51
|
Li S, Wu Z, Li Y, Tantray I, De Stefani D, Mattarei A, Krishnan G, Gao FB, Vogel H, Lu B. Altered MICOS Morphology and Mitochondrial Ion Homeostasis Contribute to Poly(GR) Toxicity Associated with C9-ALS/FTD. Cell Rep 2020; 32:107989. [PMID: 32755582 PMCID: PMC7433775 DOI: 10.1016/j.celrep.2020.107989] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/20/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) manifests pathological changes in motor neurons and various other cell types. Compared to motor neurons, the contribution of the other cell types to the ALS phenotypes is understudied. G4C2 repeat expansion in C9ORF72 is the most common genetic cause of ALS along with frontotemporal dementia (C9-ALS/FTD), with increasing evidence supporting repeat-encoded poly(GR) in disease pathogenesis. Here, we show in Drosophila muscle that poly(GR) enters mitochondria and interacts with components of the Mitochondrial Contact Site and Cristae Organizing System (MICOS), altering MICOS dynamics and intra-subunit interactions. This impairs mitochondrial inner membrane structure, ion homeostasis, mitochondrial metabolism, and muscle integrity. Similar mitochondrial defects are observed in patient fibroblasts. Genetic manipulation of MICOS components or pharmacological restoration of ion homeostasis with nigericin effectively rescue the mitochondrial pathology and disease phenotypes in both systems. These results implicate MICOS-regulated ion homeostasis in C9-ALS pathogenesis and suggest potential new therapeutic strategies.
Collapse
Affiliation(s)
- Shuangxi Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,These authors contributed equally
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,These authors contributed equally,Present address: Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas TX 75275, USA
| | - Yu Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ishaq Tantray
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Gopinath Krishnan
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,Lead Contact,Correspondence:
| |
Collapse
|
52
|
Tang X, Toro A, T G S, Gao J, Chalk J, Oskarsson B, Zhang K. Divergence, Convergence, and Therapeutic Implications: A Cell Biology Perspective of C9ORF72-ALS/FTD. Mol Neurodegener 2020; 15:34. [PMID: 32513219 PMCID: PMC7282082 DOI: 10.1186/s13024-020-00383-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Ever since a GGGGCC hexanucleotide repeat expansion mutation in C9ORF72 was identified as the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), three competing but nonexclusive hypotheses to explain how this mutation causes diseases have been proposed and are still under debate. Recent studies in the field have tried to understand how the repeat expansion disrupts cellular physiology, which has suggested interesting convergence of these hypotheses on downstream, functional defects in cells, such as nucleocytoplasmic transport disruption, membrane-less organelle defects, and DNA damage. These studies have not only provided an integrated view of the disease mechanism but also revealed novel cell biology implicated in neurodegeneration. Furthermore, some of the discoveries have given rise to new ideas for therapeutic development. Here, we review the research progress on cellular pathophysiology of C9ORF72-mediated ALS and FTD and its therapeutic implication. We suggest that the repeat expansion drives pathogenesis through a combination of downstream defects, of which some can be therapeutic targets.
Collapse
Affiliation(s)
- Xiaoqiang Tang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Arturo Toro
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sahana T G
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Jessica Chalk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA. .,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| |
Collapse
|
53
|
Zhu Q, Jiang J, Gendron TF, McAlonis-Downes M, Jiang L, Taylor A, Diaz Garcia S, Ghosh Dastidar S, Rodriguez MJ, King P, Zhang Y, La Spada AR, Xu H, Petrucelli L, Ravits J, Da Cruz S, Lagier-Tourenne C, Cleveland DW. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat Neurosci 2020; 23:615-624. [PMID: 32284607 PMCID: PMC7384305 DOI: 10.1038/s41593-020-0619-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/28/2020] [Indexed: 02/08/2023]
Abstract
Hexanucleotide expansions in C9orf72, which encodes a predicted guanine exchange factor, are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although repeat expansion has been established to generate toxic products, mRNAs encoding the C9ORF72 protein are also reduced in affected individuals. In this study, we tested how C9ORF72 protein levels affected repeat-mediated toxicity. In somatic transgenic mice expressing 66 GGGGCC repeats, inactivation of one or both endogenous C9orf72 alleles provoked or accelerated, respectively, early death. In mice expressing a C9orf72 transgene with 450 repeats that did not encode the C9ORF72 protein, inactivation of one or both endogenous C9orf72 alleles exacerbated cognitive deficits, hippocampal neuron loss, glial activation and accumulation of dipeptide-repeat proteins from translation of repeat-containing RNAs. Reduced C9ORF72 was shown to suppress repeat-mediated elevation in autophagy. These efforts support a disease mechanism in ALS/FTD resulting from reduced C9ORF72, which can lead to autophagy deficits, synergizing with repeat-dependent gain of toxicity.
Collapse
Affiliation(s)
- Qiang Zhu
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Jie Jiang
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Lulin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Amy Taylor
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Sandra Diaz Garcia
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Somasish Ghosh Dastidar
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
- Molecular Neuroscience; Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Maria J Rodriguez
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Patrick King
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Yongjie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Albert R La Spada
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
- Departments of Neurology, Neurobiology, and Cell Biology, Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC, USA
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - John Ravits
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
54
|
Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat Rev Neurol 2020; 16:213-228. [PMID: 32203398 DOI: 10.1038/s41582-020-0330-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Frontotemporal dementia (FTD) encompasses a spectrum of clinical syndromes characterized by progressive executive, behavioural and language dysfunction. The various FTD spectrum disorders are associated with brain accumulation of different proteins: tau, the transactive response DNA binding protein of 43 kDa (TDP43), or fused in sarcoma (FUS) protein, Ewing sarcoma protein and TATA-binding protein-associated factor 15 (TAF15) (collectively known as FET proteins). Approximately 60% of patients with FTD have autosomal dominant mutations in C9orf72, GRN or MAPT genes. Currently available treatments are symptomatic and provide limited benefit. However, the increased understanding of FTD pathogenesis is driving the development of potential disease-modifying therapies. Most of these drugs target pathological tau - this category includes tau phosphorylation inhibitors, tau aggregation inhibitors, active and passive anti-tau immunotherapies, and MAPT-targeted antisense oligonucleotides. Some of these therapeutic approaches are being tested in phase II clinical trials. Pharmacological approaches that target the effects of GRN and C9orf72 mutations are also in development. Key results of large clinical trials will be available in a few years. However, clinical trials in FTD pose several challenges, and the development of specific brain imaging and molecular biomarkers could facilitate the recruitment of clinically homogenous groups to improve the chances of positive clinical trial results.
Collapse
|
55
|
Naguib A, Sandmann T, Yi F, Watts RJ, Lewcock JW, Dowdle WE. SUPT4H1 Depletion Leads to a Global Reduction in RNA. Cell Rep 2020; 26:45-53.e4. [PMID: 30605685 DOI: 10.1016/j.celrep.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/02/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022] Open
Abstract
SUPT4H1 is a transcription elongation factor that makes up part of the RNA polymerase II complex. Recent studies propose a selective role for SUPT4H1 in the transcription of repeat-containing DNA, the translated products of which contribute to neurodegenerative disorders such as C9orf72-amyotrophic lateral sclerosis. To investigate the potential of SUPT4H1 as a therapeutic target in repeat-associated neurodegeneration, we depleted SUPT4H1 by RNA interference to inhibit the function of the SUPT4H1/SUPT5H transcription elongation complex. Depletion of SUPT4H1 leads to a global reduction in all cellular RNA, highlighting the significant challenges that are associated with targeting this molecule for the treatment of human disease. Any requirement of SUPT4H1 for transcription of specific transcripts should be interpreted in the context of global modulatory effects on the transcriptome.
Collapse
Affiliation(s)
- Adam Naguib
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Thomas Sandmann
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| | - Fei Yi
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Ryan J Watts
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Joseph W Lewcock
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - William E Dowdle
- Denali Therapeutics, 151 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| |
Collapse
|
56
|
Chen KW, Chen JA. Functional Roles of Long Non-coding RNAs in Motor Neuron Development and Disease. J Biomed Sci 2020; 27:38. [PMID: 32093746 PMCID: PMC7041250 DOI: 10.1186/s12929-020-00628-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained increasing attention as they exhibit highly tissue- and cell-type specific expression patterns. LncRNAs are highly expressed in the central nervous system and their roles in the brain have been studied intensively in recent years, but their roles in the spinal motor neurons (MNs) are largely unexplored. Spinal MN development is controlled by precise expression of a gene regulatory network mediated spatiotemporally by transcription factors, representing an elegant paradigm for deciphering the roles of lncRNAs during development. Moreover, many MN-related neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are associated with RNA metabolism, yet the link between MN-related diseases and lncRNAs remains obscure. In this review, we summarize lncRNAs known to be involved in MN development and disease, and discuss their potential future therapeutic applications.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
57
|
Goodman LD, Bonini NM. New Roles for Canonical Transcription Factors in Repeat Expansion Diseases. Trends Genet 2019; 36:81-92. [PMID: 31837826 DOI: 10.1016/j.tig.2019.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
The presence of microsatellite repeat expansions within genes is associated with >30 neurological diseases. Of interest, (GGGGCC)>30-repeats within C9orf72 are associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These expansions can be 100s to 1000s of units long. Thus, it is perplexing how RNA-polymerase II (RNAPII) can successfully transcribe them. Recent investigations focusing on GGGGCC-transcription have identified specific, canonical complexes that may promote RNAPII-transcription at these GC-rich microsatellites: the DSIF complex and PAF1C. These complexes may be important for resolving the unique secondary structures formed by GGGGCC-DNA during transcription. Importantly, this process can produce potentially toxic repeat-containing RNA that can encode potentially toxic peptides, impacting neuron function and health. Understanding how transcription of these repeats occurs has implications for therapeutics in multiple diseases.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
58
|
Casci I, Krishnamurthy K, Kour S, Tripathy V, Ramesh N, Anderson EN, Marrone L, Grant RA, Oliver S, Gochenaur L, Patel K, Sterneckert J, Gleixner AM, Donnelly CJ, Ruepp MD, Sini AM, Zuccaro E, Pennuto M, Pasinelli P, Pandey UB. Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization. Nat Commun 2019; 10:5583. [PMID: 31811140 PMCID: PMC6898697 DOI: 10.1038/s41467-019-13383-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in fused in sarcoma (FUS) lead to amyotrophic lateral sclerosis (ALS) with varying ages of onset, progression and severity. This suggests that unknown genetic factors contribute to disease pathogenesis. Here we show the identification of muscleblind as a novel modifier of FUS-mediated neurodegeneration in vivo. Muscleblind regulates cytoplasmic mislocalization of mutant FUS and subsequent accumulation in stress granules, dendritic morphology and toxicity in mammalian neuronal and human iPSC-derived neurons. Interestingly, genetic modulation of endogenous muscleblind was sufficient to restore survival motor neuron (SMN) protein localization in neurons expressing pathogenic mutations in FUS, suggesting a potential mode of suppression of FUS toxicity. Upregulation of SMN suppressed FUS toxicity in Drosophila and primary cortical neurons, indicating a link between FUS and SMN. Our data provide in vivo evidence that muscleblind is a dominant modifier of FUS-mediated neurodegeneration by regulating FUS-mediated ALS pathogenesis.
Collapse
Affiliation(s)
- Ian Casci
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Karthik Krishnamurthy
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vadreenath Tripathy
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Nandini Ramesh
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lara Marrone
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Rogan A Grant
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stacie Oliver
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lauren Gochenaur
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Krishani Patel
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Amanda M Gleixner
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Live Like Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher J Donnelly
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Live Like Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc-David Ruepp
- UK Dementia Research Institute at King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9NU, UK
| | - Antonella M Sini
- Department of Biomedical Sciences (DBS), University of Padova, Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Piera Pasinelli
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
59
|
Yuva-Aydemir Y, Almeida S, Krishnan G, Gendron TF, Gao FB. Transcription elongation factor AFF2/FMR2 regulates expression of expanded GGGGCC repeat-containing C9ORF72 allele in ALS/FTD. Nat Commun 2019; 10:5466. [PMID: 31784536 PMCID: PMC6884579 DOI: 10.1038/s41467-019-13477-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
Expanded GGGGCC (G4C2) repeats in C9ORF72 cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How RNAs containing expanded G4C2 repeats are transcribed in human neurons is largely unknown. Here we describe a Drosophila model in which poly(GR) expression in adult neurons causes axonal and locomotor defects and premature death without apparent TDP-43 pathology. In an unbiased genetic screen, partial loss of Lilliputian (Lilli) activity strongly suppresses poly(GR) toxicity by specifically downregulating the transcription of GC-rich sequences in Drosophila. Knockout of AFF2/FMR2 (one of four mammalian homologues of Lilli) with CRISPR-Cas9 decreases the expression of the mutant C9ORF72 allele containing expanded G4C2 repeats and the levels of repeat RNA foci and dipeptide repeat proteins in cortical neurons derived from induced pluripotent stem cells of C9ORF72 patients, resulting in rescue of axonal degeneration and TDP-43 pathology. Thus, AFF2/FMR2 regulates the transcription and toxicity of expanded G4C2 repeats in human C9ORF72-ALS/FTD neurons.
Collapse
Affiliation(s)
- Yeliz Yuva-Aydemir
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Gopinath Krishnan
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
60
|
Hawrot J, Imhof S, Wainger BJ. Modeling cell-autonomous motor neuron phenotypes in ALS using iPSCs. Neurobiol Dis 2019; 134:104680. [PMID: 31759135 DOI: 10.1016/j.nbd.2019.104680] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an aggressive and uniformly fatal degenerative disease of the motor nervous system. In order to understand underlying disease mechanisms, researchers leverage a host of in vivo and in vitro models, including yeast, worms, flies, zebrafish, mice, and more recently, human induced pluripotent stem cells (iPSCs) derived from ALS patients. While mouse models have been the main workhorse of preclinical ALS research, the development of iPSCs provides a new opportunity to explore molecular phenotypes of ALS within human cells. Importantly, this technology enables modeling of both familial and sporadic ALS in the relevant human genetic backgrounds, as well as a personalized or targeted approach to therapy development. Harnessing these powerful tools requires addressing numerous challenges, including different variance components associated with iPSCs and motor neurons as well as concomitant limits of reductionist approaches. In order to overcome these obstacles, optimization of protocols and assays, confirmation of phenotype robustness at scale, and validation of findings in human tissue and genetics will cement the role for iPSC models as a valuable complement to animal models in ALS and more broadly among neurodegenerative diseases.
Collapse
Affiliation(s)
- James Hawrot
- Departments of Neurology and Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sophie Imhof
- Departments of Neurology and Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; University of Amsterdam, Amsterdam, The Netherlands
| | - Brian J Wainger
- Departments of Neurology and Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
61
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
62
|
Watts JA, Burdick J, Daigneault J, Zhu Z, Grunseich C, Bruzel A, Cheung VG. cis Elements that Mediate RNA Polymerase II Pausing Regulate Human Gene Expression. Am J Hum Genet 2019; 105:677-688. [PMID: 31495490 PMCID: PMC6817524 DOI: 10.1016/j.ajhg.2019.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Aberrant gene expression underlies many human diseases. RNA polymerase II (Pol II) pausing is a key regulatory step in transcription. Here, we mapped the locations of RNA Pol II in normal human cells and found that RNA Pol II pauses in a consistent manner across individuals and cell types. At more than 1,000 genes including MYO1E and SESN2, RNA Pol II pauses at precise nucleotide locations. Characterization of these sites shows that RNA Pol II pauses at GC-rich regions that are marked by a sequence motif. Sixty-five percent of the pause sites are cytosines. By differential allelic gene expression analysis, we showed in our samples and a population dataset from the Genotype-Tissue Expression (GTEx) consortium that genes with more paused polymerase have lower expression levels. Furthermore, mutagenesis of the pause sites led to a significant increase in promoter activities. Thus, our data uncover that RNA Pol II pauses precisely at sites with distinct sequence features that in turn regulate gene expression.
Collapse
Affiliation(s)
- Jason A Watts
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Zhengwei Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Grunseich
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | - Alan Bruzel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Vivian G Cheung
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, Division of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
63
|
Jiang J, Ravits J. Pathogenic Mechanisms and Therapy Development for C9orf72 Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Neurotherapeutics 2019; 16:1115-1132. [PMID: 31667754 PMCID: PMC6985338 DOI: 10.1007/s13311-019-00797-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In 2011, a hexanucleotide repeat expansion in the first intron of the C9orf72 gene was identified as the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The proposed disease mechanisms include loss of C9orf72 function and gain of toxicity from the bidirectionally transcribed repeat-containing RNAs. Over the last few years, substantial progress has been made to determine the contribution of loss and gain of function in disease pathogenesis. The extensive body of molecular, cellular, animal, and human neuropathological studies is conflicted, but the predominance of evidence favors gain of toxicity as the main pathogenic mechanism for C9orf72 repeat expansions. Alterations in several downstream cellular functions, such as nucleocytoplasmic transport and autophagy, are implicated. Exciting progress has also been made in therapy development targeting this mutation, such as by antisense oligonucleotide therapies targeting sense transcripts and small molecules targeting nucleocytoplasmic transport, and these are now in phase 1 clinical trials.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA.
| | - John Ravits
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
64
|
Bahat A, Lahav O, Plotnikov A, Leshkowitz D, Dikstein R. Targeting Spt5-Pol II by Small-Molecule Inhibitors Uncouples Distinct Activities and Reveals Additional Regulatory Roles. Mol Cell 2019; 76:617-631.e4. [PMID: 31564557 DOI: 10.1016/j.molcel.2019.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
Spt5 is a conserved and essential transcription elongation factor that promotes promoter-proximal pausing, promoter escape, elongation, and mRNA processing. Spt5 plays specific roles in the transcription of inflammation and stress-induced genes and tri-nucleotide expanded-repeat genes involved in inherited neurological pathologies. Here, we report the identification of Spt5-Pol II small-molecule inhibitors (SPIs). SPIs faithfully reproduced Spt5 knockdown effects on promoter-proximal pausing, NF-κB activation, and expanded-repeat huntingtin gene transcription. Using SPIs, we identified Spt5 target genes that responded with profoundly diverse kinetics. SPIs uncovered the regulatory role of Spt5 in metabolism via GDF15, a food intake- and body weight-inhibitory hormone. SPIs further unveiled a role for Spt5 in promoting the 3' end processing of histone genes. While several SPIs affect all Spt5 functions, a few inhibit a single one, implying uncoupling and selective targeting of Spt5 activities. SPIs expand the understanding of Spt5-Pol II functions and are potential drugs against metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Or Lahav
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Plotnikov
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
65
|
Yamada SB, Gendron TF, Niccoli T, Genuth NR, Grosely R, Shi Y, Glaria I, Kramer NJ, Nakayama L, Fang S, Dinger TJI, Thoeng A, Rocha G, Barna M, Puglisi JD, Partridge L, Ichida JK, Isaacs AM, Petrucelli L, Gitler AD. RPS25 is required for efficient RAN translation of C9orf72 and other neurodegenerative disease-associated nucleotide repeats. Nat Neurosci 2019; 22:1383-1388. [PMID: 31358992 PMCID: PMC6713615 DOI: 10.1038/s41593-019-0455-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
Nucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia. Unconventional translation (RAN translation) of C9orf72 repeats generates dipeptide repeat proteins that can cause neurodegeneration. We performed a genetic screen for regulators of RAN translation and identified small ribosomal protein subunit 25 (RPS25), presenting a potential therapeutic target for C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia and other neurodegenerative diseases caused by nucleotide repeat expansions.
Collapse
Affiliation(s)
- Shizuka B Yamada
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Teresa Niccoli
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Naomi R Genuth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yingxiao Shi
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Idoia Glaria
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK
| | - Nicholas J Kramer
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shirleen Fang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tai J I Dinger
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Annora Thoeng
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Gabriel Rocha
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK
| | | | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
66
|
Abstract
The discovery that repeat expansions in the C9orf72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has revolutionized our understanding of these diseases. Substantial headway has been made in characterizing C9orf72-mediated disease and unravelling its underlying aetiopathogenesis. Three main disease mechanisms have been proposed: loss of function of the C9orf72 protein and toxic gain of function from C9orf72 repeat RNA or from dipeptide repeat proteins produced by repeat-associated non-ATG translation. Several downstream processes across a range of cellular functions have also been implicated. In this article, we review the pathological and mechanistic features of C9orf72-associated FTD and ALS (collectively termed C9FTD/ALS), the model systems used to study these conditions, and the probable initiators of downstream disease mechanisms. We suggest that a combination of upstream mechanisms involving both loss and gain of function and downstream cellular pathways involving both cell-autonomous and non-cell-autonomous effects contributes to disease progression.
Collapse
Affiliation(s)
- Rubika Balendra
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. .,UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK.
| |
Collapse
|
67
|
Goodman LD, Prudencio M, Kramer NJ, Martinez-Ramirez LF, Srinivasan AR, Lan M, Parisi MJ, Zhu Y, Chew J, Cook CN, Berson A, Gitler AD, Petrucelli L, Bonini NM. Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nat Neurosci 2019; 22:863-874. [PMID: 31110321 PMCID: PMC6535128 DOI: 10.1038/s41593-019-0396-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
An expanded GGGGCC hexanucleotide of more than 30 repeats (termed (G4C2)30+) within C9orf72 is the most prominent mutation in familial frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) (termed C9+). Through an unbiased large-scale screen of (G4C2)49-expressing Drosophila we identify the CDC73/PAF1 complex (PAF1C), a transcriptional regulator of RNA polymerase II, as a suppressor of G4C2-associated toxicity when knocked-down. Depletion of PAF1C reduces RNA and GR dipeptide production from (G4C2)30+ transgenes. Notably, in Drosophila, the PAF1C components Paf1 and Leo1 appear to be selective for the transcription of long, toxic repeat expansions, but not shorter, nontoxic expansions. In yeast, PAF1C components regulate the expression of both sense and antisense repeats. PAF1C is upregulated following (G4C2)30+ expression in flies and mice. In humans, PAF1 is also upregulated in C9+-derived cells, and its heterodimer partner, LEO1, binds C9+ repeat chromatin. In C9+ FTD, PAF1 and LEO1 are upregulated and their expression positively correlates with the expression of repeat-containing C9orf72 transcripts. These data indicate that PAF1C activity is an important factor for transcription of the long, toxic repeat in C9+ FTD.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nicholas J Kramer
- Neuroscience Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Matthews Lan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Parisi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yongqing Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeannie Chew
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Nancy M Bonini
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
68
|
Furuta N, Tsukagoshi S, Hirayanagi K, Ikeda Y. Suppression of the yeast elongation factor Spt4 ortholog reduces expanded SCA36 GGCCUG repeat aggregation and cytotoxicity. Brain Res 2019; 1711:29-40. [DOI: 10.1016/j.brainres.2018.12.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
|
69
|
Berson A, Goodman LD, Sartoris AN, Otte CG, Aykit JA, Lee VMY, Trojanowski JQ, Bonini NM. Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathol Commun 2019; 7:65. [PMID: 31036086 PMCID: PMC6487524 DOI: 10.1186/s40478-019-0710-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the underlying disease mechanisms remain unclear. In an unbiased screen in Drosophila for RBPs that genetically interact with TDP-43, we found that downregulation of the mRNA export factor Ref1 (fly orthologue to human ALYREF) mitigated TDP-43 induced toxicity. Further, Ref1 depletion also reduced toxicity caused by expression of the C9orf72 GGGGCC repeat expansion. Ref1 knockdown lowered the mRNA levels for these related disease genes and reduced the encoded proteins with no effect on a wild-type Tau disease transgene or a control transgene. Interestingly, expression of TDP-43 or the GGGGCC repeat expansion increased endogenous Ref1 mRNA levels in the fly brain. Further, the human orthologue ALYREF was upregulated by immunohistochemistry in ALS motor neurons, with the strongest upregulation occurring in ALS cases harboring the GGGGCC expansion in C9orf72. These data support ALYREF as a contributor to ALS/FTD and highlight its downregulation as a potential therapeutic target that may affect co-existing disease etiologies.
Collapse
Affiliation(s)
- Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lindsey D Goodman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ashley N Sartoris
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Charlton G Otte
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James A Aykit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
70
|
Emerging antisense oligonucleotide and viral therapies for amyotrophic lateral sclerosis. Curr Opin Neurol 2019; 31:648-654. [PMID: 30028737 DOI: 10.1097/wco.0000000000000594] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) is a rapidly fatal disease for which there is currently no effective therapy. The present review describes the current progress of existing molecular therapies in the clinical trial pipeline and highlights promising future antisense oligonucleotide (ASO) and viral therapeutic strategies for treating ALS. RECENT FINDINGS The immense progress in the design of clinical trials and generation of ASO therapies directed towards superoxide dismutase-1 (SOD1) and chromosome 9 open reading frame 72 (C9orf72) repeat expansion related disease have been propelled by fundamental work to identify the genetic underpinnings of familial ALS and develop relevant disease models. Preclinical studies have also identified promising targets for sporadic ALS (sALS). Moreover, encouraging results in adeno-associated virus (AAV)-based therapies for spinal muscular atrophy (SMA) provide a roadmap for continued improvement in delivery and design of molecular therapies for ALS. SUMMARY Advances in preclinical and clinical studies of ASO and viral directed approaches to neuromuscular disease, particularly ALS, indicate that these approaches have high specificity and are relatively well tolerated.
Collapse
|
71
|
Goodman LD, Prudencio M, Srinivasan AR, Rifai OM, Lee VMY, Petrucelli L, Bonini NM. eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathol Commun 2019; 7:62. [PMID: 31023341 PMCID: PMC6485101 DOI: 10.1186/s40478-019-0711-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 01/09/2023] Open
Abstract
The discovery of an expanded (GGGGCC)n repeat (termed G4C2) within the first intron of C9orf72 in familial ALS/FTD has led to a number of studies showing that the aberrant expression of G4C2 RNA can produce toxic dipeptides through repeat-associated non-AUG (RAN-) translation. To reveal canonical translation factors that impact this process, an unbiased loss-of-function screen was performed in a G4C2 fly model that maintained the upstream intronic sequence of the human gene and contained a GFP tag in the GR reading frame. 11 of 48 translation factors were identified that impact production of the GR-GFP protein. Further investigations into two of these, eIF4B and eIF4H, revealed that downregulation of these factors reduced toxicity caused by the expression of expanded G4C2 and reduced production of toxic GR dipeptides from G4C2 transcripts. In patient-derived cells and in post-mortem tissue from ALS/FTD patients, eIF4H was found to be downregulated in cases harboring the G4C2 mutation compared to patients lacking the mutation and healthy individuals. Overall, these data define eIF4B and eIF4H as disease modifiers whose activity is important for RAN-translation of the GR peptide from G4C2-transcripts.
Collapse
Affiliation(s)
- Lindsey D. Goodman
- 0000 0004 1936 8972grid.25879.31Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mercedes Prudencio
- 0000 0004 0443 9942grid.417467.7Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Ananth R. Srinivasan
- 0000 0004 1936 8972grid.25879.31Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Olivia M. Rifai
- 0000 0004 1936 8972grid.25879.31Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Virginia M.-Y. Lee
- 0000 0004 1936 8972grid.25879.31Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Leonard Petrucelli
- 0000 0004 0443 9942grid.417467.7Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Nancy M. Bonini
- 0000 0004 1936 8972grid.25879.31Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,0000 0004 1936 8972grid.25879.31Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
72
|
Nguyen L, Cleary JD, Ranum LPW. Repeat-Associated Non-ATG Translation: Molecular Mechanisms and Contribution to Neurological Disease. Annu Rev Neurosci 2019; 42:227-247. [PMID: 30909783 DOI: 10.1146/annurev-neuro-070918-050405] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microsatellite mutations involving the expansion of tri-, tetra-, penta-, or hexanucleotide repeats cause more than 40 different neurological disorders. Although, traditionally, the position of the repeat within or outside of an open reading frame has been used to focus research on disease mechanisms involving protein loss of function, protein gain of function, or RNA gain of function, the discoveries of bidirectional transcription and repeat-associated non-ATG (RAN) have blurred these distinctions. Here we review what is known about RAN proteins in disease, the mechanisms by which they are produced, and the novel therapeutic opportunities they provide.
Collapse
Affiliation(s)
- Lien Nguyen
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA;
| | - John Douglas Cleary
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA;
| | - Laura P W Ranum
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA;
| |
Collapse
|
73
|
Abstract
Frontotemporal dementia (FTD) is a common young-onset dementia presenting with heterogeneous and distinct syndromes. It is characterized by progressive deficits in behavior, language, and executive function. The disease may exhibit similar characteristics to many psychiatric disorders owing to its prominent behavioral features. The concept of precision medicine has recently emerged, and it involves neurodegenerative disease treatment that is personalized to match an individual's specific pattern of neuroimaging, neuropathology, and genetic variability. In this paper, the pathophysiology underlying FTD, which is characterized by the selective degeneration of the frontal and temporal cortices, is reviewed. We also discuss recent advancements in FTD research from the perspectives of clinical, imaging, molecular characterizations, and treatment. This review focuses on the approach of precision medicine to manage the clinical and biological complexities of FTD.
Collapse
Affiliation(s)
- Mu-N Liu
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, Memory and Aging Centre, University of California, San Francisco, San Francisco, CA, United States
| | - Chi-Ieong Lau
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
74
|
Yanagi KS, Wu Z, Amaya J, Chapkis N, Duffy AM, Hajdarovic KH, Held A, Mathur AD, Russo K, Ryan VH, Steinert BL, Whitt JP, Fallon JR, Fawzi NL, Lipscombe D, Reenan RA, Wharton KA, Hart AC. Meta-analysis of Genetic Modifiers Reveals Candidate Dysregulated Pathways in Amyotrophic Lateral Sclerosis. Neuroscience 2019; 396:A3-A20. [PMID: 30594291 PMCID: PMC6549511 DOI: 10.1016/j.neuroscience.2018.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that has significant overlap with frontotemporal dementia (FTD). Mutations in specific genes have been identified that can cause and/or predispose patients to ALS. However, the clinical variability seen in ALS patients suggests that additional genes impact pathology, susceptibility, severity, and/or progression of the disease. To identify molecular pathways involved in ALS, we undertook a meta-analysis of published genetic modifiers both in patients and in model organisms, and undertook bioinformatic pathway analysis. From 72 published studies, we generated a list of 946 genes whose perturbation (1) impacted ALS in patient populations, (2) altered defects in laboratory models, or (3) modified defects caused by ALS gene ortholog loss of function. Herein, these are all called modifier genes. We found 727 modifier genes that encode proteins with human orthologs. Of these, 43 modifier genes were identified as modifiers of more than one ALS gene/model, consistent with the hypothesis that shared genes and pathways may underlie ALS. Further, we used a gene ontology-based bioinformatic analysis to identify pathways and associated genes that may be important in ALS. To our knowledge this is the first comprehensive survey of ALS modifier genes. This work suggests that shared molecular mechanisms may underlie pathology caused by different ALS disease genes. Surprisingly, few ALS modifier genes have been tested in more than one disease model. Understanding genes that modify ALS-associated defects will help to elucidate the molecular pathways that underlie ALS and provide additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Katherine S Yanagi
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, Rhode Island 02912, United States.
| | - Joshua Amaya
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Natalie Chapkis
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Amanda M Duffy
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kaitlyn H Hajdarovic
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Aaron Held
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Arjun D Mathur
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kathryn Russo
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Veronica H Ryan
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Beatrice L Steinert
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Joshua P Whitt
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Robert A Reenan
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kristi A Wharton
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Anne C Hart
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| |
Collapse
|
75
|
Corman A, Jung B, Häggblad M, Bräutigam L, Lafarga V, Lidemalm L, Hühn D, Carreras-Puigvert J, Fernandez-Capetillo O. A Chemical Screen Identifies Compounds Limiting the Toxicity of C9ORF72 Dipeptide Repeats. Cell Chem Biol 2018; 26:235-243.e5. [PMID: 30527999 DOI: 10.1016/j.chembiol.2018.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/14/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
The expansion of GGGGCC repeats within the first intron of C9ORF72 constitutes the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Through repeat-associated non-ATG translation, these expansions are translated into dipeptide repeats (DPRs), some of which accumulate at nucleoli and lead to cell death. We here performed a chemical screen to identify compounds reducing the toxicity of ALS-related poly(PR) peptides. Our screening identified sodium phenylbutyrate, currently in clinical trials, and BET Bromodomain inhibitors as modifiers of poly(PR) toxicity in cell lines and developing zebrafish embryos. Mechanistically, we show that BET Bromodomain inhibitors rescue the nucleolar stress induced by poly(PR) or actinomycin D, alleviating the effects of the DPR in nucleolus-related functions such as mRNA splicing or translation. Our work suggests that BET Bromodomain inhibitors might have beneficial effects in diseases linked to nucleolar stress such as ALS/FTD.
Collapse
Affiliation(s)
- Alba Corman
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Bomi Jung
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Maria Häggblad
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Lars Bräutigam
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Louise Lidemalm
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Daniela Hühn
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Jordi Carreras-Puigvert
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden.
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
76
|
Floeter MK, Gendron TF. Biomarkers for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Associated With Hexanucleotide Expansion Mutations in C9orf72. Front Neurol 2018; 9:1063. [PMID: 30568632 PMCID: PMC6289985 DOI: 10.3389/fneur.2018.01063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Now that genetic testing can identify persons at risk for developing amyotrophic lateral sclerosis (ALS) many decades before symptoms begin, there is a critical need for biomarkers that signal the onset and progression of degeneration. The search for candidate disease biomarkers in patients with mutations in the gene C9orf72 has included imaging, physiology, and biofluid measurements. In cross-sectional imaging studies, C9+ ALS patients display diffuse reductions of gray and white matter integrity compared to ALS patients without mutations. This structural imaging signature overlaps with frontotemporal dementia (FTD), reflecting the frequent co-occurrence of cognitive impairment, even frank FTD, in C9+ ALS patients. Changes in functional connectivity occur as critical components of the networks associated with cognition and behavior degenerate. In presymptomatic C9+carriers, subtle differences in volumes of subcortical structures and functional connectivity can be detected, often decades before the typical family age of symptom onset. Dipeptide repeat proteins produced by the repeat expansion mutation are also measurable in the cerebrospinal fluid (CSF) of presymptomatic gene carriers, possibly throughout their lives. In contrast, a rise in the level of neurofilament proteins in the CSF appears to presage the onset of degeneration in presymptomatic carriers in one longitudinal study. Cross-sectional studies indicate that neurofilament protein levels may provide prognostic information for survival in C9+ ALS patients. Longitudinal studies will be needed to validate the candidate biomarkers discussed here. Understanding how these candidate biomarkers change over time is critical if they are to be used in future therapeutic decisions.
Collapse
Affiliation(s)
- Mary Kay Floeter
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
77
|
Jin W, Qazi TJ, Quan Z, Li N, Qing H. Dysregulation of Transcription Factors: A Key Culprit Behind Neurodegenerative Disorders. Neuroscientist 2018; 25:548-565. [PMID: 30484370 DOI: 10.1177/1073858418811787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) are considered heterogeneous disorders characterized by progressive pathological changes in neuronal systems. Transcription factors are protein molecules that are important in regulating the expression of genes. Although the clinical manifestations of NDs vary, the pathological processes appear similar with regard to neuroinflammation, oxidative stress, and proteostasis, to which, as numerous studies have discovered, transcription factors are closely linked. In this review, we summarized and reviewed the roles of transcription factors in NDs, and then we elucidated their functions during pathological processes, and finally we discussed their therapeutic values in NDs.
Collapse
Affiliation(s)
- Wei Jin
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Talal Jamil Qazi
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhenzhen Quan
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Nuomin Li
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Hong Qing
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| |
Collapse
|
78
|
Abstract
Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce repeat-associated non-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in C9ORF72 ALS/FTD. Understanding how RAN translation occurs, what cellular factors contribute to RAN protein accumulation, and how these proteins contribute to disease should lead to a better understanding of the basic mechanisms of gene expression and human disease.
Collapse
Affiliation(s)
- John Douglas Cleary
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Amrutha Pattamatta
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Laura P W Ranum
- From the Center for NeuroGenetics,
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
- Neurology, College of Medicine
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
79
|
Chiò A, Mazzini L, D'Alfonso S, Corrado L, Canosa A, Moglia C, Manera U, Bersano E, Brunetti M, Barberis M, Veldink JH, van den Berg LH, Pearce N, Sproviero W, McLaughlin R, Vajda A, Hardiman O, Rooney J, Mora G, Calvo A, Al-Chalabi A. The multistep hypothesis of ALS revisited: The role of genetic mutations. Neurology 2018; 91:e635-e642. [PMID: 30045958 PMCID: PMC6105040 DOI: 10.1212/wnl.0000000000005996] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) incidence rates are consistent with the hypothesis that ALS is a multistep process. We tested the hypothesis that carrying a large effect mutation might account for ≥1 steps through the effect of the mutation, thus leaving fewer remaining steps before ALS begins. METHODS We generated incidence data from an ALS population register in Italy (2007-2015) for which genetic analysis for C9orf72, SOD1, TARDBP, and FUS genes was performed in 82% of incident cases. As confirmation, we used data from ALS cases diagnosed in the Republic of Ireland (2006-2014). We regressed the log of age-specific incidence against the log of age with least-squares regression for the subpopulation carrying disease-associated variation in each separate gene. RESULTS Of the 1,077 genetically tested cases, 74 (6.9%) carried C9orf72 mutations, 20 (1.9%) had SOD1 mutations, 15 (1.4%) had TARDBP mutations, and 3 (0.3%) carried FUS mutations. In the whole population, there was a linear relationship between log incidence and log age (r2 = 0.98) with a slope estimate of 4.65 (4.37-4.95), consistent with a 6-step process. The analysis for C9orf72-mutated patients confirmed a linear relationship (r2 = 0.94) with a slope estimate of 2.22 (1.74-2.29), suggesting a 3-step process. This estimate was confirmed by data from the Irish ALS register. The slope estimate was consistent with a 2-step process for SOD1 and with a 4-step process for TARDBP. CONCLUSION The identification of a reduced number of steps in patients with ALS with genetic mutations compared to those without mutations supports the idea of ALS as a multistep process and is an important advance for dissecting the pathogenic process in ALS.
Collapse
Affiliation(s)
- Adriano Chiò
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK.
| | - Letizia Mazzini
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Sandra D'Alfonso
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Lucia Corrado
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Antonio Canosa
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Cristina Moglia
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Umberto Manera
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Enrica Bersano
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Maura Brunetti
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Marco Barberis
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Jan H Veldink
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Leonard H van den Berg
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Neil Pearce
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - William Sproviero
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Russell McLaughlin
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Alice Vajda
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Orla Hardiman
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - James Rooney
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Gabriele Mora
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Andrea Calvo
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| | - Ammar Al-Chalabi
- From the "Rita Levi Montalcini" Department of Neuroscience (A. Chiò, A. Canosa, C.M., U.M., M.B., M.B., A. Calvo), University of Torino; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; ALS Center (L.M., E.B.), Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità; Department of Health Sciences (S.D., L.C.), Interdisciplinary Research Center of Autoimmune Diseases, "Amedeo Avogadro" University of Eastern Piedmont, Novara, Italy; Department of Medical Statistics (N.P.), London School of Hygiene and Tropical Medicine, UK; Centre for Public Health Research (N.P.), Massey University Wellington Campus, New Zealand; Department of Neurology and Neurosurgery (J.H.V., L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Academic Unit of Neurology (R.M., A.V., O.H., J.R.), Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Italy (Gabriele Mora); and King's College London (W.S., A.A.-C.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK
| |
Collapse
|
80
|
|
81
|
Rudich P, Snoznik C, Watkins SC, Monaghan J, Pandey UB, Lamitina ST. Nuclear localized C9orf72-associated arginine-containing dipeptides exhibit age-dependent toxicity in C. elegans. Hum Mol Genet 2018; 26:4916-4928. [PMID: 29036691 PMCID: PMC5886095 DOI: 10.1093/hmg/ddx372] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/21/2017] [Indexed: 01/07/2023] Open
Abstract
A hexanucleotide repeat expansion mutation in the C9orf72 gene represents a prevalent genetic cause of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Non-canonical translation of this repeat gives rise to several distinct dipeptide protein species that could play pathological roles in disease. Here, we show in the model system Caenorhabditis elegans that expression of the arginine-containing dipeptides, but not alanine-containing dipeptides, produces toxic phenotypes in multiple cellular contexts, including motor neurons. Expression of either (PR)50 or (GR)50 during development caused a highly penetrant developmental arrest, while post-developmental expression caused age-onset paralysis. Both (PR)50- and (GR)50-green fluorescent protein tagged dipeptides were present in the nucleus and nuclear localization was necessary and sufficient for their toxicity. Using an inducible expression system, we discovered that age-onset phenotypes caused by (PR)50 required both continual (PR)50 expression and an aged cellular environment. The toxicity of (PR)50 was modified by genetic mutations that uncouple physiological aging from chronological aging. However, these same mutations failed to modify the toxicity of (GR)50, suggesting that (PR)50 and (GR)50 exert their toxicity through partially distinct mechanism(s). Changing the rate of physiological aging also mitigates toxicity in other C. elegans models of ALS, suggesting that the (PR)50 dipeptide might engage similar toxicity mechanisms as other ALS disease-causing proteins.
Collapse
Affiliation(s)
- Paige Rudich
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Carley Snoznik
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - John Monaghan
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Udai Bhan Pandey
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - S Todd Lamitina
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.,Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
82
|
Mordes DA, Prudencio M, Goodman LD, Klim JR, Moccia R, Limone F, Pietilainen O, Chowdhary K, Dickson DW, Rademakers R, Bonini NM, Petrucelli L, Eggan K. Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol Commun 2018; 6:55. [PMID: 29973287 PMCID: PMC6031111 DOI: 10.1186/s40478-018-0555-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 01/07/2023] Open
Abstract
A hexanucleotide (GGGGCC) repeat expansion in C9ORF72 is the most common genetic contributor to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Reduced expression of the C9ORF72 gene product has been proposed as a potential contributor to disease pathogenesis. Additionally, repetitive RNAs and dipeptide repeat proteins (DPRs), such as poly-GR, can be produced by this hexanucleotide expansion that disrupt a number of cellular processes, potentially contributing to neural degeneration. To better discern which of these mechanisms leads to disease-associated changes in patient brains, we analyzed gene expression data generated from the cortex and cerebellum. We found that transcripts encoding heat shock proteins (HSPs) regulated by the HSF1 transcription factor were significantly induced in C9ORF72-ALS/FTLD patients relative to both sporadic ALS/FTLD cases and controls. Treatment of human neurons with chemically synthesized DPRs was sufficient to activate a similar transcriptional response. Expression of GGGGCC repeats and also poly-GR in the brains of Drosophila lead to the upregulation of HSF1 and the same highly-conserved HSPs. Additionally, HSF1 was a modifier of poly-GR toxicity in Drosophila. Our results suggest that the expression of DPRs are associated with upregulation of HSF1 and activation of a heat shock response in C9ORF72-ALS/FTLD.
Collapse
Affiliation(s)
- Daniel A. Mordes
- 000000041936754Xgrid.38142.3cDepartment of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,0000 0004 0386 9924grid.32224.35Department of Pathology, Massachusetts General Hospital, Boston, MA 02114 USA
| | | | - Lindsey D. Goodman
- 0000 0004 1936 8972grid.25879.31Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Joseph R. Klim
- 000000041936754Xgrid.38142.3cDepartment of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Rob Moccia
- 000000041936754Xgrid.38142.3cDepartment of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,Present address: Pfizer, Cambridge, MA 02139 USA
| | - Francesco Limone
- 000000041936754Xgrid.38142.3cDepartment of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Olli Pietilainen
- 000000041936754Xgrid.38142.3cDepartment of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Kaitavjeet Chowdhary
- 000000041936754Xgrid.38142.3cDepartment of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Nancy M. Bonini
- 0000 0004 1936 8972grid.25879.31Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | - Kevin Eggan
- 000000041936754Xgrid.38142.3cDepartment of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
83
|
Rudich P, Lamitina T. Models and mechanisms of repeat expansion disorders: a worm's eye view. J Genet 2018; 97:665-677. [PMID: 30027902 PMCID: PMC6482835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The inappropriate genetic expansion of various repetitive DNA sequences underlies over 20 distinct inherited diseases. The genetic context of these repeats in exons, introns and untranslated regions has played a major role in thinking about the mechanisms by which various repeat expansions might cause disease. Repeat expansions in exons are thought to give rise to expanded toxic protein repeats (i.e. polyQ). Repeat expansions in introns and UTRs (i.e. FXTAS) are thought to produce aberrant repeat-bearing RNAs that interact with and sequester a wide variety of essential proteins, resulting in cellular toxicity. However, a new phenomenon termed 'repeat-associated nonAUG dependent (RAN) translation' paints a new and unifying picture of how distinct repeat expansion-bearing RNAs might act as substrates for this noncanonical form of translation, leading to the production of a wide range of repeat sequence-specific-encoded toxic proteins. Here, we review how the model system Caenorhabditis elegans has been utilized to model many repeat disorders and discuss how RAN translation could be a previously unappreciated contributor to the toxicity associated with these different models.
Collapse
Affiliation(s)
- Paige Rudich
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.
| | | |
Collapse
|
84
|
Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nat Med 2018; 24:1136-1142. [PMID: 29942091 DOI: 10.1038/s41591-018-0071-1] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Abstract
The major genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is a C9orf72 G4C2 repeat expansion1,2. Proposed mechanisms by which the expansion causes c9FTD/ALS include toxicity from repeat-containing RNA and from dipeptide repeat proteins translated from these transcripts. To investigate the contribution of poly(GR) dipeptide repeat proteins to c9FTD/ALS pathogenesis in a mammalian in vivo model, we generated mice that expressed GFP-(GR)100 in the brain. GFP-(GR)100 mice developed age-dependent neurodegeneration, brain atrophy, and motor and memory deficits through the accumulation of diffuse, cytoplasmic poly(GR). Poly(GR) co-localized with ribosomal subunits and the translation initiation factor eIF3η in GFP-(GR)100 mice and, of importance, in c9FTD/ALS patients. Combined with the differential expression of ribosome-associated genes in GFP-(GR)100 mice, these findings demonstrate poly(GR)-mediated ribosomal distress. Indeed, poly(GR) inhibited canonical and non-canonical protein translation in HEK293T cells, and also induced the formation of stress granules and delayed their disassembly. These data suggest that poly(GR) contributes to c9FTD/ALS by impairing protein translation and stress granule dynamics, consequently causing chronic cellular stress and preventing cells from mounting an effective stress response. Decreasing poly(GR) and/or interrupting interactions between poly(GR) and ribosomal and stress granule-associated proteins may thus represent potential therapeutic strategies to restore homeostasis.
Collapse
|
85
|
Abstract
Aging-related neurodegenerative diseases are progressive and fatal neurological diseases that are characterized by irreversible neuron loss and gliosis. With a growing population of aging individuals, there is a pressing need to better understand the basic biology underlying these diseases. Although diverse disease mechanisms have been implicated in neurodegeneration, a common theme of altered RNA processing has emerged as a unifying contributing factor to neurodegenerative disease. RNA processing includes a series of distinct processes, including RNA splicing, transport and stability, as well as the biogenesis of non-coding RNAs. Here, we highlight how some of these mechanisms are altered in neurodegenerative disease, including the mislocalization of RNA-binding proteins and their sequestration induced by microsatellite repeats, microRNA biogenesis alterations and defective tRNA biogenesis, as well as changes to long-intergenic non-coding RNAs. We also highlight potential therapeutic interventions for each of these mechanisms. Summary: In this At a Glance review, Edward Lee and co-authors provide an overview of RNA metabolism defects, including mislocalization of RNA-binding proteins and microRNA biogenesis alterations, that contribute to neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Elaine Y Liu
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| | - Christopher P Cali
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| |
Collapse
|
86
|
Lee J, Kim M, Itoh TQ, Lim C. Ataxin-2: A versatile posttranscriptional regulator and its implication in neural function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1488. [PMID: 29869836 DOI: 10.1002/wrna.1488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Ataxin-2 (ATXN2) is a eukaryotic RNA-binding protein that is conserved from yeast to human. Genetic expansion of a poly-glutamine tract in human ATXN2 has been implicated in several neurodegenerative diseases, likely acting through gain-of-function effects. Emerging evidence, however, suggests that ATXN2 plays more direct roles in neural function via specific molecular and cellular pathways. ATXN2 and its associated protein complex control distinct steps in posttranscriptional gene expression, including poly-A tailing, RNA stabilization, microRNA-dependent gene silencing, and translational activation. Specific RNA substrates have been identified for the functions of ATXN2 in aspects of neural physiology, such as circadian rhythms and olfactory habituation. Genetic models of ATXN2 loss-of-function have further revealed its significance in stress-induced cytoplasmic granules, mechanistic target of rapamycin signaling, and cellular metabolism, all of which are crucial for neural homeostasis. Accordingly, we propose that molecular evolution has been selecting the ATXN2 protein complex as an important trans-acting module for the posttranscriptional control of diverse neural functions. This explains how ATXN2 intimately interacts with various neurodegenerative disease genes, and suggests that loss-of-function effects of ATXN2 could be therapeutic targets for ATXN2-related neurological disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jongbo Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Minjong Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Taichi Q Itoh
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
87
|
Affiliation(s)
- Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
88
|
Prudencio M, Gonzales PK, Cook CN, Gendron TF, Daughrity LM, Song Y, Ebbert MTW, van Blitterswijk M, Zhang YJ, Jansen-West K, Baker MC, DeTure M, Rademakers R, Boylan KB, Dickson DW, Petrucelli L, Link CD. Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Hum Mol Genet 2018. [PMID: 28637276 PMCID: PMC5886204 DOI: 10.1093/hmg/ddx233] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Significant transcriptome alterations are detected in the brain of patients with amyotrophic lateral sclerosis (ALS), including carriers of the C9orf72 repeat expansion and C9orf72-negative sporadic cases. Recently, the expression of repetitive element transcripts has been associated with toxicity and, while increased repetitive element expression has been observed in several neurodegenerative diseases, little is known about their contribution to ALS. To assess whether aberrant expression of repetitive element sequences are observed in ALS, we analysed RNA sequencing data from C9orf72-positive and sporadic ALS cases, as well as healthy controls. Transcripts from multiple classes and subclasses of repetitive elements (LINEs, endogenous retroviruses, DNA transposons, simple repeats, etc.) were significantly increased in the frontal cortex of C9orf72 ALS patients. A large collection of patient samples, representing both C9orf72 positive and negative ALS, ALS/FTLD, and FTLD cases, was used to validate the levels of several repetitive element transcripts. These analyses confirmed that repetitive element expression was significantly increased in C9orf72-positive compared to C9orf72-negative or control cases. While previous studies suggest an important link between TDP-43 and repetitive element biology, our data indicate that TDP-43 pathology alone is insufficient to account for the observed changes in repetitive elements in ALS/FTLD. Instead, we found that repetitive element expression positively correlated with RNA polymerase II activity in postmortem brain, and pharmacologic modulation of RNA polymerase II activity altered repetitive element expression in vitro. We conclude that increased RNA polymerase II activity in ALS/FTLD may lead to increased repetitive element transcript expression, a novel pathological feature of ALS/FTLD.
Collapse
Affiliation(s)
- Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Patrick K Gonzales
- Integrative Physiology, Institute for Behavioral Genetics University of Colorado, CO 80309, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mark T W Ebbert
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin B Boylan
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher D Link
- Integrative Physiology, Institute for Behavioral Genetics University of Colorado, CO 80309, USA
| |
Collapse
|
89
|
Azuma Y, Mizuta I, Tokuda T, Mizuno T. Amyotrophic Lateral Sclerosis Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:79-95. [PMID: 29951816 DOI: 10.1007/978-981-13-0529-0_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects upper and lower motor neurons in the brain and the spinal cord. Due to the progressive neurodegeneration, ALS leads to paralysis and death caused by respiratory failure 2-5 years after the onset of symptoms. There is no effective cure available. Most ALS cases are sporadic, without family history, whereas 10% of the cases are familial. Identification of variants in more than 30 different loci has provided insight into the pathogenic molecular mechanisms mediating disease pathogenesis. Studies of a Drosophila melanogaster model for each of the ALS genes can contribute to uncovering pathophysiological mechanism of ALS and finding targets of the disease-modifying therapy. In this review, we focus on three ALS-causing genes: TAR DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), and chromosome 9 open reading frame 72 (C9orf72).
Collapse
Affiliation(s)
- Yumiko Azuma
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
90
|
Gendron TF, Chew J, Stankowski JN, Hayes LR, Zhang YJ, Prudencio M, Carlomagno Y, Daughrity LM, Jansen-West K, Perkerson EA, O'Raw A, Cook C, Pregent L, Belzil V, van Blitterswijk M, Tabassian LJ, Lee CW, Yue M, Tong J, Song Y, Castanedes-Casey M, Rousseau L, Phillips V, Dickson DW, Rademakers R, Fryer JD, Rush BK, Pedraza O, Caputo AM, Desaro P, Palmucci C, Robertson A, Heckman MG, Diehl NN, Wiggs E, Tierney M, Braun L, Farren J, Lacomis D, Ladha S, Fournier CN, McCluskey LF, Elman LB, Toledo JB, McBride JD, Tiloca C, Morelli C, Poletti B, Solca F, Prelle A, Wuu J, Jockel-Balsarotti J, Rigo F, Ambrose C, Datta A, Yang W, Raitcheva D, Antognetti G, McCampbell A, Van Swieten JC, Miller BL, Boxer AL, Brown RH, Bowser R, Miller TM, Trojanowski JQ, Grossman M, Berry JD, Hu WT, Ratti A, Traynor BJ, Disney MD, Benatar M, Silani V, Glass JD, Floeter MK, Rothstein JD, Boylan KB, Petrucelli L. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci Transl Med 2017; 9:9/383/eaai7866. [PMID: 28356511 DOI: 10.1126/scitranslmed.aai7866] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
Abstract
There is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating motor neuron disease. However, discovery of a G4C2 repeat expansion in the C9ORF72 gene as the most common genetic cause of ALS has opened up new avenues for therapeutic intervention for this form of ALS. G4C2 repeat expansion RNAs and proteins of repeating dipeptides synthesized from these transcripts are believed to play a key role in C9ORF72-associated ALS (c9ALS). Therapeutics that target G4C2 RNA, such as antisense oligonucleotides (ASOs) and small molecules, are thus being actively investigated. A limitation in moving such treatments from bench to bedside is a lack of pharmacodynamic markers for use in clinical trials. We explored whether poly(GP) proteins translated from G4C2 RNA could serve such a purpose. Poly(GP) proteins were detected in cerebrospinal fluid (CSF) and in peripheral blood mononuclear cells from c9ALS patients and, notably, from asymptomatic C9ORF72 mutation carriers. Moreover, CSF poly(GP) proteins remained relatively constant over time, boding well for their use in gauging biochemical responses to potential treatments. Treating c9ALS patient cells or a mouse model of c9ALS with ASOs that target G4C2 RNA resulted in decreased intracellular and extracellular poly(GP) proteins. This decrease paralleled reductions in G4C2 RNA and downstream G4C2 RNA-mediated events. These findings indicate that tracking poly(GP) proteins in CSF could provide a means to assess target engagement of G4C2 RNA-based therapies in symptomatic C9ORF72 repeat expansion carriers and presymptomatic individuals who are expected to benefit from early therapeutic intervention.
Collapse
Affiliation(s)
- Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jeannie Chew
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Lindsey R Hayes
- Brain Science Institute and Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Aliesha O'Raw
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Luc Pregent
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Veronique Belzil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lilia J Tabassian
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chris W Lee
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Linda Rousseau
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Virginia Phillips
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Beth K Rush
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Otto Pedraza
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ana M Caputo
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Pamela Desaro
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Carla Palmucci
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Amelia Robertson
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Nancy N Diehl
- Section of Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Edythe Wiggs
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Tierney
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Braun
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Farren
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Lacomis
- Departments of Neurology and Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Shafeeq Ladha
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christina N Fournier
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Leo F McCluskey
- Department of Neurology and the Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren B Elman
- Department of Neurology and the Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jon B Toledo
- Department of Neurology, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer D McBride
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cinzia Tiloca
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Claudia Morelli
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Barbara Poletti
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Federica Solca
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessandro Prelle
- Department of Neurology and Stroke Unit, Ospedale Maggiore di Crema, Crema, Italy
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL 33136, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | | | - Abhishek Datta
- Protein Chemistry, Biogen Idec, Cambridge, MA 02142, USA
| | - Weixing Yang
- Protein Chemistry, Biogen Idec, Cambridge, MA 02142, USA
| | - Denitza Raitcheva
- Global Biomarker and Drug Discovery, Biogen Idec, Cambridge, MA 02142, USA
| | | | | | - John C Van Swieten
- Department of Neurology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert Bowser
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Murray Grossman
- Department of Neurology and the Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James D Berry
- Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Antonia Ratti
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL 33136, USA
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy
| | - Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mary Kay Floeter
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey D Rothstein
- Brain Science Institute and Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kevin B Boylan
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA. .,Mayo Graduate School, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
91
|
Pinto BS, Saxena T, Oliveira R, Méndez-Gómez HR, Cleary JD, Denes LT, McConnell O, Arboleda J, Xia G, Swanson MS, Wang ET. Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9. Mol Cell 2017; 68:479-490.e5. [PMID: 29056323 PMCID: PMC6013302 DOI: 10.1016/j.molcel.2017.09.033] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/05/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Abstract
Transcription of expanded microsatellite repeats is associated with multiple human diseases, including myotonic dystrophy, Fuchs endothelial corneal dystrophy, and C9orf72-ALS/FTD. Reducing production of RNA and proteins arising from these expanded loci holds therapeutic benefit. Here, we tested the hypothesis that deactivated Cas9 enzyme impedes transcription across expanded microsatellites. We observed a repeat length-, PAM-, and strand-dependent reduction of repeat-containing RNAs upon targeting dCas9 directly to repeat sequences; targeting the non-template strand was more effective. Aberrant splicing patterns were rescued in DM1 cells, and production of RAN peptides characteristic of DM1, DM2, and C9orf72-ALS/FTD cells was drastically decreased. Systemic delivery of dCas9/gRNA by adeno-associated virus led to reductions in pathological RNA foci, rescue of chloride channel 1 protein expression, and decreased myotonia. These observations suggest that transcription of microsatellite repeat-containing RNAs is more sensitive to perturbation than transcription of other RNAs, indicating potentially viable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Belinda S Pinto
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Tanvi Saxena
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Ruan Oliveira
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Héctor R Méndez-Gómez
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - John D Cleary
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Lance T Denes
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Ona McConnell
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Juan Arboleda
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Guangbin Xia
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA; Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
92
|
Rao AN, Cooper TA. A Therapeutic Double Whammy: Transcriptional or Post-transcriptional Suppression of Microsatellite Repeat Toxicity by Cas9. Mol Cell 2017; 68:473-475. [PMID: 29100050 DOI: 10.1016/j.molcel.2017.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microsatellite expansion diseases are caused by unstable tandem repeats of 3-10 nucleotides that become pathogenic beyond a threshold number of copies. Two groups present different approaches to reduce pathogenesis by targeting deactivated Cas9 to either the DNA (Pinto et al., 2017) or the RNA (Batra et al., 2017) repeats with therapeutic potential for several diseases.
Collapse
Affiliation(s)
- Ashish N Rao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas A Cooper
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
93
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
94
|
Abstract
The emerging complexity of the transcriptional landscape poses great challenges to our conventional preconceptions of how the genome regulates brain function and dysfunction. Non-protein-coding RNAs (ncRNAs) confer a high level of intricate and dynamic regulation of various molecular processes in the CNS and they have been implicated in neurodevelopment and brain ageing, as well as in synapse function and cognitive performance, in both health and disease. ncRNA-mediated processes may be involved in various aspects of the pathogenesis of neurodegenerative disorders. Understanding these events may help to develop novel diagnostic and therapeutic tools. Here, we provide an overview of the complex mechanisms that are affected by the diverse ncRNA classes that have been implicated in neurodegeneration.
Collapse
|
95
|
Nassif M, Woehlbier U, Manque PA. The Enigmatic Role of C9ORF72 in Autophagy. Front Neurosci 2017; 11:442. [PMID: 28824365 PMCID: PMC5541066 DOI: 10.3389/fnins.2017.00442] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the loss of motor neurons resulting in a progressive and irreversible muscular paralysis. Advances in large-scale genetics and genomics have revealed intronic hexanucleotide repeat expansions in the gene encoding C9ORF72 as a main genetic cause of ALS and frontotemporal dementia (FTD), the second most common cause of early-onset dementia after Alzheimer's disease. Novel insights regarding the underlying pathogenic mechanisms of C9ORF72 seem to suggest a synergy of loss and gain of toxic function during disease. C9ORF72, thus far, has been found to be involved in homeostatic cellular pathways, such as actin dynamics, regulation of membrane trafficking, and macroautophagy. All these pathways have been found compromised in the pathogenesis of ALS. In this review, we aim to summarize recent findings on the function of C9ORF72, particularly in the macroautophagy pathway, hinting at a requirement to maintain the fine balance of macroautophagy to prevent neurodegeneration.
Collapse
Affiliation(s)
- Melissa Nassif
- Faculty of Science, Center for Integrative Biology, Universidad MayorSantiago, Chile.,Faculty of Science, Center for Genomics and Bioinformatics, Universidad MayorSantiago, Chile
| | - Ute Woehlbier
- Faculty of Science, Center for Integrative Biology, Universidad MayorSantiago, Chile.,Faculty of Science, Center for Genomics and Bioinformatics, Universidad MayorSantiago, Chile
| | - Patricio A Manque
- Faculty of Science, Center for Integrative Biology, Universidad MayorSantiago, Chile.,Faculty of Science, Center for Genomics and Bioinformatics, Universidad MayorSantiago, Chile
| |
Collapse
|
96
|
Achieving Efficient Manufacturing and Quality Assurance through Synthetic Cell Therapy Design. Cell Stem Cell 2017; 20:13-17. [PMID: 28061350 DOI: 10.1016/j.stem.2016.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
New methods to manipulate gene and cell state can be used to engineer cell functionality, simplify quality assessment, and enhance manufacturability. These strategies could help overcome unresolved cell therapy manufacturing challenges and complement frameworks to design quality into these complex cellular systems, ultimately increasing patient access to living therapeutics.
Collapse
|
97
|
Sahashi K, Hashizume A, Sobue G, Katsuno M. Progress toward the development of treatment of spinal and bulbar muscular atrophy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1329088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
98
|
De Conti L, Borroni B, Baralle M. New routes in frontotemporal dementia drug discovery. Expert Opin Drug Discov 2017; 12:659-671. [DOI: 10.1080/17460441.2017.1329294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Laura De Conti
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders - Neurology Unit, University of Brescia, Brescia, Italy
| | - Marco Baralle
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
99
|
Thornton CA, Wang E, Carrell EM. Myotonic dystrophy: approach to therapy. Curr Opin Genet Dev 2017; 44:135-140. [PMID: 28376341 PMCID: PMC5447481 DOI: 10.1016/j.gde.2017.03.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/25/2017] [Accepted: 03/13/2017] [Indexed: 01/16/2023]
Abstract
Myotonic dystrophy (DM) is a dominantly-inherited genetic disorder affecting skeletal muscle, heart, brain, and other organs. DM type 1 is caused by expansion of a CTG triplet repeat in DMPK, whereas DM type 2 is caused by expansion of a CCTG tetramer repeat in CNBP. In both cases the DM mutations lead to expression of dominant-acting RNAs. Studies of RNA toxicity have now revealed novel mechanisms and new therapeutic targets. Preclinical data have suggested that RNA dominance is responsive to therapeutic intervention and that DM therapy can be approached at several different levels. Here we review recent efforts to alleviate RNA toxicity in DM.
Collapse
Affiliation(s)
- Charles A Thornton
- Department of Neurology, University of Rochester, Rochester 14642, NY, United States.
| | - Eric Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, FL, United States
| | - Ellie M Carrell
- Department of Neurology, University of Rochester, Rochester 14642, NY, United States
| |
Collapse
|
100
|
Cleary JD, Ranum LP. New developments in RAN translation: insights from multiple diseases. Curr Opin Genet Dev 2017; 44:125-134. [PMID: 28365506 PMCID: PMC5951168 DOI: 10.1016/j.gde.2017.03.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Since the discovery of repeat-associated non-ATG (RAN) translation, and more recently its association with amyotrophic lateral sclerosis/frontotemporal dementia, there has been an intense focus to understand how this process works and the downstream effects of these novel proteins. RAN translation across several different types of repeat expansions mutations (CAG, CTG, CCG, GGGGCC, GGCCCC) results in the production of proteins in all three reading frames without an ATG initiation codon. The combination of bidirectional transcription and RAN translation has been shown to result in the accumulation of up to six mutant expansion proteins in a growing number of diseases. This process is complex mechanistically and also complex from the perspective of the downstream consequences in disease. Here we review recent developments in RAN translation and their implications on our basic understanding of neurodegenerative disease and gene expression.
Collapse
Affiliation(s)
- John Douglas Cleary
- Center for NeuroGenetics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Laura Pw Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|