51
|
Desai RT, Cowee MM, Wei H, Fu X, Gary SP, Volwerk M, Coates AJ. Hybrid Simulations of Positively and Negatively Charged Pickup Ions and Cyclotron Wave Generation at Europa. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2017; 122:10408-10420. [PMID: 29263979 PMCID: PMC5726379 DOI: 10.1002/2017ja024479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/17/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
In the vicinity of Europa, Galileo observed bursty Alfvén-cyclotron wave power at the gyrofrequencies of a number of species including K+, O 2+, Na+, and Cl+, indicating the localized pickup of these species. Additional evidence for the presence of chlorine was the occurrence of both left-hand (LH) and right-hand (RH) polarized transverse wave power near the Cl+ gyrofrequency, thought to be due to the pickup of both Cl+ and the easily formed chlorine anion, Cl-. To test this hypothesis, we use one-dimensional hybrid (kinetic ion, massless fluid electron) simulations for both positive and negative pickup ions and self-consistently reproduce the growth of both LH and RH Alfvén-cyclotron waves in agreement with linear theory. We show how the simultaneous generation of LH and RH waves can result in nongyrotropic ion distributions and increased wave amplitudes, and how even trace quantities of negative pickup ions are able to generate an observable RH signal. Through comparing simulated and observed wave amplitudes, we are able to place the first constraints on the densities of Chlorine pickup ions in localized regions at Europa.
Collapse
Affiliation(s)
- R. T. Desai
- Mullard Space Science LaboratoryUniversity College LondonLondonUK
- Centre for Planetary SciencesUniversity College London/BirkbeckLondonUK
| | - M. M. Cowee
- Los Alamos National LaboratoryLos AlamosNMUSA
| | - H. Wei
- Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesCAUSA
| | - X. Fu
- Space Science InstituteBoulderCOUSA
| | - S. P. Gary
- Los Alamos National LaboratoryLos AlamosNMUSA
- Space Science InstituteBoulderCOUSA
| | - M. Volwerk
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | - A. J. Coates
- Mullard Space Science LaboratoryUniversity College LondonLondonUK
- Centre for Planetary SciencesUniversity College London/BirkbeckLondonUK
| |
Collapse
|
52
|
|
53
|
|
54
|
Domagal-Goldman SD, Wright KE, Adamala K, Arina de la Rubia L, Bond J, Dartnell LR, Goldman AD, Lynch K, Naud ME, Paulino-Lima IG, Singer K, Walther-Antonio M, Abrevaya XC, Anderson R, Arney G, Atri D, Azúa-Bustos A, Bowman JS, Brazelton WJ, Brennecka GA, Carns R, Chopra A, Colangelo-Lillis J, Crockett CJ, DeMarines J, Frank EA, Frantz C, de la Fuente E, Galante D, Glass J, Gleeson D, Glein CR, Goldblatt C, Horak R, Horodyskyj L, Kaçar B, Kereszturi A, Knowles E, Mayeur P, McGlynn S, Miguel Y, Montgomery M, Neish C, Noack L, Rugheimer S, Stüeken EE, Tamez-Hidalgo P, Imari Walker S, Wong T. The Astrobiology Primer v2.0. ASTROBIOLOGY 2016; 16:561-653. [PMID: 27532777 PMCID: PMC5008114 DOI: 10.1089/ast.2015.1460] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/06/2016] [Indexed: 05/09/2023]
Affiliation(s)
- Shawn D Domagal-Goldman
- 1 NASA Goddard Space Flight Center , Greenbelt, Maryland, USA
- 2 Virtual Planetary Laboratory , Seattle, Washington, USA
| | - Katherine E Wright
- 3 University of Colorado at Boulder , Colorado, USA
- 4 Present address: UK Space Agency, UK
| | - Katarzyna Adamala
- 5 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota, USA
| | | | - Jade Bond
- 7 Department of Physics, University of New South Wales , Sydney, Australia
| | | | | | - Kennda Lynch
- 10 Division of Biological Sciences, University of Montana , Missoula, Montana, USA
| | - Marie-Eve Naud
- 11 Institute for research on exoplanets (iREx) , Université de Montréal, Montréal, Canada
| | - Ivan G Paulino-Lima
- 12 Universities Space Research Association , Mountain View, California, USA
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | - Kelsi Singer
- 14 Southwest Research Institute , Boulder, Colorado, USA
| | | | - Ximena C Abrevaya
- 16 Instituto de Astronomía y Física del Espacio (IAFE) , UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rika Anderson
- 17 Department of Biology, Carleton College , Northfield, Minnesota, USA
| | - Giada Arney
- 18 University of Washington Astronomy Department and Astrobiology Program , Seattle, Washington, USA
| | - Dimitra Atri
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Jeff S Bowman
- 19 Lamont-Doherty Earth Observatory, Columbia University , Palisades, New York, USA
| | | | | | - Regina Carns
- 22 Polar Science Center, Applied Physics Laboratory, University of Washington , Seattle, Washington, USA
| | - Aditya Chopra
- 23 Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University , Canberra, Australia
| | - Jesse Colangelo-Lillis
- 24 Earth and Planetary Science, McGill University , and the McGill Space Institute, Montréal, Canada
| | | | - Julia DeMarines
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Carie Frantz
- 27 Department of Geosciences, Weber State University , Ogden, Utah, USA
| | - Eduardo de la Fuente
- 28 IAM-Departamento de Fisica, CUCEI , Universidad de Guadalajara, Guadalajara, México
| | - Douglas Galante
- 29 Brazilian Synchrotron Light Laboratory , Campinas, Brazil
| | - Jennifer Glass
- 30 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia , USA
| | | | | | - Colin Goldblatt
- 33 School of Earth and Ocean Sciences, University of Victoria , Victoria, Canada
| | - Rachel Horak
- 34 American Society for Microbiology , Washington, DC, USA
| | | | - Betül Kaçar
- 36 Harvard University , Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
| | - Akos Kereszturi
- 37 Research Centre for Astronomy and Earth Sciences , Hungarian Academy of Sciences, Budapest, Hungary
| | - Emily Knowles
- 38 Johnson & Wales University , Denver, Colorado, USA
| | - Paul Mayeur
- 39 Rensselaer Polytechnic Institute , Troy, New York, USA
| | - Shawn McGlynn
- 40 Earth Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
| | - Yamila Miguel
- 41 Laboratoire Lagrange, UMR 7293, Université Nice Sophia Antipolis , CNRS, Observatoire de la Côte d'Azur, Nice, France
| | | | - Catherine Neish
- 43 Department of Earth Sciences, The University of Western Ontario , London, Canada
| | - Lena Noack
- 44 Royal Observatory of Belgium , Brussels, Belgium
| | - Sarah Rugheimer
- 45 Department of Astronomy, Harvard University , Cambridge, Massachusetts, USA
- 46 University of St. Andrews , St. Andrews, UK
| | - Eva E Stüeken
- 47 University of Washington , Seattle, Washington, USA
- 48 University of California , Riverside, California, USA
| | | | - Sara Imari Walker
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
- 50 School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University , Tempe, Arizona, USA
| | - Teresa Wong
- 51 Department of Earth and Planetary Sciences, Washington University in St. Louis , St. Louis, Missouri, USA
| |
Collapse
|
55
|
Taubner RS, Schleper C, Firneis MG, Rittmann SKMR. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies. Life (Basel) 2015; 5:1652-86. [PMID: 26703739 PMCID: PMC4695842 DOI: 10.3390/life5041652] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/15/2015] [Accepted: 11/10/2015] [Indexed: 12/31/2022] Open
Abstract
Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Research Platform: ExoLife, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
- Institute of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
| | - Christa Schleper
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| | - Maria G Firneis
- Research Platform: ExoLife, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
- Institute of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria.
| | - Simon K-M R Rittmann
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
56
|
Kimura J, Kitadai N. Polymerization of Building Blocks of Life on Europa and Other Icy Moons. ASTROBIOLOGY 2015; 15:430-41. [PMID: 26060981 PMCID: PMC4490594 DOI: 10.1089/ast.2015.1306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The outer Solar System may provide a potential habitat for extraterrestrial life. Remote sensing data from the Galileo spacecraft suggest that the jovian icy moons--Europa, Ganymede, and possibly Callisto--may harbor liquid water oceans underneath their icy crusts. Although compositional information required for the discussion of habitability is limited because of significantly restricted observation data, organic molecules are ubiquitous in the Universe. Recently, in situ spacecraft measurements and experiments suggest that amino acids can be formed abiotically on interstellar ices and comets. These amino acids could be continuously delivered by meteorite or comet impacts to icy moons. Here, we show that polymerization of organic monomers, in particular amino acids and nucleotides, could proceed spontaneously in the cold environment of icy moons, in particular the jovian icy moon Europa as a typical example, based on thermodynamic calculations, though kinetics of formation are not addressed. Observed surface temperature on Europa is 120 and 80 K in the equatorial region and polar region, respectively. At such low temperatures, Gibbs energies of polymerization become negative, and the estimated thermal structure of the icy crust should contain a shallow region (i.e., at a depth of only a few kilometers) favorable for polymerization. Investigation of the possibility of organic monomer polymerization on icy moons could provide good constraints on the origin and early evolution of extraterrestrial life.
Collapse
Affiliation(s)
- Jun Kimura
- Earth-Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
| | - Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
| |
Collapse
|
57
|
Aerts JW, Röling WFM, Elsaesser A, Ehrenfreund P. Biota and biomolecules in extreme environments on Earth: implications for life detection on Mars. Life (Basel) 2014; 4:535-65. [PMID: 25370528 PMCID: PMC4284457 DOI: 10.3390/life4040535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 11/24/2022] Open
Abstract
The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids) occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the characterization of extant or extinct life. Due to their indispensability for life on Earth, these biomarkers are also prime targets in the search for life on Mars. Biomarkers degrade over time; in situ environmental conditions influence the preservation of those molecules. Nonetheless, upon shielding (e.g., by mineral surfaces), particular biomarkers can persist for billions of years, making them of vital importance in answering questions about the origins and limits of life on early Earth and Mars. The search for organic material and biosignatures on Mars is particularly challenging due to the hostile environment and its effect on organic compounds near the surface. In support of life detection on Mars, it is crucial to investigate analogue environments on Earth that resemble best past and present Mars conditions. Terrestrial extreme environments offer a rich source of information allowing us to determine how extreme conditions affect life and molecules associated with it. Extremophilic organisms have adapted to the most stunning conditions on Earth in environments with often unique geological and chemical features. One challenge in detecting biomarkers is to optimize extraction, since organic molecules can be low in abundance and can strongly adsorb to mineral surfaces. Methods and analytical tools in the field of life science are continuously improving. Amplification methods are very useful for the detection of low concentrations of genomic material but most other organic molecules are not prone to amplification methods. Therefore, a great deal depends on the extraction efficiency. The questions “what to look for”, “where to look”, and “how to look for it” require more of our attention to ensure the success of future life detection missions on Mars.
Collapse
Affiliation(s)
- Joost W Aerts
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Wilfred F M Röling
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Andreas Elsaesser
- Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands.
| | - Pascale Ehrenfreund
- Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands.
| |
Collapse
|
58
|
Heller R, Williams D, Kipping D, Limbach MA, Turner E, Greenberg R, Sasaki T, Bolmont É, Grasset O, Lewis K, Barnes R, Zuluaga JI. Formation, habitability, and detection of extrasolar moons. ASTROBIOLOGY 2014; 14:798-835. [PMID: 25147963 PMCID: PMC4172466 DOI: 10.1089/ast.2014.1147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.
Collapse
Affiliation(s)
- René Heller
- Origins Institute, Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Darren Williams
- The Behrend College School of Science, Penn State Erie, Erie, Pennsylvania, USA
| | - David Kipping
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - Mary Anne Limbach
- Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey, USA
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, USA
| | - Edwin Turner
- Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey, USA
- The Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Japan
| | - Richard Greenberg
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
| | | | - Émeline Bolmont
- Université de Bordeaux, LAB, UMR 5804, Floirac, France
- CNRS, LAB, UMR 5804, Floirac, France
| | - Olivier Grasset
- Planetology and Geodynamics, University of Nantes, CNRS, Nantes, France
| | - Karen Lewis
- Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
| | - Rory Barnes
- Astronomy Department, University of Washington, Seattle, Washington, USA
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Jorge I. Zuluaga
- FACom—Instituto de Física—FCEN, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
59
|
Affiliation(s)
- Bruce C Gibb
- Department of Chemistry at Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
60
|
Grasset O, Bunce EJ, Coustenis A, Dougherty MK, Erd C, Hussmann H, Jaumann R, Prieto-Ballesteros O. Review of exchange processes on Ganymede in view of its planetary protection categorization. ASTROBIOLOGY 2013; 13:991-1004. [PMID: 24143869 DOI: 10.1089/ast.2013.1013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, we provide a detailed review of Ganymede's characteristics that are germane to any consideration of its planetary protection requirements. Ganymede is the largest moon in our solar system and is the subject of one of the main science objectives of the JUICE mission to the jovian system. We explore the probability of the occurrence of potentially habitable zones within Ganymede at present, including those both within the deep liquid ocean and those in shallow liquid reservoirs. We consider the possible exchange processes between the surface and any putative habitats to set some constraints on the planetary protection approach for this moon. As a conclusion, the "remote" versus "significant" chance of contamination will be discussed, according to our current understanding of this giant icy moon. Based on the different estimates we investigate here, it appears extremely unlikely that material would be exchanged downward through the upper icy layer of Ganymede and, thus, bring material into the ocean over timescales consistent with the survival of microorganisms.
Collapse
Affiliation(s)
- O Grasset
- 1 Planetology and Geodynamics, University of Nantes , CNRS, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Pappalardo RT, Vance S, Bagenal F, Bills BG, Blaney DL, Blankenship DD, Brinckerhoff WB, Connerney JEP, Hand KP, Hoehler TM, Leisner JS, Kurth WS, McGrath MA, Mellon MT, Moore JM, Patterson GW, Prockter LM, Senske DA, Schmidt BE, Shock EL, Smith DE, Soderlund KM. Science potential from a Europa lander. ASTROBIOLOGY 2013; 13:740-773. [PMID: 23924246 DOI: 10.1089/ast.2013.1003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.
Collapse
Affiliation(s)
- R T Pappalardo
- Planetary Sciences Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Muñoz-Iglesias V, Bonales LJ, Prieto-Ballesteros O. pH and salinity evolution of Europa's brines: Raman spectroscopy study of fractional precipitation at 1 and 300 bar. ASTROBIOLOGY 2013; 13:693-702. [PMID: 23944292 DOI: 10.1089/ast.2012.0900] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Several lines of evidence indicate the existence of salty liquid water below the icy surface of the satellite Europa. Depending on the chemical composition of the original interior brines, minerals that precipitate will be varied as will be the resulting physicochemical parameters of the evolving solutions such as pH and salinity. These parameters are determinants apropos to the study of the possible habitability of the satellite. In this work, experiments of fractional precipitation by cooling of several brines with different chemical composition (acid, alkaline, and neutral) were performed at 1 and 300 bar. The gradual decrease in temperature leads to mineral precipitation and changes in salinity and pH values. During the experiment, Raman spectroscopy was used to analyze quantitatively the variation of the salt concentration in the aqueous solutions. The obtained laboratory data indicate the manner in which cryomagma differentiation might occur on Europa. These endogenous processes of differentiation require planetary energy, which seems to have been plentiful during Europa's geological history. Ultimately, the dissipation of part of that energy is translated to a higher complexity of the cryopetrology in Europa's crust. From the results, we conclude that fractional differentiation processes of briny cryomagmas produce several types of igneous salty mineral suites on icy moons.
Collapse
|
63
|
Carr CE, Rowedder H, Lui CS, Zlatkovsky I, Papalias CW, Bolander J, Myers JW, Bustillo J, Rothberg JM, Zuber MT, Ruvkun G. Radiation resistance of sequencing chips for in situ life detection. ASTROBIOLOGY 2013; 13:560-569. [PMID: 23734755 DOI: 10.1089/ast.2012.0923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Life beyond Earth may be based on RNA or DNA if such life is related to life on Earth through shared ancestry due to meteoritic exchange, such as may be the case for Mars, or if delivery of similar building blocks to habitable environments has biased the evolution of life toward utilizing nucleic acids. In this case, in situ sequencing is a powerful approach to identify and characterize such life without the limitations or expense of returning samples to Earth, and can monitor forward contamination. A new semiconductor sequencing technology based on sensing hydrogen ions released during nucleotide incorporation can enable massively parallel sequencing in a small, robust, optics-free CMOS chip format. We demonstrate that these sequencing chips survive several analogues of space radiation at doses consistent with a 2-year Mars mission, including protons with solar particle event-distributed energy levels and 1 GeV oxygen and iron ions. We find no measurable impact of irradiation at 1 and 5 Gy doses on sequencing quality nor on low-level hardware characteristics. Further testing is required to study the impacts of soft errors as well as to characterize performance under neutron and gamma irradiation and at higher doses, which would be expected during operation in environments with significant trapped energetic particles such as during a mission to Europa. Our results support future efforts to use in situ sequencing to test theories of panspermia and/or whether life has a common chemical basis.
Collapse
Affiliation(s)
- Christopher E Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Goordial J, Lamarche-Gagnon G, Lay CY, Whyte L. Left Out in the Cold: Life in Cryoenvironments. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6488-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
65
|
Mora MF, Stockton AM, Willis PA. Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life. Electrophoresis 2012; 33:2624-38. [DOI: 10.1002/elps.201200102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
66
|
Menor-Salván C, Marín-Yaseli MR. Prebiotic chemistry in eutectic solutions at the water-ice matrix. Chem Soc Rev 2012; 41:5404-15. [PMID: 22660387 DOI: 10.1039/c2cs35060b] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry.
Collapse
Affiliation(s)
- César Menor-Salván
- Centro de Astrobiología (INTA-CSIC), INTA, E-28850 Torrejón de Ardoz, Spain.
| | | |
Collapse
|
67
|
Angel SM, Gomer NR, Sharma SK, McKay C. Remote Raman spectroscopy for planetary exploration: a review. APPLIED SPECTROSCOPY 2012; 66:137-50. [PMID: 22449277 DOI: 10.1366/11-06535] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this review, we discuss the current state of standoff Raman spectroscopy as it applies to remote planetary applications, including standoff instrumentation, the technique's ability to identify biologically and geologically important analytes, and the feasibility to make standoff Raman measurements under various planetary conditions. This is not intended to be an exhaustive review of standoff Raman and many excellent papers are not mentioned. Rather it is intended to give the reader a quick review of the types of standoff Raman systems that are being developed and that might be suitable for astrospectroscopy, a look at specific analytes that are of interest for planetary applications, planetary measurement opportunities and challenges that need to be solved, and a brief discussion of the feasibility of making surface and plume planetary Raman measurements from an orbiting spacecraft.
Collapse
Affiliation(s)
- S Michael Angel
- Department of Chemistry and Biochemistry, The University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | | | |
Collapse
|
68
|
Active formation of 'chaos terrain' over shallow subsurface water on Europa. Nature 2011; 479:502-5. [PMID: 22089135 DOI: 10.1038/nature10608] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 10/04/2011] [Indexed: 11/08/2022]
Abstract
Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3 kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America.
Collapse
|
69
|
Coates AJ. Io's Tortured Interior. Science 2011; 332:1157-8. [DOI: 10.1126/science.1206534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Magnetic measurements made by the Galileo spacecraft reveal an ocean of magma under Io's frozen surface.
Collapse
Affiliation(s)
- Andrew J. Coates
- Mullard Space Science Laboratory, University College London (UCL), Holmbury St. Mary, Dorking RH5 6NT, UK
- Centre for Planetary Sciences at UCL/Birkbeck, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
70
|
McKay CP. The search for life in our Solar System and the implications for science and society. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:594-606. [PMID: 21220283 DOI: 10.1098/rsta.2010.0247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The search for another type of life in the Solar System addresses the fundamental question of life in the Universe. To determine if life forms we discover represent a second genesis, we must find biological material that would allow us to compare that life to the Earth's phylogenetic tree of life. An organism would be alien if, and only if, it did not link to our tree of life. In our Solar System, the worlds of interest for a search for life are Mars, Europa, Enceladus and, for biochemistry based on a liquid other than water, Titan. If we find evidence for a second genesis of life, we will certainly learn from the comparative study of the biochemistry, organismal biology and ecology of the alien life. The discovery of alien life, if alive or revivable, will pose fundamentally new questions in environmental ethics. We should plan our exploration strategy such that we conduct biologically reversible exploration. In the long term we would do well, ethically and scientifically, to strive to support any alien life discovered as part of an overall commitment to enhancing the richness and diversity of life in the Universe.
Collapse
Affiliation(s)
- Christopher P McKay
- Space Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
71
|
Pauer M, Musiol S, Breuer D. Gravity signals on Europa from silicate shell density variations. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
72
|
Abstract
AbstractGalileo spacecraft data suggest that a global ocean exists beneath the frozen ice surface Jupiter's moon Europa. Since the early 1970s, planetary scientists have used theoretical and observational arguments to deliberate the existence of an ocean within Europa and other large icy satellites. Galileo magnetometry data indicates an induced magnetic field at Europa, implying a salt water ocean. A paucity of large craters argues for a surface on average only ~40-90 Myr old. Two multi-ring structures suggest that impacts punched through an ice shell ~20 km thick. Europa's ocean and surface are inherently linked through tidal deformation of the floating ice shell, and tidal flexing and nonsynchronous rotation generate stresses that fracture and deform the surface to create ridges and bands. Dark spots, domes, and chaos terrain are probably related to tidally driven ice convection along with partial melting within the ice shell. Europa's geological activity and probable mantle contact permit the chemical ingredients necessary for life to be present within the satellite's ocean. Astonishing geology and high astrobiological potential make Europa a top priority for future spacecraft exploration, with a primary goal of assessing its habitability.
Collapse
|
73
|
Attwater J, Wochner A, Pinheiro VB, Coulson A, Holliger P. Ice as a protocellular medium for RNA replication. Nat Commun 2010; 1:76. [PMID: 20865803 DOI: 10.1038/ncomms1076] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/23/2010] [Indexed: 11/09/2022] Open
Abstract
A crucial transition in the origin of life was the emergence of an informational polymer capable of self-replication and its compartmentalization within protocellular structures. We show that the physicochemical properties of ice, a simple medium widespread on a temperate early Earth, could have mediated this transition prior to the advent of membraneous protocells. Ice not only promotes the activity of an RNA polymerase ribozyme but also protects it from hydrolytic degradation, enabling the synthesis of exceptionally long replication products. Ice furthermore relieves the dependence of RNA replication on prebiotically implausible substrate concentrations, while providing quasicellular compartmentalization within the intricate microstructure of the eutectic phase. Eutectic ice phases had previously been shown to promote the de novo synthesis of nucleotide precursors, as well as the condensation of activated nucleotides into random RNA oligomers. Our results support a wider role for ice as a predisposed environment, promoting all the steps from prebiotic synthesis to the emergence of RNA self-replication and precellular Darwinian evolution.
Collapse
Affiliation(s)
- James Attwater
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | |
Collapse
|
74
|
Detection of circular polarization in light scattered from photosynthetic microbes. Proc Natl Acad Sci U S A 2009; 106:7816-21. [PMID: 19416893 DOI: 10.1073/pnas.0810215106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Because of the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches.
Collapse
|
75
|
Tyler RH. Strong ocean tidal flow and heating on moons of the outer planets. Nature 2008; 456:770-2. [DOI: 10.1038/nature07571] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 10/16/2008] [Indexed: 11/09/2022]
|
76
|
Menor-Salván C, Ruiz-Bermejo M, Osuna-Esteban S, Muñoz-Caro G, Veintemillas-Verdaguer S. Synthesis of Polycyclic Aromatic Hydrocarbons and Acetylene Polymers in Ice: A Prebiotic Scenario. Chem Biodivers 2008; 5:2729-39. [DOI: 10.1002/cbdv.200890228] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
77
|
Parkinson CD, Liang MC, Yung YL, Kirschivnk JL. Habitability of enceladus: planetary conditions for life. ORIGINS LIFE EVOL B 2008; 38:355-69. [PMID: 18566911 DOI: 10.1007/s11084-008-9135-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 04/10/2008] [Indexed: 12/01/2022]
Abstract
The prolific activity and presence of a plume on Saturn's tiny moon Enceladus offers us a unique opportunity to sample the interior composition of an icy satellite, and to look for interesting chemistry and possible signs of life. Based on studies of the potential habitability of Jupiter's moon Europa, icy satellite oceans can be habitable if they are chemically mixed with the overlying ice shell on Myr time scales. We hypothesize that Enceladus' plume, tectonic processes, and possible liquid water ocean may create a complete and sustainable geochemical cycle that may allow it to support life. We discuss evidence for surface/ocean material exchange on Enceladus based on the amounts of silicate dust material present in the Enceladus' plume particles. Microphysical cloud modeling of Enceladus' plume shows that the particles originate from a region of Enceladus' near surface where the temperature exceeds 190 K. This could be consistent with a shear-heating origin of Enceladus' tiger stripes, which would indicate extremely high temperatures ( approximately 250-273 K) in the subsurface shear fault zone, leading to the generation of subsurface liquid water, chemical equilibration between surface and subsurface ices, and crustal recycling on a time scale of 1 to 5 Myr. Alternatively, if the tiger stripes form in a mid-ocean-ridge-type mechanism, a half-spreading rate of 1 m/year is consistent with the observed regional heat flux of 250 mW m(-2) and recycling of south polar terrain crust on a 1 to 5 Myr time scale as well.
Collapse
Affiliation(s)
- Christopher D Parkinson
- Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
78
|
Schilling N, Neubauer FM, Saur J. Influence of the internally induced magnetic field on the plasma interaction of Europa. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007ja012842] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- N. Schilling
- Institut für Geophysik und Meteorologie; Universität zu Köln; Cologne Germany
| | - F. M. Neubauer
- Institut für Geophysik und Meteorologie; Universität zu Köln; Cologne Germany
| | - J. Saur
- Institut für Geophysik und Meteorologie; Universität zu Köln; Cologne Germany
| |
Collapse
|
79
|
Bottos EM, Vincent WF, Greer CW, Whyte LG. Prokaryotic diversity of arctic ice shelf microbial mats. Environ Microbiol 2008; 10:950-66. [PMID: 18215157 DOI: 10.1111/j.1462-2920.2007.01516.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prokaryotic diversity and respiratory activity of microbial mat communities on the Markham Ice Shelf and Ward Hunt Ice Shelf in the Canadian high Arctic were analysed. All heterotrophic isolates and > 95% of bacterial 16S rRNA gene clone library sequences from both ice shelves grouped within the phyla Bacteroidetes, Proteobacteria and Actinobacteria. Clone library analyses showed that the bacterial communities were diverse and varied significantly between the two ice shelves, with the Markham library having a higher estimated diversity (Chao1 = 243; 105 operational taxonomic units observed in 189 clones) than the Ward Hunt library (Chao1 = 106; 52 operational taxonomic units observed in 128 clones). Archaeal 16S rRNA gene clone libraries from both ice shelves were dominated by a single Euryarchaeota sequence, which appears to represent a novel phylotype. Analyses of community activity by radiorespiration assays detected metabolism in mat samples from both ice shelves at temperatures as low as -10 degrees C. These findings provide the first insight into the prokaryotic biodiversity of Arctic ice shelf communities and underscore the importance of these cryo-ecosystems as a rich source of microbiota that are adapted to extreme cold.
Collapse
Affiliation(s)
- Eric M Bottos
- Department of Natural Resource Sciences, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
80
|
Löscher S, Schwartz L, Stein M, Ott S, Haumann M. Facilitated Hydride Binding in an Fe−Fe Hydrogenase Active−Site Biomimic Revealed by X-ray Absorption Spectroscopy and DFT Calculations. Inorg Chem 2007; 46:11094-105. [DOI: 10.1021/ic701255p] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simone Löscher
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany, Uppsala University, Department of Photochemistry and Molecular Science, Box 523, 75120 Uppsala, Sweden, EML Research gGmbH, Schloss-Wolfbrunnenweg 33, 69118 Heidelberg, Germany
| | - Lennart Schwartz
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany, Uppsala University, Department of Photochemistry and Molecular Science, Box 523, 75120 Uppsala, Sweden, EML Research gGmbH, Schloss-Wolfbrunnenweg 33, 69118 Heidelberg, Germany
| | - Matthias Stein
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany, Uppsala University, Department of Photochemistry and Molecular Science, Box 523, 75120 Uppsala, Sweden, EML Research gGmbH, Schloss-Wolfbrunnenweg 33, 69118 Heidelberg, Germany
| | - Sascha Ott
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany, Uppsala University, Department of Photochemistry and Molecular Science, Box 523, 75120 Uppsala, Sweden, EML Research gGmbH, Schloss-Wolfbrunnenweg 33, 69118 Heidelberg, Germany
| | - Michael Haumann
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany, Uppsala University, Department of Photochemistry and Molecular Science, Box 523, 75120 Uppsala, Sweden, EML Research gGmbH, Schloss-Wolfbrunnenweg 33, 69118 Heidelberg, Germany
| |
Collapse
|
81
|
Ruiz J, Montoya L, López V, Amils R. Thermal diapirism and the habitability of the icy shell of Europa. ORIGINS LIFE EVOL B 2007; 37:287-95. [PMID: 17361321 DOI: 10.1007/s11084-007-9068-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Europa's chaos and lenticulae features may have originated by thermal diapirs related to convective plumes. Warm ice plumes could be habitable, since their temperature is close to the ice melting temperature. Moreover, thermal plumes intruding into the lower stagnant lid warm several kilometers of country ice above 230 K for periods of 10(5) years, and hundreds of meters above 240 K for periods of 10(4) years. Diapir coalescence generating chaos areas should provide a large zone with temperature above approximately 240 K for thousands of years. A temperature above approximately 230 K is potentially interesting for astrobiology, since it corresponds to the lowest temperature at which microbial metabolic activity in Antarctic ice has been reported. So, the warming by thermal plumes could cause an aureole of biological activation/reactivation in the country ice. Adaptation of life to either high salinity or low temperature is similar: it requires the synthesis of compatible solutes, like trehalose or glycerol, which are efficient cryoprotectants. We therefore propose that the future astrobiological exploration of Europa should include the search for compatible solutes in chaos and lenticulae features.
Collapse
Affiliation(s)
- Javier Ruiz
- Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, 18008 Granada, Spain.
| | | | | | | |
Collapse
|
82
|
Cammarano F, Lekic V, Manga M, Panning M, Romanowicz B. Long-period seismology on Europa: 1. Physically consistent interior models. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002710] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- F. Cammarano
- Berkeley Seismological Laboratory; University of California, Berkeley; Berkeley California USA
| | - V. Lekic
- Berkeley Seismological Laboratory; University of California, Berkeley; Berkeley California USA
| | - M. Manga
- Department of Earth and Planetary Science; University of California, Berkeley; Berkeley California USA
| | - M. Panning
- Berkeley Seismological Laboratory; University of California, Berkeley; Berkeley California USA
| | - B. Romanowicz
- Berkeley Seismological Laboratory; University of California, Berkeley; Berkeley California USA
| |
Collapse
|
83
|
Panning M, Lekic V, Manga M, Cammarano F, Romanowicz B. Long-period seismology on Europa: 2. Predicted seismic response. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002712] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Panning
- Berkeley Seismological Laboratory; University of California, Berkeley; Berkeley California USA
| | - V. Lekic
- Berkeley Seismological Laboratory; University of California, Berkeley; Berkeley California USA
| | - M. Manga
- Department of Earth and Planetary Science; University of California, Berkeley; Berkeley California USA
| | - F. Cammarano
- Berkeley Seismological Laboratory; University of California, Berkeley; Berkeley California USA
| | - B. Romanowicz
- Berkeley Seismological Laboratory; University of California, Berkeley; Berkeley California USA
| |
Collapse
|
84
|
Wahr JM, Zuber MT, Smith DE, Lunine JI. Tides on Europa, and the thickness of Europa's icy shell. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002729] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. M. Wahr
- Department of Physics and Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - M. T. Zuber
- Department of Earth, Atmospheric and Planetary Sciences; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| | - D. E. Smith
- Solar System Exploration Division; NASA Goddard Space Flight Center; Greenbelt Maryland USA
| | - J. I. Lunine
- Istituto di Fisica dello Spazio Interplanetario; Rome Italy
| |
Collapse
|
85
|
Abstract
The exploration of Saturn by the Cassini/Huygens mission has yielded a rich collection of data about the planet and its rings and moons, in particular its small satellite Enceladus and giant satellite Titan. Once believed too small to be active, Enceladus has been found to be one of the most geologically dynamic objects in the solar system. Among the surprises are a watery, gaseous plume; a south polar hot spot; and a surface marked by deep canyons and thick flows.
Collapse
Affiliation(s)
- Jeffrey S Kargel
- Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
86
|
|
87
|
Abstract
The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.
Collapse
Affiliation(s)
- Paul R Mahaffy
- Solar System Exploration Division, NASA, Goddard Space Flight Center, Greenbelt, MD 20771, USA.
| |
Collapse
|
88
|
Durham WB, Stern LA, Kubo T, Kirby SH. Flow strength of highly hydrated Mg- and Na-sulfate hydrate salts, pure and in mixtures with water ice, with application to Europa. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002475] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
89
|
Goodman JC. Hydrothermal plume dynamics on Europa: Implications for chaos formation. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003je002073] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
90
|
|
91
|
Sittler EC. Pickup ions at Dione and Enceladus: Cassini Plasma Spectrometer simulations. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2002ja009647] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
92
|
Zolotov MY. A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003je002194] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
93
|
Fagents SA. Considerations for effusive cryovolcanism on Europa: The post-Galileo perspective. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002128] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah A. Fagents
- Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Sciences and Technology; University of Hawaii at Manoa; Honolulu Hawaii USA
| |
Collapse
|
94
|
Sohl F, Hussmann H, Schwentker B, Spohn T, Lorenz RD. Interior structure models and tidal Love numbers of Titan. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002044] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- F. Sohl
- Institut für Planetologie; Westfälische Wilhelms-Universität; Münster Germany
| | - H. Hussmann
- Institut für Planetologie; Westfälische Wilhelms-Universität; Münster Germany
| | - B. Schwentker
- Institut für Planetologie; Westfälische Wilhelms-Universität; Münster Germany
| | - T. Spohn
- Institut für Planetologie; Westfälische Wilhelms-Universität; Münster Germany
| | - R. D. Lorenz
- Lunar and Planetary Laboratory; University of Arizona; Tucson Arizona USA
| |
Collapse
|
95
|
Dalton JB, Mogul R, Kagawa HK, Chan SL, Jamieson CS. Near-infrared detection of potential evidence for microscopic organisms on Europa. ASTROBIOLOGY 2003; 3:505-529. [PMID: 14678661 DOI: 10.1089/153110703322610618] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The possibility of an ocean within the icy shell of Jupiter's moon Europa has established that world as a primary candidate in the search for extraterrestrial life within our Solar System. This paper evaluates the potential to detect evidence for microbial life by comparing laboratory studies of terrestrial microorganisms with measurements from the Galileo Near Infrared Imaging Spectrometer (NIMS). If the interior of Europa at one time harbored life, some evidence may remain in the surface materials. Examination of laboratory spectra of terrestrial extremophiles measured at cryogenic temperatures reveals distorted, asymmetric nearinfrared absorption features due to water of hydration. The band centers, widths, and shapes of these features closely match those observed in the Europa spectra. These features are strongest in reddish-brown, disrupted terrains such as linea and chaos regions. Narrow spectral features due to amide bonds in the microbe proteins provide a means of constraining the abundances of such materials using the NIMS data. The NIMS data of disrupted terrains exhibit distorted, asymmetric near-infrared absorption features consistent with the presence of water ice, sulfuric acid octahydrate, hydrated salts, and possibly as much as 0.2 mg cm(-3) of carbonaceous material that could be of biological origin. However, inherent noise in the observations and limitations of spectral sampling must be taken into account when discussing these findings.
Collapse
Affiliation(s)
- J Brad Dalton
- SETI Institute, NASA Ames Research Center, Mountain View, Moffitt Field, California 94035-1000, USA.
| | | | | | | | | |
Collapse
|
96
|
Figueredo PH, Greeley R, Neuer S, Irwin L, Schulze-Makuch D. Locating potential biosignatures on Europa from surface geology observations. ASTROBIOLOGY 2003; 3:851-861. [PMID: 14987486 DOI: 10.1089/153110703322736132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We evaluated the astrobiological potential of the major classes of geologic units on Europa with respect to possible biosignatures preservation on the basis of surface geology observations. These observations are independent of any formational model and therefore provide an objective, though preliminary, evaluation. The assessment criteria include high mobility of material, surface concentration of non-ice components, relative youth, textural roughness, and environmental stability. Our review determined that, as feature classes, low-albedo smooth plains, smooth bands, and chaos hold the highest potential, primarily because of their relative young age, the emplacement of low-viscosity material, and indications of material exchange with the subsurface. Some lineaments and impact craters may be promising sites for closer study despite the comparatively lower astrobiological potential of their classes. This assessment will be expanded by multidisciplinary examination of the potential for habitability of specific features.
Collapse
Affiliation(s)
- Patricio H Figueredo
- Department of Geological Sciences, Arizona State University, Tempe, Arizona 85287-1404, USA.
| | | | | | | | | |
Collapse
|
97
|
Dalton JB. Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design. ASTROBIOLOGY 2003; 3:771-784. [PMID: 14987482 DOI: 10.1089/153110703322736097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.
Collapse
Affiliation(s)
- James Bradley Dalton
- SETI Institute, NASA Ames Research Center, Moffett Field, California 94035-1000, USA.
| |
Collapse
|
98
|
Fox A. Chemical markers for bacteria in extraterrestrial samples. THE ANATOMICAL RECORD 2002; 268:180-5. [PMID: 12382316 DOI: 10.1002/ar.10152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interplanetary missions to collect pristine Martian surface samples for analysis of organic molecules, and to search for evidence of life, are in the planning phases. The only extraterrestrial samples currently on Earth are lunar dust and rocks, brought back by the Apollo (U.S.) and Luna (Soviet Union) missions to the moon, and meteorites. Meteorites are contaminated when they pass through the Earth's atmosphere, and during environmental exposure on Earth. Lunar fines have been stored on Earth for over 30 years under conditions designed to avoid chemical but not microbiological contamination. It has been extremely difficult to draw firm conclusions about the origin of chemicals (including amino acids) in extraterrestrial samples. Of particular concern has been the possibility of bacterial contamination. Recent work using state-of-the-art gas chromatography tandem mass spectrometry (GC-MS/MS) has dramatically lowered the chemical background, allowing a clear demonstration that lunar fines are remarkably different from terrestrial dust in that they generally lack certain chemical markers (muramic acid and 3-hydroxy fatty acids) characteristic of Earth's bacteria. Thus, lunar dust might be used as a negative control, in conjunction with GC-MS/MS analyses, in future analytical studies of lunar dust and meteorites. Such analyses may also be important in studies designed to search for the presence of life on Mars.
Collapse
Affiliation(s)
- Alvin Fox
- Department of Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia 29208, USA.
| |
Collapse
|
99
|
Schenk PM. Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes. Nature 2002; 417:419-21. [PMID: 12024207 DOI: 10.1038/417419a] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres to ten or more kilometres. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7 8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25 0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.
Collapse
Affiliation(s)
- Paul M Schenk
- Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058, USA.
| |
Collapse
|
100
|
Abstract
Life as we know it on Earth depends on liquid water, a suite of 'biogenic' elements (most famously carbon) and a useful source of free energy. Here we review Europa's suitability for life from the perspective of these three requirements. It is likely, though not yet certain, that Europa harbors a subsurface ocean of liquid water whose volume is about twice that of Earth's oceans. Little is known about Europa's inventory of carbon, nitrogen, and other biogenic elements, but lower bounds on these can be placed by considering the role of commentary delivery over Europa's history. Sources of free energy are challenging for a world covered with an ice layer kilometers thick, but it is possible that hydrothermal activity and/or organics and oxidants provided by the action of radiation chemistry at Europa's surface and subsequent mixing into Europa's ocean could provide the electron donors and acceptors needed to power a Europan ecosystem. It is not premature to draw lessons from the search for life on Mars with the Viking spacecraft for planning exobiological missions to Europa.
Collapse
Affiliation(s)
- Christopher F Chyba
- Center for the Study of Life in the Universe, SETI Institute, Mountain View, CA, USA
| | | |
Collapse
|