51
|
Abstract
The design and synthesis of artificial molecular switches (AMSs) displaying architectures of increased complexity would constitute significant progress in meeting the challenging task of realizing artificial molecular machines (AMMs). Here, we report the synthesis and characterization of a molecular shuttle composed of a cyclobis(paraquat-4,4'-biphenylene) cyclophane ring and a dumbbell incorporating a cyclobis(paraquat-m-phenylene) cyclophane "head" and a bifurcated, tawse-like "tail" composed of two oligoether chains, each containing a 1,5-dioxynaphthalene ring. In its reduced state the ring-in-ring recognition motif, between the meta and para bisradical dicationic cyclophanes (rings), defines the [2]rotaxane, whereas in the oxidized state, the cyclobis(paraquat-4,4'-biphenylene) cyclophane encircles the two 1,5-dioxynaphthalene rings in the bifurcated "tail". The redox-controlled molecular shuttling, which can be likened to the action of a zipper in the macroscopic world, exhibits slow kinetics dampened by the opening and closing of the bifurcated "tail" of the molecular shuttle. Cyclic voltammetry reveals that this slow shuttling is associated with electrochemical hysteresis.
Collapse
Affiliation(s)
- Melissa Dumartin
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , 610 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - J Fraser Stoddart
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Institute of Molecular Design and Synthesis , Tianjin University , 92 Weijin Road, Nankai District , Tianjin 300072 , P. R. China.,School of Chemistry , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
52
|
Liu D, Lu Y, Lin Y, Jin G. Donor–Acceptor [2]‐ and [3]Catenanes Assembled from Versatile Pre‐Organized Cp*Rh/Ir‐Directed Pseudorotaxane Tectons. Chemistry 2019; 25:14785-14789. [DOI: 10.1002/chem.201904082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Dong Liu
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Ye Lu
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Yue‐Jian Lin
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Guo‐Xin Jin
- State Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of Science 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
53
|
Yin Y, Yun M, Wu L, Duan H, Jiang X, Zhan T, Cui J, Liu L, Zhang K. A Visible‐Light‐Induced Dynamic Mechanical Bond as a Linkage for Dynamic Materials. Angew Chem Int Ed Engl 2019; 58:12705-12710. [PMID: 31297923 DOI: 10.1002/anie.201906761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Yong‐Fei Yin
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Meng‐Yan Yun
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Lin Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Hong‐Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Xia‐Min Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Tian‐Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Jiecheng Cui
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Li‐Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Kang‐Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| |
Collapse
|
54
|
A Visible‐Light‐Induced Dynamic Mechanical Bond as a Linkage for Dynamic Materials. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
55
|
Liu X, Xue L, Liang M, Tan K, Deng K, Ge G, Jiang P. Effect of asymmetric modification on perylene derivative molecule self-assembly structures. NEW J CHEM 2019. [DOI: 10.1039/c8nj04643c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper shows how the number and position of intermolecular hydrogen bonds affect achiral and chiral SAM structures.
Collapse
Affiliation(s)
- Xiaoping Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Lingwei Xue
- College of Materials and Science Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Minghui Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Keyan Tan
- Chinese Academy of Geological Sciences
- National Research Center for Geoanalysis
- Key Laboratory of Eco-geochemistry
- Ministry of National Resources
- China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Peng Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| |
Collapse
|
56
|
Langer P, Yang L, Pfeiffer CR, Lewis W, Champness NR. Restricting shuttling in bis(imidazolium)…pillar[5]arene rotaxanes using metal coordination. Dalton Trans 2018; 48:58-64. [PMID: 30403248 DOI: 10.1039/c8dt04096f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal coordination to a series of bis (imidazolium)…pillar[5]arene [2]rotaxanes through the formation of metal-carbene bonds facilitates a new strategy to restrict the shuttling motion in [2]rotaxanes. Whereas the pillar[5]arene macrocycle rapidly shuttles along the full length of the bis (imidazolium) rod for the parent [2]rotaxane, Ag(i) coordination to the imidazolium groups through the formation of N-heterocyclic carbenes leads to restricted motion, effectively confining the shuttling motion of the [2]rotaxane. The Ag(i) coordinated [2]rotaxanes can be reacted further, either removing the Ag-carbene species to recreate the parent [2]rotaxane, or reaction with more bulky Pd(ii) species to further restrict the shuttling motion through steric inhibition.
Collapse
Affiliation(s)
- Philipp Langer
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | | | | | |
Collapse
|
57
|
Schröder HV, Mekic A, Hupatz H, Sobottka S, Witte F, Urner LH, Gaedke M, Pagel K, Sarkar B, Paulus B, Schalley CA. Switchable synchronisation of pirouetting motions in a redox-active [3]rotaxane. NANOSCALE 2018; 10:21425-21433. [PMID: 30427015 DOI: 10.1039/c8nr05534c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, the crown/ammonium [3]rotaxane R2 is reported which allows a switchable synchronisation of wheel pirouetting motions. The rotaxane is composed of a dumbbell-shaped axle molecule with two mechanically interlocked macrocycles which are decorated with a redox-active tetrathiafulvalene (TTF) unit. Electrochemical, spectroscopic, and electron paramagnetic resonance experiments reveal that rotaxane R2 can be reversibly switched between four stable oxidation states (R2, R2˙+, R22(˙+), and R24+). The oxidations enable non-covalent, cofacial interactions between the TTF units in each state-including a stabilised mixed-valence (TTF2)˙+ and a radical-cation (TTF˙+)2 dimer interaction-which dictate a syn (R2, R2˙+, and R22(˙+)) or anti (R24+) ground state co-conformation of the wheels in the rotaxane. Furthermore, the strength of these wheel-wheel interactions varies with the oxidation state, and thus electrochemical switching allows a controllable synchronisation of the wheels' pirouetting motions. DFT calculations explore the potential energy surface of the counter-rotation of the two interacting wheels in all oxidation states. The controlled coupling of pirouetting motions in rotaxanes can lead to novel molecular gearing systems which transmit rotational motion by switchable non-covalent interactions.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Carlotti M, Soni S, Kumar S, Ai Y, Sauter E, Zharnikov M, Chiechi RC. Two-Terminal Molecular Memory through Reversible Switching of Quantum Interference Features in Tunneling Junctions. Angew Chem Int Ed Engl 2018; 57:15681-15685. [PMID: 30260083 PMCID: PMC6283355 DOI: 10.1002/anie.201807879] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 11/11/2022]
Abstract
Large-area molecular tunneling junctions comprising self-assembled monolayers of redox-active molecules are described that exhibit two-terminal bias switching. The as-prepared monolayers undergo partial charge transfer to the underlying metal substrate (Au, Pt, or Ag), which converts their cores from a quinoid to a hydroquinoid form. The resulting rearomatization converts the bond topology from a cross-conjugated to a linearly conjugated π system. The cross-conjugated form correlates to the appearance of an interference feature in the transmission spectrum that vanishes for the linearly conjugated form. Owing to the presence of electron-withdrawing nitrile groups, the reduction potential and the interference feature lie close to the work function and Fermi level of the metallic substrate. We exploited the relationship between conjugation patterns and quantum interference to create nonvolatile memory in proto-devices using eutectic Ga-In as the top contact.
Collapse
Affiliation(s)
- Marco Carlotti
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| | - Saurabh Soni
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| | - Sumit Kumar
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| | - Yong Ai
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| | - Eric Sauter
- Applied Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 253Heidelberg69120Germany
| | - Michael Zharnikov
- Applied Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 253Heidelberg69120Germany
| | - Ryan C. Chiechi
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
59
|
Carlotti M, Soni S, Kumar S, Ai Y, Sauter E, Zharnikov M, Chiechi RC. Two-Terminal Molecular Memory through Reversible Switching of Quantum Interference Features in Tunneling Junctions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marco Carlotti
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Saurabh Soni
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sumit Kumar
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Yong Ai
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Eric Sauter
- Applied Physical Chemistry; Heidelberg University; Im Neuenheimer Feld 253 Heidelberg 69120 Germany
| | - Michael Zharnikov
- Applied Physical Chemistry; Heidelberg University; Im Neuenheimer Feld 253 Heidelberg 69120 Germany
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
60
|
Nguyen MT, Ferris DP, Pezzato C, Wang Y, Stoddart JF. Densely Charged Dodecacationic [3]- and Tetracosacationic Radial [5]Catenanes. Chem 2018. [DOI: 10.1016/j.chempr.2018.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
61
|
Bruschini M, Ercolani G, Gallina S, Mencarelli P. Record Rate Enhancements for Tetrathiafulvalene Guests in the Formation of Bipyridinium- and Diazapyrenium-Based [2]Pseudorotaxanes. J Org Chem 2018; 83:11446-11449. [PMID: 30067031 DOI: 10.1021/acs.joc.8b01786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic effects of guests 5-7 on the cyclization of 1 and 3 have been measured at 62 °C in MeCN. A record rate acceleration of more than 2000 times has been observed in the cyclization of the tricationic host 3 featuring large diazapyrenium π-surfaces by tetrathiafulvalene guests 6 and 7. The results emphasize the role played by extended π-surfaces in the host and the goodness of a tetrathiafulvalene core in the guest, enhanced by polyethereal side arms.
Collapse
Affiliation(s)
- Michele Bruschini
- Dipartimento di Chimica e CNR-IMC , Università di Roma La Sapienza , P. le Aldo Moro, 2 , 00185 Roma , Italy
| | - Gianfranco Ercolani
- Dipartimento di Scienze e Tecnologie Chimiche , Università di Roma Tor Vergata , Via della Ricerca Scientifica , 00133 Roma , Italy
| | - Stefano Gallina
- Dipartimento di Chimica e CNR-IMC , Università di Roma La Sapienza , P. le Aldo Moro, 2 , 00185 Roma , Italy
| | - Paolo Mencarelli
- Dipartimento di Chimica e CNR-IMC , Università di Roma La Sapienza , P. le Aldo Moro, 2 , 00185 Roma , Italy
| |
Collapse
|
62
|
|
63
|
Schröder HV, Schalley CA. Tetrathiafulvalene - a redox-switchable building block to control motion in mechanically interlocked molecules. Beilstein J Org Chem 2018; 14:2163-2185. [PMID: 30202469 PMCID: PMC6122308 DOI: 10.3762/bjoc.14.190] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/01/2018] [Indexed: 11/23/2022] Open
Abstract
With the rise of artificial molecular machines, control of motion on the nanoscale has become a major contemporary research challenge. Tetrathiafulvalenes (TTFs) are one of the most versatile and widely used molecular redox switches to generate and control molecular motion. TTF can easily be implemented as functional unit into molecular and supramolecular structures and can be reversibly oxidized to a stable radical cation or dication. For over 20 years, TTFs have been key building blocks for the construction of redox-switchable mechanically interlocked molecules (MIMs) and their electrochemical operation has been thoroughly investigated. In this review, we provide an introduction into the field of TTF-based MIMs and their applications. A brief historical overview and a selection of important examples from the past until now are given. Furthermore, we will highlight our latest research on TTF-based rotaxanes.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
64
|
Vella SJ, Loeb SJ. A pyridinium/anilinium [2]catenane that operates as an acid-base driven optical switch. Beilstein J Org Chem 2018; 14:1908-1916. [PMID: 30112096 PMCID: PMC6071693 DOI: 10.3762/bjoc.14.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/05/2018] [Indexed: 11/23/2022] Open
Abstract
A two-station [2]catenane containing a large macrocycle with two different recognition sites, one bis(pyridinium)ethane and one benzylanilinium, as well as a smaller DB24C8 ring was synthesized and characterized. 1H NMR spectroscopy showed that the DB24C8 ring can shuttle between the two recognition sites depending on the protonation state of the larger macrocycle. When the aniline group is neutral, the DB24C8 ring resides solely at the bis(pyridinium)ethane site, while addition of acid forms a charged benzylanilinium site. The DB24C8 then shuttles between the two charged recognition sites with occupancy favoring the bis(pyridinium)ethane site by a ratio of 4:1. The unprotonated [2]catenane has a deep yellow/orange color when the DB24C8 ring resides solely at the bis(pyridinium)ethane site and changes to colorless when the crown ether is shuttling (i.e., circumrotating) back and forth between the two recognition sites thus optically signalling the onset of the shuttling dynamics.
Collapse
Affiliation(s)
- Sarah J Vella
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
65
|
Yesildag C, Bartsch C, Lensen MC. Micropatterning of Au NPs on PEG Hydrogels Using Different Silanes To Control Cell Adhesion on the Nanocomposites. ACS OMEGA 2018; 3:7214-7223. [PMID: 30087909 PMCID: PMC6068692 DOI: 10.1021/acsomega.8b00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Amino-silanization of silica-based substrates has proven to be effective in guiding the immobilization of citrate-stabilized Au NPs in a good, homogeneous fashion. This accomplishment has formed the basis of fabricating micropatterns of Au NPs on such substrates by patterning of oxidized silicon wafers with (3-aminopropyl)trimethoxysilane (amino-silane) using the microcontact printing (μCP) process. This micropattern of amino-silane is used to specifically adsorb Au NPs. To avoid unspecific adsorption to the nonsilanized areas on the silicon wafers, the nonstamped areas were backfilled with self-assembled monolayers of organosilanes, for example, with methyl- or perfluoro-end-groups. Finally, after having fabricated a micropattern of Au NPs on silicon wafers, the Au NP patterns were transferred onto poly(ethylene glycol) hydrogels by our newly developed procedures, and on these nanocomposite materials, controlled cell adhesion has been achieved. Furthermore, these materials are great candidates for plasmon-based biosensor applications and also for various medical applications, such as for drug delivery systems or photothermal therapies.
Collapse
Affiliation(s)
- Cigdem Yesildag
- Technische Universität Berlin,
Nanopatterned Biomaterials, Sekr. TC 1, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Christoph Bartsch
- Technische Universität Berlin,
Nanopatterned Biomaterials, Sekr. TC 1, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Marga C. Lensen
- Technische Universität Berlin,
Nanopatterned Biomaterials, Sekr. TC 1, Strasse des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
66
|
Afonin AV, Vashchenko AV. The intramolecular hydrogen bond as a unit of molecular electronics: Molecular switching controlled by overcrowded intramolecular three-centered hydrogen bond. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The equilibrium geometry of the 2,5-bis-[2-(pyridin-2-yl)-vinyl]-1[Formula: see text]-pyrrole calculated at the MP2/6-311[Formula: see text]G([Formula: see text],[Formula: see text]) level of theory evidences the breaking of one of the components in the three-centered intramolecular hydrogen bond due to the steric strain. For this reason, the three-centered intramolecular hydrogen bonding turns out to be asymmetric interaction involving the major and minor components. However, the reversible switching between these components under an external impact is also possible. Two different stable states with unequal geometric and electronic structure are observed in the derivatives of the 2,5-bis-[2-(pyridin-2-yl)-vinyl]-1[Formula: see text]-pyrrole. These molecules represent novel molecular switches operating due to the pendulum-like transition between the nonequivalent two-centered components of the overcrowded three-centered intramolecular hydrogen bond. Implantation of hydrogen bond as a unit of the molecular scale device enhances potential of molecular electronics and could serve as a step towards the construction of artificial biological ensembles.
Collapse
Affiliation(s)
- Andrei V. Afonin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Alexander V. Vashchenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of Russian Academy of Sciences, 664033 Irkutsk, Russia
| |
Collapse
|
67
|
Pezzato C, Nguyen MT, Kim DJ, Anamimoghadam O, Mosca L, Stoddart JF. Controlling Dual Molecular Pumps Electrochemically. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Cristian Pezzato
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Minh T. Nguyen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Dong Jun Kim
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Ommid Anamimoghadam
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Lorenzo Mosca
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Institute of Molecular Design and Synthesis Tianjin University Nankai District Tianjin 300072 China
| |
Collapse
|
68
|
Pezzato C, Nguyen MT, Kim DJ, Anamimoghadam O, Mosca L, Stoddart JF. Controlling Dual Molecular Pumps Electrochemically. Angew Chem Int Ed Engl 2018; 57:9325-9329. [DOI: 10.1002/anie.201803848] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Cristian Pezzato
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Minh T. Nguyen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Dong Jun Kim
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Ommid Anamimoghadam
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Lorenzo Mosca
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Institute of Molecular Design and Synthesis Tianjin University Nankai District Tianjin 300072 China
| |
Collapse
|
69
|
Ning C, Zhou Z, Tan G, Zhu Y, Mao C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog Polym Sci 2018; 81:144-162. [PMID: 29983457 PMCID: PMC6029263 DOI: 10.1016/j.progpolymsci.2018.01.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human body motion can generate a biological electric field and a current, creating a voltage gradient of -10 to -90 mV across cell membranes. In turn, this gradient triggers cells to transmit signals that alter cell proliferation and differentiation. Several cell types, counting osteoblasts, neurons and cardiomyocytes, are relatively sensitive to electrical signal stimulation. Employment of electrical signals in modulating cell proliferation and differentiation inspires us to use the electroactive polymers to achieve electrical stimulation for repairing impaired tissues. Electroactive polymers have found numerous applications in biomedicine due to their capability in effectively delivering electrical signals to the seeded cells, such as biosensing, tissue regeneration, drug delivery, and biomedical implants. Here we will summarize the electrical characteristics of electroactive polymers, which enables them to electrically influence cellular function and behavior, including conducting polymers, piezoelectric polymers, and polyelectrolyte gels. We will also discuss the biological response to these electroactive polymers under electrical stimulation. In particular, we focus this review on their applications in regenerating different tissues, including bone, nerve, heart muscle, cartilage and skin. Additionally, we discuss the challenges in tissue regeneration applications of electroactive polymers. We conclude that electroactive polymers have a great potential as regenerative biomaterials, due to their ability to stimulate desirable outcomes in various electrically responsive cells.
Collapse
Affiliation(s)
- Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhengnan Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5300, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5300, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
70
|
Prabhakaran P, Subaraja M, Rajakumar P. Synthesis, Electrochemical, Antibacterial and Anticancer Studies on Triazole-Bridged Pyrrolidine-Grafted Macrocycles via [3+2] Cycloaddition of Azomethin Ylide. ChemistrySelect 2018. [DOI: 10.1002/slct.201800033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Perumal Prabhakaran
- Department of Organic Chemistry; University of Madras; Guindy Campus; Chennai−600 025 Tamil Nadu India
| | - Mamangam Subaraja
- Department of Bio Chemistry; University of Madras; Guindy Campus; Chennai−600 025 Tamil Nadu India
| | - Perumal Rajakumar
- Department of Organic Chemistry; University of Madras; Guindy Campus; Chennai−600 025 Tamil Nadu India
| |
Collapse
|
71
|
Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nat Chem 2018; 10:625-630. [PMID: 29713030 DOI: 10.1038/s41557-018-0040-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Mechanically interlocked molecules such as rotaxanes and catenanes comprise two or more components whose motion relative to each other can be controlled. A [2]rotaxane molecular shuttle, for example, consists of an axle bearing two recognition sites and a single macrocyclic wheel that can undergo a to-and-fro motion along the axle-shuttling between the recognition sites. The ability of mechanically interlocked molecules to undergo this type of large-amplitude change is the core mechanism behind almost every interlocked molecular switch or machine, including sophisticated mechanical systems such as a molecular elevator and a peptide synthesizer. Here, as a way to expand the scope of dynamics possible at the molecular level, we have developed a molecular shuttling mechanism involving the exchange of rings between two recognition sites in a saturated [3]rotaxane (one with no empty recognition sites). This was accomplished by passing a smaller ring through a larger one, thus achieving ring-through-ring molecular shuttling.
Collapse
|
72
|
Lipke MC, Wu Y, Roy I, Wang Y, Wasielewski MR, Stoddart JF. Shuttling Rates, Electronic States, and Hysteresis in a Ring-in-Ring Rotaxane. ACS CENTRAL SCIENCE 2018; 4:362-371. [PMID: 29632882 PMCID: PMC5879476 DOI: 10.1021/acscentsci.7b00535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 06/08/2023]
Abstract
The trisradical recognition motif between a 4,4'-bipyridinium radical cation and a cyclo-bis-4,4'-bipyridinium diradical dication has been employed previously in rotaxanes to control their nanomechanical and electronic properties. Herein, we describe the synthesis and characterization of a redox-active ring-in-ring [2]rotaxane BBR·8PF6 that employs a tetraradical variant of this recognition motif. A square-shaped bis-4,4'-bipyridinium cyclophane is mechanically interlocked around the dumbbell component of this rotaxane, and the dumbbell itself incorporates a smaller bis-4,4'-bipyridinium cyclophane into its covalently bonded structure. This small cyclophane serves as a significant impediment to the shuttling of the larger ring across the dumbbell component of BBR8+ , whereas reduction to the tetraradical tetracationic state BBR4(+•) results in strong association of the two cyclophanes driven by two radical-pairing interactions. In these respects, BBR·8PF6 exhibits qualitatively similar behavior to its predecessors that interconvert between hexacationic and trisradical tricationic states. The rigid preorganization of two bipyridinium groups within the dumbbell of BBR·8PF6 confers, however, two distinct properties upon this rotaxane: (1) the rate of shuttling is reduced significantly relative to those of its predecessors, resulting in marked electrochemical hysteresis observed by cyclic voltammetry for switching between the BBR8+/BBR4(+•) states, and (2) the formally tetraradical form of the rotaxane, BBR4(+•) , exhibits a diamagnetic ground state, which, as a result of the slow shuttling motions within BBR4(+•) , has a long enough lifetime to be characterized by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Mark C. Lipke
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Yilei Wu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Indranil Roy
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuping Wang
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
73
|
Fan Q, Liu L, Dai J, Wang T, Ju H, Zhao J, Kuttner J, Hilt G, Gottfried JM, Zhu J. Surface Adatom Mediated Structural Transformation in Bromoarene Monolayers: Precursor Phases in Surface Ullmann Reaction. ACS NANO 2018; 12:2267-2274. [PMID: 29455518 DOI: 10.1021/acsnano.7b06787] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Structural transformations of supramolecular systems triggered by external stimuli maintain great potential for application in the fabrication of molecular storage devices. Using combined ultrahigh vacuum scanning tunneling microscopy, X-ray photoemission spectroscopy, and density functional theory calculations, we observed the surface adatom mediated structural transformation from 4,4''-dibromo- m-terphenyl (DMTP)-based halogen-bonded networks to DMTP-Cu(Ag) coordination networks on Cu(111) and Ag(111) at low temperatures. The halogen-bonded networks, which were formed on Cu(111) at 97 K and on Ag(111) at 93 K, consist of intact DMTP molecules stabilized by triple Br···Br bonds. The DMTP-Cu(Ag) coordination networks form on Cu(111) at 113 K and on Ag(111) at 103 K. They contain alternatingly arranged intact DMTP molecules and Cu(Ag) adatoms stabilized by weak C-Br···Cu(Ag) coordination bonds. Annealing the DMTP-Ag structure to 333 K leads to the initiation of C-Br bond scission. This observation suggests that the DMTP-Ag coordination network represents the intermediate phase ready for dehalogenation, which is the first step of the surface Ullmann reaction.
Collapse
Affiliation(s)
- Qitang Fan
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , P. R. China
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Strasse , 35032 Marburg , Germany
| | - Liming Liu
- Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Jingya Dai
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , P. R. China
| | - Tao Wang
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , P. R. China
| | - Huanxin Ju
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , P. R. China
| | - Jin Zhao
- Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Julian Kuttner
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Strasse , 35032 Marburg , Germany
| | - Gerhard Hilt
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Strasse , 35032 Marburg , Germany
| | - J Michael Gottfried
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Strasse , 35032 Marburg , Germany
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , P. R. China
| |
Collapse
|
74
|
Fantuzzi F, Coutinho CB, Oliveira RR, Nascimento MAC. Diboryne Nanostructures Stabilized by Multitopic N-Heterocyclic Carbenes: A Computational Study. Inorg Chem 2018. [DOI: 10.1021/acs.inorgchem.8b00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felipe Fantuzzi
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Caroline B. Coutinho
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Ricardo R. Oliveira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | | |
Collapse
|
75
|
Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes. NANOMATERIALS 2018; 8:nano8020109. [PMID: 29462883 PMCID: PMC5853740 DOI: 10.3390/nano8020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/04/2022]
Abstract
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.
Collapse
|
76
|
Baroncini M, Casimiro L, de Vet C, Groppi J, Silvi S, Credi A. Making and Operating Molecular Machines: A Multidisciplinary Challenge. ChemistryOpen 2018; 7:169-179. [PMID: 29435402 PMCID: PMC5795756 DOI: 10.1002/open.201700181] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
Movement is one of the central attributes of life, and a key feature in many technological processes. While artificial motion is typically provided by macroscopic engines powered by internal combustion or electrical energy, movement in living organisms is produced by machines and motors of molecular size that typically exploit the energy of chemical fuels at ambient temperature to generate forces and ultimately execute functions. The progress in several areas of chemistry, together with an improved understanding of biomolecular machines, has led to the development of a large variety of wholly synthetic molecular machines. These systems have the potential to bring about radical innovations in several areas of technology and medicine. In this Minireview, we discuss, with the help of a few examples, the multidisciplinary aspects of research on artificial molecular machines and highlight its translational character.
Collapse
Affiliation(s)
- Massimo Baroncini
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
- Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Christiaan de Vet
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Jessica Groppi
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Serena Silvi
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Alberto Credi
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
- Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
| |
Collapse
|
77
|
Bazargan G, Sohlberg K. Advances in modelling switchable mechanically interlocked molecular architectures. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1419042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gloria Bazargan
- Department of Chemistry, Drexel University, Philadelphia, PA, USA
| | - Karl Sohlberg
- Department of Chemistry, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
78
|
Panda D, Sahu PP, Tseng TY. A Collective Study on Modeling and Simulation of Resistive Random Access Memory. NANOSCALE RESEARCH LETTERS 2018; 13:8. [PMID: 29322363 PMCID: PMC5762646 DOI: 10.1186/s11671-017-2419-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/19/2017] [Indexed: 05/25/2023]
Abstract
In this work, we provide a comprehensive discussion on the various models proposed for the design and description of resistive random access memory (RRAM), being a nascent technology is heavily reliant on accurate models to develop efficient working designs and standardize its implementation across devices. This review provides detailed information regarding the various physical methodologies considered for developing models for RRAM devices. It covers all the important models reported till now and elucidates their features and limitations. Various additional effects and anomalies arising from memristive system have been addressed, and the solutions provided by the models to these problems have been shown as well. All the fundamental concepts of RRAM model development such as device operation, switching dynamics, and current-voltage relationships are covered in detail in this work. Popular models proposed by Chua, HP Labs, Yakopcic, TEAM, Stanford/ASU, Ielmini, Berco-Tseng, and many others have been compared and analyzed extensively on various parameters. The working and implementations of the window functions like Joglekar, Biolek, Prodromakis, etc. has been presented and compared as well. New well-defined modeling concepts have been discussed which increase the applicability and accuracy of the models. The use of these concepts brings forth several improvements in the existing models, which have been enumerated in this work. Following the template presented, highly accurate models would be developed which will vastly help future model developers and the modeling community.
Collapse
Affiliation(s)
- Debashis Panda
- Department of Electronics and Communication Engineering, National Institute of Science and Technology, Berhampur, Odisha 761008 India
| | - Paritosh Piyush Sahu
- Department of Electronics and Communication Engineering, National Institute of Science and Technology, Berhampur, Odisha 761008 India
- Nanoscale Science & Technology Lab, Department of EECS, National Chiao Tung University, Hsinchu, 30010 Taiwan
| | - Tseung Yuen Tseng
- Department of Electronics Engineering & Institute of Electronics, National Chiao Tung University, Hsinchu, 30010 Taiwan
| |
Collapse
|
79
|
Wang J, Ferguson AL. A Study of the Morphology, Dynamics, and Folding Pathways of Ring Polymers with Supramolecular Topological Constraints Using Molecular Simulation and Nonlinear Manifold Learning. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b01684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiang Wang
- Department
of Physics, ‡Department of Materials Science and Engineering, and §Department of
Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Andrew L. Ferguson
- Department
of Physics, ‡Department of Materials Science and Engineering, and §Department of
Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
80
|
Jana A, Bähring S, Ishida M, Goeb S, Canevet D, Sallé M, Jeppesen JO, Sessler JL. Functionalised tetrathiafulvalene- (TTF-) macrocycles: recent trends in applied supramolecular chemistry. Chem Soc Rev 2018; 47:5614-5645. [DOI: 10.1039/c8cs00035b] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tetrathiafulvalene- (TTF-) based macrocyclic systems, cages and supramolecularly self-assembled 3D constructs have been extensively explored as functional materials for sensing and switching applications.
Collapse
Affiliation(s)
- Atanu Jana
- Institute for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai
- China
| | - Steffen Bähring
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- Odense M
- Denmark
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry
- Graduate School of Engineering and Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Sébastien Goeb
- Université d’Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou
- 49045 Angers Cedex
- France
| | - David Canevet
- Université d’Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou
- 49045 Angers Cedex
- France
| | - Marc Sallé
- Université d’Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou
- 49045 Angers Cedex
- France
| | - Jan O. Jeppesen
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- Odense M
- Denmark
| | - Jonathan L. Sessler
- Institute for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai
- China
- Department of Chemistry
| |
Collapse
|
81
|
Li J, Duan Y, Li Y, Li T, Yin LW, Li H. First principles study of electronic transport properties in novel FeB2 flake-based nanodevices. Phys Chem Chem Phys 2018; 20:4455-4465. [DOI: 10.1039/c7cp07132a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
First-principles calculations provide theoretical support for the promising applications of innovative two-probe devices based on FeB2 flakes and reveal the superiority of devices with FeB2 flakes at temperatures not above 1000 K in transport properties.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Yunrui Duan
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Yifan Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Tao Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Long-Wei Yin
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Hui Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| |
Collapse
|
82
|
López-Vidal EM, Prokofjevs A, Gibbs-Hall IC, Dale EJ, Quintela JM, Peinador C. Studies towards the synthesis of Pd(ii)-containing [2] and [3]catenanes in aqueous media. Dalton Trans 2018; 47:2492-2496. [DOI: 10.1039/c7dt04792d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here is reported the investigation of a synthetic route for the preparation of Pd(ii)-containing catenanes in aqueous media.
Collapse
Affiliation(s)
- E. M. López-Vidal
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias
- Universidade da Coruña
- A Coruña
- Spain
| | - A. Prokofjevs
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | | | - E. J. Dale
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - J. M. Quintela
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias
- Universidade da Coruña
- A Coruña
- Spain
| | - C. Peinador
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias
- Universidade da Coruña
- A Coruña
- Spain
| |
Collapse
|
83
|
Verani CN. Molecular rectifiers based on five-coordinate iron(iii)-containing surfactants. Dalton Trans 2018; 47:14153-14168. [DOI: 10.1039/c8dt02891e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The state-of-the-art of metallorganic-based molecular rectification is reviewed with an emphasis on asymmetric five-coordinate FeIII-containing surfactants in electrode|LB film|electrode assemblies.
Collapse
|
84
|
Lukov VV, Shcherbakov IN, Levchenkov SI, Tupolova YP, Popov LD, Pankov IV, Posokhova SV. Molecular machines as a driving force of progress in modern post-industrial society. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
85
|
|
86
|
Striepe L, Baumgartner T. Viologens and Their Application as Functional Materials. Chemistry 2017; 23:16924-16940. [DOI: 10.1002/chem.201703348] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Laura Striepe
- Department of Chemistry and Centre for Advanced Solar Materials; University of Calgary; 2500 University Drive NW Calgary AB T2N 1N4 Canada
| | - Thomas Baumgartner
- Department of Chemistry and Centre for Advanced Solar Materials; University of Calgary; 2500 University Drive NW Calgary AB T2N 1N4 Canada
- Current address: Department of Chemistry; York University; 4700 Keele St Toronto ON M3J 1P3 Canada
| |
Collapse
|
87
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|
88
|
Stoddart JF. Mechanisch verzahnte Moleküle (MIMs) - molekulare Shuttle, Schalter und Maschinen (Nobel-Aufsatz). Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703216] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- J. Fraser Stoddart
- Department of Chemistry; Northwestern University; 2145 Sheridan Road Evanston IL 60208-3113 USA
| |
Collapse
|
89
|
Stoddart JF. Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture). Angew Chem Int Ed Engl 2017; 56:11094-11125. [PMID: 28815900 DOI: 10.1002/anie.201703216] [Citation(s) in RCA: 629] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Indexed: 12/20/2022]
Abstract
Chemistry welcomes a new bond: The mechanical bond has endowed molecules with component parts whose movements can be controlled and monitored. In his Nobel Lecture, J. F. Stoddart describes how being able to template the formation of mechanically interlocked molecules has led to the design and synthesis of shuttles, switches, and machines at the nanoscale.
Collapse
Affiliation(s)
- J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| |
Collapse
|
90
|
Yang S, Luan Z, Gao C, Yu J, Qu D. Triggering a [2]rotaxane molecular shuttle through hydrogen sulfide. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9104-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
91
|
Fukino T, Yamagishi H, Aida T. Redox-Responsive Molecular Systems and Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603888. [PMID: 27990693 DOI: 10.1002/adma.201603888] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Redox reactions can alter the electronic, optical, and magnetic properties of molecules and their ensembles by adding or removing electrons. Here, the developments made over the past 10 years using molecular events are discussed, such as assembly/disassembly, transformation of ensembles, geometric changes, and molecular motions that are designed to be redox-responsive. Considerable progress has occurred in the application of these events to the realization of electronic memory, color displays, actuators, adhesives, and drug delivery. In these cases, systems behave in either a highly or a poorly correlated manner depending on the number of redox-active units involved, based on the method of integration. One of the great advantages of redox-responsive devices and materials is that they have the potential to be readily integrated into existing electronic technologies.
Collapse
Affiliation(s)
- Takahiro Fukino
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Yamagishi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
92
|
Chen Z, Sahli BJ, MacLachlan MJ. Self-Assembly of Extended Head-to-Tail Triangular Pt3 Macrocycles into Nanotubes. Inorg Chem 2017; 56:5383-5391. [DOI: 10.1021/acs.inorgchem.7b00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhengyu Chen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian J. Sahli
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mark J. MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
93
|
Filimonov SN, Liu W, Tkatchenko A. Molecular Seesaw: Intricate Dynamics and Versatile Chemistry of Heteroaromatics on Metal Surfaces. J Phys Chem Lett 2017; 8:1235-1240. [PMID: 28229597 DOI: 10.1021/acs.jpclett.7b00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The design of novel elementary surface processes is important for applications in catalysis, single-molecule junctions, molecular sensors, switches, and surface-mounted molecular machines. Here we demonstrate by van der Waals inclusive density functional theory calculations that a small and relatively simple heteroaromatic compound s-triazine (C3H3N3) unexpectedly possesses five metastable states when adsorbed on the Pt(111) surface. This diversity of the adsorption states stems from an interplay between versatile molecule/surface chemical bonding and van der Waals interactions and from "softening" of the aromatic ring by nitrogen substitution, which makes folding of the aromatic ring energetically much less demanding as compared to benzene. The intricate seesaw-like surface dynamics and tunable electronic structure of s-triazine show promise for applications in molecular sensors and switches. The broad implications of our findings are demonstrated for triazine- and pyrimidine-based heteroaromatic compounds and other metal surfaces.
Collapse
Affiliation(s)
- Sergey N Filimonov
- Department of Physics, National Research Tomsk State University , 634050 Tomsk, Russia
| | - Wei Liu
- Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology , Nanjing, Jiangsu 210094, China
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit, University of Luxembourg , L-1511 Luxembourg
| |
Collapse
|
94
|
Lipke MC, Cheng T, Wu Y, Arslan H, Xiao H, Wasielewski MR, Goddard WA, Stoddart JF. Size-Matched Radical Multivalency. J Am Chem Soc 2017; 139:3986-3998. [DOI: 10.1021/jacs.6b09892] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mark C. Lipke
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tao Cheng
- Materials
and Process Simulation Center, California Institute of Technology, 1200 California Boulevard, Pasadena, California 91125, United States
| | - Yilei Wu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hasan Arslan
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hai Xiao
- Materials
and Process Simulation Center, California Institute of Technology, 1200 California Boulevard, Pasadena, California 91125, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California Institute of Technology, 1200 California Boulevard, Pasadena, California 91125, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
95
|
Das C, Shukla P, Sorace L, Shanmugam M. Structural and magnetic properties of semiquinonate based Al(iii) and Ga(iii) complexes. Dalton Trans 2017; 46:1439-1448. [PMID: 28070581 DOI: 10.1039/c6dt04281c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of anhydrous MCl3 (M = Al(iii) or Ga(iii)) with one-electron-reduced 3,5-di-tert-butyl-1,2-ortho-benzoquinone (using metallic sodium) led us to isolate two distinct metal complexes of Al(iii) and Ga(iii), which were structurally and magnetically characterized. Complex 1 crystallized in the monoclinic P21/n space group, whereas 2 crystallized in the triclinic P1[combining macron] space group. Interestingly, whereas the Al(iii) derivative was obtained as a dimer with the molecular formula [Al2(μ-HL-)2(L˙-)4] (1) (where L˙- is a semiquinonate radical and HL- is a monoanionic catecholate ligand), the Ga(iii) derivative crystallized as [Ga(L˙-)3] (2), which is a polymorph of a previously reported complex. The presence of both catecholate and/or semiquinonate ligands in 1 and 2 was confirmed by single-crystal X-ray diffraction, mass spectrometry, and NMR and infrared spectroscopy techniques. The crystalline phase purity of the complexes was confirmed by powder X-ray diffraction (PXRD). Measurements of direct-current magnetic susceptibility, which were performed on a polycrystalline samples, revealed that in both complexes the semiquinonate radical anions are coupled ferromagnetically via the diamagnetic metal ion. The magnetism data of both complexes were modelled using the Heisenberg-Van Vleck-Dirac (HDVV) Hamiltonian, and the extracted parameters are consistent with the literature reports. The details of the electronic structures of the ground states of 1 and 2 were further investigated via X-band (ca. 9 GHz) electron paramagnetic resonance (EPR). The EPR spectrum of 2 could be reproduced by considering a quartet ground state with zero-field splitting and hyperfine coupling, whereas attempts to simulate all the EPR spectral features observed in a frozen solution of 1 by assuming it was a pure phase failed. A correct simulation required the simultaneous inclusion of contributions from a quartet and a triplet state. This evidently suggests that the dimeric complex of 1 is in equilibrium with a monomeric [Al(L˙-)3] complex in solution.
Collapse
Affiliation(s)
- Chinmoy Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra-400076, India.
| | - Pragya Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra-400076, India.
| | - Lorenzo Sorace
- Dipartimento di Chimica "U. Schiff" and UdR INSTM, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra-400076, India.
| |
Collapse
|
96
|
Quantum half-adder Boolean logic gate with a nano-graphene molecule and graphene nano-electrodes. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
97
|
Chen Q, Sun J, Li P, Hod I, Moghadam PZ, Kean ZS, Snurr RQ, Hupp JT, Farha OK, Stoddart JF. A Redox-Active Bistable Molecular Switch Mounted inside a Metal–Organic Framework. J Am Chem Soc 2016; 138:14242-14245. [DOI: 10.1021/jacs.6b09880] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Omar K. Farha
- Department
of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | |
Collapse
|
98
|
Mayer C, McInroy GR, Murat P, Van Delft P, Balasubramanian S. An Epigenetics-Inspired DNA-Based Data Storage System. Angew Chem Int Ed Engl 2016; 55:11144-8. [PMID: 27440712 PMCID: PMC5113786 DOI: 10.1002/anie.201605531] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 12/22/2022]
Abstract
Biopolymers are an attractive alternative to store and circulate information. DNA, for example, combines remarkable longevity with high data storage densities and has been demonstrated as a means for preserving digital information. Inspired by the dynamic, biological regulation of (epi)genetic information, we herein present how binary data can undergo controlled changes when encoded in synthetic DNA strands. By exploiting differential kinetics of hydrolytic deamination reactions of cytosine and its naturally occurring derivatives, we demonstrate how multiple layers of information can be stored in a single DNA template. Moreover, we show that controlled redox reactions allow for interconversion of these DNA-encoded layers of information. Overall, such interlacing of multiple messages on synthetic DNA libraries showcases the potential of chemical reactions to manipulate digital information on (bio)polymers.
Collapse
Affiliation(s)
- Clemens Mayer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Gordon R McInroy
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Pierre Murat
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Pieter Van Delft
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cancer Research, UK, Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|
99
|
Affiliation(s)
- Matthias Otte
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Universiteit Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
100
|
Ren X, Wu Y, Clarke DE, Liu J, Wu G, Scherman OA. Surface-Bound Cucurbit[8]uril Catenanes on Magnetic Nanoparticles Exhibiting Molecular Recognition. Chem Asian J 2016; 11:2382-6. [DOI: 10.1002/asia.201600875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaohe Ren
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| | - Yuchao Wu
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| | - David E. Clarke
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| | - Ji Liu
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| | - Guanglu Wu
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK), Fax: (+44) 01223-334866
| |
Collapse
|