51
|
Shearn R, Wright AE, Mousset S, Régis C, Penel S, Lemaitre JF, Douay G, Crouau-Roy B, Lecompte E, Marais GA. Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates. eLife 2020; 9:63650. [PMID: 33205751 PMCID: PMC7717902 DOI: 10.7554/elife.63650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Sex chromosomes are typically comprised of a non-recombining region and a recombining pseudoautosomal region. Accurately quantifying the relative size of these regions is critical for sex-chromosome biology both from a functional and evolutionary perspective. The evolution of the pseudoautosomal boundary (PAB) is well documented in haplorrhines (apes and monkeys) but not in strepsirrhines (lemurs and lorises). Here, we studied the PAB of seven species representing the main strepsirrhine lineages by sequencing a male and a female genome in each species and using sex differences in coverage to identify the PAB. We found that during primate evolution, the PAB has remained unchanged in strepsirrhines whereas several recombination suppression events moved the PAB and shortened the pseudoautosomal region in haplorrhines. Strepsirrhines are well known to have much lower sexual dimorphism than haplorrhines. We suggest that mutations with antagonistic effects between males and females have driven recombination suppression and PAB evolution in haplorrhines.
Collapse
Affiliation(s)
- Rylan Shearn
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Sylvain Mousset
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France.,Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Corinne Régis
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France
| | - Simon Penel
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France
| | | | | | - Brigitte Crouau-Roy
- Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
| | - Emilie Lecompte
- Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
| | - Gabriel Ab Marais
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France.,LEAF-Linking Landscape, Environment, Agriculture and Food Dept, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
52
|
Kirschel ANG, Nwankwo EC, Pierce DK, Lukhele SM, Moysi M, Ogolowa BO, Hayes SC, Monadjem A, Brelsford A. CYP2J19 mediates carotenoid colour introgression across a natural avian hybrid zone. Mol Ecol 2020; 29:4970-4984. [PMID: 33058329 DOI: 10.1111/mec.15691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
It has long been of interest to identify the phenotypic traits that mediate reproductive isolation between related species, and more recently, the genes that underpin them. Much work has focused on identifying genes associated with animal colour, with the candidate gene CYP2J19 identified in laboratory studies as the ketolase converting yellow dietary carotenoids to red ketocarotenoids in birds with red pigments. However, evidence that CYP2J19 explains variation between red and yellow feather coloration in wild populations of birds is lacking. Hybrid zones provide the opportunity to identify genes associated with specific traits. Here we investigate genomic regions associated with colour in red-fronted and yellow-fronted tinkerbirds across a hybrid zone in southern Africa. We sampled 85 individuals, measuring spectral reflectance of forecrown feathers and scoring colours from photographs, while testing for carotenoid presence with Raman spectroscopy. We performed a genome-wide association study to identify associations with carotenoid-based coloration, using double-digest RAD sequencing aligned to a short-read whole genome of a Pogoniulus tinkerbird. Admixture mapping using 104,933 single nucleotide polymorphisms (SNPs) identified a region of chromosome 8 that includes CYP2J19 as the only locus with more than two SNPs significantly associated with both crown hue and crown score, while Raman spectra provided evidence of ketocarotenoids in red feathers. Asymmetric backcrossing in the hybrid zone suggests that yellow-fronted females mate more often with red-fronted males than vice versa. Female red-fronted tinkerbirds mating assortatively with red-crowned males is consistent with the hypothesis that converted carotenoids are an honest signal of quality.
Collapse
Affiliation(s)
| | - Emmanuel C Nwankwo
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Daniel K Pierce
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Sifiso M Lukhele
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Michaella Moysi
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Bridget O Ogolowa
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sophia C Hayes
- Department of Chemistry, University of Cyprus, Nicosia, Cyprus
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini.,Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
53
|
Molecular Plasticity in Animal Pigmentation: Emerging Processes Underlying Color Changes. Integr Comp Biol 2020; 60:1531-1543. [DOI: 10.1093/icb/icaa142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synopsis
Animal coloration has been rigorously studied and has provided morphological implications for fitness with influences over social behavior, predator–prey interactions, and sexual selection. In vertebrates, its study has developed our understanding across diverse fields ranging from behavior to molecular biology. In the search for underlying molecular mechanisms, many have taken advantage of pedigree-based and genome-wide association screens to reveal the genetic architecture responsible for pattern variation that occurs in early development. However, genetic differences do not provide a full picture of the dynamic changes in coloration that are most prevalent across vertebrates at the molecular level. Changes in coloration that occur in adulthood via phenotypic plasticity rely on various social, visual, and dietary cues independent of genetic variation. Here, I will review the contributions of pigment cell biology to animal color changes and recent studies describing their molecular underpinnings and function. In this regard, conserved epigenetic processes such as DNA methylation play a role in lending plasticity to gene regulation as it relates to chromatophore function. Lastly, I will present African cichlids as emerging models for the study of pigmentation and molecular plasticity for animal color changes. I posit that these processes, in a dialog with environmental stimuli, are important regulators of variation and the selective advantages that accompany a change in coloration for vertebrate animals.
Collapse
|
54
|
van der Bijl W, Zeuss D, Chazot N, Tunström K, Wahlberg N, Wiklund C, Fitzpatrick JL, Wheat CW. Butterfly dichromatism primarily evolved via Darwin's, not Wallace's, model. Evol Lett 2020; 4:545-555. [PMID: 33312689 PMCID: PMC7719551 DOI: 10.1002/evl3.199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 01/20/2023] Open
Abstract
Sexual dimorphism is typically thought to result from sexual selection for elaborated male traits, as proposed by Darwin. However, natural selection could reduce expression of elaborated traits in females, as proposed by Wallace. Darwin and Wallace debated the origins of dichromatism in birds and butterflies, and although evidence in birds is roughly equal, if not in favor of Wallace's model, butterflies lack a similar scale of study. Here, we present a large‐scale comparative phylogenetic analysis of the evolution of butterfly coloration, using all European non‐hesperiid butterfly species (n = 369). We modeled evolutionary changes in coloration for each species and sex along their phylogeny, thereby estimating the rate and direction of evolution in three‐dimensional color space using a novel implementation of phylogenetic ridge regression. We show that male coloration evolved faster than female coloration, especially in strongly dichromatic clades, with male contribution to changes in dichromatism roughly twice that of females. These patterns are consistent with a classic Darwinian model of dichromatism via sexual selection on male coloration, suggesting this model was the dominant driver of dichromatism in European butterflies.
Collapse
Affiliation(s)
- Wouter van der Bijl
- Department of Zoology Stockholm University Stockholm SE-10691 Sweden.,Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Dirk Zeuss
- Department of Zoology Stockholm University Stockholm SE-10691 Sweden.,Department of Environmental Informatics Philipps-University of Marburg Marburg DE-35032 Germany
| | - Nicolas Chazot
- Department of Biology University of Lund Lund SE-22362 Sweden.,Department of Ecology Swedish University of Agricultural Sciences Uppsala SE-75007 Sweden
| | - Kalle Tunström
- Department of Zoology Stockholm University Stockholm SE-10691 Sweden
| | - Niklas Wahlberg
- Department of Biology University of Lund Lund SE-22362 Sweden
| | - Christer Wiklund
- Department of Zoology Stockholm University Stockholm SE-10691 Sweden
| | | | | |
Collapse
|
55
|
Sin SYW, Lu L, Edwards SV. De Novo Assembly of the Northern Cardinal ( Cardinalis cardinalis) Genome Reveals Candidate Regulatory Regions for Sexually Dichromatic Red Plumage Coloration. G3 (BETHESDA, MD.) 2020; 10:3541-3548. [PMID: 32792344 PMCID: PMC7534441 DOI: 10.1534/g3.120.401373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/09/2020] [Indexed: 11/18/2022]
Abstract
Northern cardinals (Cardinalis cardinalis) are common, mid-sized passerines widely distributed in North America. As an iconic species with strong sexual dichromatism, it has been the focus of extensive ecological and evolutionary research, yet genomic studies investigating the evolution of genotype-phenotype association of plumage coloration and dichromatism are lacking. Here we present a new, highly-contiguous assembly for C. cardinalis We generated a 1.1 Gb assembly comprised of 4,762 scaffolds, with a scaffold N50 of 3.6 Mb, a contig N50 of 114.4 kb and a longest scaffold of 19.7 Mb. We identified 93.5% complete and single-copy orthologs from an Aves dataset using BUSCO, demonstrating high completeness of the genome assembly. We annotated the genomic region comprising the CYP2J19 gene, which plays a pivotal role in the red coloration in birds. Comparative analyses demonstrated non-exonic regions unique to the CYP2J19 gene in passerines and a long insertion upstream of the gene in C. cardinalis Transcription factor binding motifs discovered in the unique insertion region in C. cardinalis suggest potential androgen-regulated mechanisms underlying sexual dichromatism. Pairwise Sequential Markovian Coalescent (PSMC) analysis of the genome reveals fluctuations in historic effective population size between 100,000-250,000 in the last 2 millions years, with declines concordant with the beginning of the Pleistocene epoch and Last Glacial Period. This draft genome of C. cardinalis provides an important resource for future studies of ecological, evolutionary, and functional genomics in cardinals and other birds.
Collapse
Affiliation(s)
- Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong
| | - Lily Lu
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138
| |
Collapse
|
56
|
Khalil S, Welklin JF, McGraw KJ, Boersma J, Schwabl H, Webster MS, Karubian J. Testosterone regulates CYP2J19-linked carotenoid signal expression in male red-backed fairywrens ( Malurus melanocephalus). Proc Biol Sci 2020; 287:20201687. [PMID: 32933448 PMCID: PMC7542802 DOI: 10.1098/rspb.2020.1687] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Carotenoid pigments produce most red, orange and yellow colours in vertebrates. This coloration can serve as an honest signal of quality that mediates social and mating interactions, but our understanding of the underlying mechanisms that control carotenoid signal production, including how different physiological pathways interact to shape and maintain these signals, remains incomplete. We investigated the role of testosterone in mediating gene expression associated with a red plumage sexual signal in red-backed fairywrens (Malurus melanocephalus). In this species, males within a single population can flexibly produce either red/black nuptial plumage or female-like brown plumage. Combining correlational analyses with a field-based testosterone implant experiment and quantitative polymerase chain reaction, we show that testosterone mediates expression of carotenoid-based plumage in part by regulating expression of CYP2J19, a ketolase gene associated with ketocarotenoid metabolism and pigmentation in birds. This is, to our knowledge, the first time that hormonal regulation of a specific genetic locus has been linked to carotenoid production in a natural context, revealing how endocrine mechanisms produce sexual signals that shape reproductive success.
Collapse
Affiliation(s)
- Sarah Khalil
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Joseph F. Welklin
- Macaulay Library, Cornell Laboratory of Ornithology, Ithaca, NY, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Kevin J. McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jordan Boersma
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Hubert Schwabl
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael S. Webster
- Macaulay Library, Cornell Laboratory of Ornithology, Ithaca, NY, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
57
|
Affiliation(s)
- Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|