51
|
Giant Vesicles. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-12-396534-9.00001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
52
|
Dimova R. Membrane Electroporation in High Electric Fields. ADVANCES IN ELECTROCHEMICAL SCIENCES AND ENGINEERING 2011. [DOI: 10.1002/9783527644117.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
53
|
Christensen SM, Bolinger PY, Hatzakis NS, Mortensen MW, Stamou D. Mixing subattolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics. NATURE NANOTECHNOLOGY 2011; 7:51-55. [PMID: 22036813 DOI: 10.1038/nnano.2011.185] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
Handling and mixing ultrasmall volumes of reactants in parallel can increase the throughput and complexity of screening assays while simultaneously reducing reagent consumption. Microfabricated silicon and plastic can provide reliable fluidic devices, but cannot typically handle total volumes smaller than ∼1 × 10(-12) l. Self-assembled soft matter nanocontainers can in principle significantly improve miniaturization and biocompatibility, but exploiting their full potential is a challenge due to their small dimensions. Here, we show that small unilamellar lipid vesicles can be used to mix volumes as small as 1 × 10(-19) l in a reproducible and highly parallelized fashion. The self-enclosed nanoreactors are functionalized with lipids of opposite charge to achieve reliable fusion. Single vesicles encapsulating one set of reactants are immobilized on a glass surface and then fused with diffusing vesicles of opposite charge that carry a complementary set of reactants. We find that ∼85% of the ∼1 × 10(6) cm(-2) surface-tethered nanoreactors undergo non-deterministic fusion, which is leakage-free in all cases, and the system allows up to three to four consecutive mixing events per nanoreactor.
Collapse
Affiliation(s)
- Sune M Christensen
- Bionanotechnology and Nanomedicine Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
54
|
Heider EC, Myers GA, Harris JM. Spectroscopic microscopy analysis of the interior pH of individual phospholipid vesicles. Anal Chem 2011; 83:8230-8. [PMID: 21962221 DOI: 10.1021/ac2019987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of phospholipid vesicles as reaction containers, as vehicles for pharmaceutical drug delivery, and as model systems for cells has prompted the development of new methods for analyzing the structure of vesicles and their contents. The pH of the interior of vesicles is of particular interest when analytes are encapsulated and concentrated with the use of a pH gradient. While the interior pH is generally measured for large populations of vesicles, we report the measurement of the interior pH of individual vesicles as their buffer contents are titrated by transfer of N-methylbutylamine (NMBA) into the vesicle by a pH gradient. The initially acidic buffer within the vesicles is titrated along with a small concentration of an encapsulated pH sensitive dye, 5,6-carboxy SNARF-1-dextran. Images of the indicator fluorescence from each vesicle and its dispersed fluorescence spectrum are recorded using epi-illumination spectral fluorescence microscopy. From a fit of the spectra to the respective acid and base forms of the fluorescent indicator, the interior pH of individual vesicles as a function of the concentration of the NMBA titrant in the external solution could be determined.
Collapse
Affiliation(s)
- Emily C Heider
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | | | | |
Collapse
|
55
|
Heider EC, Peterson EM, Barhoum M, Gericke KH, Harris JM. Quantitative fluorescence microscopy to determine molecular occupancy of phospholipid vesicles. Anal Chem 2011; 83:5128-36. [PMID: 21648957 DOI: 10.1021/ac200129n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Encapsulation of molecules in phospholipid vesicles provides unique opportunities to study chemical reactions in small volumes as well as the behavior of individual proteins, enzymes, and ribozymes in a confined region without requiring a tether to immobilize the molecule to a surface. These experiments generally depend on generating a predictable loading of vesicles with small numbers of target molecules and thus raise a significant measurement challenge, namely, to quantify molecular occupancy of vesicles at the single-molecule level. In this work, we describe an imaging experiment to measure the time-dependent fluorescence from individual dye molecules encapsulated in ~130 nm vesicles that are adhered to a glass surface. For determining a fit of the molecular occupancy data to a Poisson model, it is critical to count empty vesicles in the population since these dominate the sample when the mean occupancy is small, λ ≤ ~1. Counting empty vesicles was accomplished by subsequently labeling all the vesicles with a lipophilic dye and reimaging the sample. By counting both the empty vesicles and those containing fluors, and quantifying the number of fluors present, we demonstrate a self-consistent Poisson distribution of molecular occupancy for well-solvated molecules, as well as anomalies due to aggregation of dye, which can arise even at very low solution concentrations. By observation of many vesicles in parallel in an image, this approach provides quantitative information about the distribution of molecular occupancy in a population of vesicles.
Collapse
Affiliation(s)
- Emily C Heider
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
56
|
Collier CP, Simpson ML. Micro/nanofabricated environments for synthetic biology. Curr Opin Biotechnol 2011; 22:516-26. [PMID: 21636262 DOI: 10.1016/j.copbio.2011.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/06/2011] [Indexed: 11/17/2022]
Abstract
A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints.
Collapse
Affiliation(s)
- C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | |
Collapse
|
57
|
Heider EC, Barhoum M, Edwards K, Gericke KH, Harris JM. Structural Characterization of Individual Vesicles using Fluorescence Microscopy. Anal Chem 2011; 83:4909-15. [DOI: 10.1021/ac200632h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Emily C. Heider
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Moussa Barhoum
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Kyle Edwards
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Karl-Heinz Gericke
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M. Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
58
|
Kuo JS, Chiu DT. Controlling mass transport in microfluidic devices. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:275-96. [PMID: 21456968 PMCID: PMC5724977 DOI: 10.1146/annurev-anchem-061010-113926] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microfluidic platforms offer exquisite capabilities in controlling mass transport for biological studies. In this review, we focus on recent developments in manipulating chemical concentrations at the microscale. Some techniques prevent or accelerate mixing, whereas others shape the concentration gradients of chemical and biological molecules. We also highlight several in vitro biological studies in the areas of organ engineering, cancer, and blood coagulation that have benefited from accurate control of mass transfer.
Collapse
Affiliation(s)
- Jason S Kuo
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | |
Collapse
|
59
|
|
60
|
Hadorn M, Eggenberger Hotz P. Encapsulated Multi-vesicle Assemblies of Programmable Architecture: Towards Personalized Healthcare. BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES 2011. [DOI: 10.1007/978-3-642-18472-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
61
|
Girod M, Moyano E, Campbell DI, Cooks RG. Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chem Sci 2011. [DOI: 10.1039/c0sc00416b] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
62
|
Christensen SM, Stamou DG. Sensing-applications of surface-based single vesicle arrays. SENSORS (BASEL, SWITZERLAND) 2010; 10:11352-68. [PMID: 22163531 PMCID: PMC3231067 DOI: 10.3390/s101211352] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 11/30/2010] [Accepted: 12/07/2010] [Indexed: 11/26/2022]
Abstract
A single lipid vesicle can be regarded as an autonomous ultra-miniaturised 3D biomimetic "scaffold" (Ø≥13 nm) ideally suited for reconstitution and interrogation of biochemical processes. The enclosing lipid bilayer membrane of a vesicle can be applied for studying binding (protein/lipid or receptor/ligand interactions) or transmembrane events (membrane permeability or ion channel activation) while the aqueous vesicle lumen can be used for confining few or single macromolecules and probe, e.g., protein folding, catalytic pathways of enzymes or more complex biochemical reactions, such as signal transduction cascades. Immobilisation (arraying) of single vesicles on a solid support is an extremely useful technique that allows detailed characterisation of vesicle preparations using surface sensitive techniques, in particular fluorescence microscopy. Surface-based single vesicle arrays allow a plethora of prototypic sensing applications in a high throughput format with high spatial and high temporal resolution. In this review we present a series of applications of single vesicle arrays for screening/sensing of: membrane curvature dependent protein-lipid interactions, bilayer tension, reactions triggered in the vesicle lumen, the activity of transmembrane protein channels and biological membrane fusion reactions.
Collapse
Affiliation(s)
- Sune M. Christensen
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, 2100 Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dimitrios G. Stamou
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, 2100 Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Pharmaceutical Nanotechnology and Nanotoxicology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
63
|
Oberflächengebundene Mikrobehälter zum Einschluss und zur Untersuchung von Biomolekülen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200907321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
64
|
Lin L, Beyer S, Wohland T, Trau D, Lubrich D. Surface-Bound Microenclosures for Biomolecules. Angew Chem Int Ed Engl 2010; 49:9773-6. [DOI: 10.1002/anie.200907321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
65
|
Chen Q, Rausch KG, Schönherr H, Vancso GJ. α-Chymotrypsin-Catalyzed Reaction Confined in Block-Copolymer Vesicles. Chemphyschem 2010; 11:3534-40. [DOI: 10.1002/cphc.201000429] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
66
|
Sunami T, Hosoda K, Suzuki H, Matsuura T, Yomo T. Cellular compartment model for exploring the effect of the lipidic membrane on the kinetics of encapsulated biochemical reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8544-8551. [PMID: 20131804 DOI: 10.1021/la904569m] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
One of the important characteristics of the cellular system is that interactions between the plasma membrane and water-soluble molecules in the cytoplasm are enhanced by the confinement of the molecules to the small volume of the intracellular space. Studying this effect in a model cell system, we measured the time evolution of an enzymatic hydrolysis reaction and a cell-free protein synthesis reaction taking place in giant liposomes having various size and phospholipid compositions by a flow cytometry. This single vesicle-based assay of a large number of liposomes enabled us to examine the volume dependence of enclosed reactions in detail, revealing that the presence of specific lipid affected the specific kinetic parameters of encapsulated reactions.
Collapse
Affiliation(s)
- Takeshi Sunami
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
67
|
Affiliation(s)
- Hans H Gorris
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany.
| | | |
Collapse
|
68
|
|
69
|
Zhang C, Xing D. Single-Molecule DNA Amplification and Analysis Using Microfluidics. Chem Rev 2010; 110:4910-47. [DOI: 10.1021/cr900081z] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
70
|
Lenhert S, Brinkmann F, Laue T, Walheim S, Vannahme C, Klinkhammer S, Xu M, Sekula S, Mappes T, Schimmel T, Fuchs H. Lipid multilayer gratings. NATURE NANOTECHNOLOGY 2010; 5:275-9. [PMID: 20190751 DOI: 10.1038/nnano.2010.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 01/22/2010] [Indexed: 05/07/2023]
Abstract
The interaction of electromagnetic waves with matter can be controlled by structuring the matter on the scale of the wavelength of light, and various photonic components have been made by structuring materials using top-down or bottom-up approaches. Dip-pen nanolithography is a scanning-probe-based fabrication technique that can be used to deposit materials on surfaces with high resolution and, when carried out in parallel, with high throughput. Here, we show that lyotropic optical diffraction gratings--composed of biofunctional lipid multilayers with controllable heights between approximately 5 and 100 nm--can be fabricated by lipid dip-pen nanolithography. Multiple materials can be simultaneously written into arbitrary patterns on pre-structured surfaces to generate complex structures and devices, allowing nanostructures to be interfaced by combinations of top-down and bottom-up fabrication methods. We also show that fluid and biocompatible lipid multilayer gratings allow label-free and specific detection of lipid-protein interactions in solution. This biosensing capability takes advantage of the adhesion properties of the phospholipid superstructures and the changes in the size and shape of the grating elements that take place in response to analyte binding.
Collapse
Affiliation(s)
- Steven Lenhert
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Hadorn M, Eggenberger Hotz P. DNA-mediated self-assembly of artificial vesicles. PLoS One 2010; 5:e9886. [PMID: 20360854 PMCID: PMC2845621 DOI: 10.1371/journal.pone.0009886] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/04/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time. METHODOLOGY/PRINCIPAL FINDINGS In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts. CONCLUSIONS/SIGNIFICANCE This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i) Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii) Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment bioreactors in versatility and productivity. (iii) Personalized medicine. Transport and targeting of long-lived, pharmacologically inert prodrugs and their conversion to short-lived, active drug molecules directly at the site of action may be accomplished if multi-vesicle assemblies of predefined architecture are used.
Collapse
Affiliation(s)
- Maik Hadorn
- Artificial Intelligence Laboratory, Department of Informatics, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
72
|
Walde P, Cosentino K, Engel H, Stano P. Giant Vesicles: Preparations and Applications. Chembiochem 2010; 11:848-65. [DOI: 10.1002/cbic.201000010] [Citation(s) in RCA: 556] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
73
|
Okumus B, Arslan S, Fengler SM, Myong S, Ha T. Single molecule nanocontainers made porous using a bacterial toxin. J Am Chem Soc 2010; 131:14844-9. [PMID: 19788247 PMCID: PMC2761729 DOI: 10.1021/ja9042356] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Encapsulation of a biological molecule or a molecular complex in a vesicle provides a means of biofriendly immobilization for single molecule studies and further enables new types of analysis if the vesicles are permeable. We previously reported on using DMPC (dimyristoylphosphatidylcholine) vesicles for realizing porous bioreactors. Here, we describe a different strategy for making porous vesicles using a bacterial pore-forming toxin, α-hemolysin. Using RNA folding as a test case, we demonstrate that protein-based pores can allow exchange of magnesium ions through the vesicle wall while keeping the RNA molecule inside. Flow measurements indicate that the encapsulated RNA molecules rapidly respond to the change in the outside buffer condition. The approach was further tested by coencapsulating a helicase protein and its single-stranded DNA track. The DNA translocation activity of E. coli Rep helicase inside vesicles was fueled by ATP provided outside the vesicle, and a dramatically higher number of translocation cycles could be observed due to the minuscule vesicle volume that facilitates rapid rebinding after dissociation. These pores are known to be stable over a wide range of experimental conditions, especially at various temperatures, which is not possible with the previous method using DMPC vesicles. Moreover, engineered mutants of the utilized toxin can potentially be exploited in the future applications.
Collapse
Affiliation(s)
- Burak Okumus
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
74
|
Issadore D, Franke T, Brown KA, Hunt TP, Westervelt RM. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2009; 18:1220-1225. [PMID: 20625468 PMCID: PMC2898209 DOI: 10.1109/jmems.2009.2030422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm(2) in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip's surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications.
Collapse
Affiliation(s)
- David Issadore
- School of Engineering of Applied Sciences at Harvard University, Cambridge, MA 02138
| | | | - Keith A. Brown
- School of Engineering of Applied Sciences at Harvard University, Cambridge, MA 02138
| | | | - Robert M. Westervelt
- School of Engineering of Applied Sciences at Harvard University, Cambridge, MA 02138,
| |
Collapse
|
75
|
Sun P. Cylindrical Nanopore Electrode and Its Application to the Study of Electrochemical Reaction in Several Hundred Attoliter Volume. Anal Chem 2009; 82:276-81. [DOI: 10.1021/ac9019335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Sun
- Department of Chemistry, East Tennessee State University, Box 70695, Johnson City, Tennessee 37614
| |
Collapse
|
76
|
|
77
|
Yang P, Lipowsky R, Dimova R. Nanoparticle formation in giant vesicles: synthesis in biomimetic compartments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2033-2037. [PMID: 19507153 DOI: 10.1002/smll.200900560] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Peng Yang
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| | | | | |
Collapse
|
78
|
Quantification of nano-scale intermembrane contact areas by using fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 2009; 106:12341-6. [PMID: 19597158 DOI: 10.1073/pnas.0903052106] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanometer-scale intermembrane contact areas (CAs) formed between single small unilamellar lipid vesicles (SUVs) and planar supported lipid bilayers are quantified by measuring fluorescence resonance energy transfer (FRET) between a homogenous layer of donor fluorophores labeling the supported bilayer and acceptor fluorophores labeling the SUVs. The smallest CAs detected in our setup between biotinylated SUVs and dense monolayers of streptavidin were approximately 20 nm in radius. Deformation of SUVs is revealed by comparing the quenching of the donors to calculations of FRET between a perfectly spherical shell and a flat surface containing complementary fluorophores. These results confirmed the theoretical prediction that the degree of deformation scales with the SUV diameter. The size of the CA can be controlled experimentally by conjugating polyethylene glycol polymers to the SUV or the surface and thereby modulating the interfacial energy of adhesion. In this manner, we could achieve secure immobilization of SUVs under conditions of minimal deformation. Finally, we demonstrate that kinetic measurements of CA, at constant adhesion, can be used to record in real-time quantitative changes in the bilayer tension of a nano-scale lipid membrane system.
Collapse
|
79
|
Abstract
By using methods that permit the generation and manipulation of ultrasmall-volume droplets, researchers are pushing the boundaries of ultrasensitive chemical analyses. (To listen to a podcast about this feature, please go to the Analytical Chemistry Web site at pubs.acs.org/ancham.).
Collapse
|
80
|
Sau TK, Urban AS, Dondapati SK, Fedoruk M, Horton MR, Rogach AL, Stefani FD, Rädler JO, Feldmann J. Controlling loading and optical properties of gold nanoparticles on liposome membranes. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
81
|
Chen Q, Schönherr H, Vancso GJ. Block-copolymer vesicles as nanoreactors for enzymatic reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1436-1445. [PMID: 19283796 DOI: 10.1002/smll.200801455] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The impact of the spatial confinement of polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer (BCP) vesicles on the reactivity of encapsulated bovine pancreas trypsin is studied. Enzymes, as well as small molecules, are encapsulated with loading efficiencies up to 30% in BCP vesicles with variable internal volumes between 0.014 aL (internal vesicle diameter, d(in) = 30 nm) and 8 aL (d(in) = 250 nm), obtained by manipulating the vesicle preparation conditions. The kinetics of the trypsin-catalyzed reaction of a fluorogenic substrate inside and outside the vesicles is quantitatively estimated using fluorescence spectroscopic analyses in conjunction with the use of NaNO(2) as selective quencher for non-encapsulated fluorophores. The values of the catalytic turnover number obtained for reactions in differently sized nanoscale reactors show a significant increase (up to approximately 5x) with decreasing BCP vesicle volume, while the values of the Michaelis-Menten constant decrease. The observed increase in enzyme efficiency by two orders of magnitude compared to bulk solution is attributed to an enhanced rate of enzyme-substrate and molecule-wall collisions inside the nanosized reactors, as predicted in the literature on the basis of Monte Carlo simulations.
Collapse
Affiliation(s)
- Qi Chen
- Department of Materials Science and Technology of Polymers University of Twente, MESA+ Institute for Nanotechnology Postbus 217, 7500 AE Enschede, The Netherlands
| | | | | |
Collapse
|
82
|
Chiu DT, Lorenz RM. Chemistry and biology in femtoliter and picoliter volume droplets. Acc Chem Res 2009; 42:649-58. [PMID: 19260732 DOI: 10.1021/ar8002464] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The basic unit of any biological system is the cell, and malfunctions at the single-cell level can result in devastating diseases; in cancer metastasis, for example, a single cell seeds the formation of a distant tumor. Although tiny, a cell is a highly heterogeneous and compartmentalized structure: proteins, lipids, RNA, and small-molecule metabolites constantly traffic among intracellular organelles. Gaining detailed information about the spatiotemporal distribution of these biomolecules is crucial to our understanding of cellular function and dysfunction. To access this information, we need sensitive tools that are capable of extracting comprehensive biochemical information from single cells and subcellular organelles. In this Account, we outline our approach and highlight our progress toward mapping the spatiotemporal organization of information flow in single cells. Our technique is centered on the use of femtoliter- and picoliter-sized droplets as nanolabs for manipulating single cells and subcellular compartments. We have developed a single-cell nanosurgical technique for isolating select subcellular structures from live cells, a capability that is needed for the high-resolution manipulation and chemical analysis of single cells. Our microfluidic approaches for generating single femtoliter-sized droplets on demand include both pressure and electric field methods; we have also explored a design for the on-demand generation of multiple aqueous droplets to increase throughput. Droplet formation is only the first step in a sequence that requires manipulation, fusion, transport, and analysis. Optical approaches provide the most convenient and precise control over the formed droplets with our technology platform; we describe aqueous droplet manipulation with optical vortex traps, which enable the remarkable ability to dynamically "tune" the concentration of the contents. Integration of thermoelectric manipulations with these techniques affords further control. The amount of chemical information that can be gleaned from single cells and organelles is critically dependent on the methods available for analyzing droplet contents. We describe three techniques we have developed: (i) droplet encapsulation, rapid cell lysis, and fluorescence-based single-cell assays, (ii) physical sizing of the subcellular organelles and nanoparticles in droplets, and (iii) capillary electrophoresis (CE) analysis of droplet contents. For biological studies, we are working to integrate the different components of our technology into a robust, automated device; we are also addressing an anticipated need for higher throughput. With progress in these areas, we hope to cement our technique as a new tool for studying single cells and organelles with unprecedented molecular detail.
Collapse
Affiliation(s)
- Daniel T. Chiu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700
| | - Robert M. Lorenz
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700
| |
Collapse
|
83
|
Liu Y, Jung SY, Collier CP. Shear-Driven Redistribution of Surfactant Affects Enzyme Activity in Well-Mixed Femtoliter Droplets. Anal Chem 2009; 81:4922-8. [DOI: 10.1021/ac900624h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, P.O. Box 2008, MS-6493, Oak Ridge, Tennessee 37831
| | - Seung-Yong Jung
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, P.O. Box 2008, MS-6493, Oak Ridge, Tennessee 37831
| | - C. Patrick Collier
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, P.O. Box 2008, MS-6493, Oak Ridge, Tennessee 37831
| |
Collapse
|
84
|
Bunz UHF. Poly(aryleneethynylene)s. Macromol Rapid Commun 2009; 30:772-805. [DOI: 10.1002/marc.200800775] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 11/12/2022]
|
85
|
Lizana L, Konkoli Z, Bauer B, Jesorka A, Orwar O. Controlling Chemistry by Geometry in Nanoscale Systems. Annu Rev Phys Chem 2009; 60:449-68. [DOI: 10.1146/annurev.physchem.040808.090255] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- L. Lizana
- Department of Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Z. Konkoli
- Department of Microtechnology and Nanoscience, Bionano Systems Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - B. Bauer
- Department of Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - A. Jesorka
- Department of Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- Department of Microtechnology and Nanoscience, Bionano Systems Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - O. Orwar
- Department of Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| |
Collapse
|
86
|
Siuti P, Retterer ST, Choi CK, Fowlkes JD, Doktycz MJ. Cell Free Translation in Engineered Picoliter Volume Containers. ANNUAL ORNL BIOMEDICAL SCIENCE AND ENGINEERING CENTER CONFERENCE. ORNL BIOMEDICAL SCIENCE AND ENGINEERING CENTER CONFERENCE 2009; 2009:1-4. [PMID: 21278819 DOI: 10.1109/bsec.2009.5090477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Engineers seek to use biological design principles to manipulate information and import new functionality to synthetic devices. Such devices inspired by natural systems could, in turn, play a crucial role in allowing biologists to explore the effects of physical transport and extreme conditions of temperature and pH on reaction systems. For example, engineered reaction containers can be physically and chemically defined to control the flux of molecules of different sizes and charge. The design and testing of such a container is described here. It has a volume of 19pL with defined slits of 200nm. The device successfully contained DNA and protein molecules and is evaluated for carrying out cell-free protein synthesis. The effect of DNA concentration and slit size on protein yield is discussed.
Collapse
Affiliation(s)
- Piro Siuti
- Genome, Science and Technology program, University of Tennessee, Knoxville, TN 37996 USA
| | | | | | | | | |
Collapse
|
87
|
Wu G, Mikhailovsky A, Khant HA, Zasadzinski JA. Chapter 14 - Synthesis, characterization, and optical response of gold nanoshells used to trigger release from liposomes. Methods Enzymol 2009; 464:279-307. [PMID: 19903560 DOI: 10.1016/s0076-6879(09)64014-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liposomes show great promise as intravenous drug delivery vehicles, but it is often difficult to combine stability in the circulation with rapid, targeted release at the site of interest. Targeting to specific tissues requires developing highly specific ligands with strong affinities to receptors overexpressed on diseased cells; a new cellular target requires developing new ligands and identifying new receptors. Novel photoactivated, hollow, gold nanoshell (HGN)/liposome composites provide a new approach to both controlled release and specific targeting. HGN are extremely efficient near infrared (NIR) light absorbers, and are not susceptible to photobleaching like conventional dyes. Near-complete liposome contents release can be initiated within seconds by irradiating HGNs with an NIR pulsed laser. Targeting the drug is limited only by the dimensions of the laser beam; no specific ligands or antibodies are required, so different tissues and cells can be targeted with the same HGN/liposomes. HGNs can be encapsulated within liposomes or tethered to the outer surface of liposomes for the most efficient drug release. HGNs in liposome solutions can also trigger release, but with lower efficiency. Drug release is induced by adsorbing femto- to nanosecond NIR light pulses that cause the HGNs to rapidly increase in temperature. The resulting large temperature gradients lead to the formation of vapor microbubbles in aqueous solutions, similar to the cavitation bubbles induced by sonication. The collapse of the unstable vapor bubbles causes liposome-membrane rupture and contents release, with minimal damage to the surroundings, and little overall heating of the solution.
Collapse
Affiliation(s)
- Guohui Wu
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | | | | | | |
Collapse
|
88
|
Winkle RF, Nagy JM, Cass AEG, Sharma S. Towards microfluidic technology-based MALDI-MS platforms for drug discovery: a review. Expert Opin Drug Discov 2008; 3:1281-92. [DOI: 10.1517/17460441.3.11.1281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
89
|
Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, Demello AJ. Microdroplets: a sea of applications? LAB ON A CHIP 2008; 8:1244-54. [PMID: 18651063 DOI: 10.1039/b806405a] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The exploitation of microdroplets produced within microfluidic environments has recently emerged as a new and exciting technological platform for applications within the chemical and biological sciences. Interest in microfluidic systems has been stimulated by a range of fundamental features that accompany system miniaturization. Such features include the ability to process and handle small volumes of fluid, improved analytical performance when compared to macroscale analogues, reduced instrumental footprints, low unit cost, facile integration of functional components and the exploitation of atypical fluid dynamics to control molecules in both time and space. Moreover, microfluidic systems that generate and utilize a stream of sub-nanolitre droplets dispersed within an immiscible continuous phase have the added advantage of allowing ultra-high throughput experimentation and being able to mimic conditions similar to that of a single cell (in terms of volume, pH, and salt concentration) thereby compartmentalizing biological and chemical reactions. This review provides an overview of methods for generating, controlling and manipulating droplets. Furthermore, we discuss key fields of use in which such systems may make a significant impact, with particular emphasis on novel applications in the biological and physical sciences.
Collapse
Affiliation(s)
- Ansgar Huebner
- Department of Chemistry, Lensfield Road, Cambridge, UKCB2 1EW.
| | | | | | | | | | | |
Collapse
|
90
|
Kunding AH, Mortensen MW, Christensen SM, Stamou D. A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. Biophys J 2008; 95:1176-88. [PMID: 18424503 PMCID: PMC2479610 DOI: 10.1529/biophysj.108.128819] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 03/07/2008] [Indexed: 11/18/2022] Open
Abstract
We report a novel approach to quantitatively determine complete size distributions of surface-bound objects using fluorescence microscopy. We measure the integrated intensity of single particles and relate it to their size by taking into account the object geometry and the illumination profile of the microscope, here a confocal laser scanning microscope. Polydisperse (as well as monodisperse) size distributions containing objects both below and above the optical resolution of the microscope are recorded and analyzed. The data is collected online within minutes, which allows the user to correlate the size of an object with the response from any given fluorescence-based biochemical assay. We measured the mean diameter of extruded fluorescently labeled lipid vesicles using the proposed method, dynamic light scattering, and cryogenic transmission electron microscopy. The three techniques were in excellent agreement, measuring the same values within 7-9%. Furthermore we demonstrated here, for the first time that we know of, the ability to determine the full size distribution of polydisperse samples of nonextruded lipid vesicles. Knowledge of the vesicle size distribution before and after extrusion allowed us to propose an empirical model to account for the effect of extrusion on the complete size distribution of vesicle samples.
Collapse
Affiliation(s)
- Andreas H Kunding
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, and Nano-Science Center, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
91
|
|
92
|
Boedicker JQ, Li L, Kline TR, Ismagilov RF. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. LAB ON A CHIP 2008; 8:1265-72. [PMID: 18651067 PMCID: PMC2612531 DOI: 10.1039/b804911d] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminating the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as 'stochastic confinement'. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.
Collapse
Affiliation(s)
- James Q Boedicker
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
93
|
West J, Manz A, Dittrich PS. Lipid nanotubule fabrication by microfluidic tweezing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:6754-6758. [PMID: 18503287 DOI: 10.1021/la8004823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There is currently great interest in the development of lipid enclosed systems with complex geometrical arrangements that mimic cellular compartments. With biochemical functionalization, these soft matter devices can be used to probe deeper into life's transport dominated biochemical operations. In this paper, we present a novel tool for machining lipid nanotubules by microfluidic tweezing. A bilayer poly(dimethylsiloxane) (PDMS) device was designed with a lipid reservoir that was loaded by capillary action for lipid film deposition. The lipid reservoir is vertically separated from an upper flow for controlled material wetting and the formation of giant tubule bodies. Three fluidic paths are interfaced for introduction of the giant tubules into the high velocity center of a parabolic flow profile for exposure to hydrodynamic shear stresses. At local velocities approximating 2 mm s (-1), a 300-500 nm diameter jet of lipid material was tweezed from the giant tubule body and elongated with the flow. The high velocity flow provides uniform drag for the rapid and continuous fabrication of lipid nanotubules with tremendous axial ratios. Below a critical velocity, a remarkable shape transformation occurred and the projected lipid tubule grew until a constant 3.6 mum diameter tubule was attained. These lipid tubules could be wired for the construction of advanced lifelike bioreactor systems.
Collapse
Affiliation(s)
- Jonathan West
- Institute for Analytical Sciences, Bunsen-Kirchhoff-Str. 11, D-44139 Dortmund, Germany
| | | | | |
Collapse
|
94
|
Markström M, Lizana L, Orwar O, Jesorka A. Thermoactuated diffusion control in soft matter nanofluidic devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:5166-5171. [PMID: 18393556 DOI: 10.1021/la7035967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The diffusive transport rate in a soft matter nanofluidic device is controlled with a thermoactuated hydrogel valve. The device consists of three giant unilamellar vesicles linearly conjugated by lipid nanotubes, with a solution of the stimuli-responsive polymer poly(N-isopropyl acrylamide) (PNIPAAm) in the central vesicle. The valve states "high (transport) rate" and "low (transport) rate" are obtained by heat-activated switching between PNIPAAm's dissolved and compact aggregated states. We show that three parameters influence the diffusion rate within the device: the increase of the transport rate caused by a decrease in PNIPAAm concentration upon compaction, the temperature dependence of the buffer viscosity, and the volume excluded by the PNIPAAm hydrogel compartment.
Collapse
Affiliation(s)
- Martin Markström
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | | | | | | |
Collapse
|
95
|
Toyota T, Takakura K, Kageyama Y, Kurihara K, Maru N, Ohnuma K, Kaneko K, Sugawara T. Population study of sizes and components of self-reproducing giant multilamellar vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:3037-3044. [PMID: 18278955 DOI: 10.1021/la703017s] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Population analysis of a system of self-reproducing giant multilamellar vesicles (GMVs) was carried out by means of flow cytometry. The multidimensional distribution of forward light scattering (FS), side light scattering (SS), and fluorescence (FL) intensities originating from each GMV provided information about changes in a population composed of 104 vesicles. FS-FL dot plots indicated that, after the addition of the membrane precursor, the size distribution of the newly generated vesicles was nearly the same as that of the original, but the catalyst content was reduced. This result can be interpreted as evidence for the occurrence of the self-reproduction of GMVs. Moreover, the new GMVs recovered the amount of catalyst to the initial value, keeping their size distribution constant, when a solution of the catalyst was added to the new GMVs. These results are the first experimental evidence for a novel phenomenon on GMV size distribution during their self-reproducing cycle.
Collapse
Affiliation(s)
- Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Rissin DM, Gorris HH, Walt DR. Distinct and long-lived activity states of single enzyme molecules. J Am Chem Soc 2008; 130:5349-53. [PMID: 18318491 DOI: 10.1021/ja711414f] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Individual enzyme molecules have been observed to possess discrete and different turnover rates due to the presence of long-lived activity states. These stable activity states are thought to result from different molecular conformations or post-translational modifications. The distributions in kinetic activity observed in previous studies were obtained from small numbers of single enzyme molecules. Due to this limitation, it has not been possible to fully characterize the different kinetic and equilibrium binding parameters of single enzyme molecules. In this paper, we analyze hundreds of single beta-galactosidase molecules simultaneously; using a high-density array of 50,000 fL-reaction chambers, we confirm the presence of long-lived kinetic states within a population of enzyme molecules. Our analysis has isolated the source of kinetic variability to kcat. The results explain the kinetic variability within enzyme molecule populations and offer a deeper understanding of the unique properties of single enzyme molecules. Gaining a more fundamental understanding of how individual enzyme molecules work within a population should provide insight into how they affect downstream biochemical processes. If the results reported here can be generalized to other enzymes, then the stochastic nature of individual enzyme molecule kinetics should have a substantial impact on the overall metabolic activity within a cell.
Collapse
Affiliation(s)
- David M Rissin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
97
|
Linke GT, Lipowsky R, Gruhn T. Adhesion of fluid vesicles at chemically structured substrates. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2007; 24:217-227. [PMID: 18046505 DOI: 10.1140/epje/i2007-10232-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 10/16/2007] [Indexed: 05/25/2023]
Abstract
The adhesion of fluid vesicles at chemically structured substrates is studied theoretically via Monte Carlo simulations. The substrate surface is planar and repels the vesicle membrane apart from a single surface domain gamma , which strongly attracts this membrane. If the vesicle is larger than the attractive gamma domain, the spreading of the vesicle onto the substrate is restricted by the size of this surface domain. Once the contact line of the adhering vesicle has reached the boundaries of the gamma domain, further deflation of the vesicle leads to a regime of low membrane tension with pronounced shape fluctuations, which are now governed by the bending rigidity. For a circular gamma domain and a small bending rigidity, the membrane oscillates strongly around an average spherical cap shape. If such a vesicle is deflated, the contact area increases or decreases with increasing osmotic pressure, depending on the relative size of the vesicle and the circular gamma domain. The lateral localization of the vesicle's center of mass by such a domain is optimal for a certain domain radius, which is found to be rather independent of adhesion strength and bending rigidity. For vesicles adhering to stripe-shaped surface domains, the width of the contact area perpendicular to the stripe varies nonmonotonically with the adhesion strength.
Collapse
Affiliation(s)
- G T Linke
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam, Germany
| | | | | |
Collapse
|
98
|
Affiliation(s)
- Tse-Ming Hsin
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
99
|
|
100
|
Liu X, Zhao R, Zhang Y, Jiang X, Yue J, Jiang P, Zhang Z. Using giant unilamellar lipid vesicle micro-patterns as ultrasmall reaction containers to observe reversible ATP synthesis/hydrolysis of F0F1-ATPase directly. Biochim Biophys Acta Gen Subj 2007; 1770:1620-6. [PMID: 17913367 DOI: 10.1016/j.bbagen.2007.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 08/01/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
F(0)F(1)-ATPase within chromatophores, which was labeled with pH-sensitive quantum dots, was encapsulated in large unilamellar lipid vesicles (LUVs) through reverse-phase evaporation. Then a microarray of chromatophore-containing LUVs was created using a micro-contact printing (mu-CP) technique. Through controlled dehydration-rehydration of the lipid patterns, a microarray of single chromatophore-containing giant unilamellar lipid vesicles (GUVs) was formed with desired size and uniform shape. The reversible ATP synthesis/hydrolysis of F(0)F(1)-ATPase in GUVs was directly observed by fluorescence microscopy through the fluorescence intensity increase/decrease in the pH-sensitive quantum dots labeled on the outer surface of the chromatophore. To the best of our knowledge, this is the first direct observation of the reversible behavior of F(0)F(1)-ATPase at the bulk scale.
Collapse
Affiliation(s)
- Xiaolong Liu
- The Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | | | | | | | |
Collapse
|