51
|
Protozanova E, Demidov VV, Soldatenkov V, Chasovskikh S, Frank-Kamenetskii MD. Tailoring the activity of restriction endonuclease PleI by PNA-induced DNA looping. EMBO Rep 2002; 3:956-61. [PMID: 12231505 PMCID: PMC1307623 DOI: 10.1093/embo-reports/kvf192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA looping is one of the key factors allowing proteins bound to different DNA sites to signal one another via direct contacts. We demonstrate that DNA looping can be generated in an arbitrary chosen site by sequence-directed targeting of double-stranded DNA with pseudocomplementary peptide-nucleic acids (pcPNAs). We designed pcPNAs to mask the DNA from cleavage by type IIs restriction enzyme PleI while not preventing the enzyme from binding to its primary DNA recognition site. Direct interaction between two protein molecules (one bound to the original recognition site and the other to a sequence-degenerated site) results in a totally new activity of PleI: it produces a nick near the degenerate site. The PNA-induced nicking efficiency varies with the distance between the two protein-binding sites in a phase with the DNA helical periodicity. Our findings imply a general approach for the fine-tuning of proteins bound to DNA sites well separated along the DNA chain.
Collapse
Affiliation(s)
- Ekaterina Protozanova
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215
| | - Vadim V. Demidov
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215
- V.V. Demidov and M.D. Frank-Kamenetskii should be regarded as senior authors
| | - Viatcheslav Soldatenkov
- Department of Radiation Medicine, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington, DC 20007, USA
| | - Sergey Chasovskikh
- Department of Radiation Medicine, Georgetown University Medical Center, 3970 Reservoir Road N.W., Washington, DC 20007, USA
| | - Maxim D. Frank-Kamenetskii
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215
- V.V. Demidov and M.D. Frank-Kamenetskii should be regarded as senior authors
- Tel: +1 617 353 8498; Fax: +1 617 353 8501;
| |
Collapse
|
52
|
Wu A, Li Z, Yu L, Wang H, Wang E. A relocated technique of atomic force microscopy (AFM) samples and its application in molecular biology. Ultramicroscopy 2002; 92:201-7. [PMID: 12213021 DOI: 10.1016/s0304-3991(02)00133-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A kind of simple atomic force microscopy (AFM) relocated technique, which takes advantage of homemade sample locator system, is used for investigating repeatedly imaging of some specific species on the whole substrate (over 1 x 1 cm2) with resolution about 400 nm. As applications of this sample locator system, single extended DNA molecules and plasmid DNA network are shown in different AFM operational modes: tapping mode and contact mode with different tips after the substrates have been moved.
Collapse
Affiliation(s)
- Aiguo Wu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin
| | | | | | | | | |
Collapse
|
53
|
Blanco AG, Sola M, Gomis-Rüth FX, Coll M. Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator. Structure 2002; 10:701-13. [PMID: 12015152 DOI: 10.1016/s0969-2126(02)00761-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PhoB is a signal transduction response regulator that activates nearly 40 genes in phosphate depletion conditions in E. coli and closely related bacteria. The structure of the PhoB effector domain in complex with its target DNA sequence, or pho box, reveals a novel tandem arrangement in which several monomers bind head to tail to successive 11-base pair direct-repeat sequences, coating one face of a smoothly bent double helix. The protein has a winged helix fold in which the DNA recognition elements comprise helix alpha 3, penetrating the major groove, and a beta hairpin wing interacting with a compressed minor groove via Arg219, tightly sandwiched between the DNA sugar backbones. The transactivation loops protrude laterally in an appropriate orientation to interact with the RNA polymerase sigma(70) subunit, which triggers transcription initiation.
Collapse
Affiliation(s)
- Alexandre G Blanco
- Institut de Biologia Molecular de Barcelona, CSIC, Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | | | | | | |
Collapse
|
54
|
Seong GH, Kobatake E, Miura K, Nakazawa A, Aizawa M. Direct atomic force microscopy visualization of integration host factor-induced DNA bending structure of the promoter regulatory region on the Pseudomonas TOL plasmid. Biochem Biophys Res Commun 2002; 291:361-6. [PMID: 11846413 DOI: 10.1006/bbrc.2002.6443] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atomic force microscopy (AFM) was used to analyze DNA bending induced by integration host factor (IHF). The direct AFM visualization of IHF-DNA complexes on the OP1 promoter regulatory regions on the Pseudomonas TOL plasmid showed that there was no intrinsic DNA bend in the OP1 promoter region, but a sharp DNA bend was induced by binding of IHF to the region between the upstream regulatory sequence and the promoter sequence. The DNA bending angles were distributed with a mean bend angle of 123 degrees. The IHF-DNA complexes were shown to bend at the IHF binding site giving rise to an asymmetric structure. These results provide direct evidence that IHF is required functionally for activation of OP1 transcription and support the DNA-loop model that the sharp DNA bend induced by binding of IHF facilitates the contact between RNA polymerase bound by the promoter sequence and XylR protein attached to the upstream sequence in the OP1 promoter.
Collapse
Affiliation(s)
- Gi Hun Seong
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
55
|
Seidel R, Mertig M, Pompe W. Scanning force microscopy of DNA metallization. SURF INTERFACE ANAL 2002. [DOI: 10.1002/sia.1179] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
56
|
Abstract
The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.
Collapse
Affiliation(s)
- H G Hansma
- Department of Physics, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
57
|
Abstract
The recently determined crystal structure of a bacterial core RNA polymerase (RNAP) provides the first glimpse of this family of evolutionarily conserved cellular RNAPs. Using the structure as a framework, a consistent picture of protein-nucleic acid interactions in transcription complexes has been accumulated from cross-linking experiments. The molecule can be viewed as a molecular machine, with distinct structural features hypothesized to perform specific functions. Comparison with the alpha-carbon backbone of a eukaryotic RNAP reveals close structural similarity.
Collapse
Affiliation(s)
- S A Darst
- The Rockefeller University, Box 224, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
58
|
|
59
|
Tracking Molecular Dynamics of Flavoproteins with Time-Resolved Fluorescence Spectroscopy. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/978-3-642-56853-4_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
60
|
Korzheva N, Mustaev A, Kozlov M, Malhotra A, Nikiforov V, Goldfarb A, Darst SA. A structural model of transcription elongation. Science 2000; 289:619-25. [PMID: 10915625 DOI: 10.1126/science.289.5479.619] [Citation(s) in RCA: 316] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The path of the nucleic acids through a transcription elongation complex was tracked by mapping cross-links between bacterial RNA polymerase (RNAP) and transcript RNA or template DNA onto the x-ray crystal structure. In the resulting model, the downstream duplex DNA is nestled in a trough formed by the beta' subunit and enclosed on top by the beta subunit. In the RNAP channel, the RNA/DNA hybrid extends from the enzyme active site, along a region of the beta subunit harboring rifampicin resistance mutations, to the beta' subunit "rudder." The single-stranded RNA is then extruded through another channel formed by the beta-subunit flap domain. The model provides insight into the functional properties of the transcription complex.
Collapse
Affiliation(s)
- N Korzheva
- Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Tanigawa M, Gotoh M, Machida M, Okada T, Oishi M. Detection and mapping of mismatched base pairs in DNA molecules by atomic force microscopy. Nucleic Acids Res 2000; 28:E38. [PMID: 10756205 PMCID: PMC103311 DOI: 10.1093/nar/28.9.e38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Attempts were made to apply atomic force microscopy (AFM) imaging to the detection and mapping of the sites of base substitutions in DNA molecules. In essence, DNA fragments to be examined for possible base substitutions were mixed with an equal amount of a corresponding DNA standard and subjected to heat denaturation and subsequent annealing. The reassociated DNA was incubated with MutS protein, a protein that recognizes and binds to mismatched base pairs in duplex DNA. Bound MutS protein molecules were then detected by AFM and their positions along the DNA molecules were determined by calculating the distance from one of the DNA termini, which had been tagged with a biotin-avidin complex. Base substitutions present in DNA molecules >1 kb were effectively detected by this procedure, and the positions determined were in good agreement with the actual mutation sites. This method is quite simple, has virtually no limitations on the size of DNA fragments to be examined and requires only a very small amount of DNA sample.
Collapse
Affiliation(s)
- M Tanigawa
- Joint Research Center for Atom Technology, 1-1-4 Higashi, Tsukuba, Ibaraki 305-0046, Japan
| | | | | | | | | |
Collapse
|
62
|
Abstract
Phage T7 RNA polymerase is the only DNA-dependent RNA polymerase for which we have a high-resolution structure of the promoter-bound complex. Recent studies with the more complex RNA polymerases have suggested a role for DNA wrapping in the initiation of transcription. Here, circular permutation gel retardation assays provide evidence that the polymerase does indeed bend its promoter DNA. A complementary set of experiments employing differential phasing from an array of phased A-tracts provides further evidence for both intrinsic and polymerase-induced bends in the T7 RNA polymerase promoter DNA. The bend in the complex is predicted to be about 40-60 degrees and to be centered around positions -2 to +1, at the start site for transcription, while the intrinsic bend is much smaller (about 10 degrees ). These results, viewed in the light of a recent crystal structure for the complex, suggest a mechanism by which binding leads directly to bending. Bending at the start site would then facilitate the melting necessary to initiate transcription.
Collapse
Affiliation(s)
- A Ujvári
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003-4510, USA
| | | |
Collapse
|
63
|
Cherny DI, Striker G, Subramaniam V, Jett SD, Palecek E, Jovin TM. DNA bending due to specific p53 and p53 core domain-DNA interactions visualized by electron microscopy. J Mol Biol 1999; 294:1015-26. [PMID: 10588903 DOI: 10.1006/jmbi.1999.3299] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used transmission electron microscopy to analyze the specificity and the extent of DNA bending upon binding of full-length wild-type human tumor suppressor protein p53 (p53) and the p53 core domain (p53CD) encoding amino acid residues 94-312, to linear double-stranded DNA bearing the consensus sequence 5'-AGACATGCCTAGACATGCCT-3' (p53CON). Both proteins interacted with high specificity and efficiency with the recognition sequence in the presence of 50 mM KCl at low temperature ( approximately 4 degrees C) while the p53CD also exhibits a strong and specific interaction at physiological temperature. Specific complex formation did not result in an apparent reduction of the DNA contour length. The interaction of p53 and the p53CD with p53CON induced a noticeable salt-dependent bending of the DNA axis. According to quantitative analysis with folded Gaussian distributions, the bending induced by p53 varied from approximately 40 degrees to 48 degrees upon decreasing of the KCl concentration from 50 mM to approximately 1 mM in the mounting buffer used for adsorption of the complexes to the carbon film surface. The p53CD bent DNA by 35-37 degrees for all salt concentrations used in the mounting buffer. The bending angle of the p53/DNA complex under low salt conditions showed a somewhat broader distribution (sigma approximately 39 degrees ) than at high salt concentration (sigma approximately 31 degrees ) or for p53CD (sigma approximately 24-27 degrees ). Together, these results demonstrate that the p53CD has a dominant role in complex formation and that the complexes formed both by p53 and p53CD under moderate salt conditions are similar. However, the dependence of the bending parameters on ambient conditions suggest that the segments flanking the p53CD contribute to complex formation as well. The problems associated with the analysis of bending angles in electron microscopy experiments are discussed.
Collapse
Affiliation(s)
- D I Cherny
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, D-37077, Germany.
| | | | | | | | | | | |
Collapse
|
64
|
Lei L, Ren D, Burton ZF. The RAP74 subunit of human transcription factor IIF has similar roles in initiation and elongation. Mol Cell Biol 1999; 19:8372-82. [PMID: 10567562 PMCID: PMC84928 DOI: 10.1128/mcb.19.12.8372] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor IIF (TFIIF) is a protein allosteric effector for RNA polymerase II during the initiation and elongation phases of the transcription cycle. In initiation, TFIIF induces promoter DNA to wrap almost a full turn around RNA polymerase II in a complex that includes the general transcription factors TATA-binding protein, TFIIB, and TFIIE. During elongation, TFIIF also supports a more active conformation of RNA polymerase II. This conformational model for elongation is supported by three lines of experimental evidence. First, a region within the RNA polymerase II-associating protein 74 (RAP74) subunit of TFIIF (amino acids T154 to M177), a region that is critical for isomerization of the preinitiation complex, is also critical for elongation stimulation. Amino acid substitutions within this region are shown to have very similar effects on initiation and elongation, and mutagenic analysis indicates that L155, W164, N172, I176, and M177 are the most important residues in this region for transcription. Second, TFIIF is shown to have a higher affinity for rapidly elongating RNA polymerase II than for the stalled elongation complex, indicating that RNA polymerase II alternates between active and inactive states during elongation and that TFIIF stimulates elongation by supporting the active conformational state of RNA polymerase II. The deleterious I176A substitution in the critical region of RAP74 decreases the affinity of TFIIF for the active form of the elongation complex. Third, TFIIF is shown by Arrhenius analysis to stimulate elongation by populating an activated state of RNA polymerase II.
Collapse
Affiliation(s)
- L Lei
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
65
|
Abstract
Transcription activation by Escherichia coli catabolite activator protein (CAP) at each of two classes of simple CAP-dependent promoters is understood in structural and mechanistic detail. At class I CAP-dependent promoters, CAP activates transcription from a DNA site located upstream of the DNA site for RNA polymerase holoenzyme (RNAP); at these promoters, transcription activation involves protein-protein interactions between CAP and the RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex. At class II CAP-dependent promoters, CAP activates transcription from a DNA site that overlaps the DNA site for RNAP; at these promoters, transcription activation involves both: (i) protein-protein interactions between CAP and RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex; and (ii) protein-protein interactions between CAP and RNAP alpha subunit N-terminal domain that facilitates isomerization of the RNAP-promoter closed complex to the RNAP-promoter open complex. Straightforward combination of the mechanisms for transcription activation at class I and class II CAP-dependent promoters permits synergistic transcription activation by multiple molecules of CAP, or by CAP and other activators. Interference with determinants of CAP or RNAP involved in transcription activation at class I and class II CAP-dependent promoters permits "anti-activation" by negative regulators. Basic features of transcription activation at class I and class II CAP-dependent promoters appear to be generalizable to other activators.
Collapse
Affiliation(s)
- S Busby
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
66
|
Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 1999; 98:811-24. [PMID: 10499798 DOI: 10.1016/s0092-8674(00)81515-9] [Citation(s) in RCA: 632] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The X-ray crystal structure of Thermus aquaticus core RNA polymerase reveals a "crab claw"-shaped molecule with a 27 A wide internal channel. Located on the back wall of the channel is a Mg2+ ion required for catalytic activity, which is chelated by an absolutely conserved motif from all bacterial and eukaryotic cellular RNA polymerases. The structure places key functional sites, defined by mutational and cross-linking analysis, on the inner walls of the channel in close proximity to the active center Mg2+. Further out from the catalytic center, structural features are found that may be involved in maintaining the melted transcription bubble, clamping onto the RNA product and/or DNA template to assure processivity, and delivering nucleotide substrates to the active center.
Collapse
Affiliation(s)
- G Zhang
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
67
|
Poglitsch CL, Meredith GD, Gnatt AL, Jensen GJ, Chang WH, Fu J, Kornberg RD. Electron crystal structure of an RNA polymerase II transcription elongation complex. Cell 1999; 98:791-8. [PMID: 10499796 DOI: 10.1016/s0092-8674(00)81513-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The structure of an actively transcribing complex, containing yeast RNA polymerase II with associated template DNA and product RNA, was determined by electron crystallography. Nucleic acid, in all likelihood the "transcription bubble" at the active center of the enzyme, occupies a previously noted 25 A channel in the protein structure. Details are indicative of a roughly 90 degrees bend of the DNA between upstream and downstream regions. The DNA apparently lies entirely on one face of the polymerase, rather than passing through a hole to the opposite side, as previously suggested.
Collapse
MESH Headings
- Crystallography
- DNA, Fungal/chemistry
- DNA, Fungal/ultrastructure
- Image Processing, Computer-Assisted
- Microscopy, Electron
- Models, Molecular
- RNA Polymerase II/chemistry
- RNA Polymerase II/ultrastructure
- RNA, Fungal/chemistry
- RNA, Fungal/ultrastructure
- RNA, Messenger/chemistry
- RNA, Messenger/ultrastructure
- Saccharomyces cerevisiae/enzymology
- Streptavidin/chemistry
- Streptavidin/ultrastructure
- Transcription, Genetic
Collapse
Affiliation(s)
- C L Poglitsch
- Department of Structural Biology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Zaychikov E, Denissova L, Guckenberger R, Heumann H. Escherichia coli RNA polymerase translocation is accompanied by periodic bending of the DNA. Nucleic Acids Res 1999; 27:3645-52. [PMID: 10471732 PMCID: PMC148618 DOI: 10.1093/nar/27.18.3645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA polymerase was halted in consecutive registers of RNA synthesis ranging from registers 11 to 68. Non-denaturing gel electrophoresis shows that the mobility of the complexes varies (up to 15%), indicating that halted complexes differ in their conformation. The electrophoretic mobility changes with an approximate 10-register periodicity. The change of the mobility can be attributed to relative changes of RNA polymerase-induced bending angle. We suggest that the periodicity of the bending angle reflects periodic changes of the conformation of the halted complexes that might have relevance for the translocation mechanism.
Collapse
Affiliation(s)
- E Zaychikov
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D82152 Martinsried, Germany
| | | | | | | |
Collapse
|
69
|
Affiliation(s)
- X S Xie
- Pacific Northwest National Laboratory, William R. Wiley Environmental Molecular Sciences Laboratory, Richland, Washington 99352, USA.
| | | |
Collapse
|
70
|
Coulombe B, Burton ZF. DNA bending and wrapping around RNA polymerase: a "revolutionary" model describing transcriptional mechanisms. Microbiol Mol Biol Rev 1999; 63:457-78. [PMID: 10357858 PMCID: PMC98973 DOI: 10.1128/mmbr.63.2.457-478.1999] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A model is proposed in which bending and wrapping of DNA around RNA polymerase causes untwisting of the DNA helix at the RNA polymerase catalytic center to stimulate strand separation prior to initiation. During elongation, DNA bending through the RNA polymerase active site is proposed to lower the energetic barrier to the advance of the transcription bubble. Recent experiments with mammalian RNA polymerase II along with accumulating evidence from studies of Escherichia coli RNA polymerase indicate the importance of DNA bending and wrapping in transcriptional mechanisms. The DNA-wrapping model describes specific roles for general RNA polymerase II transcription factors (TATA-binding protein [TBP], TFIIB, TFIIF, TFIIE, and TFIIH), provides a plausible explanation for preinitiation complex isomerization, suggests mechanisms underlying the synergy between transcriptional activators, and suggests an unforseen role for TBP-associating factors in transcription.
Collapse
Affiliation(s)
- B Coulombe
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | | |
Collapse
|
71
|
Jafri S, Evoy S, Cho K, Craighead HG, Winans SC. An Lrp-type transcriptional regulator from Agrobacterium tumefaciens condenses more than 100 nucleotides of DNA into globular nucleoprotein complexes. J Mol Biol 1999; 288:811-24. [PMID: 10329181 DOI: 10.1006/jmbi.1999.2715] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PutR protein of Agrobacterium tumefaciens positively regulates expression of the putA gene in response to exogenous proline, resulting in the utilization of proline as a source of carbon and nitrogen. PutR activity required a region of DNA extending more than 106 nt upstream of the putA transcription start site. Purified PutR bound to this region with high degree of affinity and repressed expression of the putR promoter in vitro. PutR also activated the putA promoter in vitro in the presence of proline, though less strongly than in whole cells. PutR protected a DNA interval extending from nucleotides -30 to -140, but protected only one helical face over most of this interval, suggesting that it may bind only to this face of the DNA. The addition of proline caused a slight decrease in binding affinity and altered DNase I protection patterns along the entire length of the binding site. PutR-DNA complexes were found by atomic force microscopy to be globular rather than elongated. Although the DNA fragment in these complexes was 190 nm in length, the length of the visible DNA was only 150 nm, indicating that 40 nm of DNA (115 nt) must be condensed with protein. PutR caused a net bend of this binding site, and under some conditions, proline shifted the center of this bend by one helical turn.
Collapse
Affiliation(s)
- S Jafri
- Section of Microbiology, School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
72
|
Abstract
A ternary complex composed of RNA polymerase (RNAP), DNA template, and RNA transcript is the central intermediate in the transcription cycle responsible for the elongation of the RNA chain. Although the basic biochemistry of RNAP functioning is well understood, little is known about the underlying structural determinants. The absence of high- resolution structural data has hampered our understanding of RNAP mechanism. However, recent work suggests a structure-function model of the ternary elongation complex, if not at a defined structural level, then at least as a conceptual view, such that key components of RNAP are defined operationally on the basis of compelling biochemical, protein chemical, and genetic data. The model has important implications for mechanisms of transcription elongation and also for initiation and termination.
Collapse
Affiliation(s)
- E Nudler
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
73
|
Pietrasanta LI, Thrower D, Hsieh W, Rao S, Stemmann O, Lechner J, Carbon J, Hansma H. Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy. Proc Natl Acad Sci U S A 1999; 96:3757-62. [PMID: 10097110 PMCID: PMC22367 DOI: 10.1073/pnas.96.7.3757] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yeast centromeric DNA (CEN DNA) binding factor 3 (CBF3) is a multisubunit protein complex that binds to the essential CDEIII element in CEN DNA. The four CBF3 proteins are required for accurate chromosome segregation and are considered to be core components of the yeast kinetochore. We have examined the structure of the CBF3-CEN DNA complex by atomic force microscopy. Assembly of CBF3-CEN DNA complexes was performed by combining purified CBF3 proteins with a DNA fragment that includes the CEN region from yeast chromosome III. Atomic force microscopy images showed DNA molecules with attached globular bodies. The contour length of the DNA containing the complex is approximately 9% shorter than the DNA alone, suggesting some winding of DNA within the complex. The measured location of the single binding site indicates that the complex is located asymmetrically to the right of CDEIII extending away from CDEI and CDEII, which is consistent with previous data. The CEN DNA is bent approximately 55 degrees at the site of complex formation. A significant fraction of the complexes are linked in pairs, showing three to four DNA arms, with molecular volumes approximately three times the mean volumes of two-armed complexes. These multi-armed complexes indicate that CBF3 can bind two DNA molecules together in vitro and, thus, may be involved in holding together chromatid pairs during mitosis.
Collapse
Affiliation(s)
- L I Pietrasanta
- Department of Physics, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Harada Y, Funatsu T, Murakami K, Nonoyama Y, Ishihama A, Yanagida T. Single-molecule imaging of RNA polymerase-DNA interactions in real time. Biophys J 1999; 76:709-15. [PMID: 9929475 PMCID: PMC1300075 DOI: 10.1016/s0006-3495(99)77237-1] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Using total internal reflection fluorescence microscopy, we have directly observed individual interactions of single RNA polymerase molecules with a single molecule of lambda-phage DNA suspended in solution by optical traps. The interactions of RNA polymerase molecules were not homogeneous along DNA. They dissociated slowly from the positions of the promoters and sequences common to promoters at a rate of approximately 0.66 s-1, which was more than severalfold smaller than the rate at other positions. The association rate constant for the slow dissociation sites was 9.2 x 10(2) bp-1 M-1 s-1. The frequency of binding to the fast dissociation sites was dependent on the A-T composition; it was larger in the AT-rich regions than in the GC-rich regions. RNA polymerase molecules on the fast dissociation sites underwent linear diffusion (sliding) along DNA. The binding to the slow dissociation sites was greatly enhanced when DNA was released to a relaxed state, suggesting that the binding depended on the strain exerted on the DNA. The present method is potentially applicable to the examination of a wide variety of protein-nucleic acid interactions, especially those involved in the process of transcription.
Collapse
Affiliation(s)
- Y Harada
- BioMotron Project, ERATO, JST, Senba-Higashi 2-4-14, Mino, Osaka 562-0035, Japan.
| | | | | | | | | | | |
Collapse
|
75
|
Ozoline ON, Deev AA, Trifonov EN. DNA bendability--a novel feature in E. coli promoter recognition. J Biomol Struct Dyn 1999; 16:825-31. [PMID: 10217452 DOI: 10.1080/07391102.1999.10508295] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The distribution of deformable base-pair steps in the structure of bacterial promoters is analyzed with respect to their possible structural and functional role. A regular positioning of TA and TG stacks is detected with the best fit period 5.6 bp. This value is interpreted as a half of the sequence period 11.2 bp, somewhat higher than the structural helical repeat of B-DNA (10.55 bp). The difference, +0.65 bp, suggests a sequence-dependent helical writhe of the promoter DNA--a right-handed superhelix. Apparently, to favour rotational setting of DNA on the surface of RNA polymerase the flexible steps deformable largely towards the grooves, follow the half-period spacing. Such rotational setting is consistent with the DNase I footprinting data. Periodical distribution of deformable base-pair stacks shows negative correlation with the presence of -35 canonical hexamer, suggesting the functional significance of this novel element for promoter recognition. The RNA polymerase--DNA recognition is discussed as interaction of distributional type that involves many elements of different nature which are in partially compensatory relations.
Collapse
Affiliation(s)
- O N Ozoline
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region.
| | | | | |
Collapse
|
76
|
Birdi K. APPLICATION OF SCANNING TUNNELLING MICROSCOPY [STM] & ATOMIC FORCE MICROSCOPY [AFH] IN COLLOID & SURFACE CHEMISTRY (NANOTECHNOLOGY). J DISPER SCI TECHNOL 1999. [DOI: 10.1080/01932699908943821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
77
|
Yokota H, Nickerson DA, Trask BJ, van den Engh G, Hirst M, Sadowski I, Aebersold R. Mapping a protein-binding site on straightened DNA by atomic force microscopy. Anal Biochem 1998; 264:158-64. [PMID: 9866677 DOI: 10.1006/abio.1998.2851] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed an Atomic Force Microscopy (AFM)-based method for mapping protein-binding sites on individual, long DNA molecules (> 5 kb) at nanometer resolution. The protein is clearly detected at the apex of the bent DNA molecules. Randomly coiled DNA molecules or protein:DNA complexes were extended by a motor-controlled moving meniscus on an atomically flat surface. The immobilized molecules were detected by AFM. The straightened DNA displayed a sharp bend at the site of bound protein with the two DNA segments linearly extending from the protein-binding site. Using GAL4, a yeast transcription factor, we demonstrate good agreement of the position of the observed binding site on straightened DNA templates to the predicted binding site. The technique is expected to have significant implications in elucidating DNA and protein interactions in general, and specifically, for the measurement of promoter occupancy with unlabeled regulatory proteins at the single-molecule level.
Collapse
Affiliation(s)
- H Yokota
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Schulz A, Mücke N, Langowski J, Rippe K. Scanning force microscopy of Escherichia coli RNA polymerase.sigma54 holoenzyme complexes with DNA in buffer and in air. J Mol Biol 1998; 283:821-36. [PMID: 9790843 DOI: 10.1006/jmbi.1998.2131] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Scanning force microscopy (SFM) was used to visualize complexes of Escherichia coli RNA polymerase.sigma54 (RNAP.sigma54) and a 1036 base-pair linear DNA fragment containing the glnA promoter. In order to preserve the native hydration state of the protein-DNA complexes, the samples were injected directly into the SFM fluid cell and imaged in buffer. With this protocol, an apparent bending angle of 26(+/-34) degrees was determined for the specific complexes at the promoter. The bending angle of the unspecifically bound RNAP.sigma54 showed a somewhat broader distribution of 49(+/-48) degrees, indicating the existence of conformational differences as compared to the closed complex. In about two-thirds of the closed complexes, the RNA polymerase holoenzyme was located in a lateral position with respect to the DNA and the bend of the DNA was pointing away from the protein. This conformation was consistent with the finding that for the complexes at the promoter, the apparent contour length was reduced by only about 6 nm in buffer as compared to the free DNA. From these results we conclude that in the closed complex of RNAP. sigma54, the DNA was not wrapped around the polymerase, and we present a model for the trajectory of the DNA with respect to the RNA polymerase. The images acquired in buffer were compared to samples that were washed with water and then dried before imaging. Two artefacts of the washing and drying process were detected. First, extensive washing of the sample reduced the number of the specific complexes bound at the promoter (closed complex of RNAP.sigma54) from about 70% to 30%. This is likely to be a result of sliding of the RNAP.sigma54 holoenzyme along the DNA induced by the washing process. Second, the apparent DNA shortening of the contour length of RNAP.sigma54-DNA complexes at the promoter as compared to the contour length of the free DNA was 22 nm for the dried samples as opposed to only 6 nm for the undried samples imaged in buffer. This suggests an artefact of the drying process.
Collapse
Affiliation(s)
- A Schulz
- Abteilung Biophysik der Makromoleküle, Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | | | | | | |
Collapse
|
79
|
Jeltsch A. Flexibility of DNA in complex with proteins deduced from the distribution of bending angles observed by scanning force microscopy. Biophys Chem 1998; 74:53-7. [PMID: 17029732 DOI: 10.1016/s0301-4622(98)00163-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/1998] [Revised: 03/30/1998] [Accepted: 04/30/1998] [Indexed: 11/30/2022]
Abstract
Flexibility and dynamics of DNA are important for DNA-binding and recognition by proteins. Here the flexibility of DNA is calculated from the distribution of DNA-bending angles of single DNA molecules as observed by scanning force microscopy by applying an equation that links the force constant of DNA-bending (f) to the variance of the distribution of bending angles (sigma): f=RT/sigma(2). Using published data, f is calculated to be 3-5 J/degree(2) for free DNA. Thus, bending DNA by 20 degrees requires approx. 0.5-1 kJ/mol. This result shows that DNA is very flexible and readily can be bent by thermal motion. DNA-flexibility is not altered in some protein-DNA complexes (HhaI methyltransferase, EcoRV restriction endonuclease). In contrast, DNA-binding by EcoRI endonuclease increases DNA-flexibility and binding by EcoRI methyltransferase restricts the flexibility of DNA. During the transition of the RNA polymerase-sigma(54)-DNA complex from the closed to the open form and of cro repressor from a non-specific to a specific binding mode the flexibility of the DNA is strongly reduced.
Collapse
Affiliation(s)
- A Jeltsch
- Institut für Biochemie, Fachbereich Biologie, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
| |
Collapse
|
80
|
Abstract
Recent findings now allow the development of an integrated model of the thermodynamic, kinetic, and structural properties of the transcription complex in the elongation, termination, and editing phases of transcript formation. This model provides an operational framework for placing known facts and can be extended and modified to incorporate new advances. The most complete information about transcriptional mechanisms and their control continues to come from the Escherichia coli system, upon which most of the explicit descriptions provided here are based. The transcriptional machinery of higher organisms, despite its greater inherent complexity, appears to use many of the same general principles. Thus, the lessons of E. coli continue to be relevant.
Collapse
Affiliation(s)
- P H von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
81
|
Nudler E, Gusarov I, Avetissova E, Kozlov M, Goldfarb A. Spatial organization of transcription elongation complex in Escherichia coli. Science 1998; 281:424-8. [PMID: 9665887 DOI: 10.1126/science.281.5375.424] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During RNA synthesis in the ternary elongation complex, RNA polymerase enzyme holds nucleic acids in three contiguous sites: the double-stranded DNA-binding site (DBS) ahead of the transcription bubble, the RNA-DNA heteroduplex-binding site (HBS), and the RNA-binding site (RBS) upstream of HBS. Photochemical cross-linking allowed mapping of the DNA and RNA contacts to specific positions on the amino acid sequence. Unexpectedly, the same protein regions were found to participate in both DBS and RBS. Thus, DNA entry and RNA exit occur close together in the RNA polymerase molecule, suggesting that the three sites constitute a single unit. The results explain how RNA in the integrated unit RBS-HBS-DBS may stabilize the ternary complex, whereas a hairpin in RNA result in its dissociation.
Collapse
Affiliation(s)
- E Nudler
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
82
|
Fu J, Gerstein M, David PR, Gnatt AL, Bushnell DA, Edwards AM, Kornberg RD. Repeated tertiary fold of RNA polymerase II and implications for DNA binding. J Mol Biol 1998; 280:317-22. [PMID: 9665838 DOI: 10.1006/jmbi.1998.1557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-ray diffraction data from two forms of yeast RNA polymerase II crystals indicate that the two largest subunits of the polymerase, Rpb1 and Rpb2, may have similar folds, as is suggested by secondary structure predictions. DNA may bind between the two subunits with its 2-fold axis aligned to a pseudo 2-fold axis of the protein.
Collapse
Affiliation(s)
- J Fu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Wang W, Lin J, Schwartz DC. Scanning force microscopy of DNA molecules elongated by convective fluid flow in an evaporating droplet. Biophys J 1998; 75:513-20. [PMID: 9649413 PMCID: PMC1299725 DOI: 10.1016/s0006-3495(98)77540-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Scanning force microscopy (SFM) was used to image intact, nearly fully elongated lambda bacteriophage DNA molecules, fixed onto freshly cleaved mica surfaces. Molecular elongation and fixation were accomplished using a newly characterized fixation technique, termed "fluid fixation." Here convective fluid flows generated within an evaporating droplet of DNA solution efficiently elongate DNA molecules for fixation onto suitably charged surfaces. SFM images of a very large bacteriophage genome, G, showed the presence of double-stranded bubbles. We speculate that these structures may contain putative replication forks. Overall, the experiments presented here demonstrate the viability of using fluid fixation for the preparation of DNA molecules for SFM imaging. The combination of largely automatable optically based techniques with the high-resolution SFM imaging presented here will likely produce a high-throughput system for detailed physical mapping of genomic DNA or clones.
Collapse
Affiliation(s)
- W Wang
- W. M. Keck Laboratory for Biomolecular Imaging, Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
84
|
|
85
|
deHaseth PL, Zupancic ML, Record MT. RNA polymerase-promoter interactions: the comings and goings of RNA polymerase. J Bacteriol 1998; 180:3019-25. [PMID: 9620948 PMCID: PMC107799 DOI: 10.1128/jb.180.12.3019-3025.1998] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- P L deHaseth
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA.
| | | | | |
Collapse
|
86
|
Studitsky VM, Kassavetis GA, Geiduschek EP, Felsenfeld G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 1997; 278:1960-3. [PMID: 9395401 DOI: 10.1126/science.278.5345.1960] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nucleosomes, the nucleohistone subunits of chromatin, are present on transcribed eukaryotic genes but do not prevent transcription. It is shown here that the large yeast RNA polymerase III transcribes through a single nucleosome. This takes place through a direct internal nucleosome transfer in which histones never leave the DNA template. During this process, the polymerase pauses with a pronounced periodicity of 10 to 11 base pairs, which is consistent with restricted rotation in the DNA loop formed during transfer. Transcription through nucleosomes by the eukaryotic enzyme and by much smaller prokaryotic RNA polymerases thus shares many features, reflecting an important property of nucleosomes.
Collapse
Affiliation(s)
- V M Studitsky
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
87
|
Gnatt A, Fu J, Kornberg RD. Formation and crystallization of yeast RNA polymerase II elongation complexes. J Biol Chem 1997; 272:30799-805. [PMID: 9388221 DOI: 10.1074/jbc.272.49.30799] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Minimal templates were devised for the efficient generation of yeast RNA polymerase II transcription elongation complexes. A 33-base pair DNA with a 15-residue dC tail at one 3'-end supported the formation of a complex containing the polymerase paused at nucleotide 11 of the duplex region and an RNA of 14-16 residues. The same template could yield an arrested complex with the enzyme at nucleotide 13-15 and RNA of 15-17 residues. These complexes were stable for at least a week under various conditions and could be resolved by gel electrophoresis or purified by ion exchange chromatography. The purified paused complex formed crystals capable of x-ray diffraction to 3.5 A resolution. The complex remained active in the crystal and, in the presence of nucleoside triphosphates, could efficiently extend the transcript in situ.
Collapse
Affiliation(s)
- A Gnatt
- Department of Structural Biology, Stanford University School of Medicine, Stanford California, 94305, USA
| | | | | |
Collapse
|
88
|
Kim TK, Lagrange T, Wang YH, Griffith JD, Reinberg D, Ebright RH. Trajectory of DNA in the RNA polymerase II transcription preinitiation complex. Proc Natl Acad Sci U S A 1997; 94:12268-73. [PMID: 9356438 PMCID: PMC24903 DOI: 10.1073/pnas.94.23.12268] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
By using site-specific protein-DNA photocrosslinking, we define the positions of TATA-binding protein, transcription factor IIB, transcription factor IIF, and subunits of RNA polymerase II (RNAPII) relative to promoter DNA within the human transcription preinitiation complex. The results indicate that the interface between the largest and second-largest subunits of RNAPII forms an extended, approximately 240 A channel that interacts with promoter DNA both upstream and downstream of the transcription start. By using electron microscopy, we show that RNAPII compacts promoter DNA by the equivalent of approximately 50 bp. Together with the published structure of RNAPII, the results indicate that RNAPII wraps DNA around its surface and suggest a specific model for the trajectory of the wrapped DNA.
Collapse
Affiliation(s)
- T K Kim
- Howard Hughes Medical Institute and Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
89
|
Adelman K, Orsini G, Kolb A, Graziani L, Brody EN. The interaction between the AsiA protein of bacteriophage T4 and the sigma70 subunit of Escherichia coli RNA polymerase. J Biol Chem 1997; 272:27435-43. [PMID: 9341196 DOI: 10.1074/jbc.272.43.27435] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The AsiA protein of bacteriophage T4 binds to the sigma70 subunit of Escherichia coli RNA polymerase and plays a dual regulatory role during T4 development: (i) inhibition of host and phage early transcription, and (ii) coactivation of phage middle-mode transcription, which also requires the T4 DNA binding transcriptional activator, MotA. We report that the interaction between AsiA and sigma70 occurs with a 1:1 stoichiometry. When preincubated with RNA polymerase, AsiA is a potent inhibitor of open complex formation at the lac UV5 promoter, whereas it does not perturb preformed open or intermediate promoter complexes. DNase I footprinting and electrophoretic mobility shift analyses of RNA polymerase-DNA complexes formed at the T4 early promoter P15.0 show that AsiA blocks the initial RNA polymerase binding step that leads to the formation of specific closed promoter complexes. A contrasting result is obtained on the T4 middle promoter PrIIB2, where AsiA stimulates the formation of both closed complexes and open complexes. Therefore, we propose that AsiA modulates initial DNA binding by the RNA polymerase, switching promoter usage at the level of closed complex formation.
Collapse
Affiliation(s)
- K Adelman
- Centre de Génétique Moléculaire du CNRS, UPR 9061, Laboratoire Associé à l'Université Pierre et Marie Curie, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
90
|
Visualization of interaction between ribosome-inactivating proteins and supercoiled DNA with an atomic force microscope. ACTA ACUST UNITED AC 1997; 40:458-62. [DOI: 10.1007/bf03183582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/1996] [Indexed: 10/19/2022]
|
91
|
Rippe K, Guthold M, von Hippel PH, Bustamante C. Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy. J Mol Biol 1997; 270:125-38. [PMID: 9236116 DOI: 10.1006/jmbi.1997.1079] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Scanning force microscopy (SFM) has been used to study transcriptional activation of Escherichia coli RNA polymerase x sigma 54 (RNAP x sigma 54) at the glnA promoter by the constitutive mutant NtrC(D54E,S160F) of the NtrC Protein (nitrogen regulatory protein C). DNA-protein complexes were deposited on mica and images were recorded in air. The DNA template was a 726 bp linear fragment with two NtrC binding sites located at the end and about 460 bp away from the RNAP x sigma 54 glnA promoter. By choosing appropriate conditions the structure of various intermediates in the transcription process could be visualized and analyzed: (1) different multimeric complexes of NtrC(D54E,S160F) dimers bound to the DNA template; (2) the closed complex of RNAP x sigma 54 at the glnA promoter; (3) association between DNA bound RNAP x sigma 54 and NtrC(D54E,S160F) with the intervening DNA looped out; and (4) the activated open promoter complex of RNAP x sigma 54. Measurements of the DNA bending angle of RNAP x sigma 54 closed promoter complexes yielded an apparent bending angle of 49(+/-24) degrees. Under conditions that allowed the formation of the open promoter complex, the distribution of bending angles displayed two peaks at 50(+/-24) degrees and 114(+/-18) degrees, suggesting that the transition from the RNAP x sigma 54 closed complex to the open complex is accompanied by an increase of the DNA bending angle.
Collapse
Affiliation(s)
- K Rippe
- Deutsches Krebsforschungszentrum Abteilung Biophysik der Makromoleküle, Heidelberg, Germany
| | | | | | | |
Collapse
|
92
|
Rippe K, Mücke N, Langowski J. Superhelix dimensions of a 1868 base pair plasmid determined by scanning force microscopy in air and in aqueous solution. Nucleic Acids Res 1997; 25:1736-44. [PMID: 9108155 PMCID: PMC146640 DOI: 10.1093/nar/25.9.1736] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have used scanning force microscopy (SFM) to study the conformation of a 1868 base pair plasmid (p1868) in its open circular form and at a superhelical density of sigma= -0.034. The samples were deposited on a mica surface in the presence of MgCl2. DNA images were obtained both in air and in aqueous solutions, and the dimensions of the DNA superhelix were analysed. Evaluation of the whole plasmid yielded average superhelix dimensions of 27 +/- 9 nm (outer superhelix diameter D), 107 +/- 51 nm (superhelix pitch P), and 54 +/-8 degrees (superhelix pitch angle alpha). We also analysed compact superhelical regions within the plasmid separately, and determined values of D = 9.2 +/- 3.3 nm, P = 42 +/- 13 nm and alpha= 63 +/- 20 degrees for samples scanned in air or rehydrated in water. These results indicate relatively large conformation changes between superhelical and more open regions of the plasmid. In addition to the analysis of the DNA superhelix dimensions, we have followed the deposition process of open circular p1868 to mica in real time. These experiments show that it is possible to image DNA samples by SFM without prior drying, and that the surface bound DNA molecules retain some ability to change their position on the surface.
Collapse
Affiliation(s)
- K Rippe
- Deutsches Krebsforschungszentrum, Abteilung Biophysik der Makromoleküle, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
93
|
Drabik CE, Nicita CA, Lutter LC. Measurement of the linking number change in transcribing chromatin. J Mol Biol 1997; 267:794-806. [PMID: 9135112 DOI: 10.1006/jmbi.1997.0917] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The in vivo-initiated, transcribing simian virus 40 (SV40) minichromosome was analyzed to determine its DNA linking number change, i.e. the difference between the linking number of the minichromosomal DNA and that of relaxed bare DNA. As part of this measurement, the linking number change due to the in vivo-initiated RNA polymerase II was determined, the first time a value for this quantity has been reported. The topological contribution of the polymerase was combined with values determined for constrained and non-constrained linking number contributions from the native transcription complex chromatin to yield the linking number change for the complex. The linking number change of the native non-transcribed SV40 minichromosome was independently determined and was found to be virtually the same as that for the chromatin of the transcription complex. This indicates that there is little difference between the two structures. The plausibility of several current models for the contribution of chromatin structure to transcription regulation is discussed in light of this finding.
Collapse
Affiliation(s)
- C E Drabik
- Molecular Biology Research Program, Henry Ford Hospital, Detroit, MI 48202-3450, USA
| | | | | |
Collapse
|
94
|
Rajyaguru JM, Kado M, Richardson MC, Muszynski MJ. X-ray micrography and imaging of Escherichia coli cell shape using laser plasma pulsed point x-ray sources. Biophys J 1997; 72:1521-6. [PMID: 9083658 PMCID: PMC1184348 DOI: 10.1016/s0006-3495(97)78800-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
High-resolution x-ray microscopy is a relatively new technique and is performed mostly at a few large synchrotron x-ray sources that use exposure times of seconds. We utilized a bench-top source of single-shot laser (ns) plasma to generate x-rays similar to synchrotron facilities. A 5 microlitres suspension of Escherichia coli ATCC 25922 in 0.9% phosphate buffered saline was placed on polymethylmethyacrylate coated photoresist, covered with a thin (100 nm) SiN window and positioned in a vacuum chamber close to the x-ray source. The emission spectrum was tuned for optimal absorption by carbon-rich material. Atomic force microscope scans provided a surface and topographical image of differential x-ray absorption corresponding to specimen properties. By using this technique we observed a distinct layer around whole cells, possibly representing the Gram-negative envelope, darker stained areas inside the cell corresponding to chromosomal DNA as seen by thin section electron microscopy, and dent(s) midway through one cell, and 1/3- and 2/3-lengths in another cell, possibly representing one or more division septa. This quick and high resolution with depth-of-field microscopy technique is unmatched to image live hydrated ultrastructure, and has much potential for application in the study of fragile biological specimens.
Collapse
Affiliation(s)
- J M Rajyaguru
- Department of Pediatric Infectious Diseases Research, Arnold Palmer Hospital for Children and Women, Orlando, Florida 32806, USA.
| | | | | | | |
Collapse
|
95
|
Rajyaguru JM, Kado M, Nekula K, Richardson MC, Muszynski MJ. High resolution X-ray micrography of live Candida albicans using laser plasma pulsed point X-ray sources. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 3):733-738. [PMID: 9084159 DOI: 10.1099/00221287-143-3-733] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electron microscopy is still the most frequently used method for visualization of subcellular structures in spite of limitations due to the preparation required to visualize the specimen, High resolution X-ray microscopy is a relatively new technique, still under development and restricted to a few large synchrotron X-ray sources. We utilized a single-shot laser (nanosecond) plasma to generate X-rays similar to synchrotron facilities to image live cells of Candida albicans. The emission spectrum was tuned for optimal absorption by carbon-rich material. The photoresist was then scanned by an atomic force microscope to give a differential X-ray absorption pattern. Using this technique, with a sample image time of 90 min, we have visualized a distinct 152.24 nm thick consistent ring structure around cells of C albicans representing the cell wall, and distinct 'craters' inside, one of 570-90 nm diameter and three smaller ones, each 400 nm in diameter. This technique deserves further exploration concerning its application in the ultrastructural study of live, hydrated microbiological samples and of macromolecules.
Collapse
Affiliation(s)
- Jayshree M Rajyaguru
- Department of Pediatric Infectious Diseases Research, Arnold Palmer Hospital for Children and Women,85 West Miller Street, Suite 303, Orlando, FL 32806,USA
| | - Masataka Kado
- Center for Research and Education in Optics and Lasers, University of Central Florida,4000 Central Florida Blvd, Orlando, FL 32826-2700,USA
| | - Kerry Nekula
- Center for Research and Education in Optics and Lasers, University of Central Florida,4000 Central Florida Blvd, Orlando, FL 32826-2700,USA
| | - Martin C Richardson
- Center for Research and Education in Optics and Lasers, University of Central Florida,4000 Central Florida Blvd, Orlando, FL 32826-2700,USA
| | - Michael J Muszynski
- Department of Pediatric Infectious Diseases Research, Arnold Palmer Hospital for Children and Women,85 West Miller Street, Suite 303, Orlando, FL 32806,USA
| |
Collapse
|
96
|
Abstract
A variety of physical mapping methods exist for the analysis of nucleic acids or genomes, including hybridization, sequence tagged site mapping, restriction enzyme fingerprinting, radiation hybrid mapping and optical mapping. Single-molecule approaches offer numerous advantages, including very high resolution, small sample size requirements, and parallel sample processing. The convergence of recent advances in new single molecule techniques, surface chemistry and machine vision technology has contributed to novel approaches to genome analysis.
Collapse
Affiliation(s)
- D C Schwartz
- Department of Chemistry, W Keck Laboratory for Biomolecular Imaging, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
97
|
|
98
|
Rivetti C, Guthold M, Bustamante C. Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. J Mol Biol 1996; 264:919-32. [PMID: 9000621 DOI: 10.1006/jmbi.1996.0687] [Citation(s) in RCA: 500] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper reports a study of the deposition process of DNA molecules onto a mica surface for imaging under the scanning force microscope (SFM). Kinetic experiments indicate that the transport of DNA molecules from the solution drop onto the surface is governed solely by diffusion, and that the molecules are irreversibly adsorbed onto the substrate. A statistical polymer chain analysis has been applied to DNA molecules to determine the deposition conditions that lead to equilibrium and those that result in trapped configurations. Using the appropriate conditions, DNA molecules deposited onto freshly cleaved mica, are able to equilibrate on the surface as in an ideal two-dimensional solution. A persistence length of 53 nm was determined from those molecules. DNA fragments that were labeled on both ends with a horseradish peroxidase streptavidin fusion protein were still able to equilibrate on the surface, despite the additional protein-surface interaction. In contrast, DNA molecules deposited onto glow-discharged mica or H+-exchanged mica do not equilibrate on the surface. These molecules adopt conformations similar to those expected for a simple projection onto the surface plane, suggesting a process of kinetic trapping. These results validate recent SFM application to quantitatively analyze the conformation of complex macromolecular assemblies deposited on mica. Under equilibration conditions, the present study indicates that the SFM can be used to determine the persistence length of DNA molecules to a high degree of precision.
Collapse
Affiliation(s)
- C Rivetti
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA
| | | | | |
Collapse
|
99
|
Abstract
Despite many successes, atomic force microscopy (AFM) of biological specimens at room temperature is still severely limited by at least two factors: the softness and the thermal motion of flexible multi-domain/subunit molecules. Both problems can be overcome by imaging biological structures at cryogenic temperatures. Even though the instrumentation is considerably more complex and earlier attempts were largely unsuccessful, cryo-AFM has recently been demonstrated on a number of biological specimens, using an AFM operated in liquid nitrogen vapor under ambient pressure. In this brief review, both the method of instrumentation and the latest biological applications are discussed. Not only has the cryo-AFM attained high resolution on those specimens that could not be well imaged at room temperature, but it has also produced potentially important information on several specimens. These results firmly establish the cryo-AFM as a useful and versatile structural probe in biology with its own unique capabilities.
Collapse
Affiliation(s)
- Z Shao
- Department of Molecular Physiology, University of Virginia School of Medicine 22908, USA.
| | | |
Collapse
|
100
|
Kaul R, Allen M, Bradbury EM, Wenman WM. Sequence specific binding of chlamydial histone H1-like protein. Nucleic Acids Res 1996; 24:2981-9. [PMID: 8760883 PMCID: PMC146046 DOI: 10.1093/nar/24.15.2981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chlamydia trachomatis is one of the few prokaryotic organisms known to contain proteins that bear homology to eukaryotic histone H1. Changes in macromolecular conformation of DNA mediated by the histone H1-like protein (Hc1) appear to regulate stage specific differentiation. We have developed a cross-linking immunoprecipitation protocol to examine in vivo protein-DNA interaction by immune precipitating chlamydial Hc1 cross linked to DNA. Our results strongly support the presence of sequence specific binding sites on the chlamydial plasmid and hc1 gene upstream of its open reading frame. The preferential binding sites were mapped to 520 bp BamHI-XhoI and 547 bp BamHI-DraI DNA fragments on the plasmid and hc1 respectively. Comparison of these two DNA sequences using Bestfit program has identified a 24 bp region with >75% identity that is unique to the chlamydial genome. Double-stranded DNA prepared by annealing complementary oligonucleotides corresponding to the conserved 24 bp region bind Hc1, in contrast to control sequences with similar A+T ratios. Further, Hc1 binds to DNA in a strand specific fashion, with preferential binding for only one strand. The site specific affinity to plasmid DNA was also demonstrated by atomic force microscopy data images. Binding was always followed by coiling, shrinking and aggregation of the affected DNA. Very low protein-DNA ratio was required if incubations were carried out in solution. However, if DNA was partially immobilized on mica substrate individual strands with dark foci were still visible even after the addition of excess Hc1.
Collapse
Affiliation(s)
- R Kaul
- Department of Pediatrics, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|