51
|
Wang J, Wu R, Lu Y, Liang C. Ctf4p facilitates Mcm10p to promote DNA replication in budding yeast. Biochem Biophys Res Commun 2010; 395:336-41. [PMID: 20381454 DOI: 10.1016/j.bbrc.2010.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/28/2022]
Abstract
Ctf4p (chromosome transmission fidelity) has been reported to function in DNA metabolism and sister chromatid cohesion in Saccharomyces cerevisiae. In this study, a ctf4(S143F) mutant was isolated from a yeast genetic screen to identify replication-initiation proteins. The ctf4(S143F) mutant exhibits plasmid maintenance defects which can be suppressed by the addition of multiple origins to the plasmid, like other known replication-initiation mutants. We show that both ctf4(S143F) and ctf4Delta strains have defects in S phase entry and S phase progression at the restrictive temperature of 38 degrees C. Ctf4p localizes in the nucleus throughout the cell cycle but only starts to bind chromatin at the G1/S transition and then disassociates from chromatin after DNA replication. Furthermore, Ctf4p interacts with Mcm10p physically and genetically, and the chromatin association of Ctf4p depends on Mcm10p. Finally, deletion of CTF4 destabilizes Mcm10p and Pol alpha in both mcm10-1 and MCM10 cells. These data indicate that Ctf4p facilitates Mcm10p to promote the DNA replication.
Collapse
Affiliation(s)
- Jiafeng Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | |
Collapse
|
52
|
The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 2010; 463:113-7. [PMID: 20054399 PMCID: PMC2805463 DOI: 10.1038/nature08647] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/06/2009] [Indexed: 11/08/2022]
Abstract
Eukaryotic DNA replication uses kinase regulatory pathways to facilitate coordination with other processes during cell division cycles and response to environmental cues. At least two cell cycle-regulated protein kinase systems, the S-phase-specific cyclin-dependent protein kinases (S-CDKs) and the Dbf4-Cdc7 kinase (DDK, Dbf4-dependent protein kinase) are essential activators for initiation of DNA replication. Although the essential mechanism of CDK activation of DNA replication in Saccharomyces cerevisiae has been established, exactly how DDK acts has been unclear. Here we show that the amino terminal serine/threonine-rich domain (NSD) of Mcm4 has both inhibitory and facilitating roles in DNA replication control and that the sole essential function of DDK is to relieve an inhibitory activity residing within the NSD. By combining an mcm4 mutant lacking the inhibitory activity with mutations that bypass the requirement for CDKs for initiation of DNA replication, we show that DNA synthesis can occur in G1 phase when CDKs and DDK are limited. However, DDK is still required for efficient S phase progression. In the absence of DDK, CDK phosphorylation at the distal part of the Mcm4 NSD becomes crucial. Moreover, DDK-null cells fail to activate the intra-S-phase checkpoint in the presence of hydroxyurea-induced DNA damage and are unable to survive this challenge. Our studies establish that the eukaryote-specific NSD of Mcm4 has evolved to integrate several protein kinase regulatory signals for progression through S phase.
Collapse
|
53
|
Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell 2010; 140:349-59. [PMID: 20116089 DOI: 10.1016/j.cell.2009.12.049] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 10/14/2009] [Accepted: 12/22/2009] [Indexed: 11/24/2022]
Abstract
TopBP1 has important roles in both DNA replication and checkpoint regulation in vertebrates. We have identified a protein called Treslin that associates with TopBP1 in Xenopus egg extracts. Depletion of Treslin from egg extracts strongly inhibits chromosomal DNA replication. Binding of Treslin to chromatin in egg extracts occurs independently of TopBP1. However, loading of the initiator protein Cdc45 onto chromatin cannot take place in the absence of Treslin. Prior to the initiation of DNA replication, Treslin associates with TopBP1 in a Cdk2-dependent manner. Ablation of Treslin from human cells also strongly inhibits DNA replication. Taken together, these results indicate that Treslin and TopBP1 collaborate in the Cdk2-mediated loading of Cdc45 onto replication origins. Thus, Treslin regulates a pivotal step in the initiation of DNA replication in vertebrates.
Collapse
|
54
|
The DNA unwinding element binding protein DUE-B interacts with Cdc45 in preinitiation complex formation. Mol Cell Biol 2010; 30:1495-507. [PMID: 20065034 DOI: 10.1128/mcb.00710-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Template unwinding during DNA replication initiation requires the loading of the MCM helicase activator Cdc45 at replication origins. We show that Cdc45 interacts with the DNA unwinding element (DUE) binding protein DUE-B and that these proteins localize to the DUEs of active replication origins. DUE-B and Cdc45 are not bound at the inactive c-myc replicator in the absence of a functional DUE or at the recently identified ataxin 10 (ATX10) origin, which is silent before disease-related (ATTCT)(n) repeat length expansion of its DUE sequence, despite the presence of the origin recognition complex (ORC) and MCM proteins at these origins. Addition of a heterologous DUE to the ectopic c-myc origin, or expansion of the ATX10 DUE, leads to origin activation, DUE-B binding, and Cdc45 binding. DUE-B, Cdc45, and topoisomerase IIbeta binding protein 1 (TopBP1) form complexes in cell extracts and when expressed from baculovirus vectors. During replication in Xenopus egg extracts, DUE-B and Cdc45 bind to chromatin with similar kinetics, and DUE-B immunodepletion blocks replication and the loading of Cdc45 and a fraction of TopBP1. The coordinated binding of DUE-B and Cdc45 to origins and the physical interactions of DUE-B, Cdc45, and TopBP1 suggest that complexes of these proteins are necessary for replication initiation.
Collapse
|
55
|
Yahyaoui W, Zannis-Hadjopoulos M. 14-3-3 proteins function in the initiation and elongation steps of DNA replication in Saccharomyces cerevisiae. J Cell Sci 2009; 122:4419-26. [DOI: 10.1242/jcs.044677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
14-3-3s are highly conserved abundant eukaryotic proteins essential for viability, at least in lower eukaryotes. We previously showed that they associate with mammalian and yeast replication origins in a cell-cycle-dependent manner, and are involved in the initiation of DNA replication. Here, we present evidence that 14-3-3 proteins are novel regulators of the initiation and elongation steps of DNA replication in Saccharomyces cerevisiae. The results show that the Bmh2 protein, one of the two 14-3-3 homologues in S. cerevisiae, interacts with Mcm2 and Orc2 proteins, binds to ARS1 maximally at the G1 phase, is essential for plasmid stability, and is required for normal S-phase entry and progression. Furthermore, during G1 phase, the Bmh2 protein is required for the association of MCM proteins with chromatin and their maintenance at replication origins. The results reveal that 14-3-3 proteins function as essential factors for the assembly and maintenance of the pre-replication complex during G1 phase.
Collapse
Affiliation(s)
- Wafaa Yahyaoui
- Goodman Cancer Centre, 3655 Drummond Street, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
56
|
A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 2009; 106:20240-5. [PMID: 19910535 DOI: 10.1073/pnas.0911500106] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During pre-replication complex (pre-RC) formation, origin recognition complex (ORC), Cdc6, and Cdt1 cooperatively load the 6-subunit mini chromosome maintenance (MCM2-7) complex onto DNA. Loading of MCM2-7 is a prerequisite for DNA licensing that restricts DNA replication to once per cell cycle. During S phase MCM2-7 functions as part of the replicative helicase but within the pre-RC MCM2-7 is inactive. The organization of replicative DNA helicases before and after loading onto DNA has been studied in bacteria and viruses but not eukaryotes and is of major importance for understanding the MCM2-7 loading mechanism and replisome assembly. Lack of an efficient reconstituted pre-RC system has hindered the detailed mechanistic and structural analysis of MCM2-7 loading for a long time. We have reconstituted Saccharomyces cerevisiae pre-RC formation with purified proteins and showed efficient loading of MCM2-7 onto origin DNA in vitro. MCM2-7 loading was found to be dependent on the presence of all pre-RC proteins, origin DNA, and ATP hydrolysis. The quaternary structure of MCM2-7 changes during pre-RC formation: MCM2-7 before loading is a single hexamer in solution but is transformed into a double-hexamer during pre-RC formation. Using electron microscopy (EM), we observed that loaded MCM2-7 encircles DNA. The loaded MCM2-7 complex can slide on DNA, and sliding is not directional. Our results provide key insights into mechanisms of pre-RC formation and have important implications for understanding the role of the MCM2-7 in establishment of bidirectional replication forks.
Collapse
|
57
|
DNA damage responses in skin biology—Implications in tumor prevention and aging acceleration. J Dermatol Sci 2009; 56:76-81. [DOI: 10.1016/j.jdermsci.2009.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 01/28/2023]
|
58
|
Kumar D, Minocha N, Rajanala K, Saha S. The distribution pattern of proliferating cell nuclear antigen in the nuclei of Leishmania donovani. MICROBIOLOGY-SGM 2009; 155:3748-3757. [PMID: 19729406 DOI: 10.1099/mic.0.033217-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA replication in eukaryotes is a highly conserved process marked by the licensing of multiple origins, with pre-replication complex assembly in G1 phase, followed by the onset of replication at these origins in S phase. The two strands replicate by different mechanisms, and DNA synthesis is brought about by the activity of the replicative DNA polymerases Pol delta and Pol epsilon. Proliferating cell nuclear antigen (PCNA) augments the processivity of these polymerases by serving as a DNA sliding clamp protein. This study reports the cloning of PCNA from the protozoan Leishmania donovani, which is the causative agent of the systemic disease visceral leishmaniasis. PCNA was demonstrated to be robustly expressed in actively proliferating L. donovani promastigotes. We found that the protein was present primarily in the nucleus throughout the cell cycle, and it was found in both proliferating procyclic and metacyclic promastigotes. However, levels of expression of PCNA varied through cell cycle progression, with maximum expression evident in G1 and S phases. The subnuclear pattern of expression of PCNA differed in different stages of the cell cycle; it formed distinct subnuclear foci in S phase, while it was distributed in a more diffuse pattern in G2/M phase and post-mitotic phase cells. These subnuclear foci are the sites of active DNA replication, suggesting that replication factories exist in Leishmania, as they do in higher eukaryotes, thus opening avenues for investigating other Leishmania proteins that are involved in DNA replication as part of these replication factories.
Collapse
Affiliation(s)
- Devanand Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Neha Minocha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Kalpana Rajanala
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
59
|
Yoshizawa-Sugata N, Masai H. Roles of human AND-1 in chromosome transactions in S phase. J Biol Chem 2009; 284:20718-28. [PMID: 19439411 PMCID: PMC2742837 DOI: 10.1074/jbc.m806711200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 03/02/2009] [Indexed: 11/06/2022] Open
Abstract
Coordinated execution of DNA replication, checkpoint activation, and postreplicative chromatid cohesion is intimately related to the replication fork machinery. Human AND-1/chromosome transmission fidelity 4 is localized adjacent to replication foci and is required for efficient DNA synthesis. In S phase, AND-1 is phosphorylated in response to replication arrest in a manner dependent on checkpoint kinase, ataxia telangiectasia-mutated, ataxia telangiectasia-mutated and Rad3-related protein, and Cdc7 kinase but not on Chk1. Depletion of AND-1 increases DNA damage, delays progression of S phase, leads to accumulation of late S and/or G2 phase cells, and induces cell death in cancer cells. It also elevated UV-radioresistant DNA synthesis and caused premature recovery of replication after hydroxyurea arrest, indicating that lack of AND-1 compromises checkpoint activation. This may be partly due to the decreased levels of Chk1 protein in AND-1-depleted cells. Furthermore, AND-1 interacts with cohesin proteins Smc1, Smc3, and Rad21/Scc1, consistent with proposed roles of yeast counterparts of AND-1 in sister chromatid cohesion. Depletion of AND-1 leads to significant inhibition of homologous recombination repair of an I-SceI-driven double strand break. Based on these data, we propose that AND-1 coordinates multiple cellular events in S phase and G2 phase, such as DNA replication, checkpoint activation, sister chromatid cohesion, and DNA damage repair, thus playing a pivotal role in maintenance of genome integrity.
Collapse
Affiliation(s)
- Naoko Yoshizawa-Sugata
- From the Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- From the Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
60
|
Barkley LR, Song IY, Zou Y, Vaziri C. Reduced expression of GINS complex members induces hallmarks of pre-malignancy in primary untransformed human cells. Cell Cycle 2009; 8:1577-88. [PMID: 19377277 DOI: 10.4161/cc.8.10.8535] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In cancer cells ablation of the GINS complex member Psf2 elicits chromosome mis-segregation yet the precise role of Psf2 in mitosis is unknown. We investigated the putative mitotic role of the GINS complex using synchronized cultures of untransformed Human Dermal Fibroblasts (HDF). Metaphase spreads from Psf1/Psf2-depleted HDF were normal and mitotic exit of Psf1/Psf2-depleted cells was only slightly delayed, suggesting no direct role for the GINS complex in mitosis of untransformed cells. Because the GINS complex is required for initiation and elongation events during DNA replication we hypothesized that the mitotic delay of Psf1/Psf2-deficient cells resulted indirectly from defective DNA synthesis during a prior S-phase. Therefore, we investigated the effects of Psf1/Psf2-depletion on DNA replication. Recruitment of Mcm7 to chromatin during G(1) was unaffected by Psf1/Psf2-ablation, indicating that replication licensing does not require GINS. However, chromatin-binding of Cdc45 and PCNA, onset of DNA synthesis and accumulation of G(2)/M markers were delayed in Psf1/Psf2-ablated cells. The cell cycle delay of Psf1/Psf2-depleted HDF was associated with several hallmarks of pre-malignancy including gammaH2AX, Thr 68-phosphorylated Chk2, and increased numbers of aberrant fragmented nuclei. Ectopic expression of catalytically-inactive Chk2 promoted S-phase and G(2)/M progression in Psf1/Psf2-depleted cells, as evidenced by modestly-increased rates of DNA synthesis and increased dephosphorylation of Cdc2. Therefore, S-phase progression of untransformed cells containing sub-optimal levels of Psf1/2 is associated with replication stress and acquisition of DNA damage. The ensuing Chk2-mediated DNA damage signaling likely contributes to maintenance of chromosomal integrity.
Collapse
Affiliation(s)
- Laura R Barkley
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
61
|
The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control. Mol Cell 2009; 32:862-9. [PMID: 19111665 DOI: 10.1016/j.molcel.2008.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 06/27/2008] [Accepted: 12/05/2008] [Indexed: 11/24/2022]
Abstract
The Dbf4/Drf1-dependent S-phase-promoting kinase Cdc7 (Ddk) is thought to be an essential target inactivated by the S-phase checkpoint machinery that inhibits DNA replication. However, we show here that the complex formation, chromatin association, and kinase activity of Ddk are not inhibited during the DNA-damage-induced S-phase checkpoint response in Xenopus egg extracts and mammalian cells. Instead, we find that Ddk plays an active role in regulating S-phase checkpoint signaling. Addition of purified Ddk to Xenopus egg extracts or overexpression of Dbf4 in HeLa cells downregulates ATR-Chk1 checkpoint signaling and overrides the inhibition of DNA replication and cell-cycle progression induced by DNA-damaging agents. These results indicate that Ddk functions as an upstream regulator to monitor S-phase checkpoint signaling. We propose that Ddk modulates the S-phase checkpoint control by attenuating checkpoint signaling and triggering DNA replication reinitiation during the S-phase checkpoint recovery.
Collapse
|
62
|
RAD6-RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light. Nature 2008; 457:612-5. [PMID: 19079240 DOI: 10.1038/nature07580] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 10/24/2008] [Indexed: 12/21/2022]
Abstract
In nature, organisms are exposed to chronic low-dose ultraviolet light (CLUV) as opposed to the acute high doses common to laboratory experiments. Analysis of the cellular response to acute high-dose exposure has delineated the importance of direct DNA repair by the nucleotide excision repair pathway and for checkpoint-induced cell cycle arrest in promoting cell survival. Here we examine the response of yeast cells to CLUV and identify a key role for the RAD6-RAD18-RAD5 error-free postreplication repair (RAD6 error-free PRR) pathway in promoting cell growth and survival. We show that loss of the RAD6 error-free PRR pathway results in DNA-damage-checkpoint-induced G2 arrest in CLUV-exposed cells, whereas wild-type and nucleotide-excision-repair-deficient cells are largely unaffected. Cell cycle arrest in the absence of the RAD6 error-free PRR pathway was not caused by a repair defect or by the accumulation of ultraviolet-induced photoproducts. Notably, we observed increased replication protein A (RPA)- and Rad52-yellow fluorescent protein foci in the CLUV-exposed rad18Delta cells and demonstrated that Rad52-mediated homologous recombination is required for the viability of the rad18Delta cells after release from CLUV-induced G2 arrest. These and other data presented suggest that, in response to environmental levels of ultraviolet exposure, the RAD6 error-free PRR pathway promotes replication of damaged templates without the generation of extensive single-stranded DNA regions. Thus, the error-free PRR pathway is specifically important during chronic low-dose ultraviolet exposure to prevent counter-productive DNA checkpoint activation and allow cells to proliferate normally.
Collapse
|
63
|
Yata K, Esashi F. Dual role of CDKs in DNA repair: to be, or not to be. DNA Repair (Amst) 2008; 8:6-18. [PMID: 18832049 DOI: 10.1016/j.dnarep.2008.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2008] [Indexed: 11/30/2022]
Abstract
The maintenance of genome integrity is essential for the regulation of cell proliferation and differentiation. DNA must be accurately duplicated and segregated to daughter cells at cell division, a process that is primarily regulated by cyclin-dependent kinases (CDKs). During cell growth, however, it is inevitable that DNA breaks will occur due to endogenous and exogenous stresses. Interestingly, there is increasing evidence that the catalytic activities of CDKs play critical roles in the DNA damage response, especially in the case of damage repaired by the homologous recombination (HR) pathway. In this review, we outline current knowledge of CDK regulation and its roles both in the unperturbed cell cycle and in DNA damage responses, and discuss the physiological roles of CDKs in HR repair.
Collapse
Affiliation(s)
- Keiko Yata
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
64
|
Expression and subcellular localization of ORC1 in Leishmania major. Biochem Biophys Res Commun 2008; 375:74-9. [PMID: 18680728 DOI: 10.1016/j.bbrc.2008.07.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 07/23/2008] [Indexed: 01/23/2023]
Abstract
The mechanism of DNA replication is highly conserved in eukaryotes, with the process being preceded by the ordered assembly of pre-replication complexes (pre-RCs). Pre-RC formation is triggered by the association of the origin replication complex (ORC) with chromatin. Leishmania major appears to have only one ORC ortholog, ORC1. ORC1 in other eukaryotes is the largest of the ORC subunits and is believed to play a significant role in modulating replication initiation. Here we report for the first time, the cloning of ORC1 from L. major, and the analysis of its expression in L. major promastigotes. In human cells ORC1 levels have been found to be upregulated in G1 and subsequently degraded, thus playing a role in controlling replication initiation. We examine the subcellular localization of L. major ORC1 in relation to the different stages of the cell cycle. Our results show that, unlike what is widely believed to be the case with ORC1 in human cells, ORC1 in L. major is nuclear at all stages of the cell cycle.
Collapse
|
65
|
Abstract
Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of prereplication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage.
Collapse
Affiliation(s)
- R A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
66
|
Krasinska L, Besnard E, Cot E, Dohet C, Méchali M, Lemaitre JM, Fisher D. Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus. EMBO J 2008; 27:758-69. [PMID: 18256689 DOI: 10.1038/emboj.2008.16] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 01/18/2008] [Indexed: 01/22/2023] Open
Abstract
In this paper, we describe how, in a model embryonic system, cyclin-dependent kinase (Cdk) activity controls the efficiency of DNA replication by determining the frequency of origin activation. Using independent approaches of protein depletion and selective chemical inhibition of a single Cdk, we find that both Cdk1 and Cdk2 are necessary for efficient DNA replication in Xenopus egg extracts. Eliminating Cdk1, Cdk2 or their associated cyclins changes replication origin spacing, mainly by decreasing frequency of activation of origin clusters. Although there is no absolute requirement for a specific Cdk or cyclin, Cdk2 and cyclin E contribute more to origin cluster efficiency than Cdk1 and cyclin A. Relative Cdk activity required for DNA replication is very low, and even when both Cdk1 and Cdk2 are strongly inhibited, some origins are activated. However, at low levels, Cdk activity is limiting for the pre-replication complex to pre-initiation complex transition, origin activation and replication efficiency. As such, unlike mitosis, initiation of DNA replication responds progressively to changes in Cdk activity at low activity levels.
Collapse
Affiliation(s)
- Liliana Krasinska
- Laboratory of Phosphorylation and Cell Cycle Control, Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
67
|
Suter B, Pogoutse O, Guo X, Krogan N, Lewis P, Greenblatt JF, Rine J, Emili A. Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p. BMC Biol 2007; 5:38. [PMID: 17880717 PMCID: PMC2140264 DOI: 10.1186/1741-7007-5-38] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 09/19/2007] [Indexed: 12/04/2022] Open
Abstract
Background Histone modifications have been implicated in the regulation of transcription and, more recently, in DNA replication and repair. In yeast, a major conserved histone acetyltransferase, Hat1p, preferentially acetylates lysine residues 5 and 12 on histone H4. Results Here, we report that a nuclear sub-complex consisting of Hat1p and its partner Hat2p interacts physically and functionally with the origin recognition complex (ORC). While mutational inactivation of the histone acetyltransferase (HAT) gene HAT1 alone does not compromise origin firing or initiation of DNA replication, a deletion in HAT1 (or HAT2) exacerbates the growth defects of conditional orc-ts mutants. Thus, the ORC-associated Hat1p-dependent histone acetyltransferase activity suggests a novel linkage between histone modification and DNA replication. Additional genetic and biochemical evidence points to the existence of partly overlapping histone H3 acetyltransferase activities in addition to Hat1p/Hat2p for proper DNA replication efficiency. Furthermore, we demonstrated a dynamic association of Hat1p with chromatin during S-phase that suggests a role of this enzyme at the replication fork. Conclusion We have found an intriguing new association of the Hat1p-dependent histone acetyltransferase in addition to its previously known role in nuclear chromatin assembly (Hat1p/Hat2p-Hif1p). The participation of a distinct Hat1p/Hat2p sub-complex suggests a linkage of histone H4 modification with ORC-dependent DNA replication.
Collapse
Affiliation(s)
- Bernhard Suter
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Oxana Pogoutse
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xinghua Guo
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nevan Krogan
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Peter Lewis
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jack F Greenblatt
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jasper Rine
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Andrew Emili
- Program in Proteomics and Bioinformatics, Banting and Best Department of Medical Genetics, Department of Medical and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
68
|
Lau E, Tsuji T, Guo L, Lu SH, Jiang W. The role of pre‐replicative complex (pre‐RC) components in oncogenesis. FASEB J 2007; 21:3786-94. [PMID: 17690155 DOI: 10.1096/fj.07-8900rev] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Normal DNA replication is stringently regulated to ensure a timely occurrence no more than once per cell cycle. Abrogation of the exquisite control mechanisms that maintain this process results in detrimental gains and losses of genomic DNA commonly seen in cancer and developmental defects. Replication initiation proteins, known as prereplicative complex (pre-RC) proteins, serve as a primary level of regulation, controlling when DNA replication can begin. Unsurprisingly, several pre-RC proteins are overexpressed in cancer and serve as good tumor markers. However, their direct correlation with increasing tumor grade and poor prognosis has posed a long-standing question: Are pre-RC proteins oncogenic? Recently, a growing body of data indicates that deregulation of individual pre-RC proteins, either by overexpression or functional deficiency in several organismal models, results in significant and consistently perturbed cell cycle regulation, genomic instability, and, potentially, tumorigenesis. In this review, we examine this broad range of evidence suggesting that pre-RC proteins play roles during oncogenesis that are more than simply indicative of proliferation, supporting the notion that pre-RC proteins may potentially have significant diagnostic and therapeutic value.
Collapse
Affiliation(s)
- Eric Lau
- The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
69
|
Shultz RW, Tatineni VM, Hanley-Bowdoin L, Thompson WF. Genome-wide analysis of the core DNA replication machinery in the higher plants Arabidopsis and rice. PLANT PHYSIOLOGY 2007; 144:1697-714. [PMID: 17556508 PMCID: PMC1949880 DOI: 10.1104/pp.107.101105] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/29/2007] [Indexed: 05/15/2023]
Abstract
Core DNA replication proteins mediate the initiation, elongation, and Okazaki fragment maturation functions of DNA replication. Although this process is generally conserved in eukaryotes, important differences in the molecular architecture of the DNA replication machine and the function of individual subunits have been reported in various model systems. We have combined genome-wide bioinformatic analyses of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) with published experimental data to provide a comprehensive view of the core DNA replication machinery in plants. Many components identified in this analysis have not been studied previously in plant systems, including the GINS (go ichi ni san) complex (PSF1, PSF2, PSF3, and SLD5), MCM8, MCM9, MCM10, NOC3, POLA2, POLA3, POLA4, POLD3, POLD4, and RNASEH2. Our results indicate that the core DNA replication machinery from plants is more similar to vertebrates than single-celled yeasts (Saccharomyces cerevisiae), suggesting that animal models may be more relevant to plant systems. However, we also uncovered some important differences between plants and vertebrate machinery. For example, we did not identify geminin or RNASEH1 genes in plants. Our analyses also indicate that plants may be unique among eukaryotes in that they have multiple copies of numerous core DNA replication genes. This finding raises the question of whether specialized functions have evolved in some cases. This analysis establishes that the core DNA replication machinery is highly conserved across plant species and displays many features in common with other eukaryotes and some characteristics that are unique to plants.
Collapse
Affiliation(s)
- Randall W Shultz
- Department of Plant Biology , North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
70
|
Labib K, Gambus A. A key role for the GINS complex at DNA replication forks. Trends Cell Biol 2007; 17:271-8. [DOI: 10.1016/j.tcb.2007.04.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/01/2007] [Accepted: 04/19/2007] [Indexed: 11/29/2022]
|
71
|
Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, Roberts JM, Kaldis P, Clurman BE, Sicinski P. Kinase-independent function of cyclin E. Mol Cell 2007; 25:127-39. [PMID: 17218276 DOI: 10.1016/j.molcel.2006.11.029] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 10/16/2006] [Accepted: 11/22/2006] [Indexed: 11/28/2022]
Abstract
E-type cyclins are thought to drive cell-cycle progression by activating cyclin-dependent kinases, primarily CDK2. We previously found that cyclin E-null cells failed to incorporate MCM helicase into DNA prereplication complex during G(0) --> S phase progression. We now report that a kinase-deficient cyclin E mutant can partially restore MCM loading and S phase entry in cyclin E-null cells. We found that cyclin E is loaded onto chromatin during G(0) --> S progression. In the absence of cyclin E, CDT1 is normally loaded onto chromatin, whereas MCM is not, indicating that cyclin E acts between CDT1 and MCM loading. We observed a physical association of cyclin E with CDT1 and with MCMs. We propose that cyclin E facilitates MCM loading in a kinase-independent fashion, through physical interaction with CDT1 and MCM. Our work indicates that-in addition to their function as CDK activators-E cyclins play kinase-independent functions in cell-cycle progression.
Collapse
Affiliation(s)
- Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Chabes A, Stillman B. Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2007; 104:1183-8. [PMID: 17227840 PMCID: PMC1783093 DOI: 10.1073/pnas.0610585104] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic cells the concentration of dNTP is highest in S phase and lowest in G1 phase and is controlled by ribonucleotide reductase (RNR). RNR activity is eliminated in all eukaryotes in G1 phase by a variety of mechanisms: transcriptional regulation, small inhibitory proteins, and protein degradation. After activation of RNR upon commitment to S phase, dATP feedback inhibition ensures that the dNTP concentration does not exceed a certain maximal level. It is not apparent why limitation of dNTP concentration is necessary in G1 phase. In principle, dATP feedback inhibition should be sufficient to couple dNTP production to utilization. We demonstrate that in Saccharomyces cerevisiae constitutively high dNTP concentration transiently arrests cell cycle progression in late G1 phase, affects activation of origins of replication, and inhibits the DNA damage checkpoint. We propose that fluctuation of dNTP concentration controls cell cycle progression and the initiation of DNA replication.
Collapse
Affiliation(s)
- Andrei Chabes
- *Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Bruce Stillman
- *Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and
| |
Collapse
|
73
|
Locovei AM, Spiga MG, Tanaka K, Murakami Y, D'Urso G. The CENP-B homolog, Abp1, interacts with the initiation protein Cdc23 (MCM10) and is required for efficient DNA replication in fission yeast. Cell Div 2006; 1:27. [PMID: 17112379 PMCID: PMC1664554 DOI: 10.1186/1747-1028-1-27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 11/17/2006] [Indexed: 11/10/2022] Open
Abstract
Abp1, and the closely related Cbh1 and Cbh2 are homologous to the human centromere-binding protein CENP-B that has been implicated in the assembly of centromeric heterochromatin. Fission yeast cells lacking Abp1 show an increase in mini-chromosome instability suggesting that Abp1 is important for chromosome segregation and/or DNA synthesis. Here we show that Abp1 interacts with the DNA replication protein Cdc23 (MCM10) in a two-hybrid assay, and that the Deltaabp1 mutant displays a synthetic phenotype with a cdc23 temperature-sensitive mutant. Moreover, genetic interactions were also observed between abp1+ and four additional DNA replication initiation genes cdc18+, cdc21+, orc1+, and orc2+. Interestingly, we find that S phase is delayed in cells deleted for abp1+ when released from a G1 block. However, no delay is observed when cells are released from an early S phase arrest induced by hydroxyurea suggesting that Abp1 functions prior to, or coincident with, the initiation of DNA replication.
Collapse
Affiliation(s)
- Alexandra M Locovei
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, P.O. Box 016189, Miami, FL, 33101, USA
| | - Maria-Grazia Spiga
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, P.O. Box 016189, Miami, FL, 33101, USA
| | - Katsunori Tanaka
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Shimane, Japan
| | - Yota Murakami
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Gennaro D'Urso
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, P.O. Box 016189, Miami, FL, 33101, USA
| |
Collapse
|
74
|
Sheu YJ, Stillman B. Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell 2006; 24:101-13. [PMID: 17018296 PMCID: PMC2923825 DOI: 10.1016/j.molcel.2006.07.033] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Revised: 06/16/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
Origins of DNA replication are licensed in G1 by recruiting the minichromosome maintenance (MCM) proteins to form a prereplicative complex (pre-RC). Prior to initiation of DNA synthesis from each origin, a preinitiation complex (pre-IC) containing Cdc45 and other proteins is formed. We report that Cdc7-Dbf4 protein kinase (DDK) promotes assembly of a stable Cdc45-MCM complex exclusively on chromatin in S phase. In this complex, Mcm4 is hyperphosphorylated. Studies in vitro using purified DDK and Mcm4 demonstrate that hyperphosphorylation occurs at the Mcm4 N terminus. However, the DDK substrate specificity is conferred by an adjacent DDK-docking domain (DDD), sufficient for facilitating efficient phosphorylation of artificial phosphoacceptors in cis. Genetic evidence suggests that phosphorylation of Mcm4 by DDK is important for timely S phase progression and for cell viability upon overproduction of Cdc45. We suggest that DDK docks on and phosphorylates MCM proteins at licensed origins to promote proper assembly of pre-IC.
Collapse
Affiliation(s)
- Yi-Jun Sheu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
75
|
Masai H, Taniyama C, Ogino K, Matsui E, Kakusho N, Matsumoto S, Kim JM, Ishii A, Tanaka T, Kobayashi T, Tamai K, Ohtani K, Arai KI. Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J Biol Chem 2006; 281:39249-61. [PMID: 17046832 DOI: 10.1074/jbc.m608935200] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cdc7 kinase, conserved from yeasts to human, plays important roles in DNA replication. However, the mechanisms by which it stimulates initiation of DNA replication remain largely unclear. We have analyzed phosphorylation of MCM subunits during cell cycle by examining mobility shift on SDS-PAGE. MCM4 on the chromatin undergoes specific phosphorylation during S phase. Cdc7 phosphorylates MCM4 in the MCM complexes as well as the MCM4 N-terminal polypeptide. Experiments with phospho-amino acid-specific antibodies indicate that the S phase-specific mobility shift is due to the phosphorylation at specific N-terminal (S/T)(S/T)P residues of the MCM4 protein. These specific phosphorylation events are not observed in mouse ES cells deficient in Cdc7 or are reduced in the cells treated with siRNA specific to Cdc7, suggesting that they are mediated by Cdc7 kinase. The N-terminal phosphorylation of MCM4 stimulates association of Cdc45 with the chromatin, suggesting that it may be an important phosphorylation event by Cdc7 for activation of replication origins. Deletion of the N-terminal non-conserved 150 amino acids of MCM4 results in growth inhibition, and addition of amino acids carrying putative Cdc7 target sequences partially restores the growth. Furthermore, combination of MCM4 N-terminal deletion with alanine substitution and deletion of the N-terminal segments of MCM2 and MCM6, respectively, which contain clusters of serine/threonine and are also likely targets of Cdc7, led to an apparent nonviable phenotype. These results are consistent with the notion that the N-terminal phosphorylation of MCM2, MCM4, and MCM6 may play functionally redundant but essential roles in initiation of DNA replication.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Woodward AM, Göhler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. ACTA ACUST UNITED AC 2006; 173:673-83. [PMID: 16754955 PMCID: PMC2063885 DOI: 10.1083/jcb.200602108] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In late mitosis and early G1, replication origins are licensed for subsequent use by loading complexes of the minichromosome maintenance proteins 2–7 (Mcm2–7). The number of Mcm2–7 complexes loaded onto DNA greatly exceeds the number of replication origins used during S phase, but the function of the excess Mcm2–7 is unknown. Using Xenopus laevis egg extracts, we show that these excess Mcm2–7 complexes license additional dormant origins that do not fire during unperturbed S phases because of suppression by a caffeine-sensitive checkpoint pathway. Use of these additional origins can allow complete genome replication in the presence of replication inhibitors. These results suggest that metazoan replication origins are actually comprised of several candidate origins, most of which normally remain dormant unless cells experience replicative stress. Consistent with this model, using Caenorhabditis elegans, we show that partial RNAi-based knockdown of MCMs that has no observable effect under normal conditions causes lethality upon treatment with low, otherwise nontoxic, levels of the replication inhibitor hydroxyurea.
Collapse
Affiliation(s)
- Anna M Woodward
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Nitani N, Nakamura KI, Nakagawa C, Masukata H, Nakagawa T. Regulation of DNA replication machinery by Mrc1 in fission yeast. Genetics 2006; 174:155-65. [PMID: 16849602 PMCID: PMC1569812 DOI: 10.1534/genetics.106.060053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Faithful replication of chromosomes is crucial to genome integrity. In yeast, the ORC binds replication origins throughout the cell cycle. However, Cdc45 binds these before S-phase, and, during replication, it moves along the DNA with MCM helicase. When replication progression is inhibited, checkpoint regulation is believed to stabilize the replication fork; the detailed mechanism, however, remains unclear. To examine the relationship between replication initiation and elongation defects and the response to replication elongation block, we used fission yeast mutants of Orc1 and Cdc45--orp1-4 and sna41-928, respectively--at their respective semipermissive temperatures with regard to BrdU incorporation. Both orp1 and sna41 cells exhibited HU hypersensitivity in the absence of Chk1, a DNA damage checkpoint kinase, and were defective in full activation of Cds1, a replication checkpoint kinase, indicating that normal replication is required for Cds1 activation. Mrc1 is required to activate Cds1 and prevent the replication machinery from uncoupling from DNA synthesis. We observed that, while either the orp1 or the sna41 mutation partially suppressed HU sensitivity of cds1 cells, sna41 specifically suppressed that of mrc1 cells. Interestingly, sna41 alleviated the defect in recovery from HU arrest without increasing Cds1 activity. In addition to sna41, specific mutations of MCM suppressed the HU sensitivity of mrc1 cells. Thus, during elongation, Mrc1 may negatively regulate Cdc45 and MCM helicase to render stalled forks capable of resuming replication.
Collapse
Affiliation(s)
- Naoki Nitani
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
78
|
Dohrmann PR, Sclafani RA. Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae. Genetics 2006; 174:87-99. [PMID: 16816422 PMCID: PMC1569810 DOI: 10.1534/genetics.106.060236] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A novel role for Rad53 in the initiation of DNA replication that is independent of checkpoint or deoxynucleotide regulation is proposed. Rad53 kinase is part of a signal transduction pathway involved in the DNA damage and replication checkpoints, while Cdc7-Dbf4 kinase (DDK) is important for the initiation of DNA replication. In addition to the known cdc7-rad53 synthetic lethality, rad53 mutations suppress mcm5-bob1, a mutation in the replicative MCM helicase that bypasses DDK's essential role. Rad53 kinase activity but neither checkpoint FHA domain is required. Conversely, Rad53 kinase can be activated without DDK. Rad53's role in replication is independent of both DNA and mitotic checkpoints because mutations in other checkpoint genes that act upstream or downstream of RAD53 or in the mitotic checkpoint do not exhibit these phenotypes. Because Rad53 binds an origin of replication mainly through its kinase domain and rad53 null mutants display a minichromosome loss phenotype, Rad53 is important in the initiation of DNA replication, as are DDK and Mcm2-7 proteins. This unique requirement for Rad53 can be suppressed by the deletion of the major histone H3/H4 gene pair, indicating that Rad53 may be regulating initiation by controlling histone protein levels and/or by affecting origin chromatin structure.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | | |
Collapse
|
79
|
Abstract
Regulation of DNA replication is critical for accurate and timely dissemination of genomic material to daughter cells. The cell uses a variety of mechanisms to control this aspect of the cell cycle. There are various determinants of origin identification, as well as a large number of proteins required to load replication complexes at these defined genomic regions. A pre-Replication Complex (pre-RC) associates with origins in the G1 phase. This complex includes the Origin Recognition Complex (ORC), which serves to recognize origins, the putative helicase MCM2-7, and other factors important for complex assembly. Following pre-RC loading, a pre-Initiation Complex (pre-IC) builds upon the helicase with factors required for eventual loading of replicative polymerases. The chromatin association of these two complexes is temporally distinct, with pre-RC being inhibited, and pre-IC being activated by cyclin-dependent kinases (Cdks). This regulation is the basis for replication licensing, which allows replication to occur at a specific time once, and only once, per cell cycle. By preventing extra rounds of replication within a cell cycle, or by ensuring the cell cycle cannot progress until the environmental and intracellular conditions are most optimal, cells are able to carry out a successful replication cycle with minimal mutations.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
80
|
Abstract
Although Mcm10p is a conserved essential component in eukaryotes required for both the initiation and elongation of DNA chains, its biochemical properties are unknown. Here, we report that the Schizosaccharomyces pombe fission yeast Mcm10 protein contains primase activity. Primases are enzymes that synthesize RNA primers on single-stranded DNA templates that are extended by DNA polymerases. In keeping with this property, Mcm10p supported oligoribonucleotide synthesis of short RNA primers (preferentially initiating synthesis on a dT template) that were extended with dATP by Escherichia coli DNA polymerase I. The C terminus of Mcm10p synthesized RNA, but less efficiently than the full-length protein at low rNTP levels. Mcm10p homologs contain a C-terminal motif found in proteins that polymerize nucleotides. A point mutant within this motif of S. pombe Mcm10p was defective in primer synthesis in vitro, and this mutant failed to support growth in vivo, suggesting that the primase activity of Mcm10p may be essential for cell viability.
Collapse
Affiliation(s)
- Karen Fien
- Program of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021.
| | - Jerard Hurwitz
- Program of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021.
| |
Collapse
|
81
|
Ricke RM, Bielinsky AK. A conserved Hsp10-like domain in Mcm10 is required to stabilize the catalytic subunit of DNA polymerase-alpha in budding yeast. J Biol Chem 2006; 281:18414-25. [PMID: 16675460 DOI: 10.1074/jbc.m513551200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mcm10 is a conserved eukaryotic DNA replication factor that is required for S phase progression. Recently, Mcm10 has been shown to interact physically with the DNA polymerase-alpha (pol-alpha).primase complex. We show now that Mcm10 is in a complex with pol-alpha throughout the cell cycle. In temperature-sensitive mcm10-1 mutants, depletion of Mcm10 results in degradation of the catalytic subunit of pol-alpha, Cdc17/Pol1, regardless of whether cells are in G(1), S, or G(2) phase. Importantly, Cdc17 protein levels can be restored upon overexpression of exogenous Mcm10 in mcm10-1 mutants that are grown at the nonpermissive temperature. Moreover, overexpressed Cdc17 that is normally subject to rapid degradation is stabilized by Mcm10 co-overexpression but not by co-overexpression of the B-subunit of pol-alpha, Pol12. These results are consistent with Mcm10 having a role as a nuclear chaperone for Cdc17. Mutational analysis indicates that a conserved heat-shock protein 10 (Hsp10)-like domain in Mcm10 is required to prevent the degradation of Cdc17. Substitution of a single residue in the Hsp10-like domain of endogenous Mcm10 results in a dramatic reduction of steady-state Cdc17 levels. The high degree of evolutionary conservation of this domain implies that stabilizing Cdc17 may be a conserved function of Mcm10.
Collapse
Affiliation(s)
- Robin M Ricke
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
82
|
Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC. Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 2006; 21:581-7. [PMID: 16483939 DOI: 10.1016/j.molcel.2006.01.030] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/20/2006] [Accepted: 01/26/2006] [Indexed: 10/25/2022]
Abstract
Little is known about the architecture and biochemical composition of the eukaryotic DNA replication fork. To study this problem, we used biotin-streptavidin-modified plasmids to induce sequence-specific replication fork pausing in Xenopus egg extracts. Chromatin immunoprecipitation was employed to identify factors associated with the paused fork. This approach identifies DNA pol alpha, DNA pol delta, DNA pol epsilon, MCM2-7, Cdc45, GINS, and Mcm10 as components of the vertebrate replisome. In the presence of the DNA polymerase inhibitor aphidicolin, which causes uncoupling of a highly processive DNA helicase from the stalled replisome, only Cdc45, GINS, and MCM2-7 are enriched at the pause site. The data suggest the existence of a large molecular machine, the "unwindosome," which separates DNA strands at the replication fork and contains Cdc45, GINS, and the MCM2-7 holocomplex.
Collapse
Affiliation(s)
- Marcin Pacek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
83
|
Jackson LP, Reed SI, Haase SB. Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6. Mol Cell Biol 2006; 26:2456-66. [PMID: 16508019 PMCID: PMC1430301 DOI: 10.1128/mcb.26.6.2456-2466.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/13/2004] [Accepted: 12/23/2005] [Indexed: 01/29/2023] Open
Abstract
The yeast S-phase cyclins Clb5 and Clb6 are closely related proteins that are synthesized late in G1. Although often grouped together with respect to function, Clb5 and Clb6 exhibit differences in their ability to promote S-phase progression. DNA replication is significantly slowed in clb5Delta mutants but not in clb6Delta mutants. We have examined the basis for the differential functions of Clb5 and Clb6 and determined that unlike Clb5, which is stable until mitosis, Clb6 is degraded rapidly at the G1/S border. N-terminal deletions of CLB6 were hyperstabilized, suggesting that the sequences responsible for directing the destruction of Clb6 reside in the N terminus. Clb6 lacks the destruction box motif responsible for the anaphase promoting complex-mediated destruction of Clb5 but contains putative Cdc4 degron motifs in the N terminus. Clb6 was hyperstabilized in cdc34-3 and cdc4-3 mutants at restrictive temperatures and when S/T-P phosphorylation sites in the N terminus were mutated to nonphosphorylatable residues. Efficient degradation of Clb6 requires the activities of both Cdc28 and Pho85. Finally, hyperstabilized Clb6 expressed from the CLB6 promoter rescued the slow S-phase defect exhibited by clb5Delta cells. Taken together, these findings suggest that the SCF(Cdc4) ubiquitin ligase complex regulates Clb6 turnover and that the functional differences exhibited by Clb5 and Clb6 arise from the distinct mechanisms controlling their stability.
Collapse
Affiliation(s)
- Leisa P Jackson
- DCMB Group, Department of Biology, Box 91000, LSRC Bldg., Research Dr., Durham, NC 27708, USA
| | | | | |
Collapse
|
84
|
Dhillon N, Oki M, Szyjka SJ, Aparicio OM, Kamakaka RT. H2A.Z functions to regulate progression through the cell cycle. Mol Cell Biol 2006; 26:489-501. [PMID: 16382141 PMCID: PMC1346916 DOI: 10.1128/mcb.26.2.489-501.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone H2A variants are highly conserved proteins found ubiquitously in nature and thought to perform specialized functions in the cell. Studies in yeast on the histone H2A variant H2A.Z have shown a role for this protein in transcription as well as chromosome segregation. Our studies have focused on understanding the role of H2A.Z during cell cycle progression. We found that htz1delta cells were delayed in DNA replication and progression through the cell cycle. Furthermore, cells lacking H2A.Z required the S-phase checkpoint pathway for survival. We also found that H2A.Z localized to the promoters of cyclin genes, and cells lacking H2A.Z were delayed in the induction of these cyclin genes. Several different models are proposed to explain these observations.
Collapse
Affiliation(s)
- Namrita Dhillon
- Unit on Chromatin and Transcription, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18T, Rm. 106, 18 Library Dr., Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
85
|
Zhu W, Abbas T, Dutta A. DNA replication and genomic instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:249-79. [PMID: 18727504 DOI: 10.1007/1-4020-3764-3_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
86
|
Abstract
There has been remarkable progress in the last 20 years in defining the molecular mechanisms that regulate initiation of DNA synthesis in eukaryotic cells. Replication origins in the DNA nucleate the ordered assembly of protein factors to form a prereplication complex (preRC) that is poised for DNA synthesis. Transition of the preRC to an active initiation complex is regulated by cyclin-dependent kinases and other signaling molecules, which promote further protein assembly and activate the mini chromosome maintenance helicase. We will review these mechanisms and describe the state of knowledge about the proteins involved. However, we will also consider an additional layer of complexity. The DNA in the cell is packaged with histone proteins into chromatin. Chromatin structure provides an additional layer of heritable information with associated epigenetic modifications. Thus, we will begin by describing chromatin structure, and how the cell generally controls access to the DNA. Access to the DNA requires active chromatin remodeling, specific histone modifications, and regulated histone deposition. Studies in transcription have revealed a variety of mechanisms that regulate DNA access, and some of these are likely to be shared with DNA replication. We will briefly describe heterochromatin as a model for an epigenetically inherited chromatin state. Next, we will describe the mechanisms of replication initiation and how these are affected by constraints of chromatin. Finally, chromatin must be reassembled with appropriate modifications following passage of the replication fork, and our third major topic will be the reassembly of chromatin and its associated epigenetic marks. Thus, in this chapter, we seek to bring together the studies of replication initiation and the studies of chromatin into a single holistic narrative.
Collapse
Affiliation(s)
- Angel P Tabancay
- Molecular and Computational Biology Section University of Southern California Los Angeles, California 90089, USA
| | | |
Collapse
|
87
|
Ying CY, Gautier J. The ATPase activity of MCM2-7 is dispensable for pre-RC assembly but is required for DNA unwinding. EMBO J 2005; 24:4334-44. [PMID: 16369567 PMCID: PMC1356333 DOI: 10.1038/sj.emboj.7600892] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 11/08/2005] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes have six minichromosome maintenance (MCM) proteins that are essential for DNA replication. The contribution of ATPase activity of MCM complexes to their function in replication is poorly understood. We have established a cell-free system competent for replication in which all MCM proteins are supplied by purified recombinant Xenopus MCM complexes. Recombinant MCM2-7 complex was able to assemble onto chromatin, load Cdc45 onto chromatin, and restore DNA replication in MCM-depleted extracts. Using mutational analysis in the Walker A motif of MCM6 and MCM7 of MCM2-7, we show that ATP binding and/or hydrolysis by MCM proteins is dispensable for chromatin loading and pre-replicative complex (pre-RC) assembly, but is required for origin unwinding during DNA replication. Moreover, this ATPase-deficient mutant complex did not support DNA replication in MCM-depleted extracts. Altogether, these results both demonstrate the ability of recombinant MCM proteins to perform all replication roles of MCM complexes, and further support the model that MCM2-7 is the replicative helicase. These data establish that mutations affecting the ATPase activity of the MCM complex uncouple its role in pre-RC assembly from DNA replication.
Collapse
Affiliation(s)
- Carol Y Ying
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, Room 1602A, 701 W 168th Street, New York, NY 10032, USA. Tel.: +1 212 305 9586; Fax: +1 212 923 2090; E-mail:
| |
Collapse
|
88
|
Nallamshetty S, Crook M, Boehm M, Yoshimoto T, Olive M, Nabel EG. The cell cycle regulator p27Kip1 interacts with MCM7, a DNA replication licensing factor, to inhibit initiation of DNA replication. FEBS Lett 2005; 579:6529-36. [PMID: 16289477 DOI: 10.1016/j.febslet.2005.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 10/06/2005] [Accepted: 10/17/2005] [Indexed: 10/25/2022]
Abstract
The G1/S phase restriction point is a critical checkpoint that interfaces between the cell cycle regulatory machinery and DNA replicator proteins. Here, we report a novel function for the cyclin-dependent kinase inhibitor p27Kip1 in inhibiting DNA replication through its interaction with MCM7, a DNA replication protein that is essential for initiation of DNA replication and maintenance of genomic integrity. We find that p27Kip1 binds the conserved minichromosome maintenance (MCM) domain of MCM7. The proteins interact endogenously in vivo in a growth factor-dependent manner, such that the carboxyl terminal domain of p27Kip1 inhibits DNA replication independent of its function as a cyclin-dependent kinase inhibitor. This novel function of p27Kip1 may prevent inappropriate initiation of DNA replication prior to S phase.
Collapse
Affiliation(s)
- Shriram Nallamshetty
- National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, Room 4523, 50 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
89
|
Stabenow D, Probst H, van Betteraey-Nikoleit M. Cdk2 activity is dispensable for triggering replicon initiation after transient hypoxia in T24 cells. FEBS J 2005; 272:5623-34. [PMID: 16262700 DOI: 10.1111/j.1742-4658.2005.04957.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined whether the fast release of replicon initiation after sudden O2 recovery of hypoxically incubated mammalian cells depends on kinase activity of Cdk2. We used a system based on starved/refed T24 cells elaborated previously for such investigations [van Betteraey-Nikoleit M, Eisele KH, Stabenow D and Probst H (2003) Eur J Biochem270, 3880-3890]. Cells subjected to hypoxia concurrently with refeeding accumulate the G1 DNA content within 5-6 h. In this state they are ready to perform, within 1-2 min after O2 recovery, a burst of replicon initiations that marks the start of a synchronous S-phase. We found that Cdk2 binds to the chromatin fraction within 4-6 h after refeeding with fresh medium, irrespective of whether the cells were incubated normoxically or hypoxically. However, inhibition of Cdk2 by olomoucine, roscovitine or the Cdk2/cyclin inhibitory peptide II had no influence on the synchronous burst of replicon initiations. Cdc6 and pRb, possible targets of Cdk2 phosphorylation, behaved differentially. Inhibition did not affect phosphorylation of Cdc6 after reoxygenation, whilst chromatin bound pRb remained hypophosphorylated beyond the initiation burst. Thus, neither Cdk2 activity, though present at the end of the hypoxic period, nor pRb phosphorylation are necessary for releasing the burst of replicon initiations upon oxygen recovery. Consequentially, Cdk2 dependent phosphorylation(s) cannot be a critical trigger of replicon initiation in response to reoxygenation after several hours of hypoxia, at least in the T24 cells studied.
Collapse
Affiliation(s)
- Dirk Stabenow
- Interfakultäres Institut für Biochemie der Universität Tübingen, Germany
| | | | | |
Collapse
|
90
|
Garcia V, Furuya K, Carr AM. Identification and functional analysis of TopBP1 and its homologs. DNA Repair (Amst) 2005; 4:1227-39. [PMID: 15897014 DOI: 10.1016/j.dnarep.2005.04.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 01/18/2023]
Abstract
The multiple BRCT-domain protein TopBP1 and its yeast homologs have been implicated in many aspects of DNA metabolism, but their molecular functions remain elusive. In this review, we first summarise how the yeast homologs were identified and characterised. We next review the data available from metazoan systems and finally draw parallels with the yeast models. TopBP1 plays important functions in the initiation of DNA replication in all organisms and participates in checkpoint responses both within S phase and following DNA damage. In metazoan systems there is accumulating evidence for additional roles in transcriptional regulation that have not been reported in yeast. Overall, TopBP1 appears to play a key role in integrating different aspects of DNA metabolism, but the mechanistic basis for this remains to be fully explained.
Collapse
Affiliation(s)
- Valerie Garcia
- Genome Damage and Stability Center, University of Sussex, Brighton, Sussex BN1 9RQ, UK
| | | | | |
Collapse
|
91
|
Guo B, Romero J, Kim BJ, Lee H. High levels of Cdc7 and Dbf4 proteins can arrest cell-cycle progression. Eur J Cell Biol 2005; 84:927-38. [PMID: 16325502 DOI: 10.1016/j.ejcb.2005.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 09/07/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022] Open
Abstract
Cdc7-Dbf4 serine/threonine kinase is essential for initiation of DNA replication. It was previously found that overexpression of certain replication proteins such as Cdc6 and Cdt1 in fission yeast resulted in multiple rounds of DNA replication in the absence of mitosis. Since this phenomenon is dependent upon the presence of wild-type Cdc7/Hsk1, we hypothesized that high levels of Cdc7 and/or Dbf4 could also cause multiple rounds of DNA replication, or could facilitate entry into S phase. To test this hypothesis, we transiently overexpressed hamster Cdc7, Dbf4 or both in CHO cells. Direct observations of individual cells by fluorescence microscopy and flow cytometric analysis on cell populations suggest that overexpression of Cdc7 and/or Dbf4 does not result in multiple rounds of DNA replication or facilitating entry into S phase. In contrast, moderately increased levels of Dbf4, but not Cdc7, cause cell-cycle arrest in G2/M. This G2/M arrest coincides with hyperphosphorylation of Cdc2/Cdk1 at Tyr-15, raising the possibility that high levels of Dbf4 may activate a G2/M cell-cycle checkpoint. Further increase in Cdc7 and/or Dbf4 by 2-4 fold can arrest cells in G1 and significantly slow down S-phase progression for the cells already in S phase.
Collapse
Affiliation(s)
- Baoqing Guo
- Department of Research, Northeastern Ontario Regional Cancer Centre, Sudbury, Canada
| | | | | | | |
Collapse
|
92
|
Syljuåsen RG, Sørensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, Helleday T, Sehested M, Lukas J, Bartek J. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 2005; 25:3553-62. [PMID: 15831461 PMCID: PMC1084285 DOI: 10.1128/mcb.25.9.3553-3562.2005] [Citation(s) in RCA: 416] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human checkpoint kinase 1 (Chk1) is an essential kinase required to preserve genome stability. Here, we show that Chk1 inhibition by two distinct drugs, UCN-01 and CEP-3891, or by Chk1 small interfering RNA (siRNA) leads to phosphorylation of ATR targets. Chk1-inhibition triggered rapid, pan-nuclear phosphorylation of histone H2AX, p53, Smc1, replication protein A, and Chk1 itself in human S-phase cells. These phosphorylations were inhibited by ATR siRNA and caffeine, but they occurred independently of ATM. Chk1 inhibition also caused an increased initiation of DNA replication, which was accompanied by increased amounts of nonextractable RPA protein, formation of single-stranded DNA, and induction of DNA strand breaks. Moreover, these responses were prevented by siRNA-mediated downregulation of Cdk2 or the replication initiation protein Cdc45, or by addition of the CDK inhibitor roscovitine. We propose that Chk1 is required during normal S phase to avoid aberrantly increased initiation of DNA replication, thereby protecting against DNA breakage. These results may help explain why Chk1 is an essential kinase and should be taken into account when drugs to inhibit this kinase are considered for use in cancer treatment.
Collapse
Affiliation(s)
- Randi G Syljuåsen
- Institute of Cancer Biology, Department of Cell Cycle and Cancer, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Initiation and completion of DNA replication defines the beginning and ending of S phase of the cell cycle. Successful progression through S phase requires that replication be properly regulated and monitored to ensure that the entire genome is duplicated exactly once, without errors, in a timely fashion. Given the immense size and complexity of eukaryotic genomes, this presents a significant challenge for the cell. As a result, DNA replication has evolved into a tightly regulated process involving the coordinated action of numerous factors that function in all phases of the cell cycle. We will review our current understanding of these processes from the formation of prereplicative complexes in preparation for S phase to the series of events that culminate in the loading of DNA polymerases during S phase. We will incorporate structural data from archaeal and bacterial replication proteins and discuss their implications for understanding the mechanism of action of their corresponding eukaryotic homologues. We will also describe the concept of replication licensing which protects against genomic instability by limiting initiation events to once per cell cycle. Lastly, we will review our knowledge of checkpoint pathways that maintain the integrity of stalled forks and relay defects in replication to the rest of the cell cycle.
Collapse
Affiliation(s)
- David Y Takeda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
94
|
Ricke R, Bielinsky AK. Easy detection of chromatin binding proteins by the Histone Association Assay. Biol Proced Online 2005; 7:60-9. [PMID: 16136225 PMCID: PMC1190380 DOI: 10.1251/bpo106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/08/2005] [Accepted: 04/14/2005] [Indexed: 01/01/2023] Open
Abstract
The Histone Association Assay provides an easy approach for detecting proteins that bind chromatin in vivo. This technique is based on a chromatin immunoprecipitation protocol using histone H3-specific antibodies to precipitate bulk chromatin from crosslinked whole cell extracts. Proteins that co-precipitate with chromatin are subsequently detected by conventional SDS-PAGE and Western blot analysis. Unlike techniques that separate chromatin and non-chromatin interacting proteins by centrifugation, this method can be used to delineate whether a protein is chromatin associated regardless of its innate solubility. Moreover, the relative amount of protein bound to DNA can be ascertained under quantitative conditions. Therefore, this technique may be utilized for analyzing the chromatin association of proteins involved in diverse cellular processes.
Collapse
Affiliation(s)
- Robin Ricke
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota. Minneapolis, MN 55455. USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota. Minneapolis, MN 55455. USA
| |
Collapse
|
95
|
Nedelcheva MN, Roguev A, Dolapchiev LB, Shevchenko A, Taskov HB, Shevchenko A, Stewart AF, Stoynov SS. Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex. J Mol Biol 2005; 347:509-21. [PMID: 15755447 DOI: 10.1016/j.jmb.2005.01.041] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 01/11/2005] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
The replicative DNA helicases can unwind DNA in the absence of polymerase activity in vitro. In contrast, replicative unwinding is coupled with DNA synthesis in vivo. The temperature-sensitive yeast polymerase alpha/primase mutants cdc17-1, pri2-1 and pri1-m4, which fail to execute the early step of DNA replication, have been used to investigate the interaction between replicative unwinding and DNA synthesis in vivo. We report that some of the plasmid molecules in these mutant strains became extensively negatively supercoiled when DNA synthesis is prevented. In contrast, additional negative supercoiling was not detected during formation of DNA initiation complex or hydroxyurea replication fork arrest. Together, these results indicate that the extensive negative supercoiling of DNA is a result of replicative unwinding, which is not followed by DNA synthesis. The limited number of unwound plasmid molecules and synthetic lethality of polymerase alpha or primase with checkpoint mutants suggest a checkpoint regulation of the replicative unwinding. In concordance with this suggestion, we found that the Tof1/Csm3/Mrc1 checkpoint complex interacts directly with the MCM helicase during both replication fork progression and when the replication fork is stalled.
Collapse
Affiliation(s)
- Marina N Nedelcheva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Volkening M, Hoffmann I. Involvement of human MCM8 in prereplication complex assembly by recruiting hcdc6 to chromatin. Mol Cell Biol 2005; 25:1560-8. [PMID: 15684404 PMCID: PMC548026 DOI: 10.1128/mcb.25.4.1560-1568.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MCM2-MCM7 complex is an essential component of the prereplication complex (pre-RC), which is recruited by the cdc6 and cdt1 proteins to origins of DNA replication during G(1) phase. Here, we report that the accumulation on chromatin of another member of the MCM protein family, human MCM8 (hMCM8), occurs during early G(1) phase, before the hMCM2-hMCM7 complex binds. hMCM8 interacts in vivo with two components of the pre-RC, namely, hcdc6 and hORC2. Depletion of endogenous hMCM8 protein by RNA interference leads to a delay of entry into S phase, suggesting a role for hMCM8 in G(1) progression. Furthermore, down-regulation of hMCM8 also leads to a reduced loading of hcdc6 and the hMCM2-hMCM7 complex on chromatin. These results suggest that hMCM8 is a crucial component of the pre-RC and that the interaction between hMCM8 and hcdc6 is required for pre-RC assembly.
Collapse
Affiliation(s)
- Melanie Volkening
- Cell Cycle Control and Carcinogenesis, F045 DKFZ, German Cancer Research Center, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | |
Collapse
|
97
|
Hiraga SI, Hagihara-Hayashi A, Ohya T, Sugino A. DNA polymerases α, δ, and ɛ localize and function together at replication forks in Saccharomyces cerevisiae. Genes Cells 2005; 10:297-309. [PMID: 15773893 DOI: 10.1111/j.1365-2443.2005.00843.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Early in eukaryotic cell cycle, a pre-RC is assembled at each replication origin with ORC, Cdc6, Cdt1 and Mcm2-7 proteins to license the origin for use in the subsequent S phase. Licensed origin must then be activated by S-Cdk and Ddk. At the onset of S phase, RPA is loaded on to the ARS in a reaction stimulated by S-Cdk and Ddk, followed by Cdc45-dependent loading of pol alpha, -delta, and -epsilon. This study examines cell cycle-dependent localization of pol alpha, -delta and -epsilon in Saccharomyces cerevisiae using immuno-histochemical and chromatin immuno-precipitation methods. The results show that pol alpha, -delta, or -epsilon localizes on chromatin as punctate foci at all stages of the cell cycle. However, some foci overlap with or are adjacent to foci pulse-labeled with bromodeoxyuridine during S phase, indicating these are replicating foci. DNA microarray analysis localized pol alpha, -delta, and -epsilon to early firing ARSs on yeast chromosome III and VI at the beginning of S phase. These data collectively suggest that bidirectional replication occurs at specific foci in yeast chromosomes and that pol alpha, -delta, and -epsilon localize and function together at multiple replication forks during S phase.
Collapse
Affiliation(s)
- Shin-Ichiro Hiraga
- Laboratories for Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
98
|
Naderi S, Wang JYJ, Chen TT, Gutzkow KB, Blomhoff HK. cAMP-mediated inhibition of DNA replication and S phase progression: involvement of Rb, p21Cip1, and PCNA. Mol Biol Cell 2005; 16:1527-42. [PMID: 15647383 PMCID: PMC551513 DOI: 10.1091/mbc.e04-06-0501] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
cAMP exerts an antiproliferative effect on a number of cell types including lymphocytes. This effect of cAMP is proposed to be mediated by its ability to inhibit G1/S transition. In this report, we provide evidence for a new mechanism whereby cAMP might inhibit cellular proliferation. We show that elevation of intracellular levels of cAMP inhibits DNA replication and arrests the cells in S phase. The cAMP-induced inhibition of DNA synthesis was associated with the increased binding of p21Cip1 to Cdk2-cyclin complexes, inhibition of Cdk2 kinase activity, dephosphorylation of Rb, and dissociation of PCNA from chromatin in S phase cells. The ability of cAMP to inhibit DNA replication and trigger release of PCNA from chromatin required Rb and p21Cip1 proteins, since both processes were only marginally affected by increased levels of cAMP in Rb-/- and p21Cip1-/- 3T3 fibroblasts. Importantly, the implications of cAMP-induced inhibition of DNA synthesis in cancer treatment was demonstrated by the ability of cAMP to reduce apoptosis induced by S phase-specific cytotoxic drugs. Taken together, these results demonstrate a novel role for cAMP in regulation of DNA synthesis and support a model in which activation of cAMP-dependent signaling protects cells from the effect of S phase-specific antitumor agents.
Collapse
Affiliation(s)
- Soheil Naderi
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Oslo N-0317, Norway.
| | | | | | | | | |
Collapse
|
99
|
Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. ANNUAL REVIEW OF PLANT BIOLOGY 2005; 56:393-434. [PMID: 15862102 DOI: 10.1146/annurev.arplant.55.031903.141717] [Citation(s) in RCA: 421] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In flowering plants, male reproductive development requires the formation of the stamen, including the differentiation of anther tissues. Within the anther, male meiosis produces microspores, which further develop into pollen grains, relying on both sporophytic and gametophytic gene functions. The mature pollen is released when the anther dehisces, allowing pollination to occur. Molecular studies have identified a large number of genes that are expressed during stamen and pollen development. Genetic analyses have demonstrated the function of some of these genes in specifying stamen identity, regulating anther cell division and differentiation, controlling male meiosis, supporting pollen development, and promoting anther dehiscence. These genes encode a variety of proteins, including transcriptional regulators, signal transduction proteins, regulators of protein degradation, and enzymes for the biosynthesis of hormones. Although much has been learned in recent decades, much more awaits to be discovered and understood; the future of the study of plant male reproduction remains bright and exciting with the ever-growing tool kits and rapidly expanding information and resources for gene function studies.
Collapse
Affiliation(s)
- Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
100
|
Ricke RM, Bielinsky AK. Mcm10 regulates the stability and chromatin association of DNA polymerase-alpha. Mol Cell 2004; 16:173-85. [PMID: 15494305 DOI: 10.1016/j.molcel.2004.09.017] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/02/2004] [Accepted: 08/17/2004] [Indexed: 10/26/2022]
Abstract
Mcm10 is a conserved eukaryotic DNA replication factor whose function has remained elusive. We report here that Mcm10 binding to replication origins in budding yeast is cell cycle regulated and dependent on the putative helicase, Mcm2-7. Mcm10 is also an essential component of the replication fork. A fraction of Mcm10 binds to DNA, as shown by histone association assays that allow for the study of chromatin binding in vivo. However, Mcm10 is also required to maintain steady-state levels of DNA polymerase-alpha (polalpha). In temperature-sensitive mcm10-td mutants, depletion of Mcm10 during S phase results in degradation of the catalytic subunit of polalpha, without affecting other fork components such as Cdc45. We propose that Mcm10 stabilizes polalpha and recruits the complex to replication origins. During elongation, Mcm10 is required for the presence of polalpha at replication forks and may coordinate DNA synthesis with DNA unwinding by the Mcm2-7 complex.
Collapse
Affiliation(s)
- Robin M Ricke
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|