51
|
Blomberg MRA. Activation of O 2 and NO in heme-copper oxidases - mechanistic insights from computational modelling. Chem Soc Rev 2021; 49:7301-7330. [PMID: 33006348 DOI: 10.1039/d0cs00877j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heme-copper oxidases are transmembrane enzymes involved in aerobic and anaerobic respiration. The largest subgroup contains the cytochrome c oxidases (CcO), which reduce molecular oxygen to water. A significant part of the free energy released in this exergonic process is conserved as an electrochemical gradient across the membrane, via two processes, electrogenic chemistry and proton pumping. A deviant subgroup is the cytochrome c dependent NO reductases (cNOR), which reduce nitric oxide to nitrous oxide and water. This is also an exergonic reaction, but in this case none of the released free energy is conserved. Computational studies applying hybrid density functional theory to cluster models of the bimetallic active sites in the heme-copper oxidases are reviewed. To obtain a reliable description of the reaction mechanisms, energy profiles of the entire catalytic cycles, including the reduction steps have to be constructed. This requires a careful combination of computational results with certain experimental data. Computational studies have elucidated mechanistic details of the chemical parts of the reactions, involving cleavage and formation of covalent bonds, which have not been obtainable from pure experimental investigations. Important insights regarding the mechanisms of energy conservation have also been gained. The computational studies show that the reduction potentials of the active site cofactors in the CcOs are large enough to afford electrogenic chemistry and proton pumping, i.e. efficient energy conservation. These results solve a conflict between different types of experimental data. A mechanism for the proton pumping, involving a specific and crucial role for the active site tyrosine, conserved in all CcOs, is suggested. For the cNORs, the calculations show that the low reduction potentials of the active site cofactors are optimized for fast elimination of the toxic NO molecules. At the same time, the low reduction potentials lead to endergonic reduction steps with high barriers. To prevent even higher barriers, which would lead to a too slow reaction, when the electrochemical gradient across the membrane is present, the chemistry must occur in a non-electrogenic manner. This explains why there is no energy conservation in cNOR.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
52
|
Mishra S, Bhandari A, Singh D, Gupta R, Olmstead MM, Patra AK. Bis(μ-thiolato)-dicopper Containing Fully Spin Delocalized Mixed Valence Copper-Sulfur Clusters and Their Electronic Structural Properties with Relevance to the Cu A Site. Inorg Chem 2021; 60:5779-5790. [PMID: 33829770 DOI: 10.1021/acs.inorgchem.1c00075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With aromatic and aliphatic thiol-S donor Schiff base ligands, the copper-sulfur clusters, [(L1)8CuI6CuII2](ClO4)2·DMF·0.5CH3OH (1) and [(L2)12CuI5CuII11(μ4-S)(μ4-O)6](ClO4)·4H2O, respectively, have been reported ( Chem. Commun. 2017, 53, 3334); HL1/HL2 are 2-(((3-methylthiophen-2-yl)methylene)amino)benzene/ethanethiol). Complex 1 comprises a wheel shaped Cu8S8 framework, made up of interlinked Cu2{μ-S(R)}2 units. To understand the properties with relevance to the CuA site and to check whether self-assembly generates similar type clusters to 1, three complexes, [(L3)8CuI6CuII2](ClO4)2·(C2H5)2O·2.5H2O (2), [(L3Cl)8CuI6CuII2](ClO4)2·1.25(C2H5)2O·1.25CH3OH·2H2O (3), and [(L3CF3)8CuI6CuII2](ClO4)2·2(C2H5)2O·H2O (4) have been synthesized with supporting ligands HL3X (HL3 = 2-((furan-2-ylmethylene)amino)benzenethiol when X = -H; X = -Cl or -CF3 para to thiol-S are HL3Cl and HL3CF3 ligands, respectively). The X-ray structures of 3 and 4 feature a similar Cu8S8 architecture to 1. The spectroscopic properties and the X-ray structures revealed that 2-4 are fully spin delocalized mixed valence (MV) of class-III type clusters. The structural parameters of the N2Cu2{μ-S(R)}2 units of 3 and 4 closely resemble those of the MV binuclear CuA site. With the aid of UV-vis-NIR, EPR, and spectroelectrochemical studies, the electronic properties of these complexes have been described in comparison with the MV model complexes and CuA site.
Collapse
Affiliation(s)
- Saikat Mishra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209, India
| | - Anirban Bhandari
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209, India
| | - Devender Singh
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Marilyn M Olmstead
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Apurba K Patra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209, India
| |
Collapse
|
53
|
Oh J, Kang D, Hong S, Kim SH, Choi JH, Seo J. Formation of a tris(catecholato) iron(III) complex with a nature-inspired cyclic peptoid ligand. Dalton Trans 2021; 50:3459-3463. [PMID: 33599663 DOI: 10.1039/d1dt00091h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Siderophore-mimicking macrocyclic peptoids were synthesized. Peptoid 3 with intramolecular hydrogen bonds showed an optimally arranged primary coordination sphere leading to a stable catecholate-iron complex. The tris(catecholato) structure of 3-Fe(iii) was determined with UV-vis, fluorescence, and EPR spectroscopies and DFT calculations. The iron binding affinity was comparable to that of deferoxamine, with enhanced stability upon air exposure.
Collapse
Affiliation(s)
- Jinyoung Oh
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Dahyun Kang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Sugyeong Hong
- Western Seoul Center, Korea Basic Science Institute, University-Industry Cooperation Building, 150 Bukahyun-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Sun H Kim
- Western Seoul Center, Korea Basic Science Institute, University-Industry Cooperation Building, 150 Bukahyun-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
54
|
Marquardt M, Cula B, Budhija V, Dallmann A, Schwalbe M. Structural Determination of an Unusual Cu I -Porphyrin-π-Bond in a Hetero-Pacman Cu-Zn-Complex. Chemistry 2021; 27:3991-3996. [PMID: 33405305 PMCID: PMC7986761 DOI: 10.1002/chem.202004945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Indexed: 12/02/2022]
Abstract
The synthesis and characterization of a hetero‐dinuclear compound is presented, in which a copper(I) trishistidine type coordination unit is positioned directly above a zinc porphyrin unit. The close distance between the two coordination fragments is secured by a rigid xanthene backbone, and a unique (intramolecular) copper porphyrin‐π‐bond was determined for the first time in the molecular structure. This structural motif was further analyzed by temperature‐dependent NMR studies: In solution at room temperature the coordinative bond fluctuates, while it can be frozen at low temperatures. Preliminary reactivity studies revealed a reduced reactivity of the copper(I) moiety towards dioxygen. The results adumbrate why nature is avoiding metal porphyrin‐π‐bonds by fixing reactive metal centers in a predetermined distance to each other within multimetallic enzymatic reaction centers.
Collapse
Affiliation(s)
- Michael Marquardt
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Beatrice Cula
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Vishal Budhija
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - André Dallmann
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Matthias Schwalbe
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
55
|
The road to the structure of the mitochondrial respiratory chain supercomplex. Biochem Soc Trans 2021; 48:621-629. [PMID: 32311046 PMCID: PMC7200630 DOI: 10.1042/bst20190930] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
The four complexes of the mitochondrial respiratory chain are critical for ATP production in most eukaryotic cells. Structural characterisation of these complexes has been critical for understanding the mechanisms underpinning their function. The three proton-pumping complexes, Complexes I, III and IV associate to form stable supercomplexes or respirasomes, the most abundant form containing 80 subunits in mammals. Multiple functions have been proposed for the supercomplexes, including enhancing the diffusion of electron carriers, providing stability for the complexes and protection against reactive oxygen species. Although high-resolution structures for Complexes III and IV were determined by X-ray crystallography in the 1990s, the size of Complex I and the supercomplexes necessitated advances in sample preparation and the development of cryo-electron microscopy techniques. We now enjoy structures for these beautiful complexes isolated from multiple organisms and in multiple states and together they provide important insights into respiratory chain function and the role of the supercomplex. While we as non-structural biologists use these structures for interpreting our own functional data, we need to remind ourselves that they stand on the shoulders of a large body of previous structural studies, many of which are still appropriate for use in understanding our results. In this mini-review, we discuss the history of respiratory chain structural biology studies leading to the structures of the mammalian supercomplexes and beyond.
Collapse
|
56
|
Oliveira LN, Lima PDS, Araújo DS, Portis IG, Santos Júnior ADCMD, Coelho ASG, de Sousa MV, Ricart CAO, Fontes W, Soares CMDA. iTRAQ-based proteomic analysis of Paracoccidioides brasiliensis in response to hypoxia. Microbiol Res 2021; 247:126730. [PMID: 33662850 DOI: 10.1016/j.micres.2021.126730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
Aerobic organisms require oxygen for energy. In the course of the infection, adaptation to hypoxia is crucial for survival of human pathogenic fungi. Members of the Paracoccidioides complex face decreased oxygen tensions during the life cycle stages. In Paracoccidioides brasiliensis proteomic responses to hypoxia have not been investigated and the regulation of the adaptive process is still unknown, and this approach allowed the identification of 216 differentially expressed proteins in hypoxia using iTRAQ-labelling. Data suggest that P. brasiliensis reprograms its metabolism when submitted to hypoxia. The fungus reduces its basal metabolism and general transport proteins. Energy and general metabolism were more representative and up regulated. Glucose is apparently directed towards glycolysis or the production of cell wall polymers. Plasma membrane/cell wall are modulated by increasing ergosterol and glucan, respectively. In addition, molecules such as ethanol and acetate are produced by this fungus indicating that alternative carbon sources probably are activated to obtain energy. Also, detoxification mechanisms are activated. The results were compared with label free proteomics data from Paracoccidioides lutzii. Biochemical pathways involved with acetyl-CoA, pyruvate and ergosterol synthesis were up-regulated in both fungi. On the other hand, proteins from TCA, transcription, protein fate/degradation, cellular transport, signal transduction and cell defense/virulence processes presented different profiles between species. Particularly, proteins related to methylcitrate cycle and those involved with acetate and ethanol synthesis were increased in P. brasiliensis proteome, whereas GABA shunt were accumulated only in P. lutzii. The results emphasize metabolic adaptation processes for distinct Paracoccidioides species.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | | | | | - Marcelo Valle de Sousa
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Carlos André Ornelas Ricart
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Wagner Fontes
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
57
|
Amanullah S, Saha P, Dey A. O2 Reduction by Iron Porphyrins with Electron Withdrawing Groups: To Scale or not to Scale. Faraday Discuss 2021; 234:143-158. [DOI: 10.1039/d1fd00076d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron porphyrins are synthesized by systematically introducing electron withdrawing groups (EWGs) on pyrroles to evaluate the relationship between rate (k) and overpotential (η). The results indicate that while EWGs lead...
Collapse
|
58
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
59
|
Liang Z, Wang HY, Zheng H, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem Soc Rev 2021; 50:2540-2581. [DOI: 10.1039/d0cs01482f] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| |
Collapse
|
60
|
Rational Design of an Artificial Nuclease by Engineering a Hetero-Dinuclear Center of Mg-Heme in Myoglobin. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
61
|
Hossain MA, Siddiki SMAH, Elias M, Rahman MM, Jamil MAR. Highly β-Selective Glycosylation Reactions for the Synthesis of ω-Functionalized Alkyl β-Maltoside as a Co-crystallizing Detergent. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Soma S, Morgada MN, Naik MT, Boulet A, Roesler AA, Dziuba N, Ghosh A, Yu Q, Lindahl PA, Ames JB, Leary SC, Vila AJ, Gohil VM. COA6 Is Structurally Tuned to Function as a Thiol-Disulfide Oxidoreductase in Copper Delivery to Mitochondrial Cytochrome c Oxidase. Cell Rep 2020; 29:4114-4126.e5. [PMID: 31851937 PMCID: PMC6946597 DOI: 10.1016/j.celrep.2019.11.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, cellular respiration is driven by mitochondrial cytochrome c oxidase (CcO), an enzyme complex that requires copper cofactors for its catalytic activity. Insertion of copper into its catalytically active subunits, including COX2, is a complex process that requires metallochaperones and redox proteins including SCO1, SCO2, and COA6, a recently discovered protein whose molecular function is unknown. To uncover the molecular mechanism by which COA6 and SCO proteins mediate copper delivery to COX2, we have solved the solution structure of COA6, which reveals a coiled-coil-helix-coiled-coil-helix domain typical of redox-active proteins found in the mitochondrial inter-membrane space. Accordingly, we demonstrate that COA6 can reduce the copper-coordinating disulfides of its client proteins, SCO1 and COX2, allowing for copper binding. Finally, our determination of the interaction surfaces and reduction potentials of COA6 and its client proteins provides a mechanism of how metallochaperone and disulfide reductase activities are coordinated to deliver copper to CcO. Soma et al. reports the solution structure of cytochrome c oxidase assembly factor COA6 and establishes that it functions as a thiol-disulfide oxidoreductase in a relay system that delivers copper to COX2, a copper-containing subunit of the mitochondrial cytochrome c oxidase.
Collapse
Affiliation(s)
- Shivatheja Soma
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario (2000), Argentina
| | - Mandar T Naik
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anna A Roesler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nathaniel Dziuba
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Alok Ghosh
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario (2000), Argentina
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
63
|
Yu J, Chen P, Yang J, Qiu X, Qiu G, Zhu S. An innovative in vitro assay to study the effects of aromatic pollutants on porphyrin systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114606. [PMID: 32375088 DOI: 10.1016/j.envpol.2020.114606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Interactions between aromatic pollutants (APs) and porphyrin nucleus as physiological receptors have a significant effect on biological functions of porphyrin-based systems in organism. However, the details on the interaction at molecule level are still elusive. Herein, interaction mechanisms between two typical APs (methylene blue, MB and benzo[a]pyrene, B[a]P) and meso-tetra (4-carboxyphenyl) porphine (TCPP) as physiological receptors were systematically investigated. Adsorption behaviors of TCPP to B[a]P was dominated by pi-pi interaction, while interaction between TCPP and MB coupled with a multi-force field including hydrophobic, pi-pi, electrostatic, and H-bonding interactions. The relative contributions of these four forces obeyed an order: H-bonding > pi-pi > electrostatic > hydrophobic, regardless of the pH value and the initial concentration of MB. H-bonding assisted by hydrogen/hydroxide ion was the most influential force. According to the effect of pH and temperature, organisms exposed to cellular environment with high alkalinity and high temperature might uptake more APs molecules with chemical properties similar to MB and suffered greater health risks. In detail, APs might replace amino acid molecules surrounding porphyrin and change the distortion type of porphyrin molecule, and then affect biological functions of porphyrin and related proteins. This study facilitates a better understanding of potential toxicity of organisms in contaminated environment.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China; Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Jun Yang
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| |
Collapse
|
64
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
65
|
Probing the Proton-Loading Site of Cytochrome C Oxidase Using Time-Resolved Fourier Transform Infrared Spectroscopy. Molecules 2020; 25:molecules25153393. [PMID: 32727022 PMCID: PMC7435947 DOI: 10.3390/molecules25153393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
Crystal structure analyses at atomic resolution and FTIR spectroscopic studies of cytochrome c oxidase have yet not revealed protonation or deprotonation of key sites of proton transfer in a time-resolved mode. Here, a sensitive technique to detect protolytic transitions is employed. In this work, probing a proton-loading site of cytochrome c oxidase from Paracoccus denitrificans with time-resolved Fourier transform infrared spectroscopy is presented for the first time. For this purpose, variants with single-site mutations of N131V, D124N, and E278Q, the key residues in the D-channel, were studied. The reaction of mutated CcO enzymes with oxygen was monitored and analyzed. Seven infrared bands in the “fast” kinetic spectra were found based on the following three requirements: (1) they are present in the “fast” phases of N131V and D124N mutants, (2) they have reciprocal counterparts in the “slow” kinetic spectra in these mutants, and (3) they are absent in “fast” kinetic spectra of the E278Q mutant. Moreover, the double-difference spectra between the first two mutants and E278Q revealed more IR bands that may belong to the proton-loading site protolytic transitions. From these results, it is assumed that several polar residues and/or water molecule cluster(s) share a proton as a proton-loading site. This site can be propionate itself (holding only a fraction of H+), His403, and/or water cluster(s).
Collapse
|
66
|
Hong D, Shimoyama Y, Ohgomori Y, Kanega R, Kotani H, Ishizuka T, Kon Y, Himeda Y, Kojima T. Cooperative Effects of Heterodinuclear Ir III-M II Complexes on Catalytic H 2 Evolution from Formic Acid Dehydrogenation in Water. Inorg Chem 2020; 59:11976-11985. [PMID: 32648749 DOI: 10.1021/acs.inorgchem.0c00812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Novel heterodinuclear IrIII-MII complexes (M = Co, Ni, or Cu) with two adjacent reaction sites were synthesized by using 3,5-bis(2-pyridyl)-pyrazole (Hbpp) as a structure-directing ligand and employed as catalysts for H2 evolution through formic acid dehydrogenation in water. A cooperative effect of the hetero-metal centers was observed in the H2 evolution in comparison with the corresponding mononuclear IrIII and MII complexes as the components of the IrIII-MII complexes. The H2 evolution rate for the IrIII-MII complexes was at most 350-fold higher than that of the mononuclear IrIII complex. The catalytic activity increased in the following order: IrIII-CuII complex < IrIII-CoII complex < IrIII-NiII complex . The IrIII-H intermediates of the IrIII-MII complexes were successfully detected by ultraviolet-visible, 1H nuclear magnetic resonance, and ESI-TOF-MS spectra. The catalytic enhancement of H2 evolution by the IrIII-MII complexes indicates that the IrIII-H species formed in the IrIII moiety act as reactive species and the MII moieties act as acceleration sites by the electronic effect from the MII center to the IrIII center through the bridging bpp- ligand. The IrIII-MII complexes may also activate H2O at the 3d MII centers as a proton source to facilitate H2 evolution. In addition, the affinity of formate for the IrIII-MII complexes was investigated on the basis of Michaelis-Menten plots; the IrIII-CoII and IrIII-NiII complexes exhibited affinities that were relatively higher than that of the IrIII-CuII complex. The catalytic mechanism of H2 evolution by the IrIII-MII complexes was revealed on the basis of spectroscopic detection of reaction intermediates, kinetic analysis, and isotope labeling experiments.
Collapse
Affiliation(s)
- Dachao Hong
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.,Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Yoshihiro Shimoyama
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuji Ohgomori
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ryoichi Kanega
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, CREST, Japan Science and Technology Agency (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, CREST, Japan Science and Technology Agency (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.,Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Yuichiro Himeda
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, CREST, Japan Science and Technology Agency (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
67
|
Okhlopkova LS, Poddel’sky AI, Smolyaninov IV, Fukin GK. Triphenylantimony(V) Catecholates Based on 3,6-Di-tert-Butyl-2,5-Dihydroxy-1,4-Benzoquinone. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s107032842005005x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
68
|
Signals of selection in the mitogenome provide insights into adaptation mechanisms in heterogeneous habitats in a widely distributed pelagic fish. Sci Rep 2020; 10:9081. [PMID: 32493917 PMCID: PMC7270097 DOI: 10.1038/s41598-020-65905-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/04/2020] [Indexed: 11/08/2022] Open
Abstract
Oceans are vast, dynamic, and complex ecosystems characterized by fluctuations in environmental parameters like sea surface temperature (SST), salinity, oxygen availability, and productivity. Environmental variability acts as the driver of organismal evolution and speciation as organisms strive to cope with the challenges. We investigated the evolutionary consequences of heterogeneous environmental conditions on the mitogenome of a widely distributed small pelagic fish of Indian ocean, Indian oil sardine, Sardinella longiceps. Sardines were collected from different eco-regions of the Indian Ocean and selection patterns analyzed in coding and non-coding regions. Signals of diversifying selection were observed in key functional regions involved in OXPHOS indicating OXPHOS gene regulation as the critical factor to meet enhanced energetic demands. A characteristic control region with 38–40 bp tandem repeat units under strong selective pressure as evidenced by sequence conservation and low free energy values was also observed. These changes were prevalent in fishes from the South Eastern Arabian Sea (SEAS) followed by the Northern Arabian Sea (NAS) and rare in Bay of Bengal (BoB) populations. Fishes belonging to SEAS exhibited accelerated substitution rate mainly due to the selective pressures to survive in a highly variable oceanic environment characterized by seasonal hypoxia, variable SST, and food availability.
Collapse
|
69
|
Nugent CM, Elliott TA, Ratnasingham S, Adamowicz SJ. coil: an R package for cytochrome c oxidase I (COI) DNA barcode data cleaning, translation, and error evaluation. Genome 2020; 63:291-305. [DOI: 10.1139/gen-2019-0206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biological conclusions based on DNA barcoding and metabarcoding analyses can be strongly influenced by the methods utilized for data generation and curation, leading to varying levels of success in the separation of biological variation from experimental error. The 5′ region of cytochrome c oxidase subunit I (COI-5P) is the most common barcode gene for animals, with conserved structure and function that allows for biologically informed error identification. Here, we present coil ( https://CRAN.R-project.org/package=coil ), an R package for the pre-processing and frameshift error assessment of COI-5P animal barcode and metabarcode sequence data. The package contains functions for placement of barcodes into a common reading frame, accurate translation of sequences to amino acids, and highlighting insertion and deletion errors. The analysis of 10 000 barcode sequences of varying quality demonstrated how coil can place barcode sequences in reading frame and distinguish sequences containing indel errors from error-free sequences with greater than 97.5% accuracy. Package limitations were tested through the analysis of COI-5P sequences from the plant and fungal kingdoms as well as the analysis of potential contaminants: nuclear mitochondrial pseudogenes and Wolbachia COI-5P sequences. Results demonstrated that coil is a strong technical error identification method but is not reliable for detecting all biological contaminants.
Collapse
Affiliation(s)
- Cameron M. Nugent
- Department of Integrative Biology, University of Guelph. Guelph, Ontario, Canada
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph. Guelph, Ontario, Canada
| | - Tyler A. Elliott
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph. Guelph, Ontario, Canada
| | - Sujeevan Ratnasingham
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph. Guelph, Ontario, Canada
| | - Sarah J. Adamowicz
- Department of Integrative Biology, University of Guelph. Guelph, Ontario, Canada
| |
Collapse
|
70
|
Modulation of the electron-proton coupling at cytochrome a by the ligation of the oxidized catalytic center in bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148237. [PMID: 32485159 DOI: 10.1016/j.bbabio.2020.148237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 05/25/2020] [Indexed: 11/20/2022]
Abstract
Cytochrome a was suggested as the key redox center in the proton pumping process of bovine cytochrome c oxidase (CcO). Recent studies showed that both the structure of heme a and its immediate vicinity are sensitive to the ligation and the redox state of the distant catalytic center composed of iron of cytochrome a3 (Fea3) and copper (CuB). Here, the influence of the ligation at the oxidized Fea33+-CuB2+ center on the electron-proton coupling at heme a was examined in the wide pH range (6.5-11). The strength of the coupling was evaluated by the determination of pH dependence of the midpoint potential of heme a (Em(a)) for the cyanide (the low-spin Fea33+) and the formate-ligated CcO (the high-spin Fea33+). The measurements were performed under experimental conditions when other three redox centers of CcO are oxidized. Two slightly differing linear pH dependencies of Em(a) were found for the CN- and the formate-ligated CcO with slopes of -13 mV/pH unit and -23 mV/pH unit, respectively. These linear dependencies indicate only a weak and unspecific electron-proton coupling at cytochrome a in both forms of CcO. The lack of the strong electron-proton coupling at the physiological pH values is also substantiated by the UV-Vis absorption and electron-paramagnetic resonance spectroscopy investigations of the cyanide-ligated oxidized CcO. It is shown that the ligand exchange at Fea3+ between His-Fea3+-His and His-Fea3+-OH- occurs only at pH above 9.5 with the estimated pK >11.0.
Collapse
|
71
|
Wu M, Gu J, Zong S, Guo R, Liu T, Yang M. Research journey of respirasome. Protein Cell 2020; 11:318-338. [PMID: 31919741 PMCID: PMC7196574 DOI: 10.1007/s13238-019-00681-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Respirasome, as a vital part of the oxidative phosphorylation system, undertakes the task of transferring electrons from the electron donors to oxygen and produces a proton concentration gradient across the inner mitochondrial membrane through the coupled translocation of protons. Copious research has been carried out on this lynchpin of respiration. From the discovery of individual respiratory complexes to the report of the high-resolution structure of mammalian respiratory supercomplex I1III2IV1, scientists have gradually uncovered the mysterious veil of the electron transport chain (ETC). With the discovery of the mammalian respiratory mega complex I2III2IV2, a new perspective emerges in the research field of the ETC. Behind these advances glitters the light of the revolution in both theory and technology. Here, we give a short review about how scientists 'see' the structure and the mechanism of respirasome from the macroscopic scale to the atomic scale during the past decades.
Collapse
Affiliation(s)
- Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
72
|
Yokoyama Y, Terada T, Shimizu K, Nishikawa K, Kozai D, Shimada A, Mizoguchi A, Fujiyoshi Y, Tani K. Development of a deep learning-based method to identify "good" regions of a cryo-electron microscopy grid. Biophys Rev 2020; 12:349-354. [PMID: 32162215 DOI: 10.1007/s12551-020-00669-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023] Open
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have enabled protein structure determination at atomic resolutions. Cryo-EM specimens are prepared by rapidly freezing a protein solution on a metal grid coated with a holey carbon film; this results in the formation of an ice film on each hole. The thickness of the ice film is a critical factor for high-resolution structure determination; ice that is too thick degrades the contrast of the protein image while ice that is too thin excludes the protein from the hole or denatures the protein. Therefore, trained researchers need to manually select "good" regions with appropriate ice thicknesses for imaging. To reduce the time spent on such tasks, we developed a deep learning program consisting of a "detector" and a "classifier" to identify good regions from low-magnification EM images. In our method, the holes in a low-magnification EM image are detected via a detector, and the ice image on each hole is classified as either good or bad via a classifier. The detector detected more than 95% of the holes regardless of the type of samples. The classifier was trained for different types of samples because the appropriate ice thickness varies between sample types. The accuracies of the classifiers were 93.8% for a soluble protein sample (β-galactosidase) and 95.3% for a membrane protein sample (bovine heart cytochrome c oxidase). In addition, we found that a training data set containing ~ 2100 hole images from 300 low-magnification EM images was sufficient to obtain good accuracy, such as higher than 90%. We expect that the throughput of the cryo-EM data collection step will be greatly improved by using our method.
Collapse
Affiliation(s)
- Yuichi Yokoyama
- Graduate School of Interdisciplinary Information Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tohru Terada
- Interfaculty Initiative in Information Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kentaro Shimizu
- Interfaculty Initiative in Information Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kouki Nishikawa
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,CeSPIA Inc., 2-1-1, Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Daisuke Kozai
- Cellular and Structural Physiology Institute, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Atsuhiro Shimada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akira Mizoguchi
- Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshinori Fujiyoshi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,CeSPIA Inc., 2-1-1, Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Kazutoshi Tani
- Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
73
|
Carreira C, Dos Santos MMC, Pauleta SR, Moura I. Proton-coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from Marinobacter hydrocarbonoclasticus - An electrochemical study. Bioelectrochemistry 2020; 133:107483. [PMID: 32120320 DOI: 10.1016/j.bioelechem.2020.107483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022]
Abstract
Reduction of N2O to N2 is catalysed by nitrous oxide reductase in the last step of the denitrification pathway. This multicopper enzyme has an electron transferring centre, CuA, and a tetranuclear copper-sulfide catalytic centre, "CuZ", which exists as CuZ*(4Cu1S) or CuZ(4Cu2S). The redox behaviour of these metal centres in Marinobacter hydrocarbonoclasticus nitrous oxide reductase was investigated by potentiometry and for the first time by direct electrochemistry. The reduction potential of CuA and CuZ(4Cu2S) was estimated by potentiometry to be +275 ± 5 mV and +65 ± 5 mV vs SHE, respectively, at pH 7.6. A proton-coupled electron transfer mechanism governs CuZ(4Cu2S) reduction potential, due to the protonation/deprotonation of Lys397 with a pKox of 6.0 ± 0.1 and a pKred of 9.2 ± 0.1. The reduction potential of CuA, in enzyme samples with CuZ*(4Cu1S), is controlled by protonation of the coordinating histidine residues in a two-proton coupled electron transfer process. In the cyclic voltammograms, two redox pairs were identified corresponding to CuA and CuZ(4Cu2S), with no additional signals being detected that could be attributed to CuZ*(4Cu1S). However, an enhanced cathodic signal for the activated enzyme was observed under turnover conditions, which is explained by the binding of nitrous oxide to CuZ0(4Cu1S), an intermediate species in the catalytic cycle.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Margarida M C Dos Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal. http://docentes.fct.unl.pt/srp/
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
74
|
Saini V, Chinta KC, Reddy VP, Glasgow JN, Stein A, Lamprecht DA, Rahman MA, Mackenzie JS, Truebody BE, Adamson JH, Kunota TTR, Bailey SM, Moellering DR, Lancaster JR, Steyn AJC. Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis. Nat Commun 2020; 11:557. [PMID: 31992699 PMCID: PMC6987094 DOI: 10.1038/s41467-019-14132-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/13/2019] [Indexed: 01/23/2023] Open
Abstract
Hydrogen sulfide (H2S) is involved in numerous pathophysiological processes and shares overlapping functions with CO and •NO. However, the importance of host-derived H2S in microbial pathogenesis is unknown. Here we show that Mtb-infected mice deficient in the H2S-producing enzyme cystathionine β-synthase (CBS) survive longer with reduced organ burden, and that pharmacological inhibition of CBS reduces Mtb bacillary load in mice. High-resolution respirometry, transcriptomics and mass spectrometry establish that H2S stimulates Mtb respiration and bioenergetics predominantly via cytochrome bd oxidase, and that H2S reverses •NO-mediated inhibition of Mtb respiration. Further, exposure of Mtb to H2S regulates genes involved in sulfur and copper metabolism and the Dos regulon. Our results indicate that Mtb exploits host-derived H2S to promote growth and disease, and suggest that host-directed therapies targeting H2S production may be potentially useful for the management of tuberculosis and other microbial infections. The importance of host-produced hydrogen sulfide (H2S) in microbial pathogenesis is poorly understood. Here, Saini et al. show that H2S alters Mycobacterium tuberculosis (Mtb) central metabolism, stimulates respiration to promote growth and TB disease, and upregulates the Dos regulon.
Collapse
Affiliation(s)
- Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.,Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Asaf Stein
- Department of Environment Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dirk A Lamprecht
- Africa Health Research Institute, Durban, South Africa.,Janssen Infectious Diseases and Vaccines, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | | | | | | | - Shannon M Bailey
- Department of Environment Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Douglas R Moellering
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jack R Lancaster
- Departments of Pharmacology and Chemical Biology, Medicine, and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Africa Health Research Institute, Durban, South Africa. .,Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
75
|
Yao Z, Schulz CE, Yang J, Li X, Li J. Intermolecular Interactions and Intramolecular Couplings of Binuclear Porphyrin Models for Cytochrome c Oxidase. Inorg Chem 2020; 59:1242-1255. [PMID: 31910004 DOI: 10.1021/acs.inorgchem.9b02958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase (CcO) has a binuclear active site composed of a high-spin heme group and a tris-histidine-ligated copper ion (CuB). By using two different porphyrin models derived by Gunter (H2TPyPP) and us (H2TImPP), we have isolated several mono- and binuclear complexes including one carbonyl and three chloride derivatives which are determined by 100 K single-crystal X-ray. Low-temperature (4 K) EPR and multitemperature (295-25 K) Mössbauer investigations on the products not only confirmed the spin states of the two metal ions (S = 5/2 Fe3+ and S = 1/2 Cu2+) but also revealed the intermolecular interactions and intramolecular couplings which are in accordance with the crystal structural features.
Collapse
Affiliation(s)
| | - Charles E Schulz
- Department of Physics , Knox College , Galesburg , Illinois 61401 , United States
| | - Jiahui Yang
- Bruker (Beijing) Scientific Technology Company , Hechuan Road, Minhang District , Shanghai 200233 , China
| | | | | |
Collapse
|
76
|
Raimondi V, Ciccarese F, Ciminale V. Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 2019; 122:168-181. [PMID: 31819197 PMCID: PMC7052168 DOI: 10.1038/s41416-019-0651-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Driver mutations in oncogenic pathways, rewiring of cellular metabolism and altered ROS homoeostasis are intimately connected hallmarks of cancer. Electrons derived from different metabolic processes are channelled into the mitochondrial electron transport chain (ETC) to fuel the oxidative phosphorylation process. Electrons leaking from the ETC can prematurely react with oxygen, resulting in the generation of reactive oxygen species (ROS). Several signalling pathways are affected by ROS, which act as second messengers controlling cell proliferation and survival. On the other hand, oncogenic pathways hijack the ETC, enhancing its ROS-producing capacity by increasing electron flow or by impinging on the structure and organisation of the ETC. In this review, we focus on the ETC as a source of ROS and its modulation by oncogenic pathways, which generates a vicious cycle that resets ROS levels to a higher homoeostatic set point, sustaining the cancer cell phenotype.
Collapse
Affiliation(s)
| | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy. .,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
| |
Collapse
|
77
|
Synthesis, characterization and antimicrobial properties of mononuclear copper(II) compounds of N,N′-di(quinolin-8-yl)cyclohexane-1,2-diamine. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
78
|
Sabir JSM, Rabah S, Yacoub H, Hajrah NH, Atef A, Al-Matary M, Edris S, Alharbi MG, Ganash M, Mahyoub J, Al-Hindi RR, Al-Ghamdi KM, Hall N, Bahieldin A, Kamli MR, Rather IA. Molecular evolution of cytochrome C oxidase-I protein of insects living in Saudi Arabia. PLoS One 2019; 14:e0224336. [PMID: 31682609 PMCID: PMC6827904 DOI: 10.1371/journal.pone.0224336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/10/2019] [Indexed: 11/19/2022] Open
Abstract
The study underpins barcode characterization of insect species collected from Saudi Arabia and explored functional constraints during evolution at the DNA and protein levels to expect the possible mechanisms of protein evolution in insects. Codon structure designated AT-biased insect barcode of the cytochrome C oxidase I (COI). In addition, the predicted 3D structure of COI protein indicated tyrosine in close proximity with the heme ligand, depicted substitution to phenylalanine in two Hymenopteran species. This change resulted in the loss of chemical bonding with the heme ligand. The estimated nucleotide substitution matrices in insect COI barcode generally showed a higher probability of transversion compared with the transition. Computations of codon-by-codon nonsynonymous substitutions in Hymenopteran and Hemipteran species indicated that almost half of the codons are under positive evolution. Nevertheless, codons of COI barcode of Coleoptera, Lepidoptera and Diptera are mostly under purifying selection. The results reinforce that codons in helices 2, 5 and 6 and those in loops 2–3 and 5–6 are mostly conserved and approach strong purifying selection. The overall results argue the possible evolutionary position of Hymenopteran species among those of other insects.
Collapse
Affiliation(s)
- Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Samar Rabah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Haitham Yacoub
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Dahaban, Saudi Arabia
| | - Nahid H. Hajrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Mohammed Al-Matary
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Magdah Ganash
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Jazem Mahyoub
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Khalid M. Al-Ghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Neil Hall
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- The Genome Analysis Center, Norwich Research Park, Norwich, United Kingdom
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Majid R. Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- * E-mail: ,
| |
Collapse
|
79
|
Suga M, Shimada A, Akita F, Shen JR, Tosha T, Sugimoto H. Time-resolved studies of metalloproteins using X-ray free electron laser radiation at SACLA. Biochim Biophys Acta Gen Subj 2019; 1864:129466. [PMID: 31678142 DOI: 10.1016/j.bbagen.2019.129466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The invention of the X-ray free-electron laser (XFEL) has provided unprecedented new opportunities for structural biology. The advantage of XFEL is an intense pulse of X-rays and a very short pulse duration (<10 fs) promising a damage-free and time-resolved crystallography approach. SCOPE OF REVIEW Recent time-resolved crystallographic analyses in XFEL facility SACLA are reviewed. Specifically, metalloproteins involved in the essential reactions of bioenergy conversion including photosystem II, cytochrome c oxidase and nitric oxide reductase are described. MAJOR CONCLUSIONS XFEL with pump-probe techniques successfully visualized the process of the reaction and the dynamics of a protein. Since the active center of metalloproteins is very sensitive to the X-ray radiation, damage-free structures obtained by XFEL are essential to draw mechanistic conclusions. Methods and tools for sample delivery and reaction initiation are key for successful measurement of the time-resolved data. GENERAL SIGNIFICANCE XFEL is at the center of approaches to gain insight into complex mechanism of structural dynamics and the reactions catalyzed by biological macromolecules. Further development has been carried out to expand the application of time-resolved X-ray crystallography. This article is part of a Special Issue entitled Novel measurement techniques for visualizing 'live' protein molecules.
Collapse
Affiliation(s)
- Michihiro Suga
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan..
| | - Atsuhiro Shimada
- Graduate School of Applied Biological Sciences and Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan..
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Takehiko Tosha
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hiroshi Sugimoto
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan..
| |
Collapse
|
80
|
Capitanio G, Palese LL, Papa F, Papa S. Allosteric Cooperativity in Proton Energy Conversion in A1-Type Cytochrome c Oxidase. J Mol Biol 2019; 432:534-551. [PMID: 31626808 DOI: 10.1016/j.jmb.2019.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022]
Abstract
Cytochrome c oxidase (CcO), the CuA, heme a, heme a3, CuB enzyme of respiratory chain, converts the free energy released by aerobic cytochrome c oxidation into a membrane electrochemical proton gradient (ΔμH+). ΔμH+ derives from the membrane anisotropic arrangement of dioxygen reduction to two water molecules and transmembrane proton pumping from a negative (N) space to a positive (P) space separated by the membrane. Spectroscopic, potentiometric, and X-ray crystallographic analyses characterize allosteric cooperativity of dioxygen binding and reduction with protonmotive conformational states of CcO. These studies show that allosteric cooperativity stabilizes the favorable conformational state for conversion of redox energy into a transmembrane ΔμH+.
Collapse
Affiliation(s)
- Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luigi Leonardo Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy.
| |
Collapse
|
81
|
Cai M, Wang Z, Ni X, Hou Y, Peng Q, Gao X, Liu X. Insights from the proteome profile of Phytophthora capsici in response to the novel fungicide SYP-14288. PeerJ 2019; 7:e7626. [PMID: 31523524 PMCID: PMC6716503 DOI: 10.7717/peerj.7626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Phytophthora capsica is a destructive oomycete plant pathogen that causes huge losses to crop production worldwide. However, the novel fungicide SYP-14288 has shown excellent activity against various stages of the oomycete life cycle as well against fungal plant pathogens. The current study utilized isobaric tags for relative and absolute quantitation technology to generate proteome profiles of P. capsici in the presence or absence of SYP-14288 in order to gain a greater understanding of the SYP-14288 mode of action. A total of 1,443 individual proteins were identified during the investigation, of which 599 were considered to have significantly altered expression. Further investigation using Cluster of Orthologous Groups of proteins analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated most of the proteins with altered expression were associated with carbohydrate metabolism, energy metabolism and their downstream biological functions, especially with regard to oxidoreductase activity and subsequent adenosine triphosphate (ATP) production associated pathways. Quantitative expression analysis using qRT-PCR validated the proteomic data. These results seem to indicate that SYP-14288 treatment caused a shift in energy metabolism that resulted in the activation of compensatory mechanisms affecting carbohydrate and lipid metabolism. The study also found evidence that the up-regulation of transmembrane transporters and proteins associated with stress response might also be coopted to compensate for the disrupted proton gradient and other downstream effects. Taken together these results provide strong evidence that SYP-14288 has a similar mode of action to the oxidative phosphorylation uncoupler Fluazinam but further investigation, including molecular studies, is required to completely characterize the SYP-14288 mode of action in P. capsici. However, the proteomic data collected in the current study does provide important insight into the overall effect of SYP-14288 in P. capsici, which could be useful for the registration and application of this novel fungicide.
Collapse
Affiliation(s)
- Meng Cai
- College of Chemistry, Central China Normal University, Wuhan, China
| | - Zhiwen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xiaoxia Ni
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yanhua Hou
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Qin Peng
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xiang Gao
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
82
|
Wang X, Clément R, Roger M, Bauzan M, Mazurenko I, Poulpiquet AD, Ilbert M, Lojou E. Bacterial Respiratory Chain Diversity Reveals a Cytochrome c Oxidase Reducing O 2 at Low Overpotentials. J Am Chem Soc 2019; 141:11093-11102. [PMID: 31274287 DOI: 10.1021/jacs.9b03268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c oxidases (CcOs) are the terminal enzymes in energy-converting chains of microorganisms, where they reduce oxygen into water. Their affinity for O2 makes them attractive biocatalysts for technological devices in which O2 concentration is limited, but the high overpotentials they display on electrodes severely limit their applicative use. Here, the CcO of the acidophilic bacterium Acidithiobacillus ferrooxidans is studied on various carbon materials by direct protein electrochemistry and mediated one with redox mediators either diffusing or co-immobilized at the electrode surface. The entrapment of the CcO in a network of hydrophobic carbon nanofibers permits a direct electrochemical communication between the enzyme and the electrode. We demonstrate that the CcO displays a μM affinity for O2 and reduces O2 at exceptionally high electrode potentials in the range of +700 to +540 mV vs NHE over a pH range of 4-6. The kinetics of interactions between the enzyme and its physiological partners are fully quantified. Based on these results, an electron transfer pathway allowing O2 reduction in the acidic metabolic chain is proposed.
Collapse
Affiliation(s)
- Xie Wang
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Romain Clément
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Magali Roger
- School of Natural and Environmental Sciences , Newcastle University , Devonshire Building , NE1 7RX , Newcastle upon Tyne , England
| | - Marielle Bauzan
- Aix-Marseille Univ , CNRS, IMM FR 3479, 31 Chemin Aiguier , 13009 Marseille , France
| | - Ievgen Mazurenko
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Anne de Poulpiquet
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Marianne Ilbert
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Elisabeth Lojou
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| |
Collapse
|
83
|
Hong DH, Knight BJ, Catalano VJ, Murray LJ. Isolation of chloride- and hydride-bridged tri-iron and -zinc clusters in a tris(β-oxo-δ-diimine) cyclophane ligand. Dalton Trans 2019; 48:9570-9575. [PMID: 31012886 PMCID: PMC6610688 DOI: 10.1039/c9dt00799g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A cyclophane ligand (H6L) bearing three β-oxo-δ-diimine arms and the corresponding tri-iron and -zinc complexes in which the metal ions are bridged by either chlorides, viz. Fe3Cl3(H3L) (1) and Zn3Cl3(H3L) (2), or hydrides, viz. Fe3H3(H3L) (3), Zn3H3(H3L) (4), were synthesized and characterized. 1 adopts a chair-shaped C3v-symmetric [Fe3(μ-Cl)3]3+ cluster wherein only one hemisphere of the ligand is metallated and the other three ketoimine sites remain protonated as evidenced by single crystal X-ray diffraction and vibrational and NMR spectroscopic analyses. 3 and 4 were synthesized by substitution of the bridging chlorides in 1 and 2 using KBEt3H and are accessed with retention of the three protonated ketoimine sites.
Collapse
Affiliation(s)
- Dae Ho Hong
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, FL 32611-7200, USA.
| | | | | | | |
Collapse
|
84
|
Bausewein T, Nussberger S, Kühlbrandt W. Cryo-EM structure of Neurospora crassa respiratory complex IV. IUCRJ 2019; 6:773-780. [PMID: 31316820 PMCID: PMC6608615 DOI: 10.1107/s2052252519007486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 05/13/2023]
Abstract
In fungi, the mitochondrial respiratory chain complexes (complexes I-IV) are responsible for oxidative phosphorylation, as in higher eukaryotes. Cryo-EM was used to identify a 200 kDa membrane protein from Neurospora crassa in lipid nanodiscs as cytochrome c oxidase (complex IV) and its structure was determined at 5.5 Å resolution. The map closely resembles the cryo-EM structure of complex IV from Saccharomyces cerevisiae. Its ten subunits are conserved in S. cerevisiae and Bos taurus, but other transmembrane subunits are missing. The different structure of the Cox5a subunit is typical for fungal complex IV and may affect the interaction with complex III in a respiratory supercomplex. Additional density was found between the matrix domains of the Cox4 and Cox5a subunits that appears to be specific to N. crassa.
Collapse
Affiliation(s)
- Thomas Bausewein
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Stephan Nussberger
- Abteilung Biophysik, Institut für Biomaterialien und biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
85
|
Ueno G, Shimada A, Yamashita E, Hasegawa K, Kumasaka T, Shinzawa-Itoh K, Yoshikawa S, Tsukihara T, Yamamoto M. Low-dose X-ray structure analysis of cytochrome c oxidase utilizing high-energy X-rays. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:912-921. [PMID: 31274413 PMCID: PMC6613116 DOI: 10.1107/s1600577519006805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/12/2019] [Indexed: 05/29/2023]
Abstract
To investigate the effect of high-energy X-rays on site-specific radiation-damage, low-dose diffraction data were collected from radiation-sensitive crystals of the metal enzyme cytochrome c oxidase. Data were collected at the Structural Biology I beamline (BL41XU) at SPring-8, using 30 keV X-rays and a highly sensitive pixel array detector equipped with a cadmium telluride sensor. The experimental setup of continuous sample translation using multiple crystals allowed the average diffraction weighted dose per data set to be reduced to 58 kGy, and the resulting data revealed a ligand structure featuring an identical bond length to that in the damage-free structure determined using an X-ray free-electron laser. However, precise analysis of the residual density around the ligand structure refined with the synchrotron data showed the possibility of a small level of specific damage, which might have resulted from the accumulated dose of 58 kGy per data set. Further investigation of the photon-energy dependence of specific damage, as assessed by variations in UV-vis absorption spectra, was conducted using an on-line spectrometer at various energies ranging from 10 to 30 keV. No evidence was found for specific radiation damage being energy dependent.
Collapse
Affiliation(s)
- Go Ueno
- SR Life Science Instrumentation Team, Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Hasegawa
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Akoh, Hyogo 678-1297, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Yamamoto
- SR Life Science Instrumentation Team, Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
86
|
Ehudin MA, Senft L, Franke A, Ivanović-Burmazović I, Karlin KD. Formation and Reactivity of New Isoporphyrins: Implications for Understanding the Tyr-His Cross-Link Cofactor Biogenesis in Cytochrome c Oxidase. J Am Chem Soc 2019; 141:10632-10643. [PMID: 31150209 DOI: 10.1021/jacs.9b01791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase (CcO) catalyzes the reduction of dioxygen to water utilizing a heterobinuclear active site composed of a heme moiety and a mononuclear copper center coordinated to three histidine residues, one of which is covalently cross-linked to a tyrosine residue via a post-translational modification (PTM). Although this tyrosine-histidine moiety has functional and structural importance, the pathway behind this net oxidative C-N bond coupling is still unknown. A novel route employing an iron(III) meso-substituted isoporphyrin derivative, isoelectronic with Cmpd-I ((Por•+)FeIV═O), is for the first time proposed to be a key intermediate in the Tyr-His cofactor biogenesis. Newly synthesized iron(III) meso-substituted isoporphyrins were prepared with azide, cyanide, and substituted imidazole functionalities, by adding nucleophiles to an iron(III) π-dication species formed via addition of trifluoroacetic acid to F8Cmpd-I (F8 = (tetrakis(2,6-difluorophenyl)porphyrinate)). Isoporphyrin derivatives were characterized at cryogenic temperatures via ESI-MS and UV-vis, 2H NMR, and EPR spectroscopies. Addition of 1,3,5-trimethoxybenzene or 4-methoxyphenol to the imidazole-substituted isoporphyrin led to formation of the organic product containing the imidazole coupled to aromatic substrate via a new C-N bond, as detected via cryo-ESI-MS. Experimental evidence for the formation of an imidazole-substituted isoporphyrin and its promising reactivity to form the imidazole-phenol coupled product yields viability to the herein proposed pathway behind the PTM (i.e., biogenesis) leading to the key covalent Tyr-His cross-link in CcO.
Collapse
Affiliation(s)
- Melanie A Ehudin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Laura Senft
- Department of Chemistry and Pharmacy , Friedrich-Alexander University Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Alicja Franke
- Department of Chemistry and Pharmacy , Friedrich-Alexander University Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy , Friedrich-Alexander University Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
87
|
Huang Y, Li SN, Zhou XY, Zhang LX, Chen GX, Wang TH, Xia QJ, Liang N, Zhang X. The Dual Role of AQP4 in Cytotoxic and Vasogenic Edema Following Spinal Cord Contusion and Its Possible Association With Energy Metabolism via COX5A. Front Neurosci 2019; 13:584. [PMID: 31258460 PMCID: PMC6587679 DOI: 10.3389/fnins.2019.00584] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
Spinal cord edema, mainly including vasogenic and cytotoxic edema, influences neurological outcome after spinal cord contusion (SCC). Aquaporin 4 (AQP4) is the most ubiquitous water channel in the central nervous system (CNS), which is a rate-limiting factor in vasogenic edema expressing in brain injury, and it contributes to the formation of cytotoxic edema locating in astrocytes. However, little is known about the regulatory mechanism of AQP4 within vasogenic and cytotoxic edema in SCC, and whether the regulation mechanism of AQP4 is related to Cytochrome coxidase (COX5A) affecting energy metabolism. Therefore, the SCC model is established by Allen’s method, and the degree of edema and neuronal area is measured. The motor function of rats is evaluated by the Basso, Beattie, and Bresnahan (BBB) scoring system. Meanwhile, AQP4 and COX5A are detected by real-time quantitative PCR (qRT-PCR) and western blot (WB). The localization of targeted protein is exhibited by immunohistochemical staining (IHC) and immunofluorescence (IF). Additionally, the methodology of AQP4 lentivirus-mediated RNA interference (AQP4-RNAi) is used to reveal the effect on edema of SCC and the regulating molecular mechanism. Firstly, we observe that the tissue water content increases after SCC and decreases after the peak value of tissue water content at 3 days (P < 0.05) with abundant expression of AQP4 protein locating around vascular endothelial cells (VECs), which suggests that the increasing AQP4 promotes water reabsorption and improves vasogenic edema in the early stage of SCC. However, the neuronal area is larger than in the sham group in the 7 days (P < 0.05) with the total water content of spinal cord decrease. Meanwhile, AQP4 migrates from VECs to neuronal cytomembrane, which indicates that AQP4 plays a crucial role in aggravating the formation and development of cytotoxic edema in the middle stages of SCC. Secondly, AQP4-RNAi is used to elucidate the mechanism of AQP4 to edema of SCC. The neuronal area shrinks and the area of cytotoxic edema reduces after AQP4 downregulation. The BBB scores are significantly higher than in the vector group after AQP4-RNAi at 5, 7, and 14 (P < 0.05). There is a relationship between AQP4 and COX5A shown by bioinformatics analysis. After AQP4 inhibition, the expression of COX5A is significantly upregulated in the swelling astrocytes. Therefore, the inhibition of AQP4 expression reduces cytotoxic edema in SCC and improves motor function, which may be associated with upregulation of COX5A via affecting energy metabolism. Moreover, it is not clear how the inhibition of AQP4 directly causes the upregulation of COX5A.
Collapse
Affiliation(s)
- Yuan Huang
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Sheng-Nan Li
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiu-Ya Zhou
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | | | - Gang-Xian Chen
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, China.,Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Liang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
88
|
Affiliation(s)
| | - Steven A. Nadler
- Department of Nematology, University of California, Davis, California 95616
| | | |
Collapse
|
89
|
Cikánková T, Fišar Z, Bakhouche Y, Ľupták M, Hroudová J. In vitro effects of antipsychotics on mitochondrial respiration. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1209-1223. [PMID: 31104106 DOI: 10.1007/s00210-019-01665-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Abstract
Assessment of drug-induced mitochondrial dysfunctions is important in drug development as well as in the understanding of molecular mechanism of therapeutic or adverse effects of drugs. The aim of this study was to investigate the effects of three typical antipsychotics (APs) and seven atypical APs on mitochondrial bioenergetics. The effects of selected APs on citrate synthase, electron transport chain complexes (ETC), and mitochondrial complex I- or complex II-linked respiratory rate were measured using mitochondria isolated from pig brain. Complex I activity was decreased by chlorpromazine, haloperidol, zotepine, aripiprazole, quetiapine, risperidone, and clozapine. Complex II + III was significantly inhibited by zotepine, aripiprazole, quetiapine, and risperidone. Complex IV was inhibited by zotepine, chlorpromazine, and levomepromazine. Mitochondrial respiratory rate was significantly inhibited by all tested APs, except for olanzapine. Typical APs did not exhibit greater efficacy in altering mitochondrial function compared to atypical APs except for complex I inhibition by chlorpromazine and haloperidol. A comparison of the effects of APs on individual respiratory complexes and on the overall mitochondrial respiration has shown that mitochondrial functions may not fully reflect the disruption of complexes of ETC, which indicates AP-induced modulation of other mitochondrial proteins. Due to the complicated processes associated with mitochondrial activity, it is necessary to measure not only the effect of the drug on individual mitochondrial enzymes but also the respiration rate of the mitochondria or a similar complex process. The experimental approach used in the study can be applied to mitochondrial toxicity testing of newly developed drugs.
Collapse
Affiliation(s)
- Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Yousra Bakhouche
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic. .,Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
90
|
Basu S, Olieric V, Leonarski F, Matsugaki N, Kawano Y, Takashi T, Huang CY, Yamada Y, Vera L, Olieric N, Basquin J, Wojdyla JA, Bunk O, Diederichs K, Yamamoto M, Wang M. Long-wavelength native-SAD phasing: opportunities and challenges. IUCRJ 2019; 6:373-386. [PMID: 31098019 PMCID: PMC6503925 DOI: 10.1107/s2052252519002756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/22/2019] [Indexed: 05/04/2023]
Abstract
Native single-wavelength anomalous dispersion (SAD) is an attractive experimental phasing technique as it exploits weak anomalous signals from intrinsic light scatterers (Z < 20). The anomalous signal of sulfur in particular, is enhanced at long wavelengths, however the absorption of diffracted X-rays owing to the crystal, the sample support and air affects the recorded intensities. Thereby, the optimal measurable anomalous signals primarily depend on the counterplay of the absorption and the anomalous scattering factor at a given X-ray wavelength. Here, the benefit of using a wavelength of 2.7 over 1.9 Å is demonstrated for native-SAD phasing on a 266 kDa multiprotein-ligand tubulin complex (T2R-TTL) and is applied in the structure determination of an 86 kDa helicase Sen1 protein at beamline BL-1A of the KEK Photon Factory, Japan. Furthermore, X-ray absorption at long wavelengths was controlled by shaping a lysozyme crystal into spheres of defined thicknesses using a deep-UV laser, and a systematic comparison between wavelengths of 2.7 and 3.3 Å is reported for native SAD. The potential of laser-shaping technology and other challenges for an optimized native-SAD experiment at wavelengths >3 Å are discussed.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Naohiro Matsugaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Yoshiaki Kawano
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Tomizaki Takashi
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Yusuke Yamada
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen, PSI 5232, Switzerland
| | - Jerome Basquin
- Department of Biochemistry, Max Planck Institute of Biochemistry, Munich, Germany
| | - Justyna A. Wojdyla
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Kay Diederichs
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| |
Collapse
|
91
|
Meyer EH, Welchen E, Carrie C. Assembly of the Complexes of the Oxidative Phosphorylation System in Land Plant Mitochondria. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:23-50. [PMID: 30822116 DOI: 10.1146/annurev-arplant-050718-100412] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant mitochondria play a major role during respiration by producing the ATP required for metabolism and growth. ATP is produced during oxidative phosphorylation (OXPHOS), a metabolic pathway coupling electron transfer with ADP phosphorylation via the formation and release of a proton gradient across the inner mitochondrial membrane. The OXPHOS system is composed of large, multiprotein complexes coordinating metal-containing cofactors for the transfer of electrons. In this review, we summarize the current state of knowledge about assembly of the OXPHOS complexes in land plants. We present the different steps involved in the formation of functional complexes and the regulatory mechanisms controlling the assembly pathways. Because several assembly steps have been found to be ancestral in plants-compared with those described in fungal and animal models-we discuss the evolutionary dynamics that lead to the conservation of ancestral pathways in land plant mitochondria.
Collapse
Affiliation(s)
- Etienne H Meyer
- Organelle Biology and Biotechnology Research Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Current affiliation: Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany;
| | - Elina Welchen
- Cátedra de Biología Celular y Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Chris Carrie
- Plant Sciences Research Group, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
92
|
Müller P, Neuba A, Flörke U, Henkel G, Kühne TD, Bauer M. Experimental and Theoretical High Energy Resolution Hard X-ray Absorption and Emission Spectroscopy on Biomimetic Cu 2S 2 Complexes. J Phys Chem A 2019; 123:3575-3581. [PMID: 30945858 DOI: 10.1021/acs.jpca.9b00463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High energy resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) and Valence-to-Core X-ray emission (VtC-XES) spectroscopy are established as hard X-ray methods to investigate complexes that might be relevant as mimics for the biologically important CuA site. By investigation of three carefully selected complexes of the type [Cu2(NGuaS)2X2], characterized by a cyclic Cu2S2 core portion and a varying adjunct ligand nature, it is proven that the HERFD-XANES and VtC-XES measurements in combination with extensive TD-DFT calculations can reveal details of the electronic states in such complexes, including HOMO and LUMO levels and spin states. By theoretical spectroscopy, the value of this methodic combination for future in situ studies is demonstrated.
Collapse
|
93
|
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
94
|
The Involvement of Cytochrome c Oxidase in Mitochondrial Fusion in Primary Cultures of Neonatal Rat Cardiomyocytes. Cardiovasc Toxicol 2019; 18:365-373. [PMID: 29396798 DOI: 10.1007/s12012-018-9447-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytochrome c oxidase (CCO) is a copper-dependent enzyme of mitochondrial respiratory chain. In pressure overload-induced cardiac hypertrophy, copper level and CCO activity are both depressed, along with disturbance in mitochondrial fusion and fission dynamics. Copper repletion leads to recovery of CCO activity and normalized mitochondrial dynamics. The present study was undertaken to define the link between CCO activity and mitochondrial dynamic changes. Primary cultures of neonatal rat cardiomyocytes were treated with phenylephrine to induce cell hypertrophy. Hypertrophic cardiomyocytes were then treated with copper to reverse hypertrophy. In the hypertrophic cardiomyocytes, CCO activity was depressed and mitochondrial fusion was suppressed. Upon copper repletion, CCO activity was recovered and mitochondrial fusion was reestablished. Depression of CCO activity by siRNA targeting CCO assembly homolog 17 (COX17), a copper chaperone for CCO, led to fragmentation of mitochondria, which was not recoverable by copper supplementation. This study thus demonstrates that copper-dependent CCO is critical for mitochondrial fusion in the regression of cardiomyocyte hypertrophy.
Collapse
|
95
|
Dennison C. The Coordination Chemistry of Copper Uptake and Storage for Methane Oxidation. Chemistry 2018; 25:74-86. [PMID: 30281847 DOI: 10.1002/chem.201803444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 11/09/2022]
Abstract
Methanotrophs are remarkable bacteria that utilise large quantities of copper (Cu) to oxidize the potent greenhouse gas methane. To assist in providing the Cu they require for this process some methanotrophs can secrete the Cu-sequestering modified peptide methanobactin. These small molecules bind CuI with very high affinity and crystal structures have given insight into why this is the case, and also how the metal ion may be released within the cell. A much greater proportion of methanotrophs, genomes of which have been sequenced, possess a member of a newly discovered bacterial family of copper storage proteins (the Csps). These are tetramers of four-helix bundles whose cores are lined with Cys residues enabling the binding of large numbers of CuI ions. In methanotrophs, a Csp exported from the cytosol stores CuI for the active site of the ubiquitous enzyme that catalyses the oxidation of methane. The presence of cytosolic Csps, not only in methanotrophs but in a wide range of bacteria, challenges the dogma that these organisms have no requirement for Cu in this location. The properties of the Csps, with an emphasis on CuI binding and the structures of the sites formed, are the primary focus of this review.
Collapse
Affiliation(s)
- Christopher Dennison
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
96
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
97
|
Ferguson SJ. Paracoccus denitrificans Oxidative Phosphorylation: Retentions, Gains, Losses, and Lessons En Route to Mitochondria. IUBMB Life 2018; 70:1214-1221. [PMID: 30428155 DOI: 10.1002/iub.1962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 11/08/2022]
Abstract
There are many similarities between the oxidative phosphorylation apparatus of mitochondria and those found in the cytoplasmic membranes of alpha-proteobacteria, exemplified by Paracocus denitrificans. These similarities are reviewed here alongside consideration of the differences between mitochondrial and bacterial counterparts, as well as the loss from the modern mitochondria of many of the bacterial respiratory proteins. The assembly of c-type cytochromes is of particular evolutionary interest as the post-translational apparatus used in the alpha-proteobacteria is found in plants, and for example in eukyarotic species including algae of various kinds together with jakobids, but has been superseded by different systems in mitochondria of metazoans and trypanosomatids. All mitochondrial cytochromes c have the N-terminal sequence feature that is recognised by the metazoan system whereas the bacterial counterparts do not, suggesting that the loss of the bacterial system from eukaryotes occurred in the context of an already present recognition sequence in the eukaryotic cytochromes. Interestingly, in the case of cytochromes c1 the putative recognition features for the metazoans appear to be substantially present in the bacterial proteins. The ability to prepare from P. denitrificans inverted membrane vesicles with classic respiratory control presents a valuable system from which to draw lessons concerning the long debated topic of what controls the rates of respiration and ATP synthesis in mitochondria. © 2018 IUBMB Life, 70(12):1214-1221, 2018.
Collapse
Affiliation(s)
- Stuart J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
98
|
Wang X, Liu Y, Wang Y, Ren R, Chen H, Jiang Z, He Q. Electrochemical and Spectroscopic Study of Homo- and Hetero-Dimetallic Phthalocyanines as Catalysts for the Oxygen Reduction Reaction in Acidic Media. ChemElectroChem 2018. [DOI: 10.1002/celc.201800977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaojiang Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology College of Chemical and Biological Engineering; Zhejiang University Hangzhou; Zhejiang 310027 China
| | - Yang Liu
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201204 China
| | - Ying Wang
- Division of Theoretical Chemistry &Biology; School of Biotechnology KTH Royal Institute of Technology; Stockholm 10691 Sweden
| | - Rong Ren
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology College of Chemical and Biological Engineering; Zhejiang University Hangzhou; Zhejiang 310027 China
| | - Hengquan Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology College of Chemical and Biological Engineering; Zhejiang University Hangzhou; Zhejiang 310027 China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201204 China
| | - Qinggang He
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology College of Chemical and Biological Engineering; Zhejiang University Hangzhou; Zhejiang 310027 China
| |
Collapse
|
99
|
Abstract
Heme A is an essential cofactor for respiratory terminal oxidases and vital for respiration in aerobic organisms. The final step of heme A biosynthesis is formylation of the C-8 methyl group of heme molecule by heme A synthase (HAS). HAS is a heme-containing integral membrane protein, and its structure and reaction mechanisms have remained unknown. Thus, little is known about HAS despite of its importance. Here we report the crystal structure of HAS from Bacillus subtilis at 2.2-Å resolution. The N- and C-terminal halves of HAS consist of four-helix bundles and they align in a pseudo twofold symmetry manner. Each bundle contains a pair of histidine residues and forms a heme-binding domain. The C-half domain binds a cofactor-heme molecule, while the N-half domain is vacant. Many water molecules are found in the transmembrane region and around the substrate-binding site, and some of them interact with the main chain of transmembrane helix. Comparison of these two domain structures enables us to construct a substrate-heme binding state structure. This structure implies that a completely conserved glutamate, Glu57 in B. subtilis, is the catalytic residue for the formylation reaction. These results provide valuable suggestions of the substrate-heme binding mechanism. Our results present significant insight into the heme A biosynthesis.
Collapse
|
100
|
Abstract
Abstract
Metal ions are essential cofactors required by the proteome of organisms from any kingdom of life to correctly exert their functions. Dedicated cellular import, transport and homeostasis systems assure that the needed metal ion is correctly delivered and inserted into the target proteins and avoid the presence of free metal ions in the cell, preventing oxidative damaging. Among metal ions, in eukaryotic organisms copper and iron are required by proteins involved in absolutely essential functions, such as respiration, oxidative stress protection, catalysis, gene expression regulation. Copper and iron binding proteins are localized in essentially all cellular compartments. Copper is physiologically present mainly as individual metal ion. Iron can be present both as individual metal ion or as part of cofactors, such as hemes and iron-sulfur (Fe-S) clusters. Both metal ions are characterized by the ability to cycle between different oxidation states, which enable them to catalyze redox reactions and to participate in electron transfer processes. Here we describe in detail the main processes responsible for the trafficking of copper and iron sulfur clusters, with particular interest for the structural aspects of the maturation of copper and iron-sulfur-binding proteins.
Collapse
|