51
|
Zundler S, Becker E, Schulze LL, Neurath MF. Immune cell trafficking and retention in inflammatory bowel disease: mechanistic insights and therapeutic advances. Gut 2019; 68:1688-1700. [PMID: 31127023 DOI: 10.1136/gutjnl-2018-317977] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Intestinal immune cell trafficking has been identified as a central event in the pathogenesis of inflammatory bowel diseases (IBD). Intensive research on different aspects of the immune mechanisms controlling and controlled by T cell trafficking and retention has led to the approval of the anti-α4β7 antibody vedolizumab, the ongoing development of a number of further anti-trafficking agents (ATAs) such as the anti-β7 antibody etrolizumab or the anti-MAdCAM-1 antibody ontamalimab and the identification of potential future targets like G-protein coupled receptor 15. However, several aspects of the biology of immune cell trafficking and regarding the mechanism of action of ATAs are still unclear, for example, which impact these compounds have on the trafficking of non-lymphocyte populations like monocytes and how precisely these therapies differ with regard to their effect on immune cell subpopulations. This review will summarise recent advances of basic science in the field of intestinal immune cell trafficking and discuss these findings with regard to different pharmacological approaches from a translational perspective.
Collapse
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| | - Emily Becker
- Department of Medicine 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| | - Lisa Lou Schulze
- Department of Medicine 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| |
Collapse
|
52
|
de Krijger M, Wildenberg ME, de Jonge WJ, Ponsioen CY. Return to sender: Lymphocyte trafficking mechanisms as contributors to primary sclerosing cholangitis. J Hepatol 2019; 71:603-615. [PMID: 31108158 DOI: 10.1016/j.jhep.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
Primary sclerosing cholangitis (PSC) is an inflammatory disease of the biliary tree, characterised by stricturing bile duct disease and progression to liver fibrosis. The pathophysiology of PSC is still unknown. The concurrence with inflammatory bowel disease (IBD) in about 70% of cases has led to the hypothesis that gut-homing lymphocytes aberrantly traffic to the liver, contributing to disease pathogenesis in patients with both PSC and IBD (PSC-IBD). The discovery of mutual trafficking pathways of lymphocytes to target tissues, and expression of gut-specific adhesion molecules and chemokines in the liver has pointed in this direction. There is now increasing interest in using drugs that intervene with these trafficking pathways (e.g. vedolizumab, etrolizumab) for the treatment of PSC-IBD. In this review we discuss what is currently known about the immunological interactions between the gut and the liver in concomitant PSC and IBD, as well as potential therapeutic options for intervening in these mechanisms.
Collapse
Affiliation(s)
- Manon de Krijger
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Surgery, University of Bonn, Bonn, Germany
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
53
|
Sezin T, Kempen L, Meyne LM, Mousavi S, Zillikens D, Sadik CD. GPR15 is not critically involved in the regulation of murine psoriasiform dermatitis. J Dermatol Sci 2019; 94:196-204. [DOI: 10.1016/j.jdermsci.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
|
54
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
55
|
Andersen AM, Lei MK, Philibert RA, Beach SRH. Methylation of MTHFR Moderates the Effect of Smoking on Genomewide Methylation Among Middle Age African Americans. Front Genet 2018; 9:622. [PMID: 30619455 PMCID: PMC6296342 DOI: 10.3389/fgene.2018.00622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022] Open
Abstract
Differential methylation at MTHFR (mMTHFR) has been examined previously as a moderator of changes in methylation among nascent smokers, but the effects of mMTHFR on genomewide patterns of methylation among established smokers in middle age are unknown. In the current investigation we examined a sample of 180 African American middle-aged smokers and non-smokers to test for patterns indicative of three different potential mechanisms of impact on epigenetic remodeling in response to long-term smoking. We found that mMTHFR moderated the association between smoking and changes in methylation for more than 25% of the 909 loci previously identified as being associated with smoking at a genomewide level of significance in middle-aged African Americans. Observed patterns of effect indicated amplification of both hyper and hypo methylating responses to smoking among those with lower mMTHFR. Moderating effects were robust to controls for sex, age, diet, and cell-type variation. Implications for potential mechanisms conferring effects are discussed. Of particular potential practical importance was a strong effect of mMTHFR on hypomethylation at GPR15 in response to smoking, indicative of the differential impact of MTHFR activity on changes in a specific cell population linked to inflammatory disease in smokers.
Collapse
Affiliation(s)
- Allan M Andersen
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Man-Kit Lei
- Department of Sociology, University of Georgia, Athens, GA, United States.,Center for Family Research, University of Georgia, Athens, GA, United States
| | - Robert A Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Behavioral Diagnostics, Coralville, IA, United States
| | - Steven R H Beach
- Center for Family Research, University of Georgia, Athens, GA, United States.,Department of Psychology, University of Georgia, Athens, GA, United States
| |
Collapse
|
56
|
Ammitzbøll C, von Essen MR, Börnsen L, Petersen ER, McWilliam O, Ratzer R, Romme Christensen J, Oturai AB, Søndergaard HB, Sellebjerg F. GPR15 + T cells are Th17 like, increased in smokers and associated with multiple sclerosis. J Autoimmun 2018; 97:114-121. [PMID: 30245027 DOI: 10.1016/j.jaut.2018.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/15/2023]
Abstract
Smoking is a risk factor for the development and progression of multiple sclerosis (MS); however, the pathogenic effects of smoking are poorly understood. We studied the smoking-associated chemokine receptor-like molecule GPR15 in relation to relapsing-remitting MS (RRMS). Using microarray analyses and qPCR we found elevated GPR15 in blood cells from smokers, and increased GPR15 expression in RRMS. By flow cytometry we detected increased frequencies of GPR15 expressing T and B cells in smokers, but no difference between patients with RRMS and healthy controls. However, after cell culture with the autoantigens myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein, frequencies of MBP-reactive and non-proliferating GPR15+CD4+ T cells were increased in patients with RRMS compared with healthy controls. GPR15+CD4+ T cells produced IL-17 and were enriched in the cerebrospinal fluid (CSF). Furthermore, in the CSF of patients with RRMS, GPR15+ T cells were associated with CCR6+CXCR3+/CCR6-CXCR3+ phenotypes and correlated positively with concentrations of the newly identified GPR15-ligand (GPR15L), myelin degradation and disability. In conclusion, we have identified a proinflammatory cell type linking smoking with pathogenic immune cell functions in RRMS.
Collapse
Affiliation(s)
- Cecilie Ammitzbøll
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Marina R von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Lars Börnsen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Eva Rosa Petersen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Oskar McWilliam
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Rikke Ratzer
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Annette B Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Helle B Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| |
Collapse
|
57
|
Lamb CA, O'Byrne S, Keir ME, Butcher EC. Gut-Selective Integrin-Targeted Therapies for Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:S653-S668. [PMID: 29767705 DOI: 10.1093/ecco-jcc/jjy060] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are cell surface receptors with bidirectional signalling capabilities that can bind to adhesion molecules in order to mediate homing of leukocytes to peripheral tissues. Gut-selective leukocyte homing is facilitated by interactions between α4β7 and its ligand, mucosal addressin cellular adhesion molecule-1 [MAdCAM-1], while retention of lymphocytes in mucosal tissues is mediated by αEβ7 binding to its ligand E-cadherin. Therapies targeting gut-selective trafficking have shown efficacy in inflammatory bowel disease [IBD], confirming the importance of leukocyte trafficking in disease pathobiology. This review will provide an overview of integrin structure, function and signalling, and highlight the role that these molecules play in leukocyte homing and retention. Anti-integrin therapeutics, including gut-selective antibodies against the β7 integrin subunit [etrolizumab] and the α4β7 integrin heterodimer [vedolizumab and abrilumab], and the non-gut selective anti-α4 integrin [natalizumab], will be discussed, as well as novel targeting approaches using small molecules.
Collapse
Affiliation(s)
- Christopher A Lamb
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sharon O'Byrne
- Global Medical Affairs, Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Mary E Keir
- Genentech Research & Early Development, South San Francisco, CA, USA
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
58
|
Haase T, Müller C, Krause J, Röthemeier C, Stenzig J, Kunze S, Waldenberger M, Münzel T, Pfeiffer N, Wild PS, Michal M, Marini F, Karakas M, Lackner KJ, Blankenberg S, Zeller T. Novel DNA Methylation Sites Influence GPR15 Expression in Relation to Smoking. Biomolecules 2018; 8:biom8030074. [PMID: 30127295 PMCID: PMC6163736 DOI: 10.3390/biom8030074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 11/24/2022] Open
Abstract
Smoking is a major risk factor for cardiovascular diseases and has been implicated in the regulation of the G protein-coupled receptor 15 (GPR15) by affecting CpG methylation. The G protein-coupled receptor 15 is involved in angiogenesis and inflammation. An effect on GPR15 gene regulation has been shown for the CpG site CpG3.98251294. We aimed to analyze the effect of smoking on GPR15 expression and methylation sites spanning the GPR15 locus. DNA methylation of nine GPR15 CpG sites was measured in leukocytes from 1291 population-based individuals using the EpiTYPER. Monocytic GPR15 expression was measured by qPCR at baseline and five-years follow up. GPR15 gene expression was upregulated in smokers (beta (ß) = −2.699, p-value (p) = 1.02 × 10−77) and strongly correlated with smoking exposure (ß = −0.063, p = 2.95 × 10−34). Smoking cessation within five years reduced GPR15 expression about 19% (p = 9.65 × 10−5) with decreasing GPR15 expression over time (ß = 0.031, p = 3.81 × 10−6). Additionally, three novel CpG sites within GPR15 affected by smoking were identified. For CpG3.98251047, DNA methylation increased steadily after smoking cessation (ß = 0.123, p = 1.67 × 10−3) and strongly correlated with changes in GPR15 expression (ß = 0.036, p = 4.86 × 10−5). Three novel GPR15 CpG sites were identified in relation to smoking and GPR15 expression. Our results provide novel insights in the regulation of GPR15, which possibly linked smoking to inflammation and disease progression.
Collapse
Affiliation(s)
- Tina Haase
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), 13316 Berlin, Germany.
| | - Christian Müller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), 13316 Berlin, Germany.
| | - Julia Krause
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), 13316 Berlin, Germany.
| | - Caroline Röthemeier
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
| | - Justus Stenzig
- German Centre for Cardiovascular Research (DZHK), 13316 Berlin, Germany.
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany.
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| | - Melanie Waldenberger
- German Centre for Cardiovascular Research (DZHK), 13316 Berlin, Germany.
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| | - Thomas Münzel
- German Centre for Cardiovascular Research (DZHK), 13316 Berlin, Germany.
- Center for Cardiology, Cardiology I, University Medical Center Mainz, Johannes Gutenberg University-Mainz, 55131 Mainz, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Philipp S Wild
- German Centre for Cardiovascular Research (DZHK), 13316 Berlin, Germany.
- Center for Translational Vascular Biology (CTVB), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Matthias Michal
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Federico Marini
- University Medical Center, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), 55131 Mainz, Germany.
| | - Mahir Karakas
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), 13316 Berlin, Germany.
| | - Karl J Lackner
- German Centre for Cardiovascular Research (DZHK), 13316 Berlin, Germany.
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), 13316 Berlin, Germany.
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), 13316 Berlin, Germany.
| |
Collapse
|
59
|
Peripheral Tissue Chemokines: Homeostatic Control of Immune Surveillance T Cells. Trends Immunol 2018; 39:734-747. [PMID: 30001872 DOI: 10.1016/j.it.2018.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
Abstract
Cellular immunity is governed by a complex network of migratory cues that enable appropriate immune cell responses in a timely and spatially controlled fashion. This review focuses on the chemokines and their receptors regulating the steady-state localisation of immune cells within healthy peripheral tissues. Steady-state immune cell traffic is not well understood but is thought to involve constitutive (homeostatic) chemokines. The recent discovery of tissue-resident memory T cells (TRM cells) illustrates our need for understanding how chemokines control immune cell mobilisation and/or retention. These studies will be critical to unravel novel pathways for preserving tissue function (aging) and preventing tissue disease (vaccination).
Collapse
|
60
|
C10orf99 contributes to the development of psoriasis by promoting the proliferation of keratinocytes. Sci Rep 2018; 8:8590. [PMID: 29872130 PMCID: PMC5988722 DOI: 10.1038/s41598-018-26996-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/30/2018] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic, relapsing inflammatory skin disease. The pathogenesis of psoriasis is complex and has not been fully understood. C10orf99 was a recently identified human antimicrobial peptide whose mRNA expression is elevated in psoriatic human skin samples. In this study, we investigated the functional roles of C10orf99 in epidermal proliferation under inflammatory condition. We showed that C10orf99 protein was significantly up-regulated in psoriatic skin samples from patients and the ortholog gene expression levels were up-regulated in imiquimod (IMQ)-induced psoriasis-like skin lesions in mice. Using M5-stimulated HaCaT cell line model of inflammation and a combinational approach of knockdown and overexpression of C10orf99, we demonstrated that C10orf99 could promote keratinocyte proliferation by facilitating the G1/S transition, and the pro-proliferation effect of C10orf99 was associated with the activation of the ERK1/2 and NF-κB but not the AKT pathways. Local depletion of C10orf99 by lentiviral vectors expressing C10orf99 shRNA effectively ameliorated IMQ-induced dermatitis. Taken together, these results indicate that C10orf99 plays a contributive role in psoriasis pathogenesis and may serve as a new target for psoriasis treatment.
Collapse
|
61
|
The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol 2018; 153:62-74. [PMID: 29454621 DOI: 10.1016/j.bcp.2018.02.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs.
Collapse
|