51
|
Simonson W. A new class of sedative/hypnotics: dual orexin receptor antagonists. Geriatr Nurs 2014; 35:462-3. [PMID: 25457290 DOI: 10.1016/j.gerinurse.2014.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- William Simonson
- Independent Consultant Pharmacist, Senior Research Professor (Pharmacy Practice), Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
52
|
Vazquez-DeRose J, Schwartz MD, Nguyen AT, Warrier DR, Gulati S, Mathew TK, Neylan TC, Kilduff TS. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain. Brain Struct Funct 2014; 221:923-40. [PMID: 25431268 DOI: 10.1007/s00429-014-0946-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 11/15/2014] [Indexed: 12/31/2022]
Abstract
Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.
Collapse
Affiliation(s)
- Jacqueline Vazquez-DeRose
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Michael D Schwartz
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Alexander T Nguyen
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Deepti R Warrier
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Srishti Gulati
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Thomas K Mathew
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Thomas C Neylan
- UCSF San Francisco VA Medical Center/NCIRE, San Francisco, CA, 94121, USA
| | - Thomas S Kilduff
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA.
| |
Collapse
|
53
|
Berdyyeva T, Otte S, Aluisio L, Ziv Y, Burns LD, Dugovic C, Yun S, Ghosh KK, Schnitzer MJ, Lovenberg T, Bonaventure P. Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope. PLoS One 2014; 9:e112068. [PMID: 25372144 PMCID: PMC4221229 DOI: 10.1371/journal.pone.0112068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Tamara Berdyyeva
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Stephani Otte
- Inscopix, Palo Alto, California, United States of America
| | - Leah Aluisio
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Yaniv Ziv
- Inscopix, Palo Alto, California, United States of America
| | | | - Christine Dugovic
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Sujin Yun
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Kunal K. Ghosh
- Inscopix, Palo Alto, California, United States of America
| | | | - Timothy Lovenberg
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Pascal Bonaventure
- Janssen Research & Development, LLC, San Diego, California, United States of America
| |
Collapse
|
54
|
The hypocretin/orexin system mediates the extinction of fear memories. Neuropsychopharmacology 2014; 39:2732-41. [PMID: 24930888 PMCID: PMC4200503 DOI: 10.1038/npp.2014.146] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023]
Abstract
Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias.
Collapse
|
55
|
Gotter AL, Garson SL, Stevens J, Munden RL, Fox SV, Tannenbaum PL, Yao L, Kuduk SD, McDonald T, Uslaner JM, Tye SJ, Coleman PJ, Winrow CJ, Renger JJ. Differential sleep-promoting effects of dual orexin receptor antagonists and GABAA receptor modulators. BMC Neurosci 2014; 15:109. [PMID: 25242351 PMCID: PMC4261741 DOI: 10.1186/1471-2202-15-109] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current standard of care for insomnia includes gamma-aminobutyric acid receptor A (GABAA) activators, which promote sleep as well as general central nervous system depression. Dual orexin receptor antagonists (DORAs) represent an alternative mechanism for insomnia treatment that induces somnolence by blocking the wake-promoting effects of orexin neuropeptides. The current study compares the role and interdependence of these two mechanisms on their ability to influence sleep architecture and quantitative electroencephalography (qEEG) spectral profiles across preclinical species. RESULTS Active-phase dosing of DORA-22 induced consistent effects on sleep architecture in mice, rats, dogs, and rhesus monkeys; attenuation of active wake was accompanied by increases in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Eszopiclone, a representative GABAA receptor modulator, promoted sleep in rats and rhesus monkeys that was marked by REM sleep suppression, but had inconsistent effects in mice and paradoxically promoted wakefulness in dogs. Active-phase treatment of rats with DORA-12 similarly promoted NREM and REM sleep to magnitudes nearly identical to those seen during normal resting-phase sleep following vehicle treatment, whereas eszopiclone suppressed REM even to levels below those seen during the active phase. The qEEG changes induced by DORA-12 in rats also resembled normal resting-phase patterns, whereas eszopiclone induced changes distinct from normal active- or inactive-phase spectra. Co-dosing experiments, as well as studies in transgenic rats lacking orexin neurons, indicated partial overlap in the mechanism of sleep promotion by orexin and GABA modulation with the exception of the REM suppression exclusive to GABAA receptor modulation. Following REM deprivation in mice, eszopiclone further suppressed REM sleep while DORA-22 facilitated recovery including increased REM sleep. CONCLUSION DORAs promote NREM and importantly REM sleep that is similar in proportion and magnitude to that seen during the normal resting phase across mammalian animal models. While limited overlap exists between therapeutic mechanisms, orexin signaling does not appear involved in the REM suppression exhibited by GABAA receptor modulators. The ability of DORAs to promote proportional NREM and REM sleep following sleep deprivation suggests that this mechanism may be effective in alleviating recovery from sleep disturbance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - John J Renger
- Department of Neuroscience, Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, PA 19486-0004, USA.
| |
Collapse
|
56
|
Abstract
Addiction is a chronic relapsing disorder which presents a significant global health burden and unmet medical need. The orexin/hypocretin system is an attractive potential therapeutic target as demonstrated by the successful clinical trials of antagonist medications like Suvorexant for insomnia. It is composed of two neuropeptides, orexin-A and orexin-B and two excitatory and promiscuous G-protein coupled receptors, OX1 and OX2. Orexins are known to have a variety of functions, most notably in regulating arousal, appetite and reward. The orexins have been shown to have a role in mediating the effects of several drugs of abuse, such as cocaine, morphine and alcohol via projections to key brain regions such as the ventral tegmental area, nucleus accumbens and prefrontal cortex. However, it has not yet been demonstrated whether the dual orexin receptor antagonists (DORAs) under development for insomnia are ideal drugs for the treatment of addiction. The question of whether to use a DORA or single orexin receptor antagonist (SORA) for the treatment of addiction is a key question that will need to be answered in order to maximize the clinical utility of orexin receptor antagonists. This review will examine the role of the orexin/hypocretin system in addiction, orexin-based pharmacotherapies under development and factors affecting the selection of one or both orexin receptors as drug targets for the treatment of addiction.
Collapse
|
57
|
Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2014; 35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypocretins, also named as orexins, are excitatory neuropeptides secreted by neurons specifically located in lateral hypothalamus and perifornical areas. Orexinergic fibers are extensively distributed in various brain regions and involved in a number of physiological functions, such as arousal, cognition, stress, appetite, and metabolism. Arousal is the most important function of orexin system as dysfunction of orexin signaling leads to narcolepsy. In addition to narcolepsy, orexin dysfunction is associated with serious neural disorders, including addiction, depression, and anxiety. However, some results linking orexin with these disorders are still contradictory, which may result from differences of detection methods or the precision of tools used in measurements; strategies targeted to orexin system (e.g., antagonists to orexin receptors, gene delivery, and cell transplantation) are promising new tools for treatment of neuropsychiatric disorders, though studies are still in a stage of preclinical or clinical research.
Collapse
Affiliation(s)
- Quanhui Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China; Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
58
|
Pigeon WR, Bishop TM, Marcus JA. Advances in the management of insomnia. F1000PRIME REPORTS 2014; 6:48. [PMID: 24991425 PMCID: PMC4047947 DOI: 10.12703/p6-48] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insomnia is highly prevalent and associated with considerable morbidity. Several very efficacious treatments, both pharmacologic and non-pharmacologic, exist for the management of insomnia. New modes of delivery and new formulations of existing sedative-hypnotic medications have been introduced. Novel agents are still being developed and tested to arrive at a hypnotic that has limited side effects while still being efficacious. Innovations with respect to behavioral interventions, which are drastically under-utilized, have focused mainly on making these interventions more widely available through dissemination efforts, briefer formats and more accessible platforms.
Collapse
Affiliation(s)
- Wilfred R. Pigeon
- Center of Excellence for Suicide Prevention, Canandaigua VA Medical Center400 Fort Hill Avenue, Canandaigua, NY 14424USA
- Center for Integrated Healthcare800 Irving Avenue, Syracuse, NY 13210USA
- Department of Psychiatry, University of Rochester Medical CenterRochester, NY 14642USA
| | - Todd M. Bishop
- Center for Integrated Healthcare800 Irving Avenue, Syracuse, NY 13210USA
- Department of Psychology430 Huntington Hall, Syracuse UniversitySyracuse
| | - Jonathan A. Marcus
- Department of Neurology, University of Rochester Medical CenterRochester, NY 14642USA
| |
Collapse
|
59
|
Morairty SR, Wilk AJ, Lincoln WU, Neylan TC, Kilduff TS. The hypocretin/orexin antagonist almorexant promotes sleep without impairment of performance in rats. Front Neurosci 2014; 8:3. [PMID: 24550767 PMCID: PMC3907703 DOI: 10.3389/fnins.2014.00003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/06/2014] [Indexed: 01/08/2023] Open
Abstract
The hypocretin receptor (HcrtR) antagonist almorexant (ALM) has potent hypnotic actions but little is known about neurocognitive performance in the presence of ALM. HcrtR antagonists are hypothesized to induce sleep by disfacilitation of wake-promoting systems whereas GABAA receptor modulators such as zolpidem (ZOL) induce sleep through general inhibition of neural activity. To test the hypothesis that less functional impairment results from HcrtR antagonist-induced sleep, we evaluated the performance of rats in the Morris Water Maze in the presence of ALM vs. ZOL. Performance in spatial reference memory (SRM) and spatial working memory (SWM) tasks were assessed during the dark period after equipotent sleep-promoting doses (100 mg/kg, po) following undisturbed and sleep deprivation (SD) conditions. ALM-treated rats were indistinguishable from vehicle (VEH)-treated rats for all SRM performance measures (distance traveled, latency to enter, time within, and number of entries into, the target quadrant) after both the undisturbed and 6 h SD conditions. In contrast, rats administered ZOL showed impairments in all parameters measured compared to VEH or ALM in the undisturbed conditions. Following SD, ZOL-treated rats also showed impairments in all measures. ALM-treated rats were similar to VEH-treated rats for all SWM measures (velocity, time to locate the platform and success rate at finding the platform within 60 s) after both the undisturbed and SD conditions. In contrast, ZOL-treated rats showed impairments in velocity and in the time to locate the platform. Importantly, ZOL rats only completed the task 23–50% of the time while ALM and VEH rats completed the task 79–100% of the time. Thus, following equipotent sleep-promoting doses, ZOL impaired rats in both memory tasks while ALM rats performed at levels comparable to VEH rats. These results are consistent with the hypothesis that less impairment results from HcrtR antagonism than from GABAA-induced inhibition.
Collapse
Affiliation(s)
- Stephen R Morairty
- SRI International, Center for Neuroscience, Biosciences Division Menlo Park, CA, USA
| | - Alan J Wilk
- SRI International, Center for Neuroscience, Biosciences Division Menlo Park, CA, USA
| | - Webster U Lincoln
- SRI International, Center for Neuroscience, Biosciences Division Menlo Park, CA, USA
| | - Thomas C Neylan
- Department of Psychiatry, SF VA Medical Center/NCIRE/University of California San Francisco, CA, USA
| | - Thomas S Kilduff
- SRI International, Center for Neuroscience, Biosciences Division Menlo Park, CA, USA
| |
Collapse
|
60
|
Roecker AJ, Mercer SP, Schreier JD, Cox CD, Fraley ME, Steen JT, Lemaire W, Bruno JG, Harrell CM, Garson SL, Gotter AL, Fox SV, Stevens J, Tannenbaum PL, Prueksaritanont T, Cabalu TD, Cui D, Stellabott J, Hartman GD, Young SD, Winrow CJ, Renger JJ, Coleman PJ. Discovery of 5''-chloro-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2':5',3''-terpyridine-3'-carboxamide (MK-1064): a selective orexin 2 receptor antagonist (2-SORA) for the treatment of insomnia. ChemMedChem 2013; 9:311-22. [PMID: 24376006 DOI: 10.1002/cmdc.201300447] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 01/12/2023]
Abstract
The field of small-molecule orexin antagonist research has evolved rapidly in the last 15 years from the discovery of the orexin peptides to clinical proof-of-concept for the treatment of insomnia. Clinical programs have focused on the development of antagonists that reversibly block the action of endogenous peptides at both the orexin 1 and orexin 2 receptors (OX1 R and OX2 R), termed dual orexin receptor antagonists (DORAs), affording late-stage development candidates including Merck's suvorexant (new drug application filed 2012). Full characterization of the pharmacology associated with antagonism of either OX1 R or OX2 R alone has been hampered by the dearth of suitable subtype-selective, orally bioavailable ligands. Herein, we report the development of a selective orexin 2 antagonist (2-SORA) series to afford a potent, orally bioavailable 2-SORA ligand. Several challenging medicinal chemistry issues were identified and overcome during the development of these 2,5-disubstituted nicotinamides, including reversible CYP inhibition, physiochemical properties, P-glycoprotein efflux and bioactivation. This article highlights structural modifications the team utilized to drive compound design, as well as in vivo characterization of our 2-SORA clinical candidate, 5''-chloro-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2':5',3''-terpyridine-3'-carboxamide (MK-1064), in mouse, rat, dog, and rhesus sleep models.
Collapse
Affiliation(s)
- Anthony J Roecker
- Department of Medicinal Chemistry, Merck Research Laboratories, P.O. Box 4, Sumneytown Pike, West Point, PA 19486 (USA).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kohlmeier KA, Tyler CJ, Kalogiannis M, Ishibashi M, Kristensen MP, Gumenchuk I, Chemelli RM, Kisanuki YY, Yanagisawa M, Leonard CS. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy. Front Neurosci 2013; 7:246. [PMID: 24391530 PMCID: PMC3869224 DOI: 10.3389/fnins.2013.00246] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/29/2013] [Indexed: 12/14/2022] Open
Abstract
Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2) are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic [laterodorsal tegmental nucleus (LDT)] and monoaminergic [dorsal raphe (DR) and locus coeruleus (LC)] brainstem nuclei—where orexins promote arousal and suppress REM sleep. In slices from OX−/−2 mice, orexin-A (300 nM) elicited wild-type responses in LDT, DR, and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX−/−1 mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX−/−1 mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2+ transients produced by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor knockout mice.
Collapse
Affiliation(s)
- Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | | | - Mike Kalogiannis
- Department of Physiology, New York Medical College Valhalla, NY, USA
| | - Masaru Ishibashi
- Department of Physiology, New York Medical College Valhalla, NY, USA
| | - Morten P Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Iryna Gumenchuk
- Department of Physiology, New York Medical College Valhalla, NY, USA
| | - Richard M Chemelli
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Yaz Y Kisanuki
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Masashi Yanagisawa
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | |
Collapse
|
62
|
Callander GE, Olorunda M, Monna D, Schuepbach E, Langenegger D, Betschart C, Hintermann S, Behnke D, Cotesta S, Fendt M, Laue G, Ofner S, Briard E, Gee CE, Jacobson LH, Hoyer D. Kinetic properties of "dual" orexin receptor antagonists at OX1R and OX2R orexin receptors. Front Neurosci 2013; 7:230. [PMID: 24376396 PMCID: PMC3847553 DOI: 10.3389/fnins.2013.00230] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/15/2013] [Indexed: 12/28/2022] Open
Abstract
Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various “dual” orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [3H]-BBAC ((S)-N-([1,1′-biphenyl]-2-yl)-1-(2-((1-methyl-1H-benzo[d]imidazol-2-yl)thio)acetyl)pyrrolidine-2-carboxamide). In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant, and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one) bind rapidly and reach equilibrium very quickly in binding and/or functional assays. Overall, the “dual” antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the “dual” antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo.
Collapse
Affiliation(s)
- Gabrielle E Callander
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, School of Medicine, The University of Melbourne Parkville, VIC, Australia ; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Morenike Olorunda
- Department of Neuroscience, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Dominique Monna
- Department of Neuroscience, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Edi Schuepbach
- Department of Neuroscience, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Daniel Langenegger
- Department of Neuroscience, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Claudia Betschart
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Samuel Hintermann
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Dirk Behnke
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Simona Cotesta
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Markus Fendt
- Department of Neuroscience, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Grit Laue
- Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Silvio Ofner
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Emmanuelle Briard
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Christine E Gee
- Department of Neuroscience, Novartis Institutes for Biomedical Research Basel, Switzerland ; Centre for Neurobiology Hamburg, Institute for Synaptic Physiology Hamburg, Germany
| | - Laura H Jacobson
- Department of Neuroscience, Novartis Institutes for Biomedical Research Basel, Switzerland
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, School of Medicine, The University of Melbourne Parkville, VIC, Australia ; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia ; Department of Neuroscience, Novartis Institutes for Biomedical Research Basel, Switzerland
| |
Collapse
|
63
|
Hoyer D, Jacobson LH. Orexin in sleep, addiction and more: is the perfect insomnia drug at hand? Neuropeptides 2013; 47:477-88. [PMID: 24215799 DOI: 10.1016/j.npep.2013.10.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/13/2013] [Accepted: 10/14/2013] [Indexed: 12/29/2022]
Abstract
Orexins A and B (hypocretins 1 and 2) and their two receptors (OX1R and OX2R) were discovered in 1998 by two different groups. Orexin A and B are derived from the differential processing of a common precursor, the prepro-orexin peptide. The neuropeptides are expressed in a few thousand cells located in the lateral hypothalamus (LH), but their projections and receptor distribution are widespread throughout the brain. Remarkably, prepro peptide and double (OX1R/OX2R) receptor knock out (KO) mice reproduce a sleep phenotype known in humans and dogs as narcolepsy/cataplexy. In humans, this disease is characterized by the absence of orexin producing cells in the LH, and severely depleted levels of orexin the cerebrospinal fluid. Null mutation of the individual OX1R or OX2R in mice substantially ameliorates the narcolepsy/cataplexy phenotype compared to the OX1R/OX2R KO, and highlights specific roles of the individual receptors in sleep architecture, the OX1R KO demonstrating an a attenuated sleep phenotype relative to the OX2R KO. It has therefore been suggested that orexin is a master regulator of the sleep-wake cycle, with high activity of the LH orexin cells during wake and almost none during sleep. Less than 10years later, the first orexin antagonist, almorexant, a dual orexin receptor antagonist (DORA), was reported to be effective in inducing sleep in volunteers and insomnia patients. Although development was stopped for almorexant and for Glaxo's DORA SB-649868, no less than 4 orexin receptor antagonists have reached phase II for insomnia, including Filorexant (MK-6096) and Suvorexant (MK-4305) from Merck. Suvorexant has since progressed to Phase III and dossier submission to the FDA. These four compounds are reported as DORAs, however, they equilibrate very slowly at one and/or the other orexin receptor, and thus at equilibrium may show more or less selectivity for OX1R or OX2R. The appropriate balance of antagonism of the two receptors for sleep is a point of debate, although in rodent models OX2R antagonism alone appears sufficient to induce sleep, whereas OX1R antagonism is largely devoid of this effect. Orexin is involved in a number of other functions including reward and feeding, where OX1R (possibly OX2R) antagonists display anti-addictive properties in rodent models of alcohol, smoking, and drug self-administration. However, despite early findings in feeding and appetite control, orexin receptor antagonists have not produced the anticipated effects in models of increased food intake or obesity in rodents, nor have they shown marked effects on weight in the existing clinical trials. The role of orexin in a number of other domains such as pain, mood, anxiety, migraine and neurodegenerative diseases is an active area of research. The progress of the orexin field is thus extraordinary, and the community awaits the clinical testing of more receptor selective antagonists in sleep and other disorders, as well as that of orexin agonists, with the latter expected to produce positive outcomes in narcolepsy/cataplexy and other conditions.
Collapse
Affiliation(s)
- Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville Campus, Kenneth Myer Building, at Genetics Lane, on Royal Parade, University of Melbourne, Parkville 3010, Australia.
| | | |
Collapse
|
64
|
The top 10 drug trends right now. Nurs Manag (Harrow) 2013; 44:34-40; quiz 40-1. [PMID: 23764906 DOI: 10.1097/01.numa.0000431421.08582.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
65
|
Schroeder AM, Colwell CS. How to fix a broken clock. Trends Pharmacol Sci 2013; 34:605-19. [PMID: 24120229 PMCID: PMC3856231 DOI: 10.1016/j.tips.2013.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 12/29/2022]
Abstract
Fortunate are those who rise out of bed to greet the morning light well rested with the energy and enthusiasm to drive a productive day. Others, however, depend on hypnotics for sleep and require stimulants to awaken lethargic bodies. Sleep/wake disruption is a common occurrence in healthy individuals throughout their lifespan and is also a comorbid condition to many diseases (neurodegenerative) and psychiatric disorders (depression and bipolar). There is growing concern that chronic disruption of the sleep/wake cycle contributes to more serious conditions including diabetes (type 2), cardiovascular disease, and cancer. A poorly functioning circadian system resulting in misalignments in the timing of clocks throughout the body may be at the root of the problem for many people. In this article we discuss environmental (light therapy) and lifestyle changes (scheduled meals, exercise, and sleep) as interventions to help fix a broken clock. We also discuss the challenges and potential for future development of pharmacological treatments to manipulate this key biological system.
Collapse
Affiliation(s)
- Analyne M Schroeder
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90024, USA
| | | |
Collapse
|
66
|
Saper CB, Scammell TE. Emerging therapeutics in sleep. Ann Neurol 2013; 74:435-40. [DOI: 10.1002/ana.24000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Clifford B. Saper
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Harvard Medical School; Beth Israel Deaconess Medical Center; Boston MA
| | - Thomas E. Scammell
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Harvard Medical School; Beth Israel Deaconess Medical Center; Boston MA
| |
Collapse
|
67
|
Gotter AL, Winrow CJ, Brunner J, Garson SL, Fox SV, Binns J, Harrell CM, Cui D, Yee KL, Stiteler M, Stevens J, Savitz A, Tannenbaum PL, Tye SJ, McDonald T, Yao L, Kuduk SD, Uslaner J, Coleman PJ, Renger JJ. The duration of sleep promoting efficacy by dual orexin receptor antagonists is dependent upon receptor occupancy threshold. BMC Neurosci 2013; 14:90. [PMID: 23981345 PMCID: PMC3765993 DOI: 10.1186/1471-2202-14-90] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022] Open
Abstract
Background Drugs targeting insomnia ideally promote sleep throughout the night, maintain normal sleep architecture, and are devoid of residual effects associated with morning sedation. These features of an ideal compound are not only dependent upon pharmacokinetics, receptor binding kinetics, potency and pharmacodynamic activity, but also upon a compound’s mechanism of action. Results Dual orexin receptor antagonists (DORAs) block the arousal-promoting activity of orexin peptides and, as demonstrated in the current work, exhibit an efficacy signal window dependent upon oscillating levels of endogenous orexin neuropeptide. Sleep efficacy of structurally diverse DORAs in rat and dog was achieved at plasma exposures corresponding to orexin 2 receptor (OX2R) occupancies in the range of 65 to 80%. In rats, the time course of OX2R occupancy was dependent upon receptor binding kinetics and was tightly correlated with the timing of active wake reduction. In rhesus monkeys, direct comparison of DORA-22 with GABA-A modulators at similar sleep-inducing doses revealed that diazepam produced next-day residual sleep and both diazepam and eszopiclone induced next-day cognitive deficits. In stark contrast, DORA-22 did not produce residual effects. Furthermore, DORA-22 evoked only minimal changes in quantitative electroencephalogram (qEEG) activity during the normal resting phase in contrast to GABA-A modulators which induced substantial qEEG changes. Conclusion The higher levels of receptor occupancy necessary for DORA efficacy require a plasma concentration profile sufficient to maintain sleep for the duration of the resting period. DORAs, with a half-life exceeding 8 h in humans, are expected to fulfill this requirement as exposures drop to sub-threshold receptor occupancy levels prior to the wake period, potentially avoiding next-day residual effects at therapeutic doses.
Collapse
Affiliation(s)
- Anthony L Gotter
- Department of Neuroscience, Merck Research Laboratories, West Point, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Boutrel B, Steiner N, Halfon O. The hypocretins and the reward function: what have we learned so far? Front Behav Neurosci 2013; 7:59. [PMID: 23781178 PMCID: PMC3680710 DOI: 10.3389/fnbeh.2013.00059] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/19/2013] [Indexed: 01/15/2023] Open
Abstract
A general consensus acknowledges that drug consumption (including alcohol, tobacco, and illicit drugs) constitutes the leading cause of preventable death worldwide. But the global burden of drug abuse extends the mortality statistics. Indeed, the comorbid long-term debilitating effects of the disease also significantly deteriorate the quality of life of individuals suffering from addiction disorders. Despite the large body of evidence delineating the cellular and molecular adaptations induced by chronic drug consumption, the brain mechanisms responsible for drug craving and relapse remain insufficiently understood, and even the most recent developments in the field have not brought significant improvement in the management of drug dependence. Though, recent preclinical evidence suggests that disrupting the hypocretin (orexin) system may serve as an anticraving medication therapy. Here, we discuss how the hypocretins, which orchestrate normal wakefulness, metabolic health and the execution of goal-oriented behaviors, may be compromised and contribute to elicit compulsive drug seeking. We propose an overview on the most recent studies demonstrating an important role for the hypocretin neuropeptide system in the regulation of drug reward and the prevention of drug relapse, and we question the relevance of disrupting the hypocretin system to alleviate symptoms of drug addiction.
Collapse
Affiliation(s)
- Benjamin Boutrel
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland ; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| | | | | |
Collapse
|
69
|
|
70
|
Affiliation(s)
- Emmanuel Mignot
- Center for Sleep Sciences, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|