii) and cobalt(iii) Schiff base complexes with hydroxy anchors as sensitizers in dye-sensitized solar cells (DSSCs). RSC Adv 2023; 13:9046-9054. [PMID: 36950080 PMCID: PMC10025944 DOI: 10.1039/d3ra00344b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/11/2023] [Indexed: 03/22/2023] Open
Abstract
Two Schiff base complexes of copper(ii) and cobalt(iii) having the formulae [CuL2] (Cu-Sal) and [CoL3] (Co-Sal) (HL = 2-(((2-hydroxyethyl)imino)methyl)phenol) have been synthesized and characterized microanalytically, spectroscopically and in the case of Cu-Sal using single crystal X-ray diffraction technique. The single crystal X-ray analysis reveals a square planar geometry around Cu(ii) satisfied by phenoxide oxygen and imine nitrogen of the L- ligand to generate a six membered chelate ring. The solid state structure of Cu-Sal is satisfied by varied intermolecular non-covalent interactions. The nature of these interactions has been addressed with the aid of Hirshfeld surface analysis. Both compounds have been used as sensitizers in TiO2 based dye sensitized solar cells (DSSCs) and the DSSC experiments revealed that Co-Sal offers better photovoltaic performance in comparison to Cu-Sal. The Co-Sal exhibited a J sc of 9.75 mA cm-2 with a V oc of -0.648 V, incident photon to current conversion efficiency (IPCE) of 57% and η of 3.84%. The relatively better photovoltaic performance of Co-Sal could be attributed to better light absorption and dye loading than that of Cu-Sal.
Collapse
Affiliation(s)
- Chiteri Gautam
- Department of Chemistry, Faculty of Science, University of Lucknow Lucknow 226 007 India
| | - Devyani Srivastava
- Department of Chemistry, Faculty of Science, University of Lucknow Lucknow 226 007 India
| | - Gabriele Kociok-Köhn
- Material and Chemical Characterisation Facility (MC2), University of Bath Bath BA27AY UK
| | - Suresh W Gosavi
- Department of Physics, Faculty of Science, Savitribai Phule Pune University Pune 411007 India
| | - Vinod K Sharma
- Department of Chemistry, Faculty of Science, University of Lucknow Lucknow 226 007 India
| | - Ratna Chauhan
- Department of Environmental Science, Savitribai Phule Pune University Pune 411007 India
| | - Dattatray J Late
- Centre for Nanoscience and Nanotechnology Amity University Maharashtra Mumbai-Pune Expressway, Bhatan, Post Somatne, Panvel Mumbai Maharashtra 410206 India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow Lucknow 226 007 India
| | - Mohd Muddassir
- Department of Chemistry, College of Sciences, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
52
|
Song K, Chen G, He Z, Shen J, Ping J, Li Y, Zheng L, Miao Y, Zhang D. Protoporphyrin-sensitized degradable bismuth nanoformulations for enhanced sonodynamic oncotherapy. Acta Biomater 2023; 158:637-648. [PMID: 36621634 DOI: 10.1016/j.actbio.2022.12.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
Decreasing the scavenging capacity of reactive oxygen species (ROS) and enhancing ROS production are the two principal objectives in the development of novel sonosensitizers for sonodynamic therapy (SDT). Herein, we designed a protoporphyrin-sensitized bismuth-based semiconductor (P-NBOF) as a sonosensitizer to generate ROS and synergistically depleted glutathione for enhanced SDT against tumors. The bismuth-based nanomaterial (NBOF) is a wide-bandgap semiconductor. Sensitization by protoporphyrin made it easier to excite electrons under ultrasonic stimulation, and the energy of the lowest unoccupied electron orbital in protoporphyrin was higher than the conduction-band energy of NBOF. Under ultrasound excitation, the excited electrons in the protoporphyrin were injected into the conduction band of the NBOF, increasing its reducing ability leading to the production of more superoxide anion radicals and also helping to increase the charge separation of protoporphyrin leading to the production of more singlet oxygen. Meanwhile, P-NBOF continuously depleted glutathione, which was not only conducive to breaking the redox balance of the tumor microenvironment to enhance the therapeutic efficacy of SDT, but also promoted its degradation and metabolism. The construction of this P-NBOF sonosensitizer thus provided an effective strategy to enhance SDT for tumors. STATEMENT OF SIGNIFICANCE: To enhance the efficacy of sonodynamic tumor therapy, we developed a degradable protoporphyrin-sensitized bismuth-based nano-semiconductor (P-NBOF) by optimizing the band structure and glutathione-depletion ability. Protoporphyrin in P-NBOF under excitation preferentially generates free electrons, which are then injected into the conduction band of NBOF, improving the reducing ability of NBOF and promoting the separation of electron-hole pairs, thereby enhancing the production capacity of reactive oxygen species. Furthermore, P-NBOF can deplete glutathione, reduce the scavenging of reactive oxygen species, and reactivate and amplify the effect of sonodynamic therapy. The construction of the nanotherapeutic platform provides an option for enhancing sonodynamic therapy.
Collapse
Affiliation(s)
- Kang Song
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zongyan He
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Shen
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Ping
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, The Ministry of Education & Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
53
|
Bashir MBA, Rajpar AH, Salih EY, Ahmed EM. Preparation and Photovoltaic Evaluation of CuO@Zn(Al)O-Mixed Metal Oxides for Dye Sensitized Solar Cell. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:802. [PMID: 36903680 PMCID: PMC10005446 DOI: 10.3390/nano13050802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
In this manuscript, a series of dye-sensitized solar cells (DSSCs) were fabricated as a function of post-processing temperature based on mesoporous CuO@Zn(Al)O-mixed metal oxides (MMO) in conjunction with dye N719 as the main light absorber; the proposed CuO@Zn(Al)O geometry was, in turn, attained using Zn/Al-layered double hydroxide (LDH) as a precursor via combination of co-precipitation and hydrothermal techniques. In particular, the dye loading amount onto the deposited mesoporous materials was anticipated via regression equation-based UV-Vis technique analysis, which evidently demonstrated a robust correlation along with the fabricated DSSCs power conversion efficiency. In detail, of the DSSCs assembled, CuO@MMO-550 exhibited short-circuit current (JSC) and open-circuit voltage (VOC) of 3.42 (mA/cm2) and 0.67 (V) which result in significant fill factor and power conversion efficiency of 0.55% and 1.24%, respectively. This could mainly be due to the relatively high surface area of 51.27 (m2/g) which in turn validates considerable dye loading amount of 0.246 (mM/cm-2).
Collapse
Affiliation(s)
- Mohamed Bashir Ali Bashir
- Department of Mechanical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| | - Altaf Hussain Rajpar
- Department of Mechanical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ethar Yahya Salih
- College of Medical Science Technologies, The University of Mashreq, Baghdad 10021, Iraq
| | - Emad M. Ahmed
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
54
|
Kim HK. Redox Shuttle-Based Electrolytes for Dye-Sensitized Solar Cells: Comprehensive Guidance, Recent Progress, and Future Perspective. ACS OMEGA 2023; 8:6139-6163. [PMID: 36844550 PMCID: PMC9948191 DOI: 10.1021/acsomega.2c06843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
A redox electrolyte is a crucial part of dye-sensitized solar cells (DSSCs), which plays a significant role in the photovoltage and photocurrent of the DSSCs through efficient dye regeneration and minimization of charge recombination. An I-/I3 - redox shuttle has been mostly utilized, but it limits the open-circuit voltage (V oc) to 0.7-0.8 V. To improve the V oc value, an alternative redox shuttle with more positive redox potential is required. Thus, by utilizing cobalt complexes with polypyridyl ligands, a significant power conversion efficiency (PCE) of above 14% with a high V oc of up to 1 V under 1-sun illumination was achieved. Recently, the V oc of a DSSC has exceeded 1 V with a PCE of around 15% by using Cu-complex-based redox shuttles. The PCE of over 34% in DSSCs under ambient light by using these Cu-complex-based redox shuttles also proves the potential for the commercialization of DSSCs in indoor applications. However, most of the developed highly efficient porphyrin and organic dyes cannot be used for the Cu-complex-based redox shuttles due to their higher positive redox potentials. Therefore, the replacement of suitable ligands in Cu complexes or an alternative redox shuttle with a redox potential of 0.45-0.65 V has been required to utilize the highly efficient porphyrin and organic dyes. As a consequence, for the first time, the proposed strategy for a PCE enhancement of over 16% in DSSCs with a suitable redox shuttle is made by finding a superior counter electrode to enhance the fill factor and a suitable near-infrared (NIR)-absorbing dye for cosensitization with the existing dyes to further broaden the light absorption and enhance the short-circuit current density (J sc) value. This review comprehensively analyzes the redox shuttles and redox-shuttle-based liquid electrolytes for DSSCs and gives recent progress and perspectives.
Collapse
|
55
|
Electronic structures and ligand effect on redox potential of iron and cobalt complexes: a computational insight. Struct Chem 2023. [DOI: 10.1007/s11224-022-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
56
|
Scanning Electrochemical Microscope Studies of Charge Transfer Kinetics at the Interface of the Perovskite/Hole Transport Layer. JOURNAL OF NANOTECHNOLOGY 2023. [DOI: 10.1155/2023/1844719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Interfacial carrier transfer kinetics is critical to the efficiency and stability of perovskite solar cells. Herein, we measure the regeneration rate constant, absorption cross-section, reduction rate constant, and conductivity of hole transport layered perovskites using scanning electrochemical microscopy (SECM). The SECM feedback revealed that the regeneration rate constant, absorption cross-section, and reduction rate constant of the nickel oxide (NiO) layer perovskite layer are higher than those of the poly (3,4-ethyenedioxythiophene)-poly (styrenesulfonate) layered perovskite. Also, at a specific flux density (
), the value of the regeneration rate constant (keff) in both blue and red illuminations for the NiO/CH3NH3PbI3 film is significantly higher than in both PEDOT: PSS/CH3NH3PbI3 and FTO/CH3NH3PbI3 films. The difference in keff between layered and nonlayered perovskite conforms to the impact of the hole conducting layer on the charge transfer kinetics. According to the findings, SECM is a powerful approach for screening an appropriate hole transport layer for stable perovskite solar cells.
Collapse
|
57
|
Grobelny A, Shen Z, Eickemeyer FT, Antariksa NF, Zapotoczny S, Zakeeruddin SM, Grätzel M. A Molecularly Tailored Photosensitizer with an Efficiency of 13.2% for Dye-Sensitized Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207785. [PMID: 36369972 DOI: 10.1002/adma.202207785] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Photosensitizers yielding superior photocurrents are crucial for copper-electrolyte-based highly efficient dye-sensitized solar cells (DSCs). Herein, two molecularly tailored organic sensitizers are presented, coded ZS4 and ZS5, through judiciously employing dithieno[3,2-b:2″,3″-d]pyrrole (DTP) as the π-linker and hexyloxy-substituted diphenylquinoxaline (HPQ) or naphthalene-fused-quinoxaline (NFQ) as the auxiliary electron-accepting unit, respectively. Endowed with the HPQ acceptor, ZS4 shows more efficient electron injection and charge collection based on substantially reduced interfacial charge recombination as compared to ZS5. As a result, ZS4-based DSCs achieve a power conversion efficiency (PCE) of 13.2% under standard AM1.5G sunlight, with a high short-circuit photocurrent density (Jsc ) of 16.3 mA cm-2 , an open-circuit voltage (Voc ) of 1.05 V and a fill factor (FF) of 77.1%. Remarkably, DSCs sensitized with ZS4 exhibit an outstanding stability, retaining 95% of their initial PCE under continuous light soaking for 1000 h. It is believed that this is a new record efficiency reported so far for copper-electrolyte-based DSCs using a single sensitizer. The work highlights the importance of developing molecularly tailored photosensitizers for highly efficient DSCs with copper electrolyte.
Collapse
Affiliation(s)
- Anna Grobelny
- Laboratory of Photonics and Interfaces (LPI), Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland
| | - Zhongjin Shen
- Laboratory of Photonics and Interfaces (LPI), Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Felix T Eickemeyer
- Laboratory of Photonics and Interfaces (LPI), Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Naura F Antariksa
- Laboratory of Photonics and Interfaces (LPI), Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces (LPI), Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces (LPI), Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
58
|
Himel MH, Sikder B, Ahmed T, Choudhury SM. Biomimicry in nanotechnology: a comprehensive review. NANOSCALE ADVANCES 2023; 5:596-614. [PMID: 36756510 PMCID: PMC9890514 DOI: 10.1039/d2na00571a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Biomimicry has been utilized in many branches of science and engineering to develop devices for enhanced and better performance. The application of nanotechnology has made life easier in modern times. It has offered a way to manipulate matter and systems at the atomic level. As a result, the miniaturization of numerous devices has been possible. Of late, the integration of biomimicry with nanotechnology has shown promising results in the fields of medicine, robotics, sensors, photonics, etc. Biomimicry in nanotechnology has provided eco-friendly and green solutions to the energy problem and in textiles. This is a new research area that needs to be explored more thoroughly. This review illustrates the progress and innovations made in the field of nanotechnology with the integration of biomimicry.
Collapse
Affiliation(s)
- Mehedi Hasan Himel
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
- Department of Computer Science and Engineering, Brac University 66 Mohakhali Dhaka 1212 Bangladesh
| | - Bejoy Sikder
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
| | - Tanvir Ahmed
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
- Department of Computer Science and Engineering, Brac University 66 Mohakhali Dhaka 1212 Bangladesh
| | - Sajid Muhaimin Choudhury
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
| |
Collapse
|
59
|
Liao JM, Chin YK, Wu YT, Chou HH. Effect of regio-specific arylamine substitution on novel π-extended zinc salophen complexes: density functional and time-dependent density functional study on DSSC applications. RSC Adv 2023; 13:2501-2513. [PMID: 36741182 PMCID: PMC9844076 DOI: 10.1039/d2ra07571g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
A series of π-extended salophen-type Schiff-base zinc(ii) complexes, e.g., zinc-salophen complexes (ZSC), were investigated toward potential applications for dye-sensitized solar cells. The ZSC dyes adopt linear-, X-, or π-shaped geometries either with the functionalization of 1 donor/1 acceptor or 2 donors/2 acceptors to achieve a push-pull type molecular structure. The frontier molecular orbitals, light-harvesting properties as well as charge transfer characters against regio-specific substitution of donor/acceptor groups were studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The results reveal that all ZSC dyes of D-ZnS-π-A geometry (where D, S, and A denote to donor, salophen ligand, and acceptor, respectively) exhibit relatively lower HOMO energy compared to the structurally resembled porphyrin dye YD2-o-C8. Natural transition orbital (NTO) and electron-hole separation (EHS) approaches clearly differentiate the linear type YD-series dyes from CL-, AJ1-, and AJ2-series dyes because of poor charge transfer (CT) properties. In contrast, the π-shaped AJ2-series and X-shaped AJ1-series dyes outperform the others in a manner of stronger CT characteristics, broadened UV-vis absorption as well as tunable bandgap simply via substitution of p-ethynylbenzoic acids (EBAs) and arylamine donors at salophen 7,8- and 2,3,12,13-positions, respectively. Both EHS and calculated exciton binding energies suggest the strength of CT character for ZSC dyes with an amino donor in the trend TPA > AN > DPA. This work has provided clear illustration toward molecular design of efficient dyes featuring a zinc-salophen backbone.
Collapse
Affiliation(s)
- Jian-Ming Liao
- Department of Applied Chemistry, Providence University Taichung 43301 Taiwan
| | - Yu-Kai Chin
- Department of Applied Chemistry, Providence University Taichung 43301 Taiwan
| | - Yu-Ting Wu
- Department of Applied Chemistry, Providence University Taichung 43301 Taiwan
| | - Hsien-Hsin Chou
- Department of Applied Chemistry, Providence University Taichung 43301 Taiwan
| |
Collapse
|
60
|
Li S, Park S, Sherman BD, Yoo CG, Leem G. Photoelectrochemical approaches for the conversion of lignin at room temperature. Chem Commun (Camb) 2023; 59:401-413. [PMID: 36519448 DOI: 10.1039/d2cc05491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The selective cleavage of C-C/C-O linkages represents a key step toward achieving the chemical conversion of biomass to targeted value-added chemical products under ambient conditions. Using photoelectrosynthetic solar cells is a promising method to address the energy intensive depolymerization of lignin for the production of biofuels and valuable chemicals. This feature article gives an in-depth overview of recent progress using dye-sensitized photoelectrosynthetic solar cells (DSPECs) to initiate the cleavage of C-C/C-O bonds in lignin and related model compounds. This approach takes advantage of N-oxyl mediated catalysis in organic electrolytes and presents a promising direction for the sustainable production of chemicals currently derived from fossil fuels.
Collapse
Affiliation(s)
- Shuya Li
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.
| | - Seongsu Park
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.
| | - Benjamin D Sherman
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.,The Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, USA
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA. .,The Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, USA
| |
Collapse
|
61
|
Kumar M, Ansari M, Ansari A. Electronic, geometrical and photophysical facets of five coordinated porphyrin N-heterocyclic carbene transition metals complexes: A theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121774. [PMID: 36081194 DOI: 10.1016/j.saa.2022.121774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In the realm of dye sensitized solar cells (DSSCs), the 3d transition metals as photosensitizers are scarcely studied. In the present work, electronic structures, FMO, MEP surfaces, NBO analysis, energetics and photophysical properties of earth abundant metals (Mn, Fe and Co) based metalloporphyrins coordinated with NHC-carbene have been explored by using DFT and TDDFT calculations. According to formation energies and energy decomposition analysis (EDA), the cobalt based metalloporphyrins species are found to be more stable while in contrast manganese based species are predicted as more reactive among all. Also, from the ligation point of view, the TPP (meso-tetraphenylporphyrin) ligand forms more steady and rigid coordination as compare to the TTP (meso-tetratolylporphyrin) ligand. FMO analysis also support these observations. NBO and SNO results support the electronic configurations as well as unveil the controversial bonding pattern of NHCcarbon and metal atom and found that there is σ-bonding present between the metal and the NHCcarbon by the overlapping of sp-hybridized orbitals of carbenecarbon and sp/d hybrid orbital of the metal atom. TDDFT results show that the highest light harvesting efficiency (LHE) of all the studied species is found under the range of 360 nm - 380 nm (λ) and this may due to the presence of longer π-conjugations. In-depth investigation of this work may help to design new robust energy harvesting systems for high energy conversion efficiency based on earth abundance metals. Our results are in well agreement with the available experimental findings.
Collapse
Affiliation(s)
- Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Mursaleem Ansari
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
62
|
Consiglio G, Gorcyński A, Petralia S, Forte G. Computational study of linear carbon chain based organic dyes for dye sensitized solar cells. RSC Adv 2023; 13:1019-1030. [PMID: 36686920 PMCID: PMC9811357 DOI: 10.1039/d2ra06767f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Spectroscopic, electronic and electron injection properties of a new class of linear carbon chain (LCC) based organic dyes have been investigated, by means of density functional theory (DFT) and time-dependent density functional theory (TDDFT), for application in dye-sensitized solar cells (DSSCs). The photophysical properties of LCC-based dyes are tuned by changing the length of the linear carbon chain; UV/VIS absorption is red-shifted with increasing LCC length whereas oscillator strength and electron injection properties are reduced. Excellent nonlinear optical properties are predicted in particular for PY-N4 and PY-S4 dyes in the planar conformation. Results indicate that a LCC-bridge produces better results compared to benzene and thiophene bridges. Simulations of I--Dye@(TiO2)14 and Dye@(TiO2)14 anatase complexes indicate that designed dyes inject electrons efficiently into the TiO2 surface and can be regenerated by electron transfer from the electrolyte. Superior properties in terms of efficiency are shown by compounds with a pyrrole ring as the donor group and PY-3N is expected to be a promising candidate for applications, however all the investigated dyes could provide a good performance in solar energy conversion. Our study demonstrates that computational design can provide a significant contribution to experimental work; we expect this study will contribute to future developments to identify new and highly efficient sensitizers.
Collapse
Affiliation(s)
- Giuseppe Consiglio
- Department of Chemical Science University of Catania Via S. Sofia 64 95125 Italy
| | - Adam Gorcyński
- Faculty of Chemistry, Adam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Salvatore Petralia
- Department of Drug Science and Health University of Catania Via S. Sofia 64 95125 Italy
| | - Giuseppe Forte
- Department of Drug Science and Health University of Catania Via S. Sofia 64 95125 Italy
| |
Collapse
|
63
|
Nguyen VS, Su TS, Chen CC, Yeh CY, Wei TC. Efficient counter electrode for copper (I)(II)-mediated dye-sensitized solar cells based on polyvinyl alcohol capped platinum nanoclusters. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
64
|
Ren Y, Zhang D, Suo J, Cao Y, Eickemeyer FT, Vlachopoulos N, Zakeeruddin SM, Hagfeldt A, Grätzel M. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature 2023; 613:60-65. [PMID: 36288749 DOI: 10.1038/s41586-022-05460-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/18/2022] [Indexed: 01/13/2023]
Abstract
Dye-sensitized solar cells (DSCs) convert light into electricity by using photosensitizers adsorbed on the surface of nanocrystalline mesoporous titanium dioxide (TiO2) films along with electrolytes or solid charge-transport materials1-3. They possess many features including transparency, multicolour and low-cost fabrication, and are being deployed in glass facades, skylights and greenhouses4. Recent development of sensitizers5-10, redox mediators11-13 and device structures14 has improved the performance of DSCs, particularly under ambient light conditions14-17. To further enhance their efficiency, it is pivotal to control the assembly of dye molecules on the surface of TiO2 to favour charge generation. Here we report a route of pre-adsorbing a monolayer of a hydroxamic acid derivative on the surface of TiO2 to improve the dye molecular packing and photovoltaic performance of two newly designed co-adsorbed sensitizers that harvest light quantitatively across the entire visible domain. The best performing cosensitized solar cells exhibited a power conversion efficiency of 15.2% (which has been independently confirmed) under a standard air mass of 1.5 global simulated sunlight, and showed long-term operational stability (500 h). Devices with a larger active area of 2.8 cm2 exhibited a power conversion efficiency of 28.4% to 30.2% over a wide range of ambient light intensities, along with high stability. Our findings pave the way for facile access to high-performance DSCs and offer promising prospects for applications as power supplies and battery replacements for low-power electronic devices18-20 that use ambient light as their energy source.
Collapse
Affiliation(s)
- Yameng Ren
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dan Zhang
- Laboratory of Photomolecular Science, Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jiajia Suo
- Laboratory of Photomolecular Science, Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Yiming Cao
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. .,H.Glass SA, Lausanne, Switzerland.
| | - Felix T Eickemeyer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nick Vlachopoulos
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anders Hagfeldt
- Laboratory of Photomolecular Science, Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. .,Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences & Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
65
|
Biswas C, Gangadhar PS, Giribabu L, Chetti P, Banerjee D, Soma VR, Raavi SSK. Ultrafast intramolecular charge transfer dynamics and nonlinear optical properties of phenothiazine-based push–pull zinc porphyrin. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
66
|
Ahmad K, Kim H. A brief overview of electrode materials for hydrazine sensors and dye-sensitized solar cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
67
|
Gonzalez-Flores CA, Pourjafari D, Escalante R, Canto-Aguilar EJ, Poot AV, Andres Castán JM, Kervella Y, Demadrille R, Riquelme AJ, Anta JA, Oskam G. Influence of Redox Couple on the Performance of ZnO Dye Solar Cells and Minimodules with Benzothiadiazole-Based Photosensitizers. ACS APPLIED ENERGY MATERIALS 2022; 5:14092-14106. [PMID: 36465262 PMCID: PMC9709824 DOI: 10.1021/acsaem.2c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
ZnO-based dye-sensitized solar cells exhibit lower efficiencies than TiO2-based systems despite advantageous charge transport dynamics and versatility in terms of synthesis methods, which can be primarily ascribed to compatibility issues of ZnO with the dyes and the redox couples originally optimized for TiO2. We evaluate the performance of solar cells based on ZnO nanomaterial prepared by microwave-assisted solvothermal synthesis, using three fully organic benzothiadiazole-based dyes YKP-88, YKP-137, and MG-207, and alternative electrolyte solutions with the I-/I3 -, Co(bpy)3 2+/3+, and Cu(dmp)2 1+/2+ redox couples. The best cell performance is achieved for the dye-redox couple combination YKP-88 and Co(bpy)3 2+/3+, reaching an average efficiency of 4.7% and 5.0% for the best cell, compared to 3.7% and 3.9% for the I-/I3 - couple with the same dye. Electrical impedance spectroscopy highlights the influence of dye and redox couple chemistry on the balance of recombination and regeneration kinetics. Combined with the effects of the interaction of the redox couple with the ZnO surface, these aspects are shown to determine the solar cell performance. Minimodules based on the best systems in both parallel and series configurations reach 1.5% efficiency for an area of 23.8 cm2.
Collapse
Affiliation(s)
- Carlos A. Gonzalez-Flores
- Departamento
de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km
6, Mérida97310, Yucatán, México
| | - Dena Pourjafari
- Departamento
de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km
6, Mérida97310, Yucatán, México
| | - Renan Escalante
- Departamento
de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km
6, Mérida97310, Yucatán, México
- Área
de Química Física, Departamento de Sistemas Físicos,
Químicos y Naturales, Universidad
Pablo de Olavide, ES-41013Seville, Spain
| | - Esdras J. Canto-Aguilar
- Facultad
de Ingeniería, Universidad Autónoma
de Campeche-Campus V, San Francisco de Campeche, Campeche24085, México
| | - Alberto Vega Poot
- Departamento
de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km
6, Mérida97310, Yucatán, México
| | | | - Yann Kervella
- Université
Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, Grenoble38000, France
| | - Renaud Demadrille
- Université
Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, Grenoble38000, France
| | - Antonio J. Riquelme
- Área
de Química Física, Departamento de Sistemas Físicos,
Químicos y Naturales, Universidad
Pablo de Olavide, ES-41013Seville, Spain
| | - Juan A. Anta
- Área
de Química Física, Departamento de Sistemas Físicos,
Químicos y Naturales, Universidad
Pablo de Olavide, ES-41013Seville, Spain
| | - Gerko Oskam
- Departamento
de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km
6, Mérida97310, Yucatán, México
- Área
de Química Física, Departamento de Sistemas Físicos,
Químicos y Naturales, Universidad
Pablo de Olavide, ES-41013Seville, Spain
| |
Collapse
|
68
|
Selvaraj B, Shanmugam G, Kamaraj S, Thirugnanasambandam E, Peters S, Gunasekeran A, Sambandam A, Pillai RS. Effect of Copper and Cobalt Metal Complex Redox Mediator Based Xanthan Gum Gel Electrolyte Materials on Performance of Dye Sensitized Solar Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202203197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Balamurugan Selvaraj
- Advanced inorganic chemistry laboratory Department of Chemistry Faculty of Engineering and Technology SRM Institute and Science and Technology SRM Nagar Kattankulathur 603203, Kancheepuram District Tamil Nadu India
| | - Ganesan Shanmugam
- Advanced inorganic chemistry laboratory Department of Chemistry Faculty of Engineering and Technology SRM Institute and Science and Technology SRM Nagar Kattankulathur 603203, Kancheepuram District Tamil Nadu India
| | - Santhosh Kamaraj
- Advanced inorganic chemistry laboratory Department of Chemistry Faculty of Engineering and Technology SRM Institute and Science and Technology SRM Nagar Kattankulathur 603203, Kancheepuram District Tamil Nadu India
| | - Eswaramoorthi Thirugnanasambandam
- Advanced inorganic chemistry laboratory Department of Chemistry Faculty of Engineering and Technology SRM Institute and Science and Technology SRM Nagar Kattankulathur 603203, Kancheepuram District Tamil Nadu India
| | - Silda Peters
- Advanced inorganic chemistry laboratory Department of Chemistry Faculty of Engineering and Technology SRM Institute and Science and Technology SRM Nagar Kattankulathur 603203, Kancheepuram District Tamil Nadu India
| | - Ahalya Gunasekeran
- Nanomaterials and Solar Energy Conversion Lab Department of Chemistry National Institute of Technology Tiruchirappalli 620 015 Tamilnadu India
| | - Anandan Sambandam
- Nanomaterials and Solar Energy Conversion Lab Department of Chemistry National Institute of Technology Tiruchirappalli 620 015 Tamilnadu India
| | - Renjith S. Pillai
- Department of Chemistry Christ University Bengaluru 560029 Karnataka India
| |
Collapse
|
69
|
Electrodeposited PPy@TiO2 and PEDOT@TiO2 Counter Electrodes for [Co(bpy)3]2+/3+ Redox Mediator-Based Dye-Sensitized Solar Cells. INORGANICS 2022. [DOI: 10.3390/inorganics10110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The main goal of this work is to enhance the catalytic performance of PPy and PEDOT films toward the Co2+/Co3+ redox couple. PPy and PEDOT films were electrodeposited separately on a porous TiO2 template to assess their suitability as alternative catalysts in dye-sensitized solar cells (DSSC) based on the [Co(bpy)3]2+/3+ redox shuttle. The obtained PPy@TiO2 and PEDOT@TiO2 counter electrodes displayed much rougher surfaces. Electrochemical studies indicate the superior catalytic activity of both the electrodeposited electrodes toward Co3+ reduction, as indicated by lower charge transfer resistance than that of pristine films and even that of Pt electrodes. Therefore, the fabricated DSSC devices with these counter electrodes achieved higher power conversion efficiencies compared to cells with pristine PPy and PEDOT counter electrodes, or even with a Pt counter electrode. Interestingly, the assembled DSSC device with a PEDOT@TiO2 counter electrode displayed the highest performance among all with a power conversion efficiency of 6.62%, which is better than that obtained by the device with a Pt electrode (6.07%).
Collapse
|
70
|
Beedri N, Mokashi VB, Mahadik SA, Pathan HM, Salunke-Gawali S. Naphthoquinoneoxime-Sensitized Titanium Dioxide Photoanodes: Photoelectrochemical Properties. ACS OMEGA 2022; 7:41519-41530. [PMID: 36406555 PMCID: PMC9670268 DOI: 10.1021/acsomega.2c05334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Naphthoquinoneoxime derivatives, viz., LwOx, 3-hydroxy-4-(hydroxyimino)naphthalen-1 (4H)-one; PthOx, 3-hydroxy-4-(hydroxyimino)-2-methylnaphthalen-1(4H)-one; and Cl_LwOx, 2-chloro-3-hydroxy-4-(hydroxyimino)naphthalen-1(4H)-one, are used in fabrication of dye-sensitized solar cells (DSSCs). The photophysical and electrochemical properties of the sensitizers were studied. The HOMO-LUMO energy gaps of the sensitizers (LwOx, PthOx, and Cl_LwOx) calculated by using the intersection of UV-visible and fluorescence spectra are 2.85, 2.71, and 2.87 eV, respectively. The energy band alignment energy level of the sensitizer, that is, the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO), should match with the energy level of the TiO2 conduction band and the redox potential of iodine/triiodide electrolyte to allow smooth electron transfer. The electrochemical characterization of sensitizers was done to find the LUMO and HOMO level of the sensitizer. It shows that the LUMO level of (LwOx, PthOx, and Cl_LwOx) is above the conduction band position of TiO2. Electrochemical impedance spectroscopy was used to study the charge transport resistance and electron lifetime of DSSCs. The charge transport resistance at the TiO2 |electrolyte|counter electrode interface was reduced in the Cl_LwOx device; thus, the electron lifetime of Cl_LwOx was enhanced compared to LwOx and PthOx sensitizers. The fabricated device was characterized using photocurrent density-voltage (J-V) measurement. It is observed that there was an enhancement in the overall power conversion efficiency (η) of the DSSCs fabricated by using Cl_LwOx sensitizers as compared to LwOx and PthOx sensitizer-loaded photoanodes. Enhancement in power conversion efficiency, that is, photovoltage and photocurrent, is achieved due to the chlorine substituent. Thus, the chlorine substituent naphthoquinoneoxime pushes the electron density, enhancing the pushing nature and facilitating the lone pair present in the N-OH moiety to attach to TiO2 more strongly.
Collapse
Affiliation(s)
- Niyamat
I. Beedri
- Department
of Chemistry, Savitribai Phule Pune University, Pune411 007, India
| | - Vivek B. Mokashi
- Department
of Chemistry, Savitribai Phule Pune University, Pune411 007, India
| | - Sharad A. Mahadik
- Department
of Chemistry, Savitribai Phule Pune University, Pune411 007, India
| | - Habib M. Pathan
- Advanced
Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune411 007, India
| | | |
Collapse
|
71
|
Blount P, Marder L, Oyegoke J, Trad T. The effects of copper doping on morphology and room-temperature photoluminescence of ZnO nanocolumns. RSC Adv 2022; 12:32667-32672. [PMID: 36425673 PMCID: PMC9664207 DOI: 10.1039/d2ra05278d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
In this study, a versatile vapor phase transport method for the synthesis and copper-doping of ZnO nanocolumns is demonstrated. Doping percentage (up to 5%) showed no effect on the wurtzite structural phase of ZnO nanocolumns. However, a decrease in nanocolumn diameter (cross-sectional length of longest side or diagonal) due to doping was observed by scanning electron microscopy. Reduced rate of electron-hole recombination was inferred from a decrease in the intensity of the near-band edge emission peak shown in room-temperature photoluminescence spectra. Expression of structural defects in both doped and undoped nanocolumns suggest p-type conductivity. Observed copper-doping effects show promise for utilizing such structures as electrode components in dye-sensitized solar cells.
Collapse
Affiliation(s)
- Parker Blount
- Department of Chemistry, Sam Houston State University Huntsville Texas 77340 USA
| | - Lauren Marder
- Department of Chemistry, Sam Houston State University Huntsville Texas 77340 USA
| | - Jamal Oyegoke
- Department of Chemistry, Sam Houston State University Huntsville Texas 77340 USA
| | - Tarek Trad
- Department of Chemistry, Sam Houston State University Huntsville Texas 77340 USA
| |
Collapse
|
72
|
Tale Moghim M, Jamehbozorgi S, Rezvani M, Ramezani M. Computational investigation on the geometry and electronic structures and absorption spectra of metal-porphyrin-oligo- phenyleneethynylenes-[60] fullerene triads. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121488. [PMID: 35759932 DOI: 10.1016/j.saa.2022.121488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
In this work, we focus our attention on the influence of 2nd-row transition metals on the structural geometries, electronic structures, and absorption characteristics of porphyrin linked with the C60 fullerene with oligo-p-phenyleneethynylenes (MP-C60-oligo-PPEs) compounds. The DFT/B3PW91-D3 and CAM-B3LYP-D3/6-31G (d) calculations revealed that various metals embedded within the porphyrin moiety give different bridge conformations and different HOMO-LUMO energy levels. We calculate the UV-Vis spectra and absorption parameters using the time-dependent ZINDO/S approach. Our findings indicate that all the compounds have enhanced absorptions in the visible light range, and their molecular orbital energies adopt the condition of sensitizers. However, all of the complexes except down spin states exhibit considerably charge spatial separation. The results suggest that the ZnP-C60-oligo-PPEs triad can meet the necessary conditions of the sensitizer of dye-sensitized solar cells (DSSCs) in comparison with other counterparts and could be an optimum triad compound for potential application in photovoltaic devices.
Collapse
Affiliation(s)
- Masoud Tale Moghim
- Department of Chemistry, Faculty of Science Arak Branch, Islamic Azad University, Arak, Iran
| | - Saeed Jamehbozorgi
- Department of Chemistry, Faculty of Science Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Mahyar Rezvani
- Department of Chemistry, Faculty of Science Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Majid Ramezani
- Department of Chemistry, Faculty of Science Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
73
|
Effects of chelate ligands containing NN, PN, and PP on the performance of half-sandwich ruthenium metal complexes as sensitizers in dye sensitized solar cells (DSSCs): quantum chemical investigation. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
74
|
Revealing the photoelectric performance and multistep electron transfer mechanism in D-A-π-A dyes coupled with a chlorophyll derivative for co-sensitized solar cells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
75
|
Singh S, Raj T, Bahadur I, Singh H, Varma RS. Improved Power Conversion Efficiencies of Dye‐Capped and Sensitized ZnO Solar Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202202075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Satbir Singh
- Department of Engineering & Technology Guru Nanak Dev University Regional Campus Gurdaspur Punjab India 143521
| | - Tilak Raj
- Toxicology Division Regional Testing Forensic Science Laboratory, Ludhiana Punjab India 141008
| | - Indra Bahadur
- Department of Chemistry Faculty of Agriculture Science and Technology North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
| | - Harpreet Singh
- Department of Chemistry Lovely Professional University, Phagwara Punjab India 144411
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| |
Collapse
|
76
|
Sakamoto D, Shiratani M, Seo H. Near-infrared light harvesting of upconverting Y2O3:Er3+ nanoparticles and their photovoltaic application. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
77
|
Singh A, Srivastava D, Gosavi SW, Chauhan R, Ashokkumar M, Albalwi AN, Muddassir M, Kumar A. A double co-sensitization strategy using heteroleptic transition metal ferrocenyl dithiocarbamate phenanthrolene-dione for enhancing the performance of N719-based DSSCs. RSC Adv 2022; 12:28088-28097. [PMID: 36320265 PMCID: PMC9527572 DOI: 10.1039/d2ra05601a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
Three new heteroleptic dithiocarbamate complexes with formula [M(Phen-dione)(Fcdtc)]PF6 (where M = Ni(ii) Ni-Fc, Cu(ii) Cu-Fc) and [Co(Phen-dione)(Fcdtc)2]PF6 (Co-Fc) (Fcdtc = N-ethanol-N-methylferrocene dithiocarbamate and Phen-dione = 1,10-phenanthroline-5,6-dione; PF6 - = hexafluorophosphate) were synthesized and characterized using microanalysis, FTIR, electronic absorption spectroscopy and mass spectrometry. The solution state electronic absorption spectroscopy for all three complexes displayed a band at ∼430 nm corresponding to the ferrocene unit and another low-intensity band in the visible region arising because of the d-d transitions. These newly synthesized complexes were used as co-sensitizers for the state-of-the-art di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(ii) (N719) dye in dye-sensitized solar cells (DSSCs). Among the three co-sensitizers/co-adsorbent-based DSSC set-ups, the assembly fabricated using Co-Fc/N719 displayed good photovoltaic performance with 5.31% efficiency (η) while a new triple component strategy inculcating N719, Co-Fc and Cu-Fc dyes offered the best photovoltaic performance with 6.05% efficiency (η) with incident photon to current conversion efficiency (IPCE) of 63%. This indicated an upliftment of the DSSC performance by ∼38% in comparison to the set-up constructed by employing only N719 dye (η = 4.39%) under similar experimental conditions.
Collapse
Affiliation(s)
- Amita Singh
- Department of Chemistry, Dr Rammanohar Lohia Awadh University Ayodhya-224001 India
- Department of Chemistry, Faculty of Science, University of Lucknow Lucknow 226 007 India
| | - Devyani Srivastava
- Department of Chemistry, Faculty of Science, University of Lucknow Lucknow 226 007 India
| | - Suresh W Gosavi
- Department of Physics, Savitribai Phule Pune University Pune-411007 India
| | - Ratna Chauhan
- Department of Environmental Science, Savitribai Phule Pune University Pune-411007 India
| | | | - Awad Naseer Albalwi
- Department of Chemistry, College of Sciences, King Saud University Riyadh 11451 Saudi Arabia
| | - Mohd Muddassir
- Department of Chemistry, College of Sciences, King Saud University Riyadh 11451 Saudi Arabia
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow Lucknow 226 007 India
| |
Collapse
|
78
|
Highly Efficient Rigidified Quinoxaline‐based Co‐Sensitizers Carrying Long Alkyl Chains for Ruthenium‐Complex‐Sensitized DSSCs**. ChemistrySelect 2022. [DOI: 10.1002/slct.202202183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
79
|
Sanusi K, Atewolara-Odule OC, Sanyaolu NO, Ibikunle AA, Khoza PB, Fatomi NO, Fasanya SA, Abuka HE, Jesugbile EO, Yilmaz Y, Ceylan Ü. Effects of solvents and substituents on the adsorptive and photovoltaic properties of porphyrins for dye-sensitized solar cell application: a theoretical consideration. Struct Chem 2022. [DOI: 10.1007/s11224-022-02051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
80
|
Zeng Y, Dou T, Ma L, Ma J. Biomedical Photoacoustic Imaging for Molecular Detection and Disease Diagnosis: "Always-On" and "Turn-On" Probes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202384. [PMID: 35773244 PMCID: PMC9443455 DOI: 10.1002/advs.202202384] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Indexed: 05/05/2023]
Abstract
Photoacoustic (PA) imaging is a nonionizing, noninvasive imaging technique that combines optical and ultrasonic imaging modalities to provide images with excellent contrast, spatial resolution, and penetration depth. Exogenous PA contrast agents are created to increase the sensitivity and specificity of PA imaging and to offer diagnostic information for illnesses. The existing PA contrast agents are categorized into two groups in this review: "always-on" and "turn-on," based on their ability to be triggered by target molecules. The present state of these probes, their merits and limitations, and their future development, is explored.
Collapse
Affiliation(s)
- Yun Zeng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi Province, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi Province, 7100126, P. R. China
| | - Taotao Dou
- Neurosurgery Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Lei Ma
- Vascular Intervention Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Jingwen Ma
- Radiology Department, CT and MRI Room, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| |
Collapse
|
81
|
Modification of DSSC Based on Polymer Composite Gel Electrolyte with Copper Oxide Nanochain by Shape Effect. Polymers (Basel) 2022; 14:polym14163426. [PMID: 36015683 PMCID: PMC9413727 DOI: 10.3390/polym14163426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Solvent evaporation and leakage of liquid electrolytes that restrict the practicality of dye-sensitized solar cells (DSSCs) motivate the quest for the development of stable and ionic conductive electrolyte. Gel polymer electrolyte (GPE) fits the criteria, but it still suffers from low efficiency due to insufficient segmental motion within the electrolytes. Therefore, incorporating metal oxide nanofiller is one of the approaches to enhance the performance of electrolytes due to the presence of cross-linking centers that can be coordinated with the polymer segments. In this research, polymer composite gel electrolytes (PCGEs) employing poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (P(VB-co-VA-co-VAc)) terpolymer as host polymer, tetrapropylammonium iodide (TPAI) as dopant salt, and copper oxide (CuO) nanoparticles as the nanofillers were produced. The CuO nanofillers were synthesized by sonochemical method and subsequently calcined at different temperatures (i.e., 200, 350, and 500 °C), denoted as CuO-200, CuO-350, and CuO-500, respectively. All CuO nanoparticles have different shapes and sizes that are connected in a chain which impact the amorphous phase and the roughness of the surface, proven by the structural and the morphological analyses. It was found that the PCGE consisting of CuO-350 exhibited the highest ionic conductivity of 2.54 mS cm−1 and apparent diffusion coefficient of triiodide of 1.537 × 10−4 cm2 s−1. The enhancement in the electrochemical performance of the PCGEs is correlated with the change in shape (rod to sphere) and size of CuO particles which disrupted the structural order of the polymer chain, facilitating the redox couple transportation. Additionally, a DSSC was fabricated and achieved the highest power conversion efficiency of 7.05% with JSC of 22.1 mA cm−2, VOC of 0.61 V, and FF of 52.4%.
Collapse
|
82
|
Wang X, Wang Y, Zou J, Luo J, Li C, Xie Y. Efficient Solar Cells Sensitized by Organic Concerted Companion Dyes Suitable for Indoor Lamps. CHEMSUSCHEM 2022; 15:e202201116. [PMID: 35702052 DOI: 10.1002/cssc.202201116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 06/15/2023]
Abstract
In this work, organic concerted companion (CC) dyes CCOD-1 and CCOD-2 were constructed by covalently linking two organic dye units with complementary absorption spectra. Both CC dyes exhibited intense absorption from 300 to 650 nm with the band edges extended to 700 nm. These CC dyes were used to fabricate dye-sensitized solar cells (DSSCs), and the photovoltaic performance was investigated using different light sources. CCOD-2 possessed bulkier outer shelter than CCOD-1 owing to the longer carbon chains (C12 ) at the donor moiety, and thus it had stronger anti-aggregation and anti-charge-recombination ability. Under simulated sunlight (AM1.5G), CCOD-2 exhibited enhanced photovoltaic behavior with an open-circuit voltage (VOC ) of 759 mV, short-circuit current density (JSC ) of 19.23 mA ⋅ cm-2 , and power conversion efficiency (PCE) of 10.4 %, respectively. Notably, under the illumination of the indoor T5 fluorescent lamp (2500 lux), CCOD-2 afforded an enhanced PCE of 28.0 % with remarkable VOC and JSC of 692 mV and 0.424 mA cm-2 , respectively. Notably, the PCE achieved for CCOD-2 outperformed those of the reference sensitizer N719 and our previously reported CC dyes XW61 and XW70-C8 under the same indoor lamp conditions. In summary, the novel organic CC dyes developed in this work were demonstrated to be promising for fabricating DSSCs to efficiently harvest the energy of indoor lamps.
Collapse
Affiliation(s)
- Xueyan Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yuqing Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jiazhi Zou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jiaxin Luo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
83
|
Aktary M, Kamruzzaman M, Afrose R. A comparative study of the mechanical stability, electronic, optical and photocatalytic properties of CsPbX 3 (X = Cl, Br, I) by DFT calculations for optoelectronic applications. RSC Adv 2022; 12:23704-23717. [PMID: 36090433 PMCID: PMC9390720 DOI: 10.1039/d2ra04591e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Organic free Cs-based perovskite materials are potential candidates for electronic and optoelectronic applications. A systematic comparative study of the mechanical, electronic, optical, and photocatalytic properties of CsPbX3 (X = Cl, Br, I) was conducted using density functional theory to compare the applicability of these materials in optoelectronic, photocatalytic, and photovoltaic (PV) devices. We calculated structural and elastic properties to determine the better agreement of damage-tolerance and electronic and optical responses for suitable device applications. Optimized lattice parameters and elastic constants showed excellent agreement with the experimental data whereas some properties were found to be much better than other theoretical reports. CsPbBr3 is thermodynamically more stable and more ductile compared to the other two perovskites. The hydrostatic pressure dependent mechanical stability showed that CsPbCl3 and CsPbBr3 sustained stability under low applied pressure, whereas the stability of CsPbI3 was very high. The electronic band gap calculations showed that CsPbCl3, CsPbBr3, and CsPbI3 are suitable for green, orange, and red emissions of optical spectra owing to the proper electronic band gaps. CsPbI3 can be shown as the best photocatalyst for the hydrogen evolution reaction and CsPbBr3 is the most stable photocatalyst due to its nearly balanced oxidation and reduction potentials, but CaPbCl3 is better for O2 production. The density of states and other optical properties have been reported in this study. Thus, our findings would be beneficial for experimental studies and can open a new window for efficient electronic, optoelectronic, and hydrogen production along with the biodegradation of polluted and waste materials.
Collapse
Affiliation(s)
- M Aktary
- Department of Physics, Begum Rokeya University, Rangpur Rangpur-5400 Bangladesh (+88) 01516795931
| | - M Kamruzzaman
- Department of Physics, Begum Rokeya University, Rangpur Rangpur-5400 Bangladesh (+88) 01516795931
| | - R Afrose
- Department of Physics, Begum Rokeya University, Rangpur Rangpur-5400 Bangladesh (+88) 01516795931
| |
Collapse
|
84
|
Rathnasekara R, Hari P. Enhancing the Efficiency of Dye‐Sensitized Solar Cells (DSSCs) by Nanostructured Ag‐doped ZnO Electrodes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rusiri Rathnasekara
- Department of Physics and Engineering Physics University of Tulsa Tulsa Oklahoma 74104 USA
| | - Parameswar Hari
- Department of Physics and Engineering Physics University of Tulsa Tulsa Oklahoma 74104 USA
- Oklahoma Photovoltaic Research Institute University of Tulsa Tulsa Oklahoma 74104 USA
| |
Collapse
|
85
|
Novel heterologous binary redox mediator based on an ionic liquid and cobalt complex for efficient organic-solvent-free dye-sensitized solar cells. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
86
|
Huang S, Chen K, Li TT. Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214563] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
87
|
Zou J, Wang Y, Baryshnikov G, Luo J, Wang X, Ågren H, Li C, Xie Y. Efficient Dye-Sensitized Solar Cells Based on a New Class of Doubly Concerted Companion Dyes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33274-33284. [PMID: 35834394 DOI: 10.1021/acsami.2c07950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To develop efficient dye-sensitized solar cells (DSSCs), concerted companion (CC) dyes XW60-XW63 constructed from the covalent linkage of a strapped porphyrin dye unit and an organic dye unit have been reported to exhibit panchromatic absorption and excellent photovoltaic performance. However, these CC dyes only afforded moderate VOC values of ca. 763 mV, demonstrating relatively weak antiaggregation ability, which remains an obstacle for further enhancing the photovoltaic behavior. To address this problem, we herein develop porphyrin dyes XW77-XW80 with the macrocycles wrapped with alkoxy chains of various lengths (OC6H13-OC22H45) and the corresponding CC dyes XW81-XW84 containing these porphyrin dye units. Interestingly, the new CC dyes XW81-XW83 exhibit increasing VOC from 745 to 784 mV with the chain lengths extended from C6 to C18, and a lowered VOC of 762 mV was obtained for XW84 when the chain length was further extended to C22. As a result, XW83 afforded the highest PCE of 12.2%, which is, to the best of our knowledge, the record efficiency for the iodine electrolyte-based solar cells sensitized with a single dye. These results can be rationalized by the so-called doubly concerted companion (DCC) effects, that is, the two subdye units exhibit not only complementary absorption but also concerted antiaggregation with the long wrapping chains on the porphyrins unit simultaneously protecting the porphyrin macrocycle and the neighboring organic subdye unit, thus affording panchromatic absorption and strong antiaggregation and anticharge-recombination ability. These results provide a new approach for constructing a class of DCC dyes to achieve high-performance DSSCs without using any antiaggregating coadsorbent or absorption-enhancing cosensitizer.
Collapse
Affiliation(s)
- Jiazhi Zou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Yuqing Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden
| | - Jiaxin Luo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Xueyan Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala 751 20, Sweden
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| |
Collapse
|
88
|
Fort MJ, Click SM, Robinson EH, He FMC, Bernhardt PV, Rosenthal SJ, Macdonald JE. Minimizing the Reorganization Energy of Cobalt Redox Mediators Maximizes Charge Transfer Rates from Quantum Dots. Angew Chem Int Ed Engl 2022; 61:e202202322. [DOI: 10.1002/anie.202202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Madeleine J. Fort
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Sophia M. Click
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Evan H. Robinson
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Felix M. C. He
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane Queensland 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane Queensland 4072 Australia
| | - Sandra J. Rosenthal
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Janet E. Macdonald
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| |
Collapse
|
89
|
Inomata T, Matsunaga A, Jin G, Kitagawa T, Muramatsu M, Ozawa T, Masuda H. Improvements in photoelectric performance of dye-sensitised solar cells using ionic liquid-modified TiO 2 electrodes. RSC Adv 2022; 12:19624-19631. [PMID: 35865598 PMCID: PMC9257768 DOI: 10.1039/d2ra03230a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
One of the major problems in dye-sensitised solar cells (DSSCs) is the aggregation of dyes on TiO2 electrodes, which leads to undesirable electron transfer. Various anti-aggregation agents, such as deoxycholic acid, have been proposed and applied to prevent dye aggregation on the electrodes. In this study, we designed and synthesised a phosphonium-type ionic liquid that can be modified on the TiO2 electrode surface and used as a new anti-aggregation agent. Although the modification of the ionic liquid onto the electrode reduced the amount of dye adsorbed on the electrode, it showed a significant anti-aggregation effect, thereby improving the photovoltaic performance of DSSCs with N3 and J13 dyes. This finding suggests that ionic liquids are effective as anti-aggregation agents for DSSCs. The modification of the phosphonium-type ionic liquid onto the TiO2 electrode reduced the amount of dye adsorbed on the electrode and showed significant aggregation effect, thereby improving the photovoltaic performance of DSSCs.![]()
Collapse
Affiliation(s)
- Tomohiko Inomata
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Ayaka Matsunaga
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Guangzhu Jin
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Takuma Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Mizuho Muramatsu
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Tomohiro Ozawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Hideki Masuda
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan.,Department of Applied Chemistry, Aichi Institute of Technology 1247 Yachigusa, Yakusa-cho Toyota 470-0392 Japan
| |
Collapse
|
90
|
Alim MA, Repon MR, Islam T, Mishfa KF, Jalil MA, Aljabri MD, Rahman MM. Mapping the Progress in Natural Dye‐Sensitized Solar Cells: Materials, Parameters and Durability. ChemistrySelect 2022. [DOI: 10.1002/slct.202201557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Md. Abdul Alim
- Department of Textile Engineering Khulna University of Engineering & Technology Khulna 9203 Bangladesh
| | - Md. Reazuddin Repon
- ZR Research Institute for Advanced Materials Sherpur 2100 Bangladesh
- Department of Production Engineering Faculty of Mechanical Engineering and Design Kaunas University of Technology Studentų 56 LT-51424 Kaunas Lithuania
| | - Tarikul Islam
- ZR Research Institute for Advanced Materials Sherpur 2100 Bangladesh
- Department of Textile Engineering Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Kaniz Fatima Mishfa
- Department of Textile Engineering Khulna University of Engineering & Technology Khulna 9203 Bangladesh
| | - Mohammad Abdul Jalil
- Department of Textile Engineering Khulna University of Engineering & Technology Khulna 9203 Bangladesh
| | - Mahmood D. Aljabri
- Department of Chemistry University College in Al-Jamoum Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry Faculty of Science King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
91
|
Conradie J. DFT Study of bis(1,10-phenanthroline)copper complexes: Molecular and electronic structure, redox and spectroscopic properties and application to Solar Cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
92
|
Zhang W, Chen S, Sun P, Ye S, Fan Q, Song J, Zeng P, Qu J, Wong W. NIR-II J-Aggregated Pt(II)-Porphyrin-Based Phosphorescent Probe for Tumor-Hypoxia Imaging. Adv Healthc Mater 2022; 11:e2200467. [PMID: 35585025 DOI: 10.1002/adhm.202200467] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Indexed: 12/30/2022]
Abstract
The luminescence of traditional phosphorescence-based hypoxia probes is limited to the visible and first near-infrared wavelength regions (<1000 nm), which has defects of higher light scattering and lower penetration depth in contrast with the second near-infrared wavelength window (NIR-II, 1000-1700 nm) for optical bioimaging. Herein, 5,15-bis(2,6-bis(dodecyloxy)phenyl)-porphyrin platinum(II) (PpyPt) with J-aggregation induced NIR-II phosphorescence is reported. J-aggregates of PpyPt are confirmed by the X-ray diffraction data in the crystalline state. Moreover, the emission and excitation spectra of PpyPt in the solid states reveal NIR-II luminescence feature of PpyPt in J-aggregates. More importantly, by preparation of water-soluble PpyPt nanoparticles (PpyPt NPs4.76 ) with J-aggregates, it has NIR-II phosphorescent lifetime of microseconds and good oxygen-sensitivity in water. Moreover, the good biological hypoxia-sensing potential of PpyPt NPs4.76 is demonstrated in cells and 4T1-tumor-bearing mice. This study provides an efficient strategy to design NIR-II phosphorescent probe for sensitive tumor-hypoxia detection through the construction of J-aggregates.
Collapse
Affiliation(s)
- Wansu Zhang
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province Shenzhen University Shenzhen 518060 P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Kowloon Hong Kong 999077 P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Shangyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM) Nanjing University of Posts Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM) Nanjing University of Posts Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Shuai Ye
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province Shenzhen University Shenzhen 518060 P. R. China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM) Nanjing University of Posts Telecommunications 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Jun Song
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province Shenzhen University Shenzhen 518060 P. R. China
| | - Pengju Zeng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province Shenzhen University Shenzhen 518060 P. R. China
| | - Junle Qu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province Shenzhen University Shenzhen 518060 P. R. China
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) Moscow 115409 Russian Federation
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University (PolyU) Hung Hom Kowloon Hong Kong 999077 P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| |
Collapse
|
93
|
Fort MJ, Click SM, Robinson EH, He FMC, Bernhardt PV, Rosenthal SJ, Macdonald JE. Minimizing the Reorganization Energy of Cobalt Redox Mediators Maximizes Charge Transfer Rates from Quantum Dots. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Madeleine J. Fort
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Sophia M. Click
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Evan H. Robinson
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Felix M. C. He
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane Queensland 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane Queensland 4072 Australia
| | - Sandra J. Rosenthal
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| | - Janet E. Macdonald
- Department of Chemistry Vanderbilt Institute of Nanoscale Science and Engineering Vanderbilt University Nashville TN 37235 USA
| |
Collapse
|
94
|
Kong J, Zhang W, Zhang X, Liu B, Li Y, Xia A. Conformation-related excited-state charge transfer/separation of donor-π-acceptor chromophores. J Chem Phys 2022; 156:174902. [PMID: 35525673 DOI: 10.1063/5.0092880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the excited-state charge transfer/separation (CT/CS) of donor-π-acceptor chromophores can provide guidance for designing and synthesizing advanced dyes to improve the performance of dye-sensitized solar cells (DSSCs) in practical applications. Herein, two newly synthesized electronic push-pull molecules, CS-14 and CS-15, that consist of carbazole donor and benzothiadiazole acceptor segments are chosen to explore the ultrafast dynamics of intramolecular CT/CS processes. The theoretical calculation results depict an excited-state intramolecular CT character for both dyes, while the dihedral angle between donor and acceptor of CS-14 is larger than that of CS-15, suggesting a more significant CT character of CS-14. Furthermore, compared to CS-14, the bond rotation of CS-15 between donor and π-bridge is restricted by employing the hexatomic ring, indicating the stronger molecular planarization of CS-15. Ultrafast spectroscopy clearly shows a solvent polarity-dependent excited-state species evolution from CT to CS-the CT character is observed in low-polar toluene solvent, while the feature of the CS state in polar tetrahydrofuran and acetone solvents is captured, which successfully proved a solvent polarity modulated excited-state CT/CS characters. We also found that though the generation of the CS state within CS-14 is slightly faster than that of CS-15, the charge recombination process of CS-15 with excellent planar conformation is much slower, providing enough time for a higher charge migration efficiency in DSSCs.
Collapse
Affiliation(s)
- Jie Kong
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Wei Zhang
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Xiaomin Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, No. 20, East Road of Nan Er Huan, Shijiazhuang 050024, People's Republic of China
| | - Bo Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, No. 20, East Road of Nan Er Huan, Shijiazhuang 050024, People's Republic of China
| | - Yang Li
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Andong Xia
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| |
Collapse
|
95
|
Mathela S, Kumar S, Singh PK, Chandra Singh R, Shukla PK, Singh V, Noor IM, Kakroo S, Madkhli AY, Tomar R. Ionic liquid dispersed highly conducting polymer electrolyte for supercapacitor application: Current scenario and prospects “ICSEM 2021”. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221099432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ionic liquid (IL) is now being considered as a novel contender in the development of highly conducting polymer electrolytes rather than a solvent. It has a significant impact on the electrochemical performance of polymer electrolytes. This study emphasizes the significance of low viscosity IL dispersion within a polymer (PVA) matrix. The electrical, structural and photoelectrochemical properties of the IL-doped polymer electrolyte are discussed in detail. These highly conducting IL doped solid polymer electrolytes show promise towards the development of highly efficient Supercapacitors.
Collapse
Affiliation(s)
- Shreya Mathela
- Department of Chemistry and Biochemistry, Sharda University, Greater Noida, India
- Asbury Lab, Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Sushant Kumar
- COE on Solar Cells and Renewable Energy, Department of Physics, Sharda University, Greater Noida, India
| | - Pramod K Singh
- COE on Solar Cells and Renewable Energy, Department of Physics, Sharda University, Greater Noida, India
| | - Ram Chandra Singh
- COE on Solar Cells and Renewable Energy, Department of Physics, Sharda University, Greater Noida, India
| | - PK Shukla
- Vindhya Institute of Technology and Science, Madhya Pradesh, India
| | - Vijay Singh
- Department of Chemical Engineering, Konkuk University, Seoul, South Korea
| | - IM Noor
- Physics Division, Centre of Foundation, Studies for Agricultural Science, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Sunanda Kakroo
- Department of Physics, College of Science (Female Campus), Mahilya Jazan University, Saudi Arabia
| | - Aysh Y Madkhli
- Department of Physics, College of Science (Female Campus), Mahilya Jazan University, Saudi Arabia
| | - Richa Tomar
- Department of Chemistry and Biochemistry, Sharda University, Greater Noida, India
| |
Collapse
|
96
|
Aduroja O, Jani M, Ghann W, Ahmed S, Uddin J, Abebe F. Synthesis, Characterization, and Studies on Photophysical Properties of Rhodamine Derivatives and Metal Complexes in Dye-Sensitized Solar Cells. ACS OMEGA 2022; 7:14611-14621. [PMID: 35557707 PMCID: PMC9088797 DOI: 10.1021/acsomega.1c06772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Rhodamine 6G dyes are low-cost, highly soluble fluorescent dyes frequently utilized as laser dyes, chemical sensors, and as tracer dyes in the determination of the direction and rate of flow of water. In this study, the photophysical properties of three rhodamine 6G dyes, bearing phenyl (P15), furan (P41), and 5-hydroxymethyl furan (P45), and their metal complexes were investigated using ultraviolet-visible (UV-vis) spectroscopy, fluorescence spectroscopy, fluorescence lifetime, and Fourier transform infrared (FTIR) measurements. Rhodamine 6G dyes and their complexes were subsequently applied as sensitizing dyes in the fabrication of dye-sensitized solar cells, and the solar to electric power efficiency and electrochemical impedance spectroscopy measurements were performed. The solar to electric power efficiency values of the metal complexes of the rhodamine 6G dyes were higher than those of the devices fabricated with only rhodamine dyes without copper (II). The most significant change was observed in rhodamine P41 with a 30% increase in solar to electric power efficiency when the dye was conjugated to the copper ion.
Collapse
Affiliation(s)
- Oyedoyin Aduroja
- Department
of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - MdRafsun Jani
- Department
of Materials and Metallurgical Engineering (MME), Bangladesh University of Engineering and Technology (BUET), East Campus, Dhaka 1000, Bangladesh
| | - William Ghann
- Center
for Nanotechnology, Department of Natural Sciences, Coppin State University, 2500 West North Avenue, Baltimore, Maryland 21216, United
States
| | - Saquib Ahmed
- Department
of Mechanical Engineering Technology, SUNY
− Buffalo State, 1300 Elmwood Avenue, Buffalo, New York 14222, United
States
| | - Jamal Uddin
- Center
for Nanotechnology, Department of Natural Sciences, Coppin State University, 2500 West North Avenue, Baltimore, Maryland 21216, United
States
| | - Fasil Abebe
- Department
of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| |
Collapse
|
97
|
Gupta RK, Shaikh H, Imran A, Bedja I, Ajaj AF, Aldwayyan AS. Electrical Transport, Structural, Optical and Thermal Properties of [(1- x)Succinonitrile: xPEO]-LiTFSI-Co(bpy) 3(TFSI) 2-Co(bpy) 3(TFSI) 3 Solid Redox Mediators. Polymers (Basel) 2022; 14:1870. [PMID: 35567039 PMCID: PMC9101716 DOI: 10.3390/polym14091870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
The solar cell has been considered one of the safest modes for electricity generation. In a dye-sensitized solar cell, a commonly used iodide/triiodide redox mediator inhibits back-electron transfer reactions, regenerates dyes, and reduces triiodide into iodide. The use of iodide/triiodide redox, however, imposes several problems and hence needs to be replaced by alternative redox. This paper reports the first Co2+/Co3+ solid redox mediators, prepared using [(1−x)succinonitrile: xPEO] as a matrix and LiTFSI, Co(bpy)3(TFSI)2, and Co(bpy)3(TFSI)3 as sources of ions. The electrolytes are referred to as SN_E (x = 0), Blend 1_E (x = 0.5 with the ethereal oxygen of the PEO-to-lithium ion molar ratio (EO/Li+) of 113), Blend 2_E (x = 0.5; EO/Li+ = 226), and PEO_E (x = 1; EO/Li+ = 226), which achieved electrical conductivity of 2.1 × 10−3, 4.3 × 10−4, 7.2 × 10−4, and 9.7 × 10−7 S cm−1, respectively at 25 °C. Only the blend-based polymer electrolytes exhibited the Vogel-Tamman-Fulcher-type behavior (vitreous nature) with a required low pseudo-activation energy (0.05 eV), thermal stability up to 125 °C, and transparency in UV-A, visible, and near-infrared regions. FT-IR spectroscopy demonstrated the interaction between salt and matrix in the following order: SN_E < Blend 2_E < Blend 1_E << PEO_E. The results were compared with those of acetonitrile-based liquid electrolyte, ACN_E.
Collapse
Affiliation(s)
- Ravindra Kumar Gupta
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hamid Shaikh
- SABIC Polymer Research Center, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Ahamad Imran
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Idriss Bedja
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Abrar Fahad Ajaj
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (A.S.A.)
| | - Abdullah Saleh Aldwayyan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (A.S.A.)
- K.A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
98
|
Scanning prevalent technologies to promote scalable devising of DSSCs: An emphasis on dye component precisely with a shift to ambient algal dyes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
99
|
Wu H, Zhang D, Lei BX, Liu ZQ. Metal Oxide‐Based Photoelectrodes in Photoelectrocatalysis: Advances and Challenges. Chempluschem 2022; 87:e202200097. [DOI: 10.1002/cplu.202200097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Heng Wu
- Hainan Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ding Zhang
- Hainan Normal University School of Chemistry and Chemical Engineering CHINA
| | - Bing-Xin Lei
- Guangxi University for Nationalities School of Materials and Environment CHINA
| | - Zhao-Qing Liu
- Guangzhou University School of Chemistry and Chemical Engineering 230 GuangZhou University City Outer Ring Road 510006 Guangzhou CHINA
| |
Collapse
|
100
|
Hora C, Santos F, Pereira AM, Sales MF, Ivanou D, Mendes A. PEDOT-graphene counter-electrode for solar and improved artificial light conversion in regular, bifacial and FTO-less cobalt mediated DSSCs. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|