51
|
Stone JK, DeShazer D, Brett PJ, Burtnick MN. Melioidosis: molecular aspects of pathogenesis. Expert Rev Anti Infect Ther 2014; 12:1487-99. [PMID: 25312349 DOI: 10.1586/14787210.2014.970634] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that causes melioidosis, a multifaceted disease that is highly endemic in southeast Asia and northern Australia. This facultative intracellular pathogen possesses a large genome that encodes a wide array of virulence factors that promote survival in vivo by manipulating host cell processes and disarming elements of the host immune system. Antigens and systems that play key roles in B. pseudomallei virulence include capsular polysaccharide, lipopolysaccharide, adhesins, specialized secretion systems, actin-based motility and various secreted factors. This review provides an overview of the current and steadily expanding knowledge regarding the molecular mechanisms used by this organism to survive within a host and their contribution to the pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Joshua K Stone
- Department of Microbiology and Immunology, University of South Alabama, 610 Clinic Drive, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
52
|
Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JAK, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014; 27:691-726. [PMID: 25278572 PMCID: PMC4187632 DOI: 10.1128/cmr.00118-13] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Collapse
Affiliation(s)
- Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital, Townsville, Queensland, Australia
| | - Bart J Currie
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Jenny A K Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
53
|
Nandi T, Holden MTG, Holden MTG, Didelot X, Mehershahi K, Boddey JA, Beacham I, Peak I, Harting J, Baybayan P, Guo Y, Wang S, How LC, Sim B, Essex-Lopresti A, Sarkar-Tyson M, Nelson M, Smither S, Ong C, Aw LT, Hoon CH, Michell S, Studholme DJ, Titball R, Chen SL, Parkhill J, Tan P. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles. Genome Res 2014; 25:129-41. [PMID: 25236617 PMCID: PMC4317168 DOI: 10.1101/gr.177543.114] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity.
Collapse
Affiliation(s)
- Tannistha Nandi
- Genome Institute of Singapore, Singapore, 138672, Republic of Singapore
| | | | - Mathew T G Holden
- The Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, United Kingdom
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College London, W2 1PG, United Kingdom
| | - Kurosh Mehershahi
- Department of Medicine, National University of Singapore, Singapore, 119074 Republic of Singapore
| | - Justin A Boddey
- Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, Queensland, QLD 4222, Australia
| | - Ifor Beacham
- Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, Queensland, QLD 4222, Australia
| | - Ian Peak
- Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, Queensland, QLD 4222, Australia
| | - John Harting
- Pacific Biosciences, Menlo Park, California 94025, USA
| | | | - Yan Guo
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Susana Wang
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Lee Chee How
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Bernice Sim
- Genome Institute of Singapore, Singapore, 138672, Republic of Singapore
| | - Angela Essex-Lopresti
- Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Mitali Sarkar-Tyson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Michelle Nelson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Sophie Smither
- Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Catherine Ong
- Defense Medical and Environmental Research Institute, DSO National Laboratories, Singapore, 117510, Republic of Singapore
| | - Lay Tin Aw
- Defense Medical and Environmental Research Institute, DSO National Laboratories, Singapore, 117510, Republic of Singapore
| | - Chua Hui Hoon
- Genome Institute of Singapore, Singapore, 138672, Republic of Singapore
| | - Stephen Michell
- Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| | | | - Richard Titball
- Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom; Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, WC1E 7HT, United Kingdom
| | - Swaine L Chen
- Genome Institute of Singapore, Singapore, 138672, Republic of Singapore; Department of Medicine, National University of Singapore, Singapore, 119074 Republic of Singapore
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, United Kingdom
| | - Patrick Tan
- Genome Institute of Singapore, Singapore, 138672, Republic of Singapore; Duke-NUS Graduate Medical School Singapore, Singapore, 169857, Republic of Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599, Republic of Singapore
| |
Collapse
|
54
|
Burtnick MN, Brett PJ, DeShazer D. Proteomic analysis of the Burkholderia pseudomallei type II secretome reveals hydrolytic enzymes, novel proteins, and the deubiquitinase TssM. Infect Immun 2014; 82:3214-26. [PMID: 24866793 PMCID: PMC4136222 DOI: 10.1128/iai.01739-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/10/2014] [Indexed: 12/25/2022] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is an opportunistic pathogen that harbors a wide array of secretion systems, including a type II secretion system (T2SS), three type III secretion systems (T3SS), and six type VI secretion systems (T6SS). The proteins exported by these systems provide B. pseudomallei with a growth advantage in vitro and in vivo, but relatively little is known about the full repertoire of exoproducts associated with each system. In this study, we constructed deletion mutations in gspD and gspE, T2SS genes encoding an outer membrane secretin and a cytoplasmic ATPase, respectively. The secretion profiles of B. pseudomallei MSHR668 and its T2SS mutants were noticeably different when analyzed by SDS-PAGE. We utilized liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify proteins present in the supernatants of B. pseudomallei MSHR668 and B. pseudomallei ΔgspD grown in rich and minimal media. The MSHR668 supernatants contained 48 proteins that were either absent or substantially reduced in the supernatants of ΔgspD strains. Many of these proteins were putative hydrolytic enzymes, including 12 proteases, two phospholipases, and a chitinase. Biochemical assays validated the LC-MS/MS results and demonstrated that the export of protease, phospholipase C, and chitinase activities is T2SS dependent. Previous studies had failed to identify the mechanism of secretion of TssM, a deubiquitinase that plays an integral role in regulating the innate immune response. Here we present evidence that TssM harbors an atypical signal sequence and that its secretion is mediated by the T2SS. This study provides the first in-depth characterization of the B. pseudomallei T2SS secretome.
Collapse
Affiliation(s)
- Mary N Burtnick
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Paul J Brett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
55
|
Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: implications for the pathogenesis of neurological melioidosis. mBio 2014; 5:e00025. [PMID: 24736221 PMCID: PMC3993850 DOI: 10.1128/mbio.00025-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Melioidosis is a potentially fatal disease that is endemic to tropical northern Australia and Southeast Asia, with a mortality rate of 14 to 50%. The bacterium Burkholderia pseudomallei is the causative agent which infects numerous parts of the human body, including the brain, which results in the neurological manifestation of melioidosis. The olfactory nerve constitutes a direct conduit from the nasal cavity into the brain, and we have previously reported that B. pseudomallei can colonize this nerve in mice. We have now investigated in detail the mechanism by which the bacteria penetrate the olfactory and trigeminal nerves within the nasal cavity and infect the brain. We found that the olfactory epithelium responded to intranasal B. pseudomallei infection by widespread crenellation followed by disintegration of the neuronal layer to expose the underlying basal layer, which the bacteria then colonized. With the loss of the neuronal cell bodies, olfactory axons also degenerated, and the bacteria then migrated through the now-open conduit of the olfactory nerves. Using immunohistochemistry, we demonstrated that B. pseudomallei migrated through the cribriform plate via the olfactory nerves to enter the outer layer of the olfactory bulb in the brain within 24 h. We also found that the bacteria colonized the thin respiratory epithelium in the nasal cavity and then rapidly migrated along the underlying trigeminal nerve to penetrate the cranial cavity. These results demonstrate that B. pseudomallei invasion of the nerves of the nasal cavity leads to direct infection of the brain and bypasses the blood-brain barrier. Melioidosis is a potentially fatal tropical disease that is endemic to northern Australia and Southeast Asia. It is caused by the bacterium Burkholderia pseudomallei, which can infect many organs of the body, including the brain, and results in neurological symptoms. The pathway by which the bacteria can penetrate the brain is unknown, and we have investigated the ability of the bacteria to migrate along nerves that innervate the nasal cavity and enter the frontal region of the brain by using a mouse model of infection. By generating a mutant strain of B. pseudomallei which is unable to survive in the blood, we show that the bacteria rapidly penetrate the cranial cavity using the olfactory (smell) nerve and the trigeminal (sensory) nerve that line the nasal cavity.
Collapse
|
56
|
What a difference a Dalton makes: bacterial virulence factors modulate eukaryotic host cell signaling systems via deamidation. Microbiol Mol Biol Rev 2014; 77:527-39. [PMID: 24006474 DOI: 10.1128/mmbr.00013-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria commonly deploy enzymes to promote virulence. These enzymes can modulate the functions of host cell targets. While the actions of some enzymes can be very obvious (e.g., digesting plant cell walls), others have more subtle activities. Depending on the lifestyle of the bacteria, these subtle modifications can be crucially important for pathogenesis. In particular, if bacteria rely on a living host, subtle mechanisms to alter host cellular function are likely to dominate. Several bacterial virulence factors have evolved to use enzymatic deamidation as a subtle posttranslational mechanism to modify the functions of host protein targets. Deamidation is the irreversible conversion of the amino acids glutamine and asparagine to glutamic acid and aspartic acid, respectively. Interestingly, all currently characterized bacterial deamidases affect the function of the target protein by modifying a single glutamine residue in the sequence. Deamidation of target host proteins can disrupt host signaling and downstream processes by either activating or inactivating the target. Despite the subtlety of this modification, it has been shown to cause dramatic, context-dependent effects on host cells. Several crystal structures of bacterial deamidases have been solved. All are members of the papain-like superfamily and display a cysteine-based catalytic triad. However, these proteins form distinct structural subfamilies and feature combinations of modular domains of various functions. Based on the diverse pathogens that use deamidation as a mechanism to promote virulence and the recent identification of multiple deamidases, it is clear that this enzymatic activity is emerging as an important and widespread feature in bacterial pathogenesis.
Collapse
|
57
|
Sarovich DS, Price EP, Webb JR, Ward LM, Voutsinos MY, Tuanyok A, Mayo M, Kaestli M, Currie BJ. Variable virulence factors in Burkholderia pseudomallei (melioidosis) associated with human disease. PLoS One 2014; 9:e91682. [PMID: 24618705 PMCID: PMC3950250 DOI: 10.1371/journal.pone.0091682] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/14/2014] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium that causes melioidosis, a potentially life-threatening infectious disease affecting mammals, including humans. Melioidosis symptoms are both protean and diverse, ranging from mild, localized skin infections to more severe and often fatal presentations including pneumonia, septic shock with multiple internal abscesses and occasionally neurological involvement. Several ubiquitous virulence determinants in B. pseudomallei have already been discovered. However, the molecular basis for differential pathogenesis has, until now, remained elusive. Using clinical data from 556 Australian melioidosis cases spanning more than 20 years, we identified a Burkholderia mallei-like actin polymerization bimA(Bm) gene that is strongly associated with neurological disease. We also report that a filamentous hemagglutinin gene, fhaB3, is associated with positive blood cultures but is negatively correlated with localized skin lesions without sepsis. We show, for the first time, that variably present virulence factors play an important role in the pathogenesis of melioidosis. Collectively, our study provides a framework for assessing other non-ubiquitous bacterial virulence factors and their association with disease, such as candidate loci identified from large-scale microbial genome-wide association studies.
Collapse
Affiliation(s)
- Derek S. Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Erin P. Price
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Jessica R. Webb
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Linda M. Ward
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Marcos Y. Voutsinos
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Apichai Tuanyok
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawai’i, Honolulu, Hawai’i, United States of America
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Mirjam Kaestli
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
58
|
Stubben CJ, Challacombe JF. Mining locus tags in PubMed Central to improve microbial gene annotation. BMC Bioinformatics 2014; 15:43. [PMID: 24499370 PMCID: PMC3937057 DOI: 10.1186/1471-2105-15-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 01/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The scientific literature contains millions of microbial gene identifiers within the full text and tables, but these annotations rarely get incorporated into public sequence databases. We propose to utilize the Open Access (OA) subset of PubMed Central (PMC) as a gene annotation database and have developed an R package called pmcXML to automatically mine and extract locus tags from full text, tables and supplements. RESULTS We mined locus tags from 1835 OA publications in ten microbial genomes and extracted tags mentioned in 30,891 sentences in main text and 20,489 rows in tables. We identified locus tag pairs marking the start and end of a region such as an operon or genomic island and expanded these ranges to add another 13,043 tags. We also searched for locus tags in supplementary tables and publications outside the OA subset in Burkholderia pseudomallei K96243 for comparison. There were 168 publications containing 48,470 locus tags and 83% of mentions were from supplementary materials and 9% from publications outside the OA subset. CONCLUSIONS B. pseudomallei locus tags within the full text and tables of OA publications represent only a small fraction of the total mentions in the literature. For microbial genomes with very few functionally characterized proteins, the locus tags mentioned in supplementary tables and within ranges like genomic islands contain the majority of locus tags. Significantly, the functions in the R package provide access to additional resources in the OA subset that are not currently indexed or returned by searching PMC.
Collapse
Affiliation(s)
- Chris J Stubben
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jean F Challacombe
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
59
|
Abstract
The eIF4A (eukaryotic initiation factor 4A) proteins belong to the extensive DEAD-box RNA helicase family, the members of which are involved in many aspects of RNA metabolism by virtue of their RNA-binding capacity and ATPase activity. Three eIF4A proteins have been characterized in vertebrates: eIF4A1 and eIF4A2 are cytoplasmic, whereas eIF4A3 is nuclear-localized. Although highly similar, they have been shown to possess rather diverse roles in the mRNA lifecycle. Their specific and diverse functions are often regulated and dictated by interacting partner proteins. The key differences between eIF4A family members are discussed in the present review.
Collapse
|
60
|
Abstract
The Gram-negative bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. Once considered an esoteric tropical disease confined to Southeast Asia and northern Australia, research on B. pseudomallei has recently gained global prominence due to its classification as a potential bioterrorism agent by countries such as the United States and also by increasing numbers of case reports from regions where it is not endemic. An environmental bacterium typically found in soil and water, assessing the true global prevalence of melioidosis is challenged by the fact that clinical symptoms associated with B. pseudomallei infection are extremely varied and may be confused with diverse conditions such as lung cancer, tuberculosis, or Staphyloccocus aureus infection. These diagnostic challenges, coupled with lack of awareness among clinicians, have likely contributed to underdiagnosis and the high mortality rate of melioidosis, as initial treatment is often either inappropriate or delayed. Even after antibiotic treatment, relapses are frequent, and after resolution of acute symptoms, chronic melioidosis can also occur, and the symptoms can persist for months to years. In a recent article, Price et al. [mBio 4(4):e00388-13, 2013, doi:10.1128/mBio.00388-13] demonstrate how comparative genomic sequencing can reveal the repertoire of genetic changes incurred by B. pseudomallei during chronic human infection. Their results have significant clinical ramifications and highlight B. pseudomallei’s ability to survive in a wide range of potential niches within hosts, through the acquisition of genetic adaptations that optimize fitness and resource utilization.
Collapse
|
61
|
Abstract
Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms.
Collapse
Affiliation(s)
- Matthew J Walsh
- RNA Biology Laboratory; Sheffield Institute for Translational Neuroscience (SITraN); Department of Neuroscience; University of Sheffield; Sheffield, UK
| | - Jennifer E Dodd
- RNA Biology Laboratory; Sheffield Institute for Translational Neuroscience (SITraN); Department of Neuroscience; University of Sheffield; Sheffield, UK
| | - Guillaume M Hautbergue
- RNA Biology Laboratory; Sheffield Institute for Translational Neuroscience (SITraN); Department of Neuroscience; University of Sheffield; Sheffield, UK
| |
Collapse
|
62
|
Fu P, Zhang X, Jin M, Xu L, Wang C, Xia Z, Zhu Y. Complex structure of OspI and Ubc13: the molecular basis of Ubc13 deamidation and convergence of bacterial and host E2 recognition. PLoS Pathog 2013; 9:e1003322. [PMID: 23633953 PMCID: PMC3636029 DOI: 10.1371/journal.ppat.1003322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/07/2013] [Indexed: 11/24/2022] Open
Abstract
Ubc13 is an important ubiquitin-conjugating (E2) enzyme in the NF-κB signaling pathway. The Shigella effector OspI targets Ubc13 and deamidates Gln100 of Ubc13 to a glutamic acid residue, leading to the inhibition of host inflammatory responses. Here we report the crystal structure of the OspI-Ubc13 complex at 2.3 Å resolution. The structure reveals that OspI uses two differently charged regions to extensively interact with the α1 helix, L1 loop and L2 loop of Ubc13. The Gln100 residue is bound within the hydrophilic catalytic pocket of OspI. A comparison between Ubc13-bound and wild-type free OspI structures revealed that Ubc13 binding induces notable structural reassembly of the catalytic pocket, suggesting that substrate binding might be involved in the catalysis of OspI. The OspI-binding sites in Ubc13 largely overlap with the binding residues for host ubiquitin E3 ligases and a deubiquitinating enzyme, which suggests that the bacterial effector and host proteins exploit the same surface on Ubc13 for specific recognition. Biochemical results indicate that both of the differently charged regions in OspI are important for the interaction with Ubc13, and the specificity determinants in Ubc13 for OspI recognition reside in the distinct residues in the α1 helix and L2 region. Our study reveals the molecular basis of Ubc13 deamidation by OspI, as well as a convergence of E2 recognition by bacterial and host proteins. The Gram-negative pathogenic bacterium Shigella infects human intestinal epithelium cells and causes severe inflammatory colitis (bacillary dysentery). Shigella harbors an approximately 220-kb virulence plasmid that encodes a type III secretion system (T3SS) protein secretion apparatus and many effector proteins. Using the T3SS, Shigella delivers the effector proteins into the host cells, targeting key signal molecules and manipulating the host physiological processes and thereby promoting infection and multiplication. OspI, a newly identified Shigella effector, targets the host Ubc13 protein, a critical ubiquitin-conjugating enzyme in the NF-κB signaling pathway. OspI deamidates Gln100 of Ubc13 to a glutamic acid residue, thereby disrupting TRAF6-catalyzed polyubiquitination and dampening host inflammatory responses. However, the structural mechanism of this specific deamidation is unclear. Through crystallography, we have determined the structure of the OspI-Ubc13 complex. The structure illustrates how OspI interacts with Ubc13 and how Ubc13 induces conformational changes in OspI. Combining structural analysis and biochemical assays, we revealed how OspI distinguishes Ubc13 from other ubiquitin conjugating enzymes and found that OspI binds to the same surface region on Ubc13 as host TRAF6, CHIP and OTUB1. Our study sheds light on the molecular mechanism of Ubc13 deamidation by OspI and provides new insights into E2 recognition by bacterial and host proteins.
Collapse
Affiliation(s)
- Panhan Fu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqing Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Xu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongping Xia
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongqun Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
63
|
Nishide A, Kim M, Takagi K, Himeno A, Sanada T, Sasakawa C, Mizushima T. Structural basis for the recognition of Ubc13 by the Shigella flexneri effector OspI. J Mol Biol 2013; 425:2623-31. [PMID: 23542009 DOI: 10.1016/j.jmb.2013.02.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/23/2013] [Accepted: 02/27/2013] [Indexed: 11/24/2022]
Abstract
Ubc13 is a ubiquitin-conjugating enzyme that plays a key role in the nuclear factor-κB signal transduction pathway in human diseases. The Shigella flexneri effector OspI affects inflammatory responses by catalyzing the deamidation of a specific glutamine residue at position 100 in Ubc13 during infection. This modification prevents the activation of the TNF (tumor necrosis factor) receptor-associated factor 6, leading to modulation of the diacylglycerol-CBM (CARD-Bcl10-Malt1) complex-TNF receptor-associated factor 6-nuclear factor-κB signaling pathway. To elucidate the structural basis of OspI function, we determined the crystal structures of the catalytically inert OspI C62A mutant and its complex with Ubc13 at resolutions of 3.0 and 2.96Å, respectively. The structure of the OspI-Ubc13 complex revealed that the interacting surfaces between OspI and Ubc13 are a hydrophobic surface and a complementary charged surface. Furthermore, we predict that the complementary charged surface of OspI plays a key role in substrate specificity determination.
Collapse
Affiliation(s)
- Akira Nishide
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
|
65
|
Cencic R, Pelletier J. Throwing a monkey wrench in the motor: targeting DExH/D box proteins with small molecule inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:894-903. [PMID: 23385390 DOI: 10.1016/j.bbagrm.2013.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 01/04/2023]
Abstract
DExH/D box proteins are molecular motors that utilize the energy derived from NTP hydrolysis to perform work - from helicases that remodel RNA to RNPases that alter RNA-protein complexes. Members of this class of proteins are uniquely placed along the RNA information highway to regulate the flow of genetic information. They have been implicated in a number of nodal points encompassing nuclear, cytoplasmic, and organellar RNA-based processes. The identification and characterization of three unique natural products that selectively inhibit the activity of eukaryotic initiation factor (eIF)4A (DDX2) has provided proof-of-principle that the activity of DExH/D box family members can be selectively targeted. Extending these achievements to other DExH/D box proteins is an important future challenge for drugging this family of proteins. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Regina Cencic
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
66
|
Lemichez E, Barbieri JT. General aspects and recent advances on bacterial protein toxins. Cold Spring Harb Perspect Med 2013; 3:a013573. [PMID: 23378599 DOI: 10.1101/cshperspect.a013573] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial pathogens produce protein toxins to influence host-pathogen interactions and tip the outcome of these encounters toward the benefit of the pathogen. Protein toxins modify host-specific targets through posttranslational modifications (PTMs) or noncovalent interactions that may inhibit or activate host cell physiology to benefit the pathogen. Recent advances have identified new PTMs and host targets for toxin action. Understanding the mechanisms of toxin action provides a basis to develop vaccines and therapies to combat bacterial pathogens and to develop new strategies to use toxin derivatives for the treatment of human disease.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, Microbial Toxins in Host-Pathogen Interactions, C3M, Université de Nice-Sophia-Antipolis, UFR Médecine, 06204 Nice, France.
| | | |
Collapse
|
67
|
Chtop is a component of the dynamic TREX mRNA export complex. EMBO J 2013; 32:473-86. [PMID: 23299939 PMCID: PMC3567497 DOI: 10.1038/emboj.2012.342] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 12/03/2012] [Indexed: 11/08/2022] Open
Abstract
The TREX complex couples nuclear pre-mRNA processing with mRNA export and contains multiple protein components, including Uap56, Alyref, Cip29 and the multi-subunit THO complex. Here, we have identified Chtop as a novel TREX component. We show that both Chtop and Alyref activate the ATPase and RNA helicase activities of Uap56 and that Uap56 functions to recruit both Alyref and Chtop onto mRNA. As observed with the THO complex subunit Thoc5, Chtop binds to the NTF2-like domain of Nxf1, and this interaction requires arginine methylation of Chtop. Using RNAi, we show that co-knockdown of Alyref and Chtop results in a potent mRNA export block. Chtop binds to Uap56 in a mutually exclusive manner with Alyref, and Chtop binds to Nxf1 in a mutually exclusive manner with Thoc5. However, Chtop, Thoc5 and Nxf1 exist in a single complex in vivo. Together, our data indicate that TREX and Nxf1 undergo dynamic remodelling, driven by the ATPase cycle of Uap56 and post-translational modifications of Chtop.
Collapse
|
68
|
Khoo JS, Chai SF, Mohamed R, Nathan S, Firdaus-Raih M. Computational discovery and RT-PCR validation of novel Burkholderia conserved and Burkholderia pseudomallei unique sRNAs. BMC Genomics 2012; 13 Suppl 7:S13. [PMID: 23282220 PMCID: PMC3521395 DOI: 10.1186/1471-2164-13-s7-s13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sRNAs of bacterial pathogens are known to be involved in various cellular roles including environmental adaptation as well as regulation of virulence and pathogenicity. It is expected that sRNAs may also have similar functions for Burkholderia pseudomallei, a soil bacterium that can adapt to diverse environmental conditions, which causes the disease melioidosis and is also able to infect a wide variety of hosts. RESULTS By integrating several proven sRNA prediction programs into a computational pipeline, available Burkholderia spp. genomes were screened to identify sRNA gene candidates. Orthologous sRNA candidates were then identified via comparative analysis. From the total prediction, 21 candidates were found to have Rfam homologs. RT-PCR and sequencing of candidate sRNA genes of unknown functions revealed six putative sRNAs which were highly conserved in Burkholderia spp. and two that were unique to B. pseudomallei present in a normal culture conditions transcriptome. The validated sRNAs include potential cis-acting elements associated with the modulation of methionine metabolism and one B. pseudomallei-specific sRNA that is expected to bind to the Hfq protein. CONCLUSIONS The use of the pipeline developed in this study and subsequent comparative analysis have successfully aided in the discovery and shortlisting of sRNA gene candidates for validation. This integrated approach identified 29 B. pseudomallei sRNA genes - of which 21 have Rfam homologs and 8 are novel.
Collapse
Affiliation(s)
- Jia-Shiun Khoo
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | | | | | | | | |
Collapse
|
69
|
BLF1, the first Burkholderia pseudomallei toxin, connects inhibition of host protein synthesis with melioidosis. Biochem Soc Trans 2012; 40:842-5. [PMID: 22817745 DOI: 10.1042/bst20120057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Melioidosis is a disease caused by infection with Burkholderia pseudomallei. The molecular basis for the pathogenicity of B. pseudomallei is poorly understood. However, recent work has identified the first toxin from this bacterium and shown that it inhibits host protein synthesis. Here, we review the illness that is potentially associated with biological warfare, the pathogen and its deadly molecular mechanism of action, as well as therapeutic developments that may follow.
Collapse
|
70
|
Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-specific apoptosis. Proc Natl Acad Sci U S A 2012; 109:20395-400. [PMID: 23175788 DOI: 10.1073/pnas.1210831109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeting eukaryotic proteins for deamidation modification is increasingly appreciated as a general bacterial virulence mechanism. Here, we present an atomic view of how a bacterial deamidase effector, cycle-inhibiting factor homolog in Burkholderia pseudomallei (CHBP), recognizes its host targets, ubiquitin (Ub) and Ub-like neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), and catalyzes site-specific deamidation. Crystal structures of CHBP-Ub/NEDD8 complexes show that Ub and NEDD8 are similarly cradled by a large cleft in CHBP with four contacting surfaces. The pattern of Ub/NEDD8 recognition by CHBP resembles that by the E1 activation enzyme, which critically involves the Lys-11 surface in Ub/NEDD8. Close examination of the papain-like catalytic center reveals structural determinants of CHBP being an obligate glutamine deamidase. Molecular-dynamics simulation identifies Gln-31/Glu-31 of Ub/NEDD8 as one key determinant of CHBP substrate preference for NEDD8. Inspired by the idea of using the unique bacterial activity as a tool, we further discover that CHBP-catalyzed NEDD8 deamidation triggers macrophage-specific apoptosis, which predicts a previously unknown macrophage-specific proapoptotic signal that is negatively regulated by neddylation-mediated protein ubiquitination/degradation.
Collapse
|
71
|
Liu T, Nair SJ, Lescarbeau A, Belani J, Peluso S, Conley J, Tillotson B, O'Hearn P, Smith S, Slocum K, West K, Helble J, Douglas M, Bahadoor A, Ali J, McGovern K, Fritz C, Palombella VJ, Wylie A, Castro AC, Tremblay MR. Synthetic silvestrol analogues as potent and selective protein synthesis inhibitors. J Med Chem 2012; 55:8859-78. [PMID: 23025805 DOI: 10.1021/jm3011542] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Misregulation of protein translation plays a critical role in human cancer pathogenesis at many levels. Silvestrol, a cyclopenta[b]benzofuran natural product, blocks translation at the initiation step by interfering with assembly of the eIF4F translation complex. Silvestrol has a complex chemical structure whose functional group requirements have not been systematically investigated. Moreover, silvestrol has limited development potential due to poor druglike properties. Herein, we sought to develop a practical synthesis of key intermediates of silvestrol and explore structure-activity relationships around the C6 position. The ability of silvestrol and analogues to selectively inhibit the translation of proteins with high requirement on the translation-initiation machinery (i.e., complex 5'-untranslated region UTR) relative to simple 5'UTR was determined by a cellular reporter assay. Simplified analogues of silvestrol such as compounds 74 and 76 were shown to have similar cytotoxic potency and better ADME characteristics relative to those of silvestrol.
Collapse
Affiliation(s)
- Tao Liu
- Infinity Pharmaceuticals, Inc., 780 Memorial Drive, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Comparative Genome Sequence Analysis Reveals the Extent of Diversity and Conservation for Glycan-Associated Proteins in Burkholderia spp. Comp Funct Genomics 2012; 2012:752867. [PMID: 22991502 PMCID: PMC3443583 DOI: 10.1155/2012/752867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/11/2012] [Indexed: 11/19/2022] Open
Abstract
Members of the Burkholderia family occupy diverse ecological niches. In pathogenic family members, glycan-associated proteins are often linked to functions that include virulence, protein conformation maintenance, surface recognition, cell adhesion, and immune system evasion. Comparative analysis of available Burkholderia genomes has revealed a core set of 178 glycan-associated proteins shared by all Burkholderia of which 68 are homologous to known essential genes. The genome sequence comparisons revealed insights into species-specific gene acquisitions through gene transfers, identified an S-layer protein, and proposed that significantly reactive surface proteins are associated to sugar moieties as a potential means to circumvent host defense mechanisms. The comparative analysis using a curated database of search queries enabled us to gain insights into the extent of conservation and diversity, as well as the possible virulence-associated roles of glycan-associated proteins in members of the Burkholderia spp. The curated list of glycan-associated proteins used can also be directed to screen other genomes for glycan-associated homologs.
Collapse
|
73
|
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
74
|
Galicia-Vázquez G, Cencic R, Robert F, Agenor AQ, Pelletier J. A cellular response linking eIF4AI activity to eIF4AII transcription. RNA (NEW YORK, N.Y.) 2012; 18:1373-84. [PMID: 22589333 PMCID: PMC3383968 DOI: 10.1261/rna.033209.112] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 04/05/2012] [Indexed: 05/18/2023]
Abstract
The recruitment of ribosomes to eukaryotic cellular mRNAs requires the activity of two prototypic RNA helicases, eukaryotic initiation factor (eIF) 4AI and eIF4AII. The eIF4A isoforms are highly conserved, are thought to be functionally interchangeable, and are directed to the 5' m(7)GpppN cap structure of mRNAs during translation initiation by virtue of their assembly into eIF4F, a heterotrimeric complex that also harbors the eIF4E cap binding protein and eIF4G scaffolding unit. During the course of RNA interference experiments aimed at investigating the respective roles of eIF4AI and eIF4AII in translation, we uncovered a cellular response pathway whereby suppression of eIF4AI increases transcription of the eIF4AII gene, leading to elevated eIF4AII mRNA and protein levels. Inhibition of eIF4AI suppresses protein synthesis, and although eIF4AII protein levels increase above and beyond what should be sufficient to compensate for the decrease in eIF4AI levels, there is no corresponding rescue of translation or of the block on cellular proliferation that occurs upon eIF4AI suppression. These results were phenocopied using the small molecule eIF4A inhibitor hippuristanol. Taken together, our results indicate that eIF4AI and eIF4AII expression appear linked and that the two protein isoforms exhibit functional differences.
Collapse
Affiliation(s)
| | | | | | | | - Jerry Pelletier
- Department of Biochemistry and
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada, H3G 1Y6
- Corresponding authorE-mail
| |
Collapse
|
75
|
Tegos GP, Haynes MK, Schweizer HP. Dissecting novel virulent determinants in the Burkholderia cepacia complex. Virulence 2012; 3:234-7. [PMID: 22546904 DOI: 10.4161/viru.19844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Prevention and control of infectious diseases remains a major public health challenge and a number of highly virulent pathogens are emerging both in and beyond the hospital setting. Despite beneficial aspects such as use in biocontrol and bioremediation exhibited by members of the Burkholderia cepacia complex (Bcc) some members of this group have recently gained attention as significant bacterial pathogens due to their high levels of intrinsic antibiotic resistance, transmissibility in nosocomial settings, persistence in the presence of antimicrobials and intracellular survival capabilities. The Bcc are opportunistic pathogens and their arsenal of virulence factors includes proteases, lipases and other secreted exoproducts, including secretion system-associated effectors. Deciphering the function of virulence factors and assessment of novel therapeutic strategies has been facilitated by use of diverse non-vertebrate hosts (the fly Drosophila melanogaster, the microscopic nematode Caenorhabditis elegans, the zebrafish and the greater Galleria mellonella wax moth caterpillar larvae). Researchers are now employing sophisticated approaches to dissect the virulence determinants of Bcc with the ultimate goal being the development of novel anti-infective countermeasures. This editorial will highlight selected recent research endeavors aimed at dissecting adaptive responses and the virulence factor portfolio of Burkholderia species.
Collapse
Affiliation(s)
- George P Tegos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| | | | | |
Collapse
|
76
|
Hautbergue G. [Characterisation of Burkholderia pseudomallei Lethal Factor 1 (BLF1). A breakthrough against melioidosis]. Med Sci (Paris) 2012; 28:262-4. [PMID: 22480647 DOI: 10.1051/medsci/2012283011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
77
|
Abstract
A defining feature of many cancers is deregulated translational control. Typically, this occurs at the level of recruitment of the 40S ribosomes to the 5'-cap of cellular messenger RNAs (mRNAs), the rate-limiting step of protein synthesis, which is controlled by the heterotrimeric eukaryotic initiation complex eIF4F. Thus, eIF4F in particular, and translation initiation in general, represent an exploitable vulnerability and unique opportunity for therapeutic intervention in many transformed cells. In this article, we discuss the development, mode of action and biological activity of a number of small-molecule inhibitors that interrupt PI3K/mTOR signaling control of eIF4F assembly, as well as compounds that more directly block eIF4F activity.
Collapse
Affiliation(s)
- Abba Malina
- Department of Biochemistry and McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|