51
|
Holoch D, Wassef M, Lövkvist C, Zielinski D, Aflaki S, Lombard B, Héry T, Loew D, Howard M, Margueron R. A cis-acting mechanism mediates transcriptional memory at Polycomb target genes in mammals. Nat Genet 2021; 53:1686-1697. [PMID: 34782763 DOI: 10.1038/s41588-021-00964-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/05/2021] [Indexed: 11/09/2022]
Abstract
Epigenetic inheritance of gene expression states enables a single genome to maintain distinct cellular identities. How histone modifications contribute to this process remains unclear. Using global chromatin perturbations and local, time-controlled modulation of transcription, we establish the existence of epigenetic memory of transcriptional activation for genes that can be silenced by the Polycomb group. This property emerges during cell differentiation and allows genes to be stably switched after a transient transcriptional stimulus. This transcriptional memory state at Polycomb targets operates in cis; however, rather than relying solely on read-and-write propagation of histone modifications, the memory is also linked to the strength of activating inputs opposing Polycomb proteins, and therefore varies with the cellular context. Our data and computational simulations suggest a model whereby transcriptional memory arises from double-negative feedback between Polycomb-mediated silencing and active transcription. Transcriptional memory at Polycomb targets thus depends not only on histone modifications but also on the gene-regulatory network and underlying identity of a cell.
Collapse
Affiliation(s)
- Daniel Holoch
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France.,INSERM U934/CNRS UMR 3215, Paris, France
| | - Michel Wassef
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France.,INSERM U934/CNRS UMR 3215, Paris, France
| | - Cecilia Lövkvist
- John Innes Centre, Norwich Research Park, Norwich, UK. .,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| | - Dina Zielinski
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France.,INSERM U934/CNRS UMR 3215, Paris, France.,INSERM U900, Mines ParisTech, Paris, France
| | - Setareh Aflaki
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France.,INSERM U934/CNRS UMR 3215, Paris, France
| | - Bérangère Lombard
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France.,Proteomics Mass Spectrometry Laboratory, Paris, France
| | - Tiphaine Héry
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France.,INSERM U934/CNRS UMR 3215, Paris, France
| | - Damarys Loew
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France.,Proteomics Mass Spectrometry Laboratory, Paris, France
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Raphaël Margueron
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France. .,INSERM U934/CNRS UMR 3215, Paris, France.
| |
Collapse
|
52
|
Vigneau J, Borg M. The epigenetic origin of life history transitions in plants and algae. PLANT REPRODUCTION 2021; 34:267-285. [PMID: 34236522 PMCID: PMC8566409 DOI: 10.1007/s00497-021-00422-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 05/17/2023]
Abstract
Plants and algae have a complex life history that transitions between distinct life forms called the sporophyte and the gametophyte. This phenomenon-called the alternation of generations-has fascinated botanists and phycologists for over 170 years. Despite the mesmerizing array of life histories described in plants and algae, we are only now beginning to learn about the molecular mechanisms controlling them and how they evolved. Epigenetic silencing plays an essential role in regulating gene expression during multicellular development in eukaryotes, raising questions about its impact on the life history strategy of plants and algae. Here, we trace the origin and function of epigenetic mechanisms across the plant kingdom, from unicellular green algae through to angiosperms, and attempt to reconstruct the evolutionary steps that influenced life history transitions during plant evolution. Central to this evolutionary scenario is the adaption of epigenetic silencing from a mechanism of genome defense to the repression and control of alternating generations. We extend our discussion beyond the green lineage and highlight the peculiar case of the brown algae. Unlike their unicellular diatom relatives, brown algae lack epigenetic silencing pathways common to animals and plants yet display complex life histories, hinting at the emergence of novel life history controls during stramenopile evolution.
Collapse
Affiliation(s)
- Jérômine Vigneau
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
53
|
Xie W, Tang Q, Yan F, Tao Z. Transcriptional memory and response to adverse temperatures in plants. J Zhejiang Univ Sci B 2021; 22:791-804. [PMID: 34636184 DOI: 10.1631/jzus.b2100287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Temperature is one of the major environmental signals controlling plant development, geographical distribution, and seasonal behavior. Plants perceive adverse temperatures, such as high, low, and freezing temperatures, as stressful signals that can cause physiological defects and even death. As sessile organisms, plants have evolved sophisticated mechanisms to adapt to recurring stressful environments through changing gene expression or transcriptional reprogramming. Transcriptional memory refers to the ability of primed plants to remember previously experienced stress and acquire enhanced tolerance to similar or different stresses. Epigenetic modifications mediate transcriptional memory and play a key role in adapting to adverse temperatures. Understanding the mechanisms of the formation, maintenance, and resetting of stress-induced transcriptional memory will not only enable us to understand why there is a trade-off between plant defense and growth, but also provide a theoretical basis for generating stress-tolerant crops optimized for future climate change. In this review, we summarize recent advances in dissecting the mechanisms of plant transcriptional memory in response to adverse temperatures, based mainly on studies of the model plant Arabidopsis thaliana. We also discuss remaining questions that are important for further understanding the mechanisms of transcriptional memory during the adverse temperature response.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qianqian Tang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fei Yan
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China. .,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
54
|
Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction. Nat Commun 2021; 12:5888. [PMID: 34620850 PMCID: PMC8497513 DOI: 10.1038/s41467-021-26147-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Organization of the genome into transcriptionally active euchromatin and silenced heterochromatin is essential for eukaryotic cell function. Phase-separation has been implicated in heterochromatin formation, but it is unclear how phase-separated condensates can contribute to stable repression, particularly for heritable epigenetic changes. Polycomb complex PRC1 is key for heterochromatin formation, but the multitude of Polycomb proteins has hindered our understanding of their collective contribution to chromatin repression. Here, we show that PRC1 forms multicomponent condensates through hetero-oligomerization. They preferentially seed at H3K27me3 marks, and subsequently write H2AK119Ub marks. We show that inducing Polycomb phase-separation can cause chromatin compaction, but polycomb condensates are dispensable for maintenance of the compacted state. Our data and simulations are consistent with a model in which the time integral of Polycomb phase-separation is progressively recorded in repressive histone marks, which subsequently drive compaction. These findings link the equilibrium thermodynamics of phase-separation with the fundamentally non-equilibrium concept of epigenetic memory. Phase separation has been suggested as a mechanism for heterochromatin formation through condensation of heterochromatin-associated factors. Here the authors show Polycomb complex PRC1 forms condensates on chromatin. Using optogenetic tools they nucleate local Polycomb condensates to show that this phase separation leads to subsequent histone modifications and chromatin compaction.
Collapse
|
55
|
Gibert JM, Peronnet F. The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization. INSECTS 2021; 12:884. [PMID: 34680653 PMCID: PMC8537509 DOI: 10.3390/insects12100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/06/2023]
Abstract
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Frédérique Peronnet
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| |
Collapse
|
56
|
Flora P, Dalal G, Cohen I, Ezhkova E. Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells. Genes (Basel) 2021; 12:1485. [PMID: 34680880 PMCID: PMC8535826 DOI: 10.3390/genes12101485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Populations of resident stem cells (SCs) are responsible for maintaining, repairing, and regenerating adult tissues. In addition to having the capacity to generate all the differentiated cell types of the tissue, adult SCs undergo long periods of quiescence within the niche to maintain themselves. The process of SC renewal and differentiation is tightly regulated for proper tissue regeneration throughout an organisms' lifetime. Epigenetic regulators, such as the polycomb group (PcG) of proteins have been implicated in modulating gene expression in adult SCs to maintain homeostatic and regenerative balances in adult tissues. In this review, we summarize the recent findings that elucidate the composition and function of the polycomb repressive complex machinery and highlight their role in diverse adult stem cell compartments.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| | - Gil Dalal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| |
Collapse
|
57
|
Lövkvist C, Mikulski P, Reeck S, Hartley M, Dean C, Howard M. Hybrid protein assembly-histone modification mechanism for PRC2-based epigenetic switching and memory. eLife 2021; 10:66454. [PMID: 34473050 PMCID: PMC8412945 DOI: 10.7554/elife.66454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
The histone modification H3K27me3 plays a central role in Polycomb-mediated epigenetic silencing. H3K27me3 recruits and allosterically activates Polycomb Repressive Complex 2 (PRC2), which adds this modification to nearby histones, providing a read/write mechanism for inheritance through DNA replication. However, for some PRC2 targets, a purely histone-based system for epigenetic inheritance may be insufficient. We address this issue at the Polycomb target FLOWERING LOCUS C (FLC) in Arabidopsis thaliana, as a narrow nucleation region of only ~three nucleosomes within FLC mediates epigenetic state switching and subsequent memory over many cell cycles. To explain the memory's unexpected persistence, we introduce a mathematical model incorporating extra protein memory storage elements with positive feedback that persist at the locus through DNA replication, in addition to histone modifications. Our hybrid model explains many features of epigenetic switching/memory at FLC and encapsulates generic mechanisms that may be widely applicable.
Collapse
Affiliation(s)
- Cecilia Lövkvist
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Pawel Mikulski
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Svenja Reeck
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom.,Cell and Developmental Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Matthew Hartley
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom
| |
Collapse
|
58
|
Histone H3K27 methylation-mediated repression of Hairy regulates insect developmental transition by modulating ecdysone biosynthesis. Proc Natl Acad Sci U S A 2021; 118:2101442118. [PMID: 34429358 DOI: 10.1073/pnas.2101442118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insect development is cooperatively orchestrated by the steroid hormone ecdysone and juvenile hormone (JH). The polycomb repressive complex 2 (PRC2)-mediated histone H3K27 trimethylation (H3K27me3) epigenetically silences gene transcription and is essential for a range of biological processes, but the functions of H3K27 methylation in insect hormone action are poorly understood. Here, we demonstrate that H3K27 methylation-mediated repression of Hairy transcription in the larval prothoracic gland (PG) is required for ecdysone biosynthesis in Bombyx and Drosophila H3K27me3 levels in the PG are dynamically increased during the last larval instar. H3K27me3 reduction induced by the down-regulation of PRC2 activity via inhibitor treatment in Bombyx or PG-specific knockdown of the PRC2 component Su(z)12 in Drosophila diminishes ecdysone biosynthesis and disturbs the larval-pupal transition. Mechanistically, H3K27 methylation targets the JH signal transducer Hairy to repress its transcription in the PG; PG-specific knockdown or overexpression of the Hairy gene disrupts ecdysone biosynthesis and developmental transition; and developmental defects caused by PG-specific Su(z)12 knockdown can be partially rescued by Hairy down-regulation. The application of JH mimic to the PG decreases both H3K27me3 levels and Su(z)12 expression. Altogether, our study reveals that PRC2-mediated H3K27 methylation at Hairy in the PG during the larval period is required for ecdysone biosynthesis and the larval-pupal transition and provides insights into epigenetic regulation of the crosstalk between JH and ecdysone during insect development.
Collapse
|
59
|
Wang X, Paulo JA, Li X, Zhou H, Yu J, Gygi SP, Moazed D. A composite DNA element that functions as a maintainer required for epigenetic inheritance of heterochromatin. Mol Cell 2021; 81:3979-3991.e4. [PMID: 34375584 DOI: 10.1016/j.molcel.2021.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Epigenetic inheritance of heterochromatin requires DNA-sequence-independent propagation mechanisms, coupling to RNAi, or input from DNA sequence, but how DNA contributes to inheritance is not understood. Here, we identify a DNA element (termed "maintainer") that is sufficient for epigenetic inheritance of pre-existing histone H3 lysine 9 methylation (H3K9me) and heterochromatin in Schizosaccharomyces pombe but cannot establish de novo gene silencing in wild-type cells. This maintainer is a composite DNA element with binding sites for the Atf1/Pcr1 and Deb1 transcription factors and the origin recognition complex (ORC), located within a 130-bp region, and can be converted to a silencer in cells with lower rates of H3K9me turnover, suggesting that it participates in recruiting the H3K9 methyltransferase Clr4/Suv39h. These results suggest that, in the absence of RNAi, histone H3K9me is only heritable when it can collaborate with maintainer-associated DNA-binding proteins that help recruit the enzyme responsible for its epigenetic deposition.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xue Li
- Bioinformatics and Integrative Biology Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Haining Zhou
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Juntao Yu
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
60
|
Zhang C, Macchi F, Magnani E, Sadler KC. Chromatin states shaped by an epigenetic code confer regenerative potential to the mouse liver. Nat Commun 2021; 12:4110. [PMID: 34226551 PMCID: PMC8257577 DOI: 10.1038/s41467-021-24466-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
We hypothesized that the highly controlled pattern of gene expression that is essential for liver regeneration is encoded by an epigenetic code set in quiescent hepatocytes. Here we report that epigenetic and transcriptomic profiling of quiescent and regenerating mouse livers define chromatin states that dictate gene expression and transposon repression. We integrate ATACseq and DNA methylation profiling with ChIPseq for the histone marks H3K4me3, H3K27me3 and H3K9me3 and the histone variant H2AZ to identify 6 chromatin states with distinct functional characteristics. We show that genes involved in proliferation reside in active states, but are marked with H3K27me3 and silenced in quiescent livers. We find that during regeneration, H3K27me3 is depleted from their promoters, facilitating their dynamic expression. These findings demonstrate that hepatic chromatin states in quiescent livers predict gene expression and that pro-regenerative genes are maintained in active chromatin states, but are restrained by H3K27me3, permitting a rapid and synchronized response during regeneration.
Collapse
Affiliation(s)
- Chi Zhang
- grid.440573.1Biology Program, NYU Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Filippo Macchi
- grid.440573.1Biology Program, NYU Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Elena Magnani
- grid.440573.1Biology Program, NYU Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kirsten C. Sadler
- grid.440573.1Biology Program, NYU Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
61
|
Petracovici A, Bonasio R. Distinct PRC2 subunits regulate maintenance and establishment of Polycomb repression during differentiation. Mol Cell 2021; 81:2625-2639.e5. [PMID: 33887196 PMCID: PMC8217195 DOI: 10.1016/j.molcel.2021.03.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
The Polycomb repressive complex 2 (PRC2) is an essential epigenetic regulator that deposits repressive H3K27me3. PRC2 subunits form two holocomplexes-PRC2.1 and PRC2.2-but the roles of these two PRC2 assemblies during differentiation are unclear. We employed auxin-inducible degradation to deplete PRC2.1 subunit MTF2 or PRC2.2 subunit JARID2 during differentiation of embryonic stem cells (ESCs) to neural progenitors (NPCs). Depletion of either MTF2 or JARID2 resulted in incomplete differentiation due to defects in gene regulation. Distinct sets of Polycomb target genes were derepressed in the absence of MTF2 or JARID2. MTF2-sensitive genes were marked by H3K27me3 in ESCs and remained silent during differentiation, whereas JARID2-sensitive genes were preferentially active in ESCs and became newly repressed in NPCs. Thus, MTF2 and JARID2 contribute non-redundantly to Polycomb silencing, suggesting that PRC2.1 and PRC2.2 have distinct functions in maintaining and establishing, respectively, Polycomb repression during differentiation.
Collapse
Affiliation(s)
- Ana Petracovici
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
62
|
Menon G, Schulten A, Dean C, Howard M. Digital paradigm for Polycomb epigenetic switching and memory. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102012. [PMID: 33662809 PMCID: PMC8250048 DOI: 10.1016/j.pbi.2021.102012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 05/04/2023]
Abstract
How epigenetic memory states are established and maintained is a central question in gene regulation. A major epigenetic process important for developmental biology involves Polycomb-mediated chromatin silencing. Significant progress has recently been made on elucidating Polycomb silencing in plant systems through analysis of Arabidopsis FLOWERING LOCUS C (FLC). Quantitative silencing of FLC by prolonged cold exposure was shown to represent an ON to OFF switch in an increasing proportion of cells. Here, we review the underlying all-or-nothing, digital paradigm for Polycomb epigenetic silencing. We then examine other Arabidopsis Polycomb-regulated targets where digital regulation may also be relevant.
Collapse
Affiliation(s)
- Govind Menon
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anna Schulten
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
63
|
He K, Cao X, Deng X. Histone methylation in epigenetic regulation and temperature responses. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102001. [PMID: 33508540 DOI: 10.1016/j.pbi.2021.102001] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 05/26/2023]
Abstract
Methylation of histones on different lysine residues is dynamically added by distinct writer enzymes, interpreted by reader proteins, and removed by eraser enzymes. This epigenetic mark has widespread, dynamic roles in plant development and environmental responses. For example, histone methylation plays a key role in mediating plant responses to temperature, including alterations of flowering time. In this review, we summarize recent advances in understanding the mechanism by which histone methylation regulates these processes, and discuss the role of histone methylation in temperature responses, based on data from Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kaixuan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
64
|
Pease NA, Nguyen PHB, Woodworth MA, Ng KKH, Irwin B, Vaughan JC, Kueh HY. Tunable, division-independent control of gene activation timing by a polycomb switch. Cell Rep 2021; 34:108888. [PMID: 33761349 PMCID: PMC8024876 DOI: 10.1016/j.celrep.2021.108888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 01/09/2023] Open
Abstract
During development, progenitors often differentiate many cell generations after receiving signals. These delays must be robust yet tunable for precise population size control. Polycomb repressive mechanisms, involving histone H3 lysine-27 trimethylation (H3K27me3), restrain the expression of lineage-specifying genes in progenitors and may delay their activation and ensuing differentiation. Here, we elucidate an epigenetic switch controlling the T cell commitment gene Bcl11b that holds its locus in a heritable inactive state for multiple cell generations before activation. Integrating experiments and modeling, we identify a mechanism where H3K27me3 levels at Bcl11b, regulated by methyltransferase and demethylase activities, set the time delay at which the locus switches from a compacted, silent state to an extended, active state. This activation delay robustly spans many cell generations, is tunable by chromatin modifiers and transcription factors, and is independent of cell division. With their regulatory flexibility, such timed epigenetic switches may broadly control timing in development.
Collapse
Affiliation(s)
- Nicholas A Pease
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Phuc H B Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Marcus A Woodworth
- Biological Physics, Structure and Design Program, University of Washington, Seattle, WA 98195, USA; Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kenneth K H Ng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Blythe Irwin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
65
|
Elsherbiny A, Dobreva G. Epigenetic memory of cell fate commitment. Curr Opin Cell Biol 2021; 69:80-87. [PMID: 33535129 DOI: 10.1016/j.ceb.2020.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022]
Abstract
During development, discrete cell fates are established in precise spatiotemporal order guided by morphogen signals. These signals converge in the nucleus to induce transcriptional and epigenetic programming that determines cell fate. Once cell identity is established, cell programs have to be accurately sustained through multiple rounds of cell division, during which DNA replication serves as a window of opportunity for altering cell fate. In this review, we summarize recent advances in understanding the molecular players that underlie epigenetic memory of cell fate decisions, with a particular focus on histone modifications and mitotic bookmarking factors. We also discuss the different mechanisms of inheritance of repressed and active chromatin states.
Collapse
Affiliation(s)
- Adel Elsherbiny
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (DZHK), Germany
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (DZHK), Germany.
| |
Collapse
|
66
|
Parental nucleosome segregation and the inheritance of cellular identity. Nat Rev Genet 2021; 22:379-392. [PMID: 33500558 DOI: 10.1038/s41576-020-00312-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Gene expression programmes conferring cellular identity are achieved through the organization of chromatin structures that either facilitate or impede transcription. Among the key determinants of chromatin organization are the histone modifications that correlate with a given transcriptional status and chromatin state. Until recently, the details for the segregation of nucleosomes on DNA replication and their implications in re-establishing heritable chromatin domains remained unclear. Here, we review recent findings detailing the local segregation of parental nucleosomes and highlight important advances as to how histone methyltransferases associated with the establishment of repressive chromatin domains facilitate epigenetic inheritance.
Collapse
|
67
|
Auboiron M, Vasseur P, Tonazzini S, Fall A, Castro FR, Sučec I, El Koulali K, Urbach S, Radman-Livaja M. TrIPP-a method for tracking the inheritance patterns of proteins in living cells-reveals retention of Tup1p, Fpr4p, and Rpd3L in the mother cell. iScience 2021; 24:102075. [PMID: 33644711 PMCID: PMC7889982 DOI: 10.1016/j.isci.2021.102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/27/2020] [Accepted: 01/15/2021] [Indexed: 01/16/2023] Open
Abstract
Inheritance of chromatin-bound proteins theoretically plays a role in the epigenetic transmission of cellular phenotypes. Protein segregation during cell division is however poorly understood. We now describe TrIPP (Tracking the Inheritance Patterns of Proteins): a live cell imaging method for tracking maternal proteins during asymmetric cell divisions of budding yeast. Our analysis of the partitioning pattern of a test set of 18 chromatin-associated proteins reveals that abundant and moderately abundant maternal proteins segregate stochastically and symmetrically between the two cells with the exception of Rxt3p, Fpr4p, and Tup1p, which are preferentially retained in the mother. Low abundance proteins also tend to be retained in the mother cell with the exception of Sir2p and the linker histone H1. Our analysis of chromatin protein behavior in single cells reveals potentially general trends such as coupled protein synthesis and decay and a correlation between protein half-lives and cell-cycle duration.
Collapse
Affiliation(s)
- Morgane Auboiron
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Pauline Vasseur
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Saphia Tonazzini
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Arame Fall
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Francesc Rubert Castro
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Iva Sučec
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Khadija El Koulali
- Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France.,Functional Proteomics Platform, IGF _ CNRS INSERM, Université de Montpellier, 141 rue de la Cardonille, 34094 Montpellier cedex 5, France
| | - Serge Urbach
- Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France.,Functional Proteomics Platform, IGF _ CNRS INSERM, Université de Montpellier, 141 rue de la Cardonille, 34094 Montpellier cedex 5, France
| | - Marta Radman-Livaja
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
68
|
Liu X. A Structural Perspective on Gene Repression by Polycomb Repressive Complex 2. Subcell Biochem 2020; 96:519-562. [PMID: 33252743 DOI: 10.1007/978-3-030-58971-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2) is a major repressive chromatin complex formed by the Polycomb Group (PcG) proteins. PRC2 mediates trimethylation of histone H3 lysine 27 (H3K27me3), a hallmark of gene silencing. PRC2 is a key regulator of development, impacting many fundamental biological processes, like stem cell differentiation in mammals and vernalization in plants. Misregulation of PRC2 function is linked to a variety of human cancers and developmental disorders. In correlation with its diverse roles in development, PRC2 displays a high degree of compositional complexity and plasticity. Structural biology research over the past decade has shed light on the molecular mechanisms of the assembly, catalysis, allosteric activation, autoinhibition, chemical inhibition, dimerization and chromatin targeting of various developmentally regulated PRC2 complexes. In addition to these aspects, structure-function analysis is also discussed in connection with disease data in this chapter.
Collapse
Affiliation(s)
- Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
69
|
Control of Drosophila wing size by morphogen range and hormonal gating. Proc Natl Acad Sci U S A 2020; 117:31935-31944. [PMID: 33257577 DOI: 10.1073/pnas.2018196117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The stereotyped dimensions of animal bodies and their component parts result from tight constraints on growth. Yet, the mechanisms that stop growth when organs reach the right size are unknown. Growth of the Drosophila wing-a classic paradigm-is governed by two morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Wing growth during larval life ceases when the primordium attains full size, concomitant with the larval-to-pupal molt orchestrated by the steroid hormone ecdysone. Here, we block the molt by genetically dampening ecdysone production, creating an experimental paradigm in which the wing stops growing at the correct size while the larva continues to feed and gain body mass. Under these conditions, we show that wing growth is limited by the ranges of Dpp and Wg, and by ecdysone, which regulates the cellular response to their signaling activities. Further, we present evidence that growth terminates because of the loss of two distinct modes of morphogen action: 1) maintenance of growth within the wing proper and 2) induced growth of surrounding "pre-wing" cells and their recruitment into the wing. Our results provide a precedent for the control of organ size by morphogen range and the hormonal gating of morphogen action.
Collapse
|
70
|
Lismer A, Siklenka K, Lafleur C, Dumeaux V, Kimmins S. Sperm histone H3 lysine 4 trimethylation is altered in a genetic mouse model of transgenerational epigenetic inheritance. Nucleic Acids Res 2020; 48:11380-11393. [PMID: 33068438 PMCID: PMC7672453 DOI: 10.1093/nar/gkaa712] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/11/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Advancing the molecular knowledge surrounding fertility and inheritance has become critical given the halving of sperm counts in the last 40 years, and the rise in complex disease which cannot be explained by genetics alone. The connection between both these trends may lie in alterations to the sperm epigenome and occur through environmental exposures. Changes to the sperm epigenome are also associated with health risks across generations such as metabolic disorders and cancer. Thus, it is imperative to identify the epigenetic modifications that escape reprogramming during spermatogenesis and embryogenesis. Here, we aimed to identify the chromatin signature(s) involved in transgenerational phenotypes in our genetic mouse model of epigenetic inheritance that overexpresses the histone demethylase KDM1A in their germ cells. We used sperm-specific chromatin immunoprecipitation followed by in depth sequencing (ChIP-seq), and computational analysis to identify whether differential enrichment of histone H3 lysine 4 trimethylation (H3K4me3), and histone H3 lysine 27 trimethylation (H3K27me3) serve as mechanisms for transgenerational epigenetic inheritance through the paternal germline. Our analysis on the sperm of KDM1A transgenic males revealed specific changes in H3K4me3 enrichment that predominantly occurred independently from bivalent H3K4me3/H3K27me3 regions. Many regions with altered H3K4me3 enrichment in sperm were identified on the paternal allele of the pre-implantation embryo. These findings suggest that sperm H3K4me3 functions in the transmission of non-genetic phenotypes transgenerationally.
Collapse
Affiliation(s)
- Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Canada
| | - Keith Siklenka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Canada
| | - Christine Lafleur
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Vanessa Dumeaux
- PERFORM Center and Department of Biology, Concordia University, Montreal, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| |
Collapse
|
71
|
Vaziri A, Khabiri M, Genaw BT, May CE, Freddolino PL, Dus M. Persistent epigenetic reprogramming of sweet taste by diet. SCIENCE ADVANCES 2020; 6:6/46/eabc8492. [PMID: 33177090 PMCID: PMC7673743 DOI: 10.1126/sciadv.abc8492] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 05/25/2023]
Abstract
Diets rich in sugar, salt, and fat alter taste perception and food preference, contributing to obesity and metabolic disorders, but the molecular mechanisms through which this occurs are unknown. Here, we show that in response to a high sugar diet, the epigenetic regulator Polycomb Repressive Complex 2.1 (PRC2.1) persistently reprograms the sensory neurons of Drosophila melanogaster flies to reduce sweet sensation and promote obesity. In animals fed high sugar, the binding of PRC2.1 to the chromatin of the sweet gustatory neurons is redistributed to repress a developmental transcriptional network that modulates the responsiveness of these cells to sweet stimuli, reducing sweet sensation. Half of these transcriptional changes persist despite returning the animals to a control diet, causing a permanent decrease in sweet taste. Our results uncover a new epigenetic mechanism that, in response to the dietary environment, regulates neural plasticity and feeding behavior to promote obesity.
Collapse
Affiliation(s)
- Anoumid Vaziri
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
| | - Morteza Khabiri
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendan T Genaw
- Program in Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christina E May
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
- The Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica Dus
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA.
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
- Program in Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI, 48109, USA
- The Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
| |
Collapse
|
72
|
Identification, expression, and artificial selection of silkworm epigenetic modification enzymes. BMC Genomics 2020; 21:740. [PMID: 33096977 PMCID: PMC7585183 DOI: 10.1186/s12864-020-07155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the genetic basis of phenotype variations during domestication and breeding is of great interest. Epigenetics and epigenetic modification enzymes (EMEs) may play a role in phenotypic variations; however, no comprehensive study has been performed to date. Domesticated silkworm (Bombyx mori) may be utilized as a model in determining how EMEs influence domestication traits. Results We identified 44 EMEs in the genome of silkworm (Bombyx mori) using homology searching. Phylogenetic analysis showed that genes in a subfamily among different animals were well clustered, and the expression pattern of EMEs is constant among Bombyx mori, Drosophila melanogaster, and Mus musculus. These are most highly expressed in brain, early embryo, and internal genitalia. By gene-related selective sweeping, we identified five BmEMEs under artificial selection during the domestication and breeding of silkworm. Among these selected genes, BmSuv4–20 and BmDNMT2 harbor selective mutations in their upstream regions that alter transcription factor-binding sites. Furthermore, these two genes are expressed higher in the testis and ovary of domesticated silkworm compared to wild silkworms, and correlations between their expression pattern and meiosis of the sperm and ova were observed. Conclusions The domestication of silkworm has induced artificial selection on epigenetic modification markers that may have led to phenotypic changes during domestication. We present a novel perspective to understand the genetic basis underlying animal domestication and breeding. Supplementary information Supplementary information accompanies this paper at 10.1186/s12864-020-07155-z.
Collapse
|
73
|
Domain Model Explains Propagation Dynamics and Stability of Histone H3K27 and H3K36 Methylation Landscapes. Cell Rep 2020; 30:1223-1234.e8. [PMID: 31995760 DOI: 10.1016/j.celrep.2019.12.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 01/12/2023] Open
Abstract
Chromatin states must be maintained during cell proliferation to uphold cellular identity and genome integrity. Inheritance of histone modifications is central in this process. However, the histone modification landscape is challenged by incorporation of new unmodified histones during each cell cycle, and the principles governing heritability remain unclear. We take a quantitative computational modeling approach to describe propagation of histone H3K27 and H3K36 methylation states. We measure combinatorial H3K27 and H3K36 methylation patterns by quantitative mass spectrometry on subsequent generations of histones. Using model comparison, we reject active global demethylation and invoke the existence of domains defined by distinct methylation endpoints. We find that H3K27me3 on pre-existing histones stimulates the rate of de novo H3K27me3 establishment, supporting a read-write mechanism in timely chromatin restoration. Finally, we provide a detailed quantitative picture of the mutual antagonism between H3K27 and H3K36 methylation and propose that it stabilizes epigenetic states across cell division.
Collapse
|
74
|
Abstract
The interaction between polycomb-repressive complexes 1/2 (PRC1/2) and long non-coding RNA (lncRNA), such as the X inactive specific transcript Xist and the HOX transcript antisense RNA (HOTAIR), has been the subject of intense debate. While cross-linking, immuno-precipitation and super-resolution microscopy argue against direct interaction of Polycomb with some lncRNAs, there is increasing evidence supporting the ability of both PRC1 and PRC2 to functionally associate with RNA. Recent data indicate that these interactions are in most cases spurious, but nonetheless crucial for a number of cellular activities. In this review, we suggest that while PRC1/2 recruitment by HOTAIR might be direct, in the case of Xist, it might occur indirectly and, at least in part, through the process of liquid-liquid phase separation. We present recent models of lncRNA-mediated PRC1/2 recruitment to their targets and describe potential RNA-mediated roles in the three-dimensional organization of the nucleus.
Collapse
Affiliation(s)
- Andrea Cerase
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluis Companys, 08010 Barcelona, Spain.,Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
75
|
Francis NJ, Sihou D. Inheritance of Histone (H3/H4): A Binary Choice? Trends Biochem Sci 2020; 46:5-14. [PMID: 32917507 DOI: 10.1016/j.tibs.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Histones carry information in the form of post-translational modifications (PTMs). For this information to be propagated through cell cycles, parental histones and their PTMs need to be maintained at the same genomic locations. Yet, during DNA replication, every nucleosome in the genome is disrupted to allow passage of the replisome. Recent data have identified histone chaperone activities that are intrinsic components of the replisome and implicate them in maintaining parental histones during DNA replication. We propose that structural and kinetic coordination between DNA replication and replisome-associated histone chaperone activities ensures positional inheritance of histones and their PTMs. When this coordination is perturbed, histones may instead be recycled to random genomic locations by alternative histone chaperones.
Collapse
Affiliation(s)
- Nicole J Francis
- Institut de Recherche Clinique de Montréal, 110 Avenue des Pins, Montréal, QC H2W 1R7, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada.
| | - Djamouna Sihou
- Institut de Recherche Clinique de Montréal, 110 Avenue des Pins, Montréal, QC H2W 1R7, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
76
|
Giner-Laguarda N, Vidal M. Functions of Polycomb Proteins on Active Targets. EPIGENOMES 2020; 4:17. [PMID: 34968290 PMCID: PMC8594714 DOI: 10.3390/epigenomes4030017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin regulators of the Polycomb group of genes are well-known by their activities as transcriptional repressors. Characteristically, their presence at genomic sites occurs with specific histone modifications and sometimes high-order chromatin structures correlated with silencing of genes involved in cell differentiation. However, evidence gathered in recent years, on flies and mammals, shows that in addition to these sites, Polycomb products bind to a large number of active regulatory regions. Occupied sites include promoters and also intergenic regions, containing enhancers and super-enhancers. Contrasting with occupancies at repressed targets, characteristic histone modifications are low or undetectable. Functions on active targets are dual, restraining gene expression at some targets while promoting activity at others. Our aim here is to summarize the evidence available and discuss the convenience of broadening the scope of research to include Polycomb functions on active targets.
Collapse
Affiliation(s)
| | - Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| |
Collapse
|
77
|
Ridenour JB, Möller M, Freitag M. Polycomb Repression without Bristles: Facultative Heterochromatin and Genome Stability in Fungi. Genes (Basel) 2020; 11:E638. [PMID: 32527036 PMCID: PMC7348808 DOI: 10.3390/genes11060638] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Genome integrity is essential to maintain cellular function and viability. Consequently, genome instability is frequently associated with dysfunction in cells and associated with plant, animal, and human diseases. One consequence of relaxed genome maintenance that may be less appreciated is an increased potential for rapid adaptation to changing environments in all organisms. Here, we discuss evidence for the control and function of facultative heterochromatin, which is delineated by methylation of histone H3 lysine 27 (H3K27me) in many fungi. Aside from its relatively well understood role in transcriptional repression, accumulating evidence suggests that H3K27 methylation has an important role in controlling the balance between maintenance and generation of novelty in fungal genomes. We present a working model for a minimal repressive network mediated by H3K27 methylation in fungi and outline challenges for future research.
Collapse
Affiliation(s)
| | | | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis OR 97331, USA; (J.B.R.); (M.M.)
| |
Collapse
|
78
|
Shipkovenska G, Durango A, Kalocsay M, Gygi SP, Moazed D. A conserved RNA degradation complex required for spreading and epigenetic inheritance of heterochromatin. eLife 2020; 9:54341. [PMID: 32491985 PMCID: PMC7269676 DOI: 10.7554/elife.54341] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Heterochromatic domains containing histone H3 lysine 9 methylation (H3K9me) can be epigenetically inherited independently of underlying DNA sequence. To gain insight into the mechanisms that mediate epigenetic inheritance, we used a Schizosaccharomyces pombe inducible heterochromatin formation system to perform a genetic screen for mutations that abolish heterochromatin inheritance without affecting its establishment. We identified mutations in several pathways, including the conserved and essential Rix1-associated complex (henceforth the rixosome), which contains RNA endonuclease and polynucleotide kinase activities with known roles in ribosomal RNA processing. We show that the rixosome is required for spreading and epigenetic inheritance of heterochromatin in fission yeast. Viable rixosome mutations that disrupt its association with Swi6/HP1 fail to localize to heterochromatin, lead to accumulation of heterochromatic RNAs, and block spreading of H3K9me and silencing into actively transcribed regions. These findings reveal a new pathway for degradation of heterochromatic RNAs with essential roles in heterochromatin spreading and inheritance.
Collapse
Affiliation(s)
- Gergana Shipkovenska
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Alexander Durango
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Marian Kalocsay
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
79
|
Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, Axelsson E, Kawashima T, Voigt P, Boavida L, Becker J, Higashiyama T, Martienssen R, Berger F. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol 2020; 22:621-629. [PMID: 32393884 PMCID: PMC7116658 DOI: 10.1038/s41556-020-0515-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Epigenetic marks are reprogrammed in the gametes to reset genomic potential in the next generation. In mammals, paternal chromatin is extensively reprogrammed through the global erasure of DNA methylation and the exchange of histones with protamines1,2. Precisely how the paternal epigenome is reprogrammed in flowering plants has remained unclear since DNA is not demethylated and histones are retained in sperm3,4. Here, we describe a multi-layered mechanism by which H3K27me3 is globally lost from histone-based sperm chromatin in Arabidopsis. This mechanism involves the silencing of H3K27me3 writers, activity of H3K27me3 erasers and deposition of a sperm-specific histone, H3.10 (ref. 5), which we show is immune to lysine 27 methylation. The loss of H3K27me3 facilitates the transcription of genes essential for spermatogenesis and pre-configures sperm with a chromatin state that forecasts gene expression in the next generation. Thus, plants have evolved a specific mechanism to simultaneously differentiate male gametes and reprogram the paternal epigenome.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Yannick Jacob
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Daichi Susaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Daniel Buendía
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Tomokazu Kawashima
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Philipp Voigt
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - Leonor Boavida
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jörg Becker
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Robert Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
80
|
Jadhav U, Manieri E, Nalapareddy K, Madha S, Chakrabarti S, Wucherpfennig K, Barefoot M, Shivdasani RA. Replicational Dilution of H3K27me3 in Mammalian Cells and the Role of Poised Promoters. Mol Cell 2020; 78:141-151.e5. [PMID: 32027840 PMCID: PMC7376365 DOI: 10.1016/j.molcel.2020.01.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/02/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Polycomb repressive complex 2 (PRC2) places H3K27me3 at developmental genes and is causally implicated in keeping bivalent genes silent. It is unclear if that silence requires minimum H3K27me3 levels and how the mark transmits faithfully across mammalian somatic cell generations. Mouse intestinal cells lacking EZH2 methyltransferase reduce H3K27me3 proportionately at all PRC2 target sites, but ∼40% uniform residual levels keep target genes inactive. These genes, derepressed in PRC2-null villus cells, remain silent in intestinal stem cells (ISCs). Quantitative chromatin immunoprecipitation and computational modeling indicate that because unmodified histones dilute H3K27me3 by 50% each time DNA replicates, PRC2-deficient ISCs initially retain sufficient H3K27me3 to avoid gene derepression. EZH2 mutant human lymphoma cells also require multiple divisions before H3K27me3 dilution relieves gene silencing. In both cell types, promoters with high basal H3K4me2/3 activate in spite of some residual H3K27me3, compared to less-poised promoters. These findings have implications for PRC2 inhibition in cancer therapy.
Collapse
Affiliation(s)
- Unmesh Jadhav
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elisa Manieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kodandaramireddy Nalapareddy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shariq Madha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shaon Chakrabarti
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kai Wucherpfennig
- Department of Cancer Immunology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
81
|
Stewart-Morgan KR, Petryk N, Groth A. Chromatin replication and epigenetic cell memory. Nat Cell Biol 2020; 22:361-371. [PMID: 32231312 DOI: 10.1038/s41556-020-0487-y] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Propagation of the chromatin landscape across cell divisions is central to epigenetic cell memory. Mechanistic analysis of the interplay between DNA replication, the cell cycle, and the epigenome has provided insights into replication-coupled chromatin assembly and post-replicative chromatin maintenance. These breakthroughs are critical for defining how proliferation impacts the epigenome during cell identity changes in development and disease. Here we review these findings in the broader context of epigenetic inheritance across mitotic cell division.
Collapse
Affiliation(s)
- Kathleen R Stewart-Morgan
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nataliya Petryk
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Epigenetics and Cell Fate, UMR7216 CNRS, University of Paris, Paris, France
| | - Anja Groth
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark. .,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
82
|
RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2AK119ub1 during cell division. Nat Cell Biol 2020; 22:439-452. [PMID: 32203418 DOI: 10.1038/s41556-020-0484-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/14/2020] [Indexed: 01/12/2023]
Abstract
Stable propagation of epigenetic information is important for maintaining cell identity in multicellular organisms. However, it remains largely unknown how mono-ubiquitinated histone H2A on lysine 119 (H2AK119ub1) is established and stably propagated during cell division. In this study, we found that the proteins RYBP and YAF2 each specifically bind H2AK119ub1 to recruit the RYBP-PRC1 or YAF2-PRC1 complex to catalyse the ubiquitination of H2A on neighbouring nucleosomes through a positive-feedback model. Additionally, we demonstrated that histone H1-compacted chromatin enhances the distal propagation of H2AK119ub1, thereby reinforcing the inheritance of H2AK119ub1 during cell division. Moreover, we showed that either disruption of RYBP/YAF2-PRC1 activity or impairment of histone H1-dependent chromatin compaction resulted in a significant defect of the maintenance of H2AK119ub1. Therefore, our results suggest that histone H1-dependent chromatin compaction plays a critical role in the stable propagation of H2AK119ub1 by RYBP/YAF2-PRC1 during cell division.
Collapse
|
83
|
Raiymbek G, An S, Khurana N, Gopinath S, Larkin A, Biswas S, Trievel RC, Cho US, Ragunathan K. An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase. eLife 2020; 9:53155. [PMID: 32195666 PMCID: PMC7192584 DOI: 10.7554/elife.53155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
H3K9 methylation (H3K9me) specifies the establishment and maintenance of transcriptionally silent epigenetic states or heterochromatin. The enzymatic erasure of histone modifications is widely assumed to be the primary mechanism that reverses epigenetic silencing. Here, we reveal an inversion of this paradigm where a putative histone demethylase Epe1 in fission yeast, has a non-enzymatic function that opposes heterochromatin assembly. Mutations within the putative catalytic JmjC domain of Epe1 disrupt its interaction with Swi6HP1 suggesting that this domain might have other functions besides enzymatic activity. The C-terminus of Epe1 directly interacts with Swi6HP1, and H3K9 methylation stimulates this protein-protein interaction in vitro and in vivo. Expressing the Epe1 C-terminus is sufficient to disrupt heterochromatin by outcompeting the histone deacetylase, Clr3 from sites of heterochromatin formation. Our results underscore how histone modifying proteins that resemble enzymes have non-catalytic functions that regulate the assembly of epigenetic complexes in cells. A cell’s identity depends on which of its genes are active. One way for cells to control this process is to change how accessible their genes are to the molecular machinery that switches them on and off. Special proteins called histones determine how accessible genes are by altering how loosely or tightly DNA is packed together. Histones can be modified by enzymes, which are proteins that add or remove specific chemical ‘tags’. These tags regulate how accessible genes are and provide cells with a memory of gene activity. For example, a protein found in yeast called Epe1 helps reactivate large groups of genes after cell division, effectively ‘re-setting’ the yeast’s genome and eliminating past memories of the genes being inactive. For a long time, Epe1 was thought to do this by removing methyl groups, a ‘tag’ that indicates a gene is inactive, from histones – that is, by acting like an enzyme. However, no direct evidence to support this hypothesis has been found. Raiymbek et al. therefore set out to determine exactly how Epe1 worked, and whether or not it did indeed behave like an enzyme. Initial experiments testing mutant versions of Epe1 in yeast cells showed that the changes expected to stop Epe1 from removing methyl groups instead prevented the protein from ‘homing’ to the sections of DNA it normally activates. Detailed microscope imaging, using live yeast cells engineered to produce proteins with fluorescent markers, revealed that this inability to ‘home’ was due to a loss of interaction with Epe1’s main partner, a protein called Swi6. This protein recognizes and binds histones that have methyl tags. Swi6 also acts as a docking site for proteins involved in deactivating genes in close proximity to these histones. Further biochemical studies revealed how the interaction between Epe1 and Swi6 can help in gene reactivation. The methyl tag on histones in inactive regions of the genome inadvertently helps Epe1 interact more efficiently with Swi6. Then, Epe1 can simply block every other protein that binds to Swi6 from participating in gene deactivation. This observation contrasts with the prevailing view where the active removal of methyl tags by proteins such as Epe1 switches genes from an inactive to an active state. This work shows for the first time that Epe1 influences the state of the genome through a process that does not involve enzyme activity. In other words, although the protein may ‘moonlight’ as an enzyme, its main job uses a completely different mechanism. More broadly, these results increase the understanding of the many different ways that gene activity, and ultimately cell identity, can be controlled.
Collapse
Affiliation(s)
- Gulzhan Raiymbek
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Sojin An
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Nidhi Khurana
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Saarang Gopinath
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Ajay Larkin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Saikat Biswas
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States.,Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States.,Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Kaushik Ragunathan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| |
Collapse
|
84
|
Chen S, Jiao L, Liu X, Yang X, Liu X. A Dimeric Structural Scaffold for PRC2-PCL Targeting to CpG Island Chromatin. Mol Cell 2020; 77:1265-1278.e7. [PMID: 31959557 PMCID: PMC7571800 DOI: 10.1016/j.molcel.2019.12.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
Abstract
Diverse accessory subunits are involved in the recruitment of polycomb repressive complex 2 (PRC2) to CpG island (CGI) chromatin. Here we report the crystal structure of a SUZ12-RBBP4 complex bound to fragments of the accessory subunits PHF19 and JARID2. Unexpectedly, this complex adopts a dimeric structural architecture, accounting for PRC2 self-association that has long been implicated. The intrinsic PRC2 dimer is formed via domain swapping involving RBBP4 and the unique C2 domain of SUZ12. MTF2 and PHF19 associate with PRC2 at around the dimer interface and stabilize the dimer. Conversely, AEBP2 binding results in a drastic movement of the C2 domain, disrupting the intrinsic PRC2 dimer. PRC2 dimerization enhances CGI DNA binding by PCLs in pairs in vitro, reminiscent of the widespread phenomenon of transcription factor dimerization in active transcription. Loss of PRC2 dimerization impairs histone H3K27 trimethylation (H3K27me3) on chromatin at developmental gene loci in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Siming Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lianying Jiao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiuli Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Yang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
85
|
Harvey ZH, Chakravarty AK, Futia RA, Jarosz DF. A Prion Epigenetic Switch Establishes an Active Chromatin State. Cell 2020; 180:928-940.e14. [PMID: 32109413 PMCID: PMC7195540 DOI: 10.1016/j.cell.2020.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/10/2019] [Accepted: 02/05/2020] [Indexed: 01/24/2023]
Abstract
Covalent modifications to histones are essential for development, establishing distinct and functional chromatin domains from a common genetic sequence. Whereas repressed chromatin is robustly inherited, no mechanism that facilitates inheritance of an activated domain has been described. Here, we report that the Set3C histone deacetylase scaffold Snt1 can act as a prion that drives the emergence and transgenerational inheritance of an activated chromatin state. This prion, which we term [ESI+] for expressed sub-telomeric information, is triggered by transient Snt1 phosphorylation upon cell cycle arrest. Once engaged, the prion reshapes the activity of Snt1 and the Set3C complex, recruiting RNA pol II and interfering with Rap1 binding to activate genes in otherwise repressed sub-telomeric domains. This transcriptional state confers broad resistance to environmental stress, including antifungal drugs. Altogether, our results establish a robust means by which a prion can facilitate inheritance of an activated chromatin state to provide adaptive benefit.
Collapse
Affiliation(s)
- Zachary H Harvey
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anupam K Chakravarty
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Raymond A Futia
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
86
|
Qüesta JI, Antoniou-Kourounioti RL, Rosa S, Li P, Duncan S, Whittaker C, Howard M, Dean C. Noncoding SNPs influence a distinct phase of Polycomb silencing to destabilize long-term epigenetic memory at Arabidopsis FLC. Genes Dev 2020; 34:446-461. [PMID: 32001513 PMCID: PMC7050481 DOI: 10.1101/gad.333245.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
In Arabidopsis thaliana, the cold-induced epigenetic regulation of FLOWERING LOCUS C (FLC) involves distinct phases of Polycomb repressive complex 2 (PRC2) silencing. During cold, a PHD-PRC2 complex metastably and digitally nucleates H3K27me3 within FLC On return to warm, PHD-PRC2 spreads across the locus delivering H3K27me3 to maintain long-term silencing. Here, we studied natural variation in this process in Arabidopsis accessions, exploring Lov-1, which shows FLC reactivation on return to warm, a feature characteristic of FLC in perennial Brassicaceae This analysis identifies an additional phase in this Polycomb silencing mechanism downstream from H3K27me3 spreading. In this long-term silencing (perpetuated) phase, the PHD proteins are lost from the nucleation region and silencing is likely maintained by the read-write feedbacks associated with H3K27me3. A combination of noncoding SNPs in the nucleation region mediates instability in this long-term silencing phase with the result that Lov-1 FLC frequently digitally reactivates in individual cells, with a probability that diminishes with increasing cold duration. We propose that this decrease in reactivation probability is due to reduced DNA replication after flowering. Overall, this work defines an additional phase in the Polycomb mechanism instrumental in natural variation of silencing, and provides avenues to dissect broader evolutionary changes at FLC.
Collapse
Affiliation(s)
- Julia I Qüesta
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Stefanie Rosa
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Peijin Li
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Susan Duncan
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Charles Whittaker
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
87
|
Abstract
In this review, Batista and Köhler revisit the current models explaining imprinting regulation in plants, and discuss novel regulatory mechanisms that could function independently of parental DNA methylation asymmetries in the establishment of imprinting. Genomic imprinting is an epigenetic phenomenon leading to parentally biased gene expression. Throughout the years, extensive efforts have been made to characterize the epigenetic marks underlying imprinting in animals and plants. As a result, DNA methylation asymmetries between parental genomes emerged as the primary factor controlling the imprinting status of many genes. Nevertheless, the data accumulated so far suggest that this process cannot solely explain the imprinting of all genes. In this review, we revisit the current models explaining imprinting regulation in plants, and discuss novel regulatory mechanisms that could function independently of parental DNA methylation asymmetries in the establishment of imprinting.
Collapse
Affiliation(s)
- Rita A Batista
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala SE-750 07, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala SE-750 07, Sweden
| |
Collapse
|
88
|
Hugues A, Jacobs CS, Roudier F. Mitotic Inheritance of PRC2-Mediated Silencing: Mechanistic Insights and Developmental Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:262. [PMID: 32211012 PMCID: PMC7075419 DOI: 10.3389/fpls.2020.00262] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
Maintenance of gene repression by Polycomb Repressive Complex 2 (PRC2) that catalyzes the trimethylation of histone H3 at lysine 27 (H3K27me3) is integral to the orchestration of developmental programs in most multicellular eukaryotes. Faithful inheritance of H3K27me3 patterns across replication ensures the stability of PRC2-mediated transcriptional silencing over cell generations, thereby safeguarding cellular identities. In this review, we discuss the molecular and mechanistic principles that underlie H3K27me3 restoration after the passage of the replication fork, considering recent advances in different model systems. In particular, we aim at emphasizing parallels and differences between plants and other organisms, focusing on the recycling of parental histones and the replenishment of H3K27me3 patterns post-replication thanks to the remarkable properties of the PRC2 complex. We then discuss the necessity for fine-tuning this genuine epigenetic memory system so as to allow for cell fate and developmental transitions. We highlight recent insights showing that genome-wide destabilization of the H3K27me3 landscape during chromatin replication participates in achieving this flexible stability and provides a window of opportunity for subtle transcriptional reprogramming.
Collapse
Affiliation(s)
- Alice Hugues
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Université de Lyon, Lyon, France
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Chean Sern Jacobs
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Université de Lyon, Lyon, France
| | - François Roudier
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Université de Lyon, Lyon, France
- *Correspondence: François Roudier,
| |
Collapse
|
89
|
Batista RA, Moreno-Romero J, Qiu Y, van Boven J, Santos-González J, Figueiredo DD, Köhler C. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons. eLife 2019; 8:50541. [PMID: 31789592 PMCID: PMC6914339 DOI: 10.7554/elife.50541] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/30/2019] [Indexed: 12/31/2022] Open
Abstract
MADS-box transcription factors (TFs) are ubiquitous in eukaryotic organisms and play major roles during plant development. Nevertheless, their function in seed development remains largely unknown. Here, we show that the imprinted Arabidopsis thaliana MADS-box TF PHERES1 (PHE1) is a master regulator of paternally expressed imprinted genes, as well as of non-imprinted key regulators of endosperm development. PHE1 binding sites show distinct epigenetic modifications on maternal and paternal alleles, correlating with parental-specific transcriptional activity. Importantly, we show that the CArG-box-like DNA-binding motifs that are bound by PHE1 have been distributed by RC/Helitron transposable elements. Our data provide an example of the molecular domestication of these elements which, by distributing PHE1 binding sites throughout the genome, have facilitated the recruitment of crucial endosperm regulators into a single transcriptional network.
Collapse
Affiliation(s)
- Rita A Batista
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jordi Moreno-Romero
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yichun Qiu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Joram van Boven
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
90
|
Genetic Dissection Reveals the Role of Ash1 Domains in Counteracting Polycomb Repression. G3-GENES GENOMES GENETICS 2019; 9:3801-3812. [PMID: 31540973 PMCID: PMC6829142 DOI: 10.1534/g3.119.400579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antagonistic functions of Polycomb and Trithorax proteins are essential for proper development of all metazoans. While the Polycomb proteins maintain the repressed state of many key developmental genes, the Trithorax proteins ensure that these genes stay active in cells where they have to be expressed. Ash1 is the Trithorax protein that was proposed to counteract Polycomb repression by methylating lysine 36 of histone H3. However, it was recently shown that genetic replacement of Drosophila histone H3 with the variant that carried Arginine instead of Lysine at position 36 did not impair the ability of Ash1 to counteract Polycomb repression. This argues that Ash1 counteracts Polycomb repression by methylating yet unknown substrate(s) and that it is time to look beyond Ash1 methyltransferase SET domain, at other evolutionary conserved parts of the protein that received little attention. Here we used Drosophila genetics to demonstrate that Ash1 requires each of the BAH, PHD and SET domains to counteract Polycomb repression, while AT hooks are dispensable. Our findings argue that, in vivo, Ash1 acts as a multimer. Thereby it can combine the input of the SET domain and PHD-BAH cassette residing in different peptides. Finally, using new loss of function alleles, we show that zygotic Ash1 is required to prevent erroneous repression of homeotic genes of the bithorax complex in the embryo.
Collapse
|
91
|
Lee LR, Wengier DL, Bergmann DC. Cell-type-specific transcriptome and histone modification dynamics during cellular reprogramming in the Arabidopsis stomatal lineage. Proc Natl Acad Sci U S A 2019; 116:21914-21924. [PMID: 31594845 PMCID: PMC6815143 DOI: 10.1073/pnas.1911400116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plant cells maintain remarkable developmental plasticity, allowing them to clonally reproduce and to repair tissues following wounding; yet plant cells normally stably maintain consistent identities. Although this capacity was recognized long ago, our mechanistic understanding of the establishment, maintenance, and erasure of cellular identities in plants remains limited. Here, we develop a cell-type-specific reprogramming system that can be probed at the genome-wide scale for alterations in gene expression and histone modifications. We show that relationships among H3K27me3, H3K4me3, and gene expression in single cell types mirror trends from complex tissue, and that H3K27me3 dynamics regulate guard cell identity. Further, upon initiation of reprogramming, guard cells induce H3K27me3-mediated repression of a regulator of wound-induced callus formation, suggesting that cells in intact tissues may have mechanisms to sense and resist inappropriate dedifferentiation. The matched ChIP-sequencing (seq) and RNA-seq datasets created for this analysis also serve as a resource enabling inquiries into the dynamic and global-scale distribution of histone modifications in single cell types in plants.
Collapse
Affiliation(s)
- Laura R Lee
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Diego L Wengier
- Department of Biology, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305;
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
92
|
Højfeldt JW, Hedehus L, Laugesen A, Tatar T, Wiehle L, Helin K. Non-core Subunits of the PRC2 Complex Are Collectively Required for Its Target-Site Specificity. Mol Cell 2019; 76:423-436.e3. [PMID: 31521506 DOI: 10.1016/j.molcel.2019.07.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
The Polycomb repressive complex 2 (PRC2) catalyzes H3K27 methylation across the genome, which impacts transcriptional regulation and is critical for establishment of cell identity. Because of its essential function during development and in cancer, understanding the delineation of genome-wide H3K27 methylation patterns has been the focus of intense investigation. PRC2 methylation activity is abundant and dispersed throughout the genome, but the highest activity is specifically directed to a subset of target sites that are stably occupied by the complex and highly enriched for H3K27me3. Here, we show, by systematically knocking out single and multiple non-core subunits of the PRC2 complex in mouse embryonic stem cells, that they each contribute to directing PRC2 activity to target sites. Furthermore, combined knockout of six non-core subunits reveals that, while dispensable for global H3K27 methylation levels, the non-core PRC2 subunits are collectively required for focusing H3K27me3 activity to specific sites in the genome.
Collapse
Affiliation(s)
- Jonas Westergaard Højfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Lin Hedehus
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Anne Laugesen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Tülin Tatar
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Laura Wiehle
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark; Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA.
| |
Collapse
|
93
|
Germ cell-mediated mechanisms of epigenetic inheritance. Semin Cell Dev Biol 2019; 97:116-122. [PMID: 31404658 DOI: 10.1016/j.semcdb.2019.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 01/07/2023]
Abstract
It is well established that lifestyle and other environmental factors have the potential to shape our own health and future. Research from the last two decades, however, provides mounting evidence that parental exposures or experiences such as dietary challenges, toxin exposure, or stress can impact the health and future of our offspring. There are indications that both the paternal and maternal germline are able to store information of the parental environment and pass certain information on to their progeny. These intergenerational effects are mediated by epigenetic mechanisms. This review summarizes and discusses insights into germline epigenetic plasticity caused by environmental stimuli and how such alterations are transmitted to induce a stable phenotype in the offspring.
Collapse
|
94
|
Abstract
The idea that epigenetic determinants such as DNA methylation, histone modifications or RNA can be passed to the next generation through meiotic products (gametes) is long standing. Such meiotic epigenetic inheritance (MEI) is fairly common in yeast, plants and nematodes, but its extent in mammals has been much debated. Advances in genomics techniques are now driving the profiling of germline and zygotic epigenomes, thereby improving our understanding of MEI in diverse species. Whereas the role of DNA methylation in MEI remains unclear, insights from genome-wide studies suggest that a previously underappreciated fraction of mammalian genomes bypass epigenetic reprogramming during development. Notably, intergenerational inheritance of histone modifications, tRNA fragments and microRNAs can affect gene regulation in the offspring. It is important to note that MEI in mammals rarely constitutes transgenerational epigenetic inheritance (TEI), which spans multiple generations. In this Review, we discuss the examples of MEI in mammals, including mammalian epigenome reprogramming, and the molecular mechanisms of MEI in vertebrates in general. We also discuss the implications of the inheritance of histone modifications and small RNA for embryogenesis in metazoans, with a particular focus on insights gained from genome-wide studies.
Collapse
|
95
|
Ahmad K, Spens AE. Separate Polycomb Response Elements control chromatin state and activation of the vestigial gene. PLoS Genet 2019; 15:e1007877. [PMID: 31425502 PMCID: PMC6730940 DOI: 10.1371/journal.pgen.1007877] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 09/06/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Patterned expression of many developmental genes is specified by transcription factor gene expression, but is thought to be refined by chromatin-mediated repression. Regulatory DNA sequences called Polycomb Response Elements (PREs) are required to repress some developmental target genes, and are widespread in genomes, suggesting that they broadly affect developmental programs. While PREs in transgenes can nucleate trimethylation on lysine 27 of the histone H3 tail (H3K27me3), none have been demonstrated to be necessary at endogenous chromatin domains. This failure is thought to be due to the fact that most endogenous H3K27me3 domains contain many PREs, and individual PREs may be redundant. In contrast to these ideas, we show here that PREs near the wing selector gene vestigial have distinctive roles at their endogenous locus, even though both PREs are repressors in transgenes. First, a PRE near the promoter is required for vestigial activation and not for repression. Second, only the distal PRE contributes to H3K27me3, but even removal of both PREs does not eliminate H3K27me3 across the vestigial domain. Thus, endogenous chromatin domains appear to be intrinsically marked by H3K27me3, and PREs appear required to enhance this chromatin modification to high levels at inactive genes.
Collapse
Affiliation(s)
- Kami Ahmad
- Division of Basic Sciences, FHCRC, Seattle, WA, United States of America
| | - Amy E. Spens
- Division of Basic Sciences, FHCRC, Seattle, WA, United States of America
| |
Collapse
|
96
|
Abstract
As the process that silences gene expression ensues during development, the stage is set for the activity of Polycomb-repressive complex 2 (PRC2) to maintain these repressed gene profiles. PRC2 catalyzes a specific histone posttranslational modification (hPTM) that fosters chromatin compaction. PRC2 also facilitates the inheritance of this hPTM through its self-contained "write and read" activities, key to preserving cellular identity during cell division. As these changes in gene expression occur without changes in DNA sequence and are inherited, the process is epigenetic in scope. Mutants of mammalian PRC2 or of its histone substrate contribute to the cancer process and other diseases, and research into these aberrant pathways is yielding viable candidates for therapeutic targeting. The effectiveness of PRC2 hinges on its being recruited to the proper chromatin sites; however, resolving the determinants to this process in the mammalian case was not straightforward and thus piqued the interest of many in the field. Here, we chronicle the latest advances toward exposing mammalian PRC2 and its high maintenance.
Collapse
Affiliation(s)
- Jia-Ray Yu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Chul-Hwan Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Ozgur Oksuz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
97
|
Advances in epigenetics link genetics to the environment and disease. Nature 2019; 571:489-499. [DOI: 10.1038/s41586-019-1411-0] [Citation(s) in RCA: 566] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
|
98
|
Jost D, Vaillant C. Epigenomics in 3D: importance of long-range spreading and specific interactions in epigenomic maintenance. Nucleic Acids Res 2019; 46:2252-2264. [PMID: 29365171 PMCID: PMC5861409 DOI: 10.1093/nar/gky009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/11/2018] [Indexed: 02/05/2023] Open
Abstract
Recent progresses of genome-wide chromatin conformation capture techniques have shown that the genome is segmented into hierarchically organized spatial compartments. However, whether this non-random 3D organization only reflects or indeed contributes—and how—to the regulation of genome function remain to be elucidated. The observation in many species that 3D domains correlate strongly with the 1D epigenomic information along the genome suggests a dynamic coupling between chromatin organization and epigenetic regulation. Here, we posit that chromosome folding may contribute to the maintenance of a robust epigenomic identity via the formation of spatial compartments like topologically-associating domains. Using a novel theoretical framework, the living chromatin model, we show that 3D compartmentalization leads to the spatial colocalization of epigenome regulators, thus increasing their local concentration and enhancing their ability to spread an epigenomic signal at long-range. Interestingly, we find that the presence of 1D insulator elements, like CTCF, may contribute greatly to the stable maintenance of adjacent antagonistic epigenomic domains. We discuss the generic implications of our findings in the light of various biological contexts from yeast to human. Our approach provides a modular framework to improve our understanding and to investigate in details the coupling between the structure and function of chromatin.
Collapse
Affiliation(s)
- Daniel Jost
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
- To whom correspondence should be addressed. Tel: +33 4 72 72 86 34; Fax: +33 4 72 72 89 50; . Correspondence may also be addressed to Daniel Jost. Tel: +33 4 56 52 00 69; Fax: +33 4 56 52 00 44;
| | - Cédric Vaillant
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, 69007 Lyon, France
- To whom correspondence should be addressed. Tel: +33 4 72 72 86 34; Fax: +33 4 72 72 89 50; . Correspondence may also be addressed to Daniel Jost. Tel: +33 4 56 52 00 69; Fax: +33 4 56 52 00 44;
| |
Collapse
|
99
|
Storing memories: the distinct phases of Polycomb-mediated silencing of Arabidopsis FLC. Biochem Soc Trans 2019; 47:1187-1196. [DOI: 10.1042/bst20190255] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022]
Abstract
Abstract
Polycomb-mediated epigenetic silencing is central to correct growth and development in higher eukaryotes. The evolutionarily conserved Polycomb repressive complex 2 (PRC2) transcriptionally silences target genes through a mechanism requiring the histone modification H3K27me3. However, we still do not fully understand what defines Polycomb targets, how their expression state is switched from epigenetically ON to OFF and how silencing is subsequently maintained through many cell divisions. An excellent system in which to dissect the sequence of events underlying an epigenetic switch is the Arabidopsis FLC locus. Exposure to cold temperatures progressively induces a PRC2-dependent switch in an increasing proportion of cells, through a mechanism that is driven by the local chromatin environment. Temporally distinct phases of this silencing mechanism have been identified. First, the locus is transcriptionally silenced in a process involving cold-induced antisense transcripts; second, nucleation at the first exon/intron boundary of a Polycomb complex containing cold-induced accessory proteins induces a metastable epigenetically silenced state; third, a Polycomb complex with a distinct composition spreads across the locus in a process requiring DNA replication to deliver long-term epigenetic silencing. Detailed understanding from this system is likely to provide mechanistic insights important for epigenetic silencing in eukaryotes generally.
Collapse
|
100
|
van Mierlo G, Veenstra GJC, Vermeulen M, Marks H. The Complexity of PRC2 Subcomplexes. Trends Cell Biol 2019; 29:660-671. [PMID: 31178244 DOI: 10.1016/j.tcb.2019.05.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Polycomb repressive complex 2 (PRC2) is a multisubunit protein complex essential for the development of multicellular organisms. Recruitment of PRC2 to target genes, followed by deposition and propagation of its catalytic product histone H3 lysine 27 trimethylation (H3K27me3), are key to the spatiotemporal control of developmental gene expression. Recent breakthrough studies have uncovered unexpected roles for substoichiometric PRC2 subunits in these processes. Here, we elaborate on how the facultative PRC2 subunits regulate catalytic activity, locus-specific PRC2 binding, and propagation of H3K27me3, and how this affects chromatin structure, gene expression, and cell fate.
Collapse
Affiliation(s)
- Guido van Mierlo
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen 6525GA, The Netherlands; Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500HB, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen 6525GA, The Netherlands; Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen 6525GA, The Netherlands.
| |
Collapse
|