51
|
Inhibitory effects of sodium new houttuyfonate on growth and biofilm formation of Streptococcus mutans. Microb Pathog 2021; 157:104957. [PMID: 34022356 DOI: 10.1016/j.micpath.2021.104957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
The present study aimed to assess the impact of sodium new houttuyfonate (SNH) on growth and biofilm formation of Streptococcus mutans, and the combinatorial effects of SNH with cariostatic agents. The effects of SNH on S. mutans planktonic cultures were assessed by growth curve assay. The effects of SNH on S. mutans biofilm and extracellular polysaccharides (EPS) production were observed via crystal violet (CV) assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, colony-forming unit (CFU) counting assay, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Quantitative real-time polymerase chain reaction (qPCR) was applied to investigate the regulatory effects of SNH on the expression of virulence genes of S. mutans. Checkerboard microdilution assay was performed to investigate the combinatorial effects of SNH with two common cariostatic agents. SNH acted as an inhibitor on planktonic cell growth, biofilm formation and EPS production of S. mutans. SNH also downregulated the expression of gtfBCD and comDE systems and exhibited synergism with chlorhexidine (CHX). In conclusion, this study indicated a possibility for SNH to become an anticaries agents by its antimicrobial activity and synergistic effects with CHX against S. mutans.
Collapse
|
52
|
Wang Z, Zhou Y, Han Q, Ye X, Chen Y, Sun Y, Liu Y, Zou J, Qi G, Zhou X, Cheng L, Ren B. Synonymous point mutation of gtfB gene caused by therapeutic X-rays exposure reduced the biofilm formation and cariogenic abilities of Streptococcus mutans. Cell Biosci 2021; 11:91. [PMID: 34001238 PMCID: PMC8130306 DOI: 10.1186/s13578-021-00608-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The shift of oral microbiota is a critical factor of radiation caries in head and neck cancer patients after the radiotherapy. However, the direct effects of irradiation on the genome and virulence of cariogenic bacteria are poorly described. Here we investigated the genomic mutations and virulence change of Streptococcus mutans (S. mutans), the major cariogenic bacteria, exposed to the therapeutic doses of X-rays. RESULTS X-ray reduced the survival fraction of S. mutans and impacted its biofilm formation. We isolated a biofilm formation-deficient mutant #858 whose genome only possessed three synonymous mutations (c.2043 T > C, c.2100C > T, c.2109A > G) in gtfB gene. The "silent mutation" of c.2043 T > C in gtfB gene can cause the down-regulation of all of the gtfs genes' expression and decrease the GtfB enzyme secretion without the effect on the growth due to the codon bias. #858 and synonymous point mutation strain gtfB 2043 T>C, similar to the gtfB gene null mutant Δ gtfB, can significantly decrease the extracellular polysaccharide production, biofilm formation and cariogenic capabilities both in vitro and in vivo compared with wild type. CONCLUSION The direct exposure of X-ray radiation can affect the genome and virulence of oral bacteria even at therapeutic doses. The synonymous mutations of genome are negligent factors for gene expression and related protein translation due to the codon usage frequency.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Yanyan Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guohai Qi
- Radiotherapy Center, Sichuan Cancer Hospital, Chengdu, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China. .,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China. .,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
53
|
Hu P, Lv B, Yang K, Lu Z, Ma J. Discovery of myricetin as an inhibitor against Streptococcus mutans and an anti-adhesion approach to biofilm formation. Int J Med Microbiol 2021; 311:151512. [PMID: 33971542 DOI: 10.1016/j.ijmm.2021.151512] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus mutans (S. mutans) are cariogenic microorganisms. Sortase A (SrtA) is a transpeptidase that attaches Pac to the cell surface. The biofilm formation of S. mutans is promoted by SrtA regulated Pac. Myricetin (Myr) has a variety of pharmacological properties, including inhibiting SrtA activity of Staphylococcus aureus. The purpose of this research was to investigate the inhibitory effect of Myr on SrtA of S. mutans and its subsequent influence on the biofilm formation. Here, Myr was discovered as a potent inhibitor of S. mutans SrtA, with an IC50 of 48.66 ± 1.48 μM, which was lower than the minimum inhibitory concentration (MIC) of 512 ug/mL. Additionally, immunoblot and biofilm assays demonstrated that Myr at a sub-MIC level could reduce adhesion and biofilm formation of S. mutans. The reduction of biofilm was possibly caused by the decreased amount of Pac on the cells' surface by releasing Pac into the medium via inhibiting SrtA activity. Molecular dynamics simulations and mutagenesis assays suggested that Met123, Ile191, and Arg213 of SrtA were pivotal for the interaction of SrtA and Myr. Our findings indicate that Myr is a promising candidate for the control of dental caries by modulating Pac-involved adhesive mechanisms without developing drug resistance to S.mutans.
Collapse
Affiliation(s)
- Ping Hu
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Bibo Lv
- Pediatric Department of Stomatology, Affiliated Xiangyang Stomatological Hospital of Hubei University of Arts and Science, No. 6, Jianhua Road, Xiangyang, Hubei, People's Republic of China
| | - Kongxi Yang
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zimin Lu
- Department of Medicinal Chemistry, School of Pharmacy, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Jingzhi Ma
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
54
|
Lin Y, Chen J, Zhou X, Li Y. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit Rev Microbiol 2021; 47:667-677. [PMID: 33938347 DOI: 10.1080/1040841x.2021.1915959] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dental caries is one of the most prevalent and costly biofilm-associated infectious diseases affecting most of the world's population. In particular, dental caries is driven by dysbiosis of the dental biofilm adherent to the enamel surface. Specific types of acid-producing bacteria, especially Streptococcus mutans, colonize the dental surface and cause damage to the hard tooth structure in the presence of fermentable carbohydrates. Streptococcus mutans has been established as the major cariogenic pathogen responsible for human dental caries, with a high ability to form biofilms. The exopolysaccharide (EPS) matrix, mainly contributed by S. mutans, has been considered as a virulence determinant of cariogenic biofilm. As EPS is an important virulence factor, targeting EPS metabolism could be useful in preventing cariogenic biofilm formation. This review summarizes plausible strategies targeting S. mutans biofilms by degrading EPS structure, inhibiting EPS production, and disturbing the EPS metabolism-related gene expression and regulatory systems.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiamin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
55
|
Abstract
Introduction: As a result of progress in medical care, a huge number of medical devices are used in the treatment of human diseases. In turn, biofilm-related infection has become a growing threat due to the tolerance of biofilms to antimicrobials, a problem magnified by the development of antimicrobial resistance worldwide. As a result, successful treatment of biofilm-disease using only antimicrobials is problematic.Areas covered: We summarize some alternative approaches to classic antimicrobials for the treatment of biofilm disease. This review is not intended to be exhaustive but to give a clinical picture of alternatives to antimicrobial agents to manage biofilm disease. We highlight those strategies that may be closer to application in clinical practice.Expert opinion: There are a number of outstanding challenges in the development of novel antibiofilm therapies. Screening for effective antibiofilm compounds requires models relevant to all clinical scenarios. Although in vitro research of anti-biofilm strategies has progressed significantly over the past decade, there is a lack of in vivo research. In addition, the complexity of biofilm biology makes it difficult to develop a compound that is likely to provide the single 'magic bullet'. The multifaceted nature of biofilms imposes the need for multi-targeted or combinatorial therapies.
Collapse
Affiliation(s)
- Jose L Del Pozo
- Infectious Diseases Division, Clínica Universidad De Navarra, Pamplona, Spain.,Department of Microbiology, Clínica Universidad De Navarra, Pamplona, Spain.,Laboratory of Microbial Biofilms, Clínica Universidad De Navarra, Pamplona, Spain
| |
Collapse
|
56
|
Zhang J, Kuang X, Zhou Y, Yang R, Zhou X, Peng X, Luo Y, Xu X. Antimicrobial activities of a small molecule compound II-6s against oral streptococci. J Oral Microbiol 2021; 13:1909917. [PMID: 33854741 PMCID: PMC8018465 DOI: 10.1080/20002297.2021.1909917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: The side effects of present antimicrobials like chlorhexidine (CHX) and the emergence of drug resistance necessitate the development of alternative agents to control dental caries. Aim: This study developed a novel small molecule, namely II-6s, and investigated its antimicrobial activities against common oral streptococci associated with dental caries. Methods: The susceptibility of streptococci to II-6s was evaluated by the microdilution method, time-kill assay and scanning electron microscopy. The exopolysaccharides, dead/live bacteria and bacterial composition of the II-6s-treated Streptococcus mutans/Streptococcus gordonii/Streptococcus sanguinis 3-species biofilms were analyzed by confocal laser scanning microscopy, fluorescent in situ hybridization and quantitative PCR. The anti-demineralization effect and cytotoxicity of II-6s were evaluated by transverse microradiography and CCK-8 assay, respectively. Repeated exposure of S. mutans to II-6s was performed to assess if II-6s could induce drug resistance. Results: II-6s exhibited antimicrobial activity similar to CHX against S. mutans, S. gordonii and S. sanguinis and significantly inhibited exopolysaccharides production, live bacteria and the demineralizing capability of the 3-species streptococcal biofilms. Besides, II-6s showed reduced cytotoxicity relative to CHX and did not induce drug resistance in S. mutans after 15 passages. Conclusion: - II-6s may serve as a promising part of a successful caries management plan.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanzheng Zhou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Yang
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
57
|
Lyu X, Li C, Zhang J, Wang L, Jiang Q, Shui Y, Chen L, Luo Y, Xu X. A Novel Small Molecule, LCG-N25, Inhibits Oral Streptococcal Biofilm. Front Microbiol 2021; 12:654692. [PMID: 33868212 PMCID: PMC8044806 DOI: 10.3389/fmicb.2021.654692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023] Open
Abstract
Dental caries is a chronic oral infectious disease caused by cariogenic biofilm adhered on the tooth surface. Our previous study demonstrated that a repurposed natural compound napabucasin (NAP) showed good antimicrobial activity against oral streptococcal biofilms. The current study designed a novel small molecule, namely LCG-N25, using NAP as a lead compound, and aimed to investigate its potential as an antimicrobial agent in the control of dental caries. LCG-N25 was designed and synthesized with reference to the structure of NAP. The minimal inhibitory concentrations and the minimal bactericidal concentrations of LCG-N25 against Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii were evaluated by microdilution method. The antimicrobial activity of LCG-N25 was further evaluated by crystal violet staining, colony forming units counting, biofilm metabolism assay, dead/live fluorescent staining, and scanning electron microscopy. The effect of LCG-N25 on the extracellular polysaccharides of biofilms was determined by both anthrone-sulfuric acid method and fluorescent staining. The microbial composition of streptococcal biofilms after LCG-N25 treatment was further visualized and quantified by fluorescence in situ hybridization. Besides, the cytotoxicity of LCG-N25 was evaluated by Cell Counting Kit-8 assay, and repeated exposure of S. mutans to LCG-N25 treatment was performed to assess if this novel compound could induce drug resistance of this cariogenic bacterium. We found that LCG-N25 exhibited a good antibacterial activity, low-cytotoxicity, and did not induce drug resistance of cariogenic S. mutans. These findings suggest that LCG-N25 may represent a promising antimicrobial agent that can be used as an adjuvant to the management of dental caries.
Collapse
Affiliation(s)
- Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chungen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingsong Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
58
|
The Inhibitory Effects of Ficin on Streptococcus mutans Biofilm Formation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6692328. [PMID: 33860052 PMCID: PMC8009705 DOI: 10.1155/2021/6692328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
To investigate the effects of ficin on biofilm formation of conditionally cariogenic Streptococcus mutans (S. mutans). Biomass and metabolic activity of biofilm were assessed using crystal violet assay, colony-forming unit (CFU) counting, and MTT assay. Extracellular polysaccharide (EPS) synthesis was displayed by SEM imaging, bacteria/EPS staining, and anthrone method while acid production was revealed by lactic acid assay. Growth curve and live/dead bacterial staining were conducted to monitor bacterial growth state in both planktonic and biofilm form. Total protein and extracellular proteins of S. mutans biofilm were analyzed by protein/bacterial staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), severally. qRT-PCR was conducted to detect acid production, acid tolerance, and biofilm formation associated genes. Crystal violet assay, CFU counting, and MTT assay showed that the suppression effect of ficin on S. mutans biofilm formation was concentration dependent. 4 mg/mL ficin had significant inhibitory effect on S. mutans biofilm formation including biomass, metabolic activity, EPS synthesis, and lactic acid production (p < 0.05). The growth curves from 0 mg/mL to 4 mg/mL ficin were aligned with each other. There was no significant difference among different ficin groups in terms of live/dead bacterial staining result (p > 0.05). Protein/bacterial staining outcome indicated that ficin inhibit both total protein and biofilm formation during the biofilm development. There were more relatively small molecular weight protein bands in extracellular proteins of 4 mg/mL ficin group when compared with the control. Generally, ficin could inhibit biofilm formation and reduce cariogenic virulence of S. mutans effectively in vitro; thus, it could be a potential anticaries agent.
Collapse
|
59
|
Chen J, Zhang A, Xiang Z, Lu M, Huang P, Gong T, Pan Y, Lin Y, Zhou X, Li Y. EpsR Negatively Regulates Streptococcus mutans Exopolysaccharide Synthesis. J Dent Res 2021; 100:968-976. [PMID: 33749354 DOI: 10.1177/00220345211000668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans is considered the primary etiological agent of human dental caries. Glucosyltransferases (Gtfs) from S. mutans play important roles in the formation of biofilm matrix and the development of cariogenic oral biofilm. Therefore, Gtfs are considered an important target to prevent the development of dental caries. However, the role of transcription factors in regulating gtf expression is not yet clear. Here, we identify a MarR (multiple antibiotic resistance regulator) family transcription factor named EpsR (exopolysaccharide synthesis regulator), which negatively regulates gtfB expression and exopolysaccharide (EPS) production in S. mutans. The epsR in-frame deletion strain grew slowly, aggregated more easily in the presence of dextran, and displayed different colony morphology and biofilm structure. Notably, epsR deletion resulted in altered 3-dimensional biofilm architecture, increased water-insoluble EPS production, and upregulated GtfB protein content and activity. In addition, global gene expression profiling revealed differences in the expression levels of 69 genes in which gtfB was markedly upregulated. The conserved DNA motif for EpsR binding was determined by electrophoretic mobility shift assay and DNase I footprinting assays. Moreover, analysis of β-galactosidase activity suggested that EpsR acted as a repressor and inhibited gtfB expression. Taken together, our findings indicate that EpsR is an important transcription factor that regulates gtfB expression and EPS production in S. mutans. These results add new aspects to the complexity of regulating the expression of genes involved in the cariogenicity of S. mutans, which might lead to novel strategies to prevent the formation of cariogenic biofilm that may favor diseases.
Collapse
Affiliation(s)
- J Chen
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - A Zhang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z Xiang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Lu
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - P Huang
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Gong
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Pan
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Lin
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zhou
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Li
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Understanding the Basis of METH Mouth Using a Rodent Model of Methamphetamine Injection, Sugar Consumption, and Streptococcus mutans Infection. mBio 2021; 12:mBio.03534-20. [PMID: 33688011 PMCID: PMC8092307 DOI: 10.1128/mbio.03534-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
“METH mouth” is characterized by severe tooth decay and gum disease, which often causes teeth to break or fall out. METH users are also prone to colonization by cariogenic bacteria such as Streptococcus mutans. “METH mouth” is a common consequence of chronic methamphetamine (METH) use, resulting in tooth decay and painful oral tissue inflammation that can progress to complete tooth loss. METH reduces the amount of saliva in the mouth, promoting bacterial growth, tooth decay, and oral tissue damage. This oral condition is worsened by METH users’ compulsive behavior, including high rates of consumption of sugary drinks, recurrent tooth grinding, and a lack of frequent oral hygiene. Streptococcus mutans is a Gram-positive bacterium found in the oral cavity and associated with caries in humans. Hence, we developed a murine model of METH administration, sugar intake, and S. mutans infection to mimic METH mouth in humans and to investigate the impact of this drug on tooth colonization. We demonstrated that the combination of METH and sucrose stimulates S. mutans tooth adhesion, growth, and biofilm formation in vivo. METH and sucrose increased the expression of S. mutans glycosyltransferases and lactic acid production. Moreover, METH contributes to the low environmental pH and S. mutans sucrose metabolism, providing a plausible mechanism for bacterium-mediated tooth decay. Daily oral rinse treatment with chlorhexidine significantly reduces tooth colonization in METH- and sucrose-treated mice. Furthermore, human saliva inhibits S. mutans colonization and biofilm formation after exposure to either sucrose or the combination of METH and sucrose. These findings suggest that METH might increase the risk of microbial dental disease in users, information that may help in the development of effective public health strategies to deal with this scourge in our society.
Collapse
|
61
|
Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021; 19:1335-1360. [PMID: 33777334 PMCID: PMC7960681 DOI: 10.1016/j.csbj.2021.02.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The oralome is the summary of the dynamic interactions orchestrated between the ecological community of oral microorganisms (comprised of up to approximately 1000 species of bacteria, fungi, viruses, archaea and protozoa - the oral microbiome) that live in the oral cavity and the host. These microorganisms form a complex ecosystem that thrive in the dynamic oral environment in a symbiotic relationship with the human host. However, the microbial composition is significantly affected by interspecies and host-microbial interactions, which in turn, can impact the health and disease status of the host. In this review, we discuss the composition of the oralome and inter-species and host-microbial interactions that take place in the oral cavity and examine how these interactions change from healthy (eubiotic) to disease (dysbiotic) states. We further discuss the dysbiotic signatures associated with periodontitis and caries and their sequalae, (e.g., tooth/bone loss and pulpitis), and the systemic diseases associated with these oral diseases, such as infective endocarditis, atherosclerosis, diabetes, Alzheimer's disease and head and neck/oral cancer. We then discuss current computational techniques to assess dysbiotic oral microbiome changes. Lastly, we discuss current and novel techniques for modulation of the dysbiotic oral microbiome that may help in disease prevention and treatment, including standard hygiene methods, prebiotics, probiotics, use of nano-sized drug delivery systems (nano-DDS), extracellular polymeric matrix (EPM) disruption, and host response modulators.
Collapse
Affiliation(s)
- Allan Radaic
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne L. Kapila
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
62
|
Afrasiabi S, Bahador A, Partoazar A. Combinatorial therapy of chitosan hydrogel-based zinc oxide nanocomposite attenuates the virulence of Streptococcus mutans. BMC Microbiol 2021; 21:62. [PMID: 33622240 PMCID: PMC7903727 DOI: 10.1186/s12866-021-02128-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/11/2021] [Indexed: 01/21/2023] Open
Abstract
Background Biofilm formation is an important causative factor in the expansion of the carious lesions in the enamel. Hence, new approaches to efficient antibacterial agents are highly demanded. This study was conducted to evaluate the antimicrobial-biofilm activity of chitosan hydrogel (CS gel), zinc oxide/ zeolite nanocomposite (ZnONC) either separately or combined together [ZnONC / CS gel (ZnONC-CS)] against Streptococcus mutans biofilm. Results MTT assay demonstrated that the ZnONC-CS exhibits a non-cytotoxic effect (> 90% cell viability) toward human gingival fibroblast cells at different dosages (78.1–625 μg/mL) within 72 h. In comparison with CS gel and ZnONC, ZnONC-CS was superior at biofilm formation and metabolic activity reduction by 33 and 45%, respectively; (P < 0.05). The field emission scanning electron microscopy micrographs of the biofilms grown on the enamel slabs were largely in concordance with the quantitative biofilm assay results. Consistent with the reducing effect of ZnONC-CS on biofilm formation, the expression levels of gtfB, gtfC, and ftf significantly decreased. Conclusions Taken together, excellent compatibility coupled with an enhanced antimicrobial effect against S. mutans biofilm has equipped ZnONC-CS as a promising candidate for dental biofilm control.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
63
|
Xiong K, Chen X, Zhu H, Ji M, Zou L. Anticaries activity of GERM CLEAN in Streptococcus mutans and Candida albicans dual-species biofilm. Oral Dis 2021; 28:829-839. [PMID: 33583105 DOI: 10.1111/odi.13799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/28/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate the antimicrobial effects of a peptide containing novel oral spray GERM CLEAN on dual-species biofilm formed by Streptococcus mutans and Candida albicans and to investigate whether GERM CLEAN inhibits the demineralization procedure of bovine enamel in vitro. METHODS The antimicrobial effects of GERM CLEAN on dual-species biofilm were analyzed by initial adherence rate calculation, water-insoluble exopolysaccharides quantification, total biomass quantification, and colony-forming units (CFUs) counting. Scanning electron microscopy and confocal laser scanning microscopy were applied to evaluate the impacts of GERM CLEAN on the biofilm structure. Further, the effects of GERM CLEAN on acidogenicity of dual-species were appraised via glycolytic pH drop analysis and hydroxyapatite dissolution measurement. The percentage of Surface Microhardness Reduction (%SMHR) evaluation, Atomic Force Micrograph (AFM) examination, and Transverse Microradiography (TMR) analysis after pH cycling were used to determine whether GERM CLEAN inhibited the demineralization of bovine enamel. RESULTS GERM CLEAN decreased the adherence rate, water-insoluble EPS production, biofilm formation, and acidogenicity of the dual-species. Moreover, GERM CLEAN significantly inhibited the demineralization status of bovine enamels. CONCLUSION This peptide containing novel oral spray GERM CLEAN has antimicrobial potential toward the dual-species. GERM CLEAN can also impede the demineralization procedure of enamel.
Collapse
Affiliation(s)
- Kaixin Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hualing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
64
|
Luo Y, Yang Q, Zhang D, Yan W. Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms. J Microbiol Biotechnol 2021; 31:1-7. [PMID: 33323672 PMCID: PMC9706009 DOI: 10.4014/jmb.2010.10021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Bacterial biofilm is a community of bacteria that are embedded and structured in a self-secreted extracellular matrix. An important clinical-related characteristic of bacterial biofilms is that they are much more resistant to antimicrobial agents than the planktonic cells (up to 1,000 times), which is one of the main causes of antibiotic resistance in clinics. Therefore, infections caused by biofilms are notoriously difficult to eradicate, such as lung infection caused by Pseudomonas aeruginosa in cystic fibrosis patients. Understanding the resistance mechanisms of biofilms will provide direct insights into how we overcome such resistance. In this review, we summarize the characteristics of biofilms and chronic infections associated with bacterial biofilms. We examine the current understanding and research progress on the major mechanisms of antibiotic resistance in biofilms, including quorum sensing. We also discuss the potential strategies that may overcome biofilm-related antibiotic resistance, focusing on targeting biofilm EPSs, blocking quorum sensing signaling, and using recombinant phages.
Collapse
Affiliation(s)
- Ying Luo
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Qianqian Yang
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Dan Zhang
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Wei Yan
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P.R. China,Corresponding author Phone/Fax: +86-571-5600-7510 E-mail:
| |
Collapse
|
65
|
Nijampatnam B, Ahirwar P, Pukkanasut P, Womack H, Casals L, Zhang H, Cai X, Michalek SM, Wu H, Velu SE. Discovery of Potent Inhibitors of Streptococcus mutans Biofilm with Antivirulence Activity. ACS Med Chem Lett 2021; 12:48-55. [PMID: 33488963 DOI: 10.1021/acsmedchemlett.0c00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022] Open
Abstract
Dental caries is a bacterial infectious disease characterized by demineralization of the tooth enamel. Treatment of this disease with conventional antibiotics is largely ineffective as the cariogenic bacteria form tenacious biofilms that are resistant to such treatments. The main etiological agent for dental caries is the bacterium Streptococcus mutans. S. mutans readily forms biofilms on the tooth surface and rapidly produces lactic acid from dietary sucrose. Glucosyl transferases (Gtfs) secreted by S. mutans are mainly responsible for the production of exopolysaccharides that are crucial for the biofilm architecture. Thus, inhibiting S. mutans' Gtfs is an effective approach to develop selective biofilm inhibitors that do not affect the growth of oral commensals. Herein, we report a library of 90 analogs of the previously identified lead compound, G43, and exploration of its structure activity relationships (SAR). All compounds were evaluated for the inhibition of S. mutans biofilms and bacterial growth. Selected compounds from this library were further evaluated for enzyme inhibition against Gtfs using a zymogram assay and for growth inhibition against oral commensal bacterial species such as Streptococcus gordonii and Streptococcus sanguinis. This study has led to the discovery of several new biofilm inhibitors with enhanced potency and selectivity. One of the leads, III F1 , showed marked reduction in buccal, sulcal, and proximal caries scores in a rat model of dental caries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University, Portland, Oregon 97239, United States
| | | |
Collapse
|
66
|
Priya A, Kumar CBM, Valliammai A, Selvaraj A, Pandian SK. Usnic acid deteriorates acidogenicity, acidurance and glucose metabolism of Streptococcus mutans through downregulation of two-component signal transduction systems. Sci Rep 2021; 11:1374. [PMID: 33446778 PMCID: PMC7809355 DOI: 10.1038/s41598-020-80338-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
The principal etiological agent of human dental caries, Streptococcus mutans is a multi-virulent pathogen that can transform commensal oral microbial community to plaque biofilms. Major virulence factors that are associated with the cariogenicity of S. mutans include adhesion, acidogenicity and acidurity. All these pathogenic traits coordinate and alter the dental plaque ecology which provide room for interaction with other similar acidogenic and aciduric bacteria. This cariogenic flora increases the possibility of enamel demineralization which headway to caries development. The present study was aimed at evaluating the antimicrobial and antiinfective potential of a lichen secondary metabolite usnic acid (UA) against S. mutans. Minimum inhibitory concentration (MIC), Minimum bactericidal concentration (MBC) and growth kinetics were evaluated to determine the antimicrobial potential of UA against S. mutans. UA at 5 µg mL-1 and 10 µg mL-1 concentration were considered as MIC and MBC respectively. Effect on biofilm formation was microscopically assessed and found to be reduced in a concentration dependent manner. Gene expression of gtfB, gtfC, gtfD, vicR, ComDE and smu0630 was found to be downregulated upon treatment with sub-MIC of UA. Acidogenicity, acidurity, eDNA synthesis and response to oxidative stress were found to be attenuated by the influence of UA. It was also demonstrated to act on preformed mature biofilm of S. mutans. Moreover, UA was shown to possess very low frequency to acquire spontaneous resistance development in S. mutans. Besides, no morphological aberrations or toxic effect was instigated by UA in the human buccal epithelial cells as well as to the oral commensals. Altogether, these results demonstrate the therapeutic potential of usnic acid in the treatment of S. mutans infection.
Collapse
Affiliation(s)
- Arumugam Priya
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Chandra Bose Manish Kumar
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Alaguvel Valliammai
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | | |
Collapse
|
67
|
In Silico Selection and In Vitro Evaluation of New Molecules That Inhibit the Adhesion of Streptococcus mutants through Antigen I/II. Int J Mol Sci 2020; 22:ijms22010377. [PMID: 33396525 PMCID: PMC7795114 DOI: 10.3390/ijms22010377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 11/23/2022] Open
Abstract
Streptococcus mutans is the main early colonizing cariogenic bacteria because it recognizes salivary pellicle receptors. The Antigen I/II (Ag I/II) of S. mutans is among the most important adhesins in this process, and is involved in the adhesion to the tooth surface and the bacterial co-aggregation in the early stage of biofilm formation. However, this protein has not been used as a target in a virtual strategy search for inhibitors. Based on the predicted binding affinities, drug-like properties and toxicity, molecules were selected and evaluated for their ability to reduce S. mutans adhesion. A virtual screening of 883,551 molecules was conducted; cytotoxicity analysis on fibroblast cells, S. mutans adhesion studies, scanning electron microscopy analysis for bacterial integrity and molecular dynamics simulation were also performed. We found three molecules ZINC19835187 (ZI-187), ZINC19924939 (ZI-939) and ZINC19924906 (ZI-906) without cytotoxic activity, which inhibited about 90% the adhesion of S. mutans to polystyrene microplates. Molecular dynamic simulation by 300 nanoseconds showed stability of the interaction between ZI-187 and Ag I/II (PDB: 3IPK). This work provides new molecules that targets Ag I/II and have the capacity to inhibit in vitro the S. mutans adhesion on polystyrene microplates.
Collapse
|
68
|
Deciphering Streptococcal Biofilms. Microorganisms 2020; 8:microorganisms8111835. [PMID: 33233415 PMCID: PMC7700319 DOI: 10.3390/microorganisms8111835] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococci are a diverse group of bacteria, which are mostly commensals but also cause a considerable proportion of life-threatening infections. They colonize many different host niches such as the oral cavity, the respiratory, gastrointestinal, and urogenital tract. While these host compartments impose different environmental conditions, many streptococci form biofilms on mucosal membranes facilitating their prolonged survival. In response to environmental conditions or stimuli, bacteria experience profound physiologic and metabolic changes during biofilm formation. While investigating bacterial cells under planktonic and biofilm conditions, various genes have been identified that are important for the initial step of biofilm formation. Expression patterns of these genes during the transition from planktonic to biofilm growth suggest a highly regulated and complex process. Biofilms as a bacterial survival strategy allow evasion of host immunity and protection against antibiotic therapy. However, the exact mechanisms by which biofilm-associated bacteria cause disease are poorly understood. Therefore, advanced molecular techniques are employed to identify gene(s) or protein(s) as targets for the development of antibiofilm therapeutic approaches. We review our current understanding of biofilm formation in different streptococci and how biofilm production may alter virulence-associated characteristics of these species. In addition, we have summarized the role of surface proteins especially pili proteins in biofilm formation. This review will provide an overview of strategies which may be exploited for developing novel approaches against biofilm-related streptococcal infections.
Collapse
|
69
|
Huffines JT, Scoffield JA. Disruption of Streptococcus mutans and Candida albicans synergy by a commensal streptococcus. Sci Rep 2020; 10:19661. [PMID: 33184348 PMCID: PMC7661713 DOI: 10.1038/s41598-020-76744-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Polymicrobial interactions in dental plaque play a significant role in dysbiosis and homeostasis in the oral cavity. In early childhood caries, Streptococcus mutans and Candida albicans are often co-isolated from carious lesions and associated with increased disease severity. Studies have demonstrated that metabolic and glucan-dependent synergism between C. albicans and S. mutans contribute to enhanced pathogenesis. However, it is unclear how oral commensals influence pathogen synergy. Streptococcus parasanguinis, a hydrogen peroxide (H2O2) producing oral commensal, has antimicrobial activity against S. mutans. In this study, we utilized a three species biofilm model to understand the impact of S. parasanguinis on S. mutans and C. albicans synergy. We report that S. parasanguinis disrupts S. mutans and C. albicans biofilm synergy in a contact and H2O2-independent manner. Further, metabolomics analysis revealed a S. parasanguinis-driven alteration in sugar metabolism that restricts biofilm development by S. mutans. Moreover, S. parasanguinis inhibits S. mutans glucosyltransferase (GtfB) activity, which is important for glucan matrix development and GtfB-mediated binding to C. albicans mannan. Taken together, our study describes a new antimicrobial role for S. parasanguinis and highlights how this abundant oral commensal may be utilized to attenuate pathogen synergism.
Collapse
Affiliation(s)
- Joshua T Huffines
- Department of Microbiology, School of Medicine, University of Alabama At Birmingham, 845 19th St. South, Room 744A, Birmingham, AL, 35205, USA
| | - Jessica A Scoffield
- Department of Microbiology, School of Medicine, University of Alabama At Birmingham, 845 19th St. South, Room 744A, Birmingham, AL, 35205, USA.
| |
Collapse
|
70
|
Thymol, cardamom and Lactobacillus plantarum nanoparticles as a functional candy with high protection against Streptococcus mutans and tooth decay. Microb Pathog 2020; 148:104481. [DOI: 10.1016/j.micpath.2020.104481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022]
|
71
|
Nakamura K, Shirato M, Shishido S, Niwano Y, Kanno T, Sasaki K, Lingström P, Örtengren U. Reactions of dental pulp to hydrogen peroxide photolysis-based antimicrobial chemotherapy under ultraviolet-A irradiation in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:112042. [PMID: 33027729 DOI: 10.1016/j.jphotobiol.2020.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Hydrogen peroxide photolysis-based antimicrobial chemotherapy that utilizes ultraviolet-A irradiation (UVA-H2O2 photolysis) has been previously proposed as a method of treatment of cariogenic biofilm. Therefore, in the present study, we aimed to assess time-dependent reactions in the dental pulp of rats after UVA-H2O2 photolysis. Maxillary first molars were treated. UVA irradiation (wavelength: 365 nm) with 3 wt% H2O2 was performed for 90 s at a radiant emittance of 500-2000 mW/cm2 on the rats for 3 consecutive days or only 1 day. The animals were sacrificed at Days 1, 3, 7, and 21 after the treatment for the histological evaluation of inflammatory cells and immunohistochemistry of heat shock protein (HSP)-25, a marker of odontoblasts. Tertiary dentin formation was evaluated at Day 21 by histomorphometry and micro-CT analysis. UVA-H2O2 photolysis elicited little infiltration of inflammatory cells, but disturbances in the odontoblast layer and/or presence of localized degenerative tissue were observed on Day 3. This condition was followed by a healing process that was characterized by the reappearance of HSP-25 positive odontoblast-like cells at Day 7 and tertiary dentin formation at Day 21. The amount of tertiary dentin formed was dependent on the intensity of treatment; repeated UVA irradiations of H2O2 at 2000 mW/cm2 resulted in the largest amount of tertiary dentin formation at the pulp horn regions. Our findings suggest that UVA-H2O2 photolysis treatment can be used to treat dental caries clinically because the post-treatment inflammatory reaction was minimal and tertiary dentin formation was substantial, which may prove effective in protecting dental pulp from external irritants. As a cautionary consideration, the radiant emittance of the UVA irradiation should be carefully optimized before clinical application.
Collapse
Affiliation(s)
- Keisuke Nakamura
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Midori Shirato
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shunichi Shishido
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yoshimi Niwano
- Faculty of Nursing, Shumei University, 1-1 Daigaku-cho, Yachiyo, Chiba 276-0003, Japan
| | - Taro Kanno
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Keiichi Sasaki
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Peter Lingström
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Ulf Örtengren
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| |
Collapse
|
72
|
Inhibitory Effect of Phenolic Acids in Rubus coreanus on Glucosyltransferase of Streptococcus mutans. Curr Microbiol 2020; 77:3695-3703. [DOI: 10.1007/s00284-020-02179-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023]
|
73
|
Wu Y, Xie J, Li J, Zhao J, Qiao S, Li Y, Zeng J. Shared bicycle microbial community: a potential antibiotic-resistant bacteria warehouse. Folia Microbiol (Praha) 2020; 66:49-58. [PMID: 32888177 DOI: 10.1007/s12223-020-00820-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/30/2020] [Indexed: 02/05/2023]
Abstract
Shared bicycle is an emerging form of public transportation in China and around the world. However, the bacterial community and drug-resistant microbiome on these bicycles have not been reported. Samples from 10 shared bicycles were observed by scanning electron microscopy (SEM). Nine samples collected from 90 shared bicycles in three different kinds of location (hospital, metro station, shopping mall) were used for full-length 16S rDNA gene analysis to figure out the bacterial composition of the shared bicycle. Samples from 32 shared bicycles were used to investigate culturable drug-resistant bacteria of the shared bicycle bacterial community. It was found that in the shared bicycle bacterial community, Bacillus was the most abundant bacteria, as determined by both SEM observation and full-length 16S rDNA gene analysis. For the analysis of drug-resistant bacteria, Bacillus showed the strongest drug resist ability. Moreover, the resistances to bacitracin and sulfamethoxazole were the most common among all types of bacteria. Our study provides an important reference for the prevention of the potential spread of drug-resistant bacteria through shared bicycles.
Collapse
Affiliation(s)
- Yuqi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahui Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junyi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shihao Qiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
74
|
Zhang A, Chen J, Gong T, Lu M, Tang B, Zhou X, Li Y. Deletion of csn2 gene affects acid tolerance and exopolysaccharide synthesis in Streptococcus mutans. Mol Oral Microbiol 2020; 35:211-221. [PMID: 32794605 DOI: 10.1111/omi.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023]
Abstract
Csn2 is an important protein of the CRISPR-Cas system. The physiological function of this protein and its regulatory role in Streptococcus mutans, as the primary causative agent of human dental caries, is still unclear. In this study, we investigated whether csn2 deletion would affect S. mutans physiology and virulence gene expression. We used microscopic imaging, acid killing assays, pH drop, biofilm formation, and exopolysaccharide (EPS) production tests to determine whether csn2 deletion influenced S. mutans colony morphology, acid tolerance/production, and glucan formation abilities. Comparisons were made between quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) data from the UA159 and csn2 deletion strain to determine the impact of csn2 knockout on S. mutans gene expression. The results showed that deletion of S. mutans csn2 changed its colony morphotype and made it more sensitive to acid. The expression levels of aciduricity genes, including leuA, leuB, leuC, and leuD, were significantly down-regulated. Acid adaptation restored the aciduricity of csn2 mutant and enhanced the ability to synthesize EPS. The expression levels of EPS synthesis-related genes, including gtfC and gtfD, were significantly up-regulated after acid adaptation. In summary, deletion of S. mutans csn2 exerted multiple effects on the virulence traits of this pathogen, including acid tolerance and EPS formation, and that these alterations could partially be attributed to changes in gene expression upon loss of csn2. Understanding the function of csn2 in S. mutans might lead to novel strategies to prevent or treat imbalances in oral microbiota that may favor diseases.
Collapse
Affiliation(s)
- Anqi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiamin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
75
|
Jiang Y, Geng M, Bai L. Targeting Biofilms Therapy: Current Research Strategies and Development Hurdles. Microorganisms 2020; 8:microorganisms8081222. [PMID: 32796745 PMCID: PMC7465149 DOI: 10.3390/microorganisms8081222] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Biofilms are aggregate of microorganisms in which cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS) and adhere to each other and/or to a surface. The development of biofilm affords pathogens significantly increased tolerances to antibiotics and antimicrobials. Up to 80% of human bacterial infections are biofilm-associated. Dispersal of biofilms can turn microbial cells into their more vulnerable planktonic phenotype and improve the therapeutic effect of antimicrobials. In this review, we focus on multiple therapeutic strategies that are currently being developed to target important structural and functional characteristics and drug resistance mechanisms of biofilms. We thoroughly discuss the current biofilm targeting strategies from four major aspects—targeting EPS, dispersal molecules, targeting quorum sensing, and targeting dormant cells. We explain each aspect with examples and discuss the main hurdles in the development of biofilm dispersal agents in order to provide a rationale for multi-targeted therapy strategies that target the complicated biofilms. Biofilm dispersal is a promising research direction to treat biofilm-associated infections in the future, and more in vivo experiments should be performed to ensure the efficacy of these therapeutic agents before being used in clinic.
Collapse
|
76
|
Zhang Z, Liu Y, Lu M, Lyu X, Gong T, Tang B, Wang L, Zeng J, Li Y. Rhodiola rosea extract inhibits the biofilm formation and the expression of virulence genes of cariogenic oral pathogen Streptococcus mutans. Arch Oral Biol 2020; 116:104762. [DOI: 10.1016/j.archoralbio.2020.104762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023]
|
77
|
Zhang Z, Lyu X, Xu Q, Li C, Lu M, Gong T, Tang B, Wang L, Zeng W, Li Y. Utilization of the extract of Cedrus deodara (Roxb. ex D.Don) G. Don against the biofilm formation and the expression of virulence genes of cariogenic bacterium Streptococcus mutans. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112856. [PMID: 32278760 DOI: 10.1016/j.jep.2020.112856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cedrus deodara (Roxb. ex D.Don) G. Don is applied as anti-inflammatory and anti-infection agents in folklore medicine. AIM OF THE STUDY The present study aimed to assess the antimicrobial activity of Cedrus deodara (Roxb. ex D.Don) G. Don extract (CDE) against Streptococcus mutans biofilm formation and its biocompatibility, as well as to identify its chemical components. MATERIALS AND METHODS Confocal laser scanning microscopy (CLSM), crystal violet staining, and CFU counting assay were applied to investigate the effect of CDE on S. mutans biofilm formation and extracellular polysaccharides (EPS) synthesis. The microstructure of S. mutans biofilms formed on glass coverslips and bovine enamel treated with CDE was observed by scanning electron microscopy (SEM). qRT-PCR was used to measure the expression of virulence genes gtfB, gtfC, and gtfD, and zymogram assay was performed to investigate the enzymatic activity of Gtfs. Moreover, HPLC-MS and NMR were applied to identify its chemical components. CCK-8 assay was also performed on human oral cells to evaluate its biocompatibility. RESULTS Under the treatment of CDE, S. mutans formed less biofilm on both coverslips and enamel surfaces and synthesized less EPS. Moreover, CDE downregulated the expression of gtf genes and inhibited the enzymatic activity of Gtfs. According to HPLC-MS and NMR results, molecular structures of six main compounds in CDE were identified. CDE also has a good biocompatibility. CONCLUSIONS CDE exhibits inhibitory activity against S. mutans and a good biocompatibility. It has the potential to be developed as anti-caries agents for clinical use.
Collapse
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610065, PR China.
| | - Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610065, PR China.
| | - Qianda Xu
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610064, PR China.
| | - Chenghui Li
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China.
| | - Miao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610065, PR China.
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610065, PR China.
| | - Boyu Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610065, PR China.
| | - Liu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610065, PR China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610065, PR China.
| | - Weicai Zeng
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610064, PR China.
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
78
|
Zhang G, Lu M, Liu R, Tian Y, Vu VH, Li Y, Liu B, Kushmaro A, Li Y, Sun Q. Inhibition of Streptococcus mutans Biofilm Formation and Virulence by Lactobacillus plantarum K41 Isolated From Traditional Sichuan Pickles. Front Microbiol 2020; 11:774. [PMID: 32425911 PMCID: PMC7203412 DOI: 10.3389/fmicb.2020.00774] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Among cariogenic microbes, Streptococcus mutans is considered a major etiological pathogen of dental caries. Lactobacilli strains have been promoted as possible probiotic agents against S. mutans, although the inhibitory effect of Lactobacilli on caries has not yet been properly addressed. The objective of this study was to screen Lactobacillus strains found in traditional Sichuan pickles and to evaluate their antagonistic properties against S. mutans in vitro and in vivo. In the current study, we analyzed 54 Lactobacillus strains isolated from pickles and found that strain L. plantarum K41 showed the highest inhibitory effect on S. mutans growth as well as on the formation of exopolysaccharides (EPS) and biofilm in vitro. Scanning electron microscopy (SEM) and confocal laser scanning microscope (CLSM) revealed the reduction of both EPS and of the network-like structure in S. mutans biofilm when these bacteria were co-cultured with strain L. plantarum K41. Furthermore, when rats were treated with strain L. plantarum K41, there was a significant reduction in the incidence and severity of dental caries. Due to K41's origin in a high salinity environment, it showed a high tolerance to acids and salts. This may give this strain an advantage in harsh oral conditions. Results showed that L. plantarum K41 isolated from traditional Sichuan pickles effectively inhibited S. mutans biofilm formation and thus possesses a potential inhibitory effect on dental caries in vivo.
Collapse
Affiliation(s)
- Guojian Zhang
- Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China
| | - Miao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodonics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongmei Liu
- Key Laboratory of Bio-resources & Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuanyuan Tian
- Key Laboratory of Bio-resources & Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Viet Ha Vu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodonics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Li
- Key Laboratory of Bio-resources & Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Bao Liu
- Key Laboratory of Bio-resources & Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodonics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qun Sun
- Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Bio-resources & Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
79
|
Antimicrobial Effect of a Peptide Containing Novel Oral Spray on Streptococcus mutans. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6853652. [PMID: 32258136 PMCID: PMC7086434 DOI: 10.1155/2020/6853652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/05/2023]
Abstract
Objective To investigate the antibacterial effect of a novel antimicrobial peptide containing oral spray GERM CLEAN on Streptococcus mutans (S. mutans) in vitro and further explore the related mechanisms at phenotypic and transcriptional levels. Methods The disk diffusion method was used to preliminarily appraise the antimicrobial effect of GERM CLEAN. The minimal inhibitory concentration (MIC) of GREM CLEAN towards S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. Results The diameter (10.18 ± 1.744 mm) of inhibition zones formed by GERM CLEAN preliminarily indicated its inhibitory effect on the major cariogenic bacteria S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. gtfB, gtfC, gtfD, and ldh were significantly repressed by treating with GERM CLEAN, and this was consistent with our phenotypic results. Conclusion The novel antimicrobial peptide containing oral spray GERM CLEAN has an anti-Streptococcus mutans effect and the inhibitory property may be due to suppression of the virulence factors of S. mutans including adhesive, acidogenicity, EPS, and biofilm formation.Streptococcus mutans effect and the inhibitory property may be due to suppression of the virulence factors of S. mutans including adhesive, acidogenicity, EPS, and biofilm formation.S. mutans was determined by the broth dilution method.
Collapse
|
80
|
Application of Antibiotics/Antimicrobial Agents on Dental Caries. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5658212. [PMID: 32076608 PMCID: PMC7013294 DOI: 10.1155/2020/5658212] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023]
Abstract
Dental caries is the most common oral disease. The bacteriological aetiology of dental caries promotes the use of antibiotics or antimicrobial agents to prevent this type of oral infectious disease. Antibiotics have been developed for more than 80 years since Fleming discovered penicillin in 1928, and systemic antibiotics have been used to treat dental caries for a long time. However, new types of antimicrobial agents have been developed to fight against dental caries. The purpose of this review is to focus on the application of systemic antibiotics and other antimicrobial agents with respect to their clinical use to date, including the history of their development, and their side effects, uses, structure types, and molecular mechanisms to promote a better understanding of the importance of microbial interactions in dental plaque and combinational treatments.
Collapse
|
81
|
Abstract
Technological advancements have revolutionized our understanding of the complexity and importance of the human microbiome. This progress has also emphasized the need for precision therapeutics, as it has underscored the dilemmas, such as dysbiosis and increasing antibiotic resistance, associated with current, broad-spectrum treatment modalities. Dental caries remains the most common chronic disease worldwide, accompanied by a tremendous financial and social burden, despite widespread and efficacious fluoride and hygienic regimens. Over the past several decades, various precision approaches to combat dental caries, including vaccines, probiotics, and antimicrobial compounds, have been pursued. Despite the distinct overall conceptual strengths of each approach, for various reasons, there are currently no approved precision antibiotic therapeutics to prevent dental caries. Specifically targeted antimicrobial peptides (STAMPs) are synthetic molecules that combine the antibiotic moiety of a traditional antimicrobial peptide with a targeting domain to provide specificity against a particular organism. Conjoining the killing domain from the antimicrobial, novispirin G10, and a targeting domain derived from the Streptococcus mutans pheromone, CSP, the STAMP C16G2 was designed to provide targeted killing of S. mutans, widely considered the keystone species in dental caries pathogenesis. C16G2 was able to selectively eliminate S. mutans from complex ecosystems while leaving closely related, yet health-associated, oral species unharmed. This remodeling of the dental plaque community is expected to have significant advantages compared to conventional broad-spectrum mouthwashes, as the intact, surviving community is apt to prevent reinfection by pathogens. Following successful phase I clinical trials that evaluated the safety and basic microbiology of C16G2 treatments, the phase II trials of several C16G2 formulations are currently in progress. C16G2 represents an exciting advance in precision therapeutics, and the STAMP platform provides vast opportunities for both the development of additional therapeutics and the overall study of microbial ecology.
Collapse
Affiliation(s)
- J L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - X He
- The Forsyth Institute, Cambridge, MA, USA
| | - W Shi
- The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
82
|
Sztukowska MN, Roky M, Demuth DR. Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms. Mol Oral Microbiol 2019; 34:169-182. [PMID: 31389653 PMCID: PMC6772003 DOI: 10.1111/omi.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
The development of the oral biofilm requires a complex series of interactions between host tissues and the colonizing bacteria as well as numerous interspecies interactions between the organisms themselves. Disruption of normal host-microbe homoeostasis in the oral cavity can lead to a dysbiotic microbial community that contributes to caries or periodontal disease. A variety of approaches have been pursued to develop novel potential therapeutics that are active against the oral biofilm and/or target specific oral bacteria. The structure and function of naturally occurring antimicrobial peptides from oral tissues and secretions as well as external sources such as frog skin secretions have been exploited to develop numerous peptide mimetics and small molecule peptidomimetics that show improved antimicrobial activity, increased stability and other desirable characteristics relative to the parent peptides. In addition, a rational and minimalist approach has been developed to design small artificial peptides with amphipathic α-helical properties that exhibit potent antibacterial activity. Furthermore, with an increased understanding of the molecular mechanisms of beneficial and/or antagonistic interspecies interactions that contribute to the formation of the oral biofilm, new potential targets for therapeutic intervention have been identified and both peptide-based and small molecule mimetics have been developed that target these key components. Many of these mimetics have shown promising results in in vitro and pre-clinical testing and the initial clinical evaluation of several novel compounds has demonstrated their utility in humans.
Collapse
Affiliation(s)
- Maryta N. Sztukowska
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Mohammad Roky
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Donald R. Demuth
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| |
Collapse
|
83
|
Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK. Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiol Res 2019; 227:126292. [PMID: 31421719 DOI: 10.1016/j.micres.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Azotobacter chroococcum (Az) and Trichoderma viride (Tv) represent agriculturally important and beneficial plant growth promoting options which contribute towards nutrient management and biocontrol, respectively. When Az and Tv are co-cultured, they form a biofilm, which has proved promising as an inoculant in several crops; however, the basic aspects related to regulation of biofilm formation were not investigated. Therefore, whole transcriptome sequencing (Illumina NextSeq500) and gene expression analyses were undertaken, related to biofilm formation vis a vis Tv and Az growing individually. Significant changes in the transcriptome profiles of biofilm were recorded and validated through qPCR analyses. In-depth evaluation also identified several genes (phoA, phoB, glgP, alg8, sipW, purB, pssA, fadD) specifically involved in biofilm formation in Az, Tv and Tv-Az. Genes coding for RNA-dependent RNA polymerase, ABC transporters, translation elongation factor EF-1, molecular chaperones and double homeobox 4 were either up-regulated or down-regulated during biofilm formation. To our knowledge, this is the first report on the modulation of gene expression in an agriculturally beneficial association, as a biofilm. Our results provide insights into the regulatory factors involved during biofilm formation, which can help to improve the beneficial effects and develop more effective and promising plant- microbe associations.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Puram Supriya
- Centre for Agricultural Bioinformatics, ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kusmaur, PO Kaitholi, Mau Nath Bhanjan, Uttar Pradesh 275101, India
| |
Collapse
|
84
|
Park M, Sutherland JB, Rafii F. Effects of nano-hydroxyapatite on the formation of biofilms by Streptococcus mutans in two different media. Arch Oral Biol 2019; 107:104484. [PMID: 31382161 DOI: 10.1016/j.archoralbio.2019.104484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/20/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effect of nano-hydroxyapatite (nHA) on biofilm formation by Streptococcus mutans, which is actively involved in the initiation of dental caries. DESIGN The effects of nHA on growth and biofilm formation by S. mutans were investigated in two media: a saliva analog medium, basal medium mucin (BMM); and a nutrient-rich medium, brain heart infusion (BHI); in the presence and absence of sucrose. RESULTS Sucrose enhanced the growth of S. mutans in both media. In the presence of sucrose, nHA enhanced bacterial growth and biofilm formation more in BMM medium than in BHI. nHA also affected the transcription of glucosyltransferase (gtf) genes and production of polysaccharide differently in the two media. In BHI medium, the transcription of all three gtf genes, coding for enzymes that synthesize soluble and insoluble glucans from sucrose, was increased more than 3-fold by nHA. However, in BMM medium, only the transcription of gtfB and gtfC, coding for insoluble glucans, was substantially enhanced by nHA. CONCLUSIONS nHA appeared to enhance biofilm formation by increasing glucosyltransferase transcription, which resulted in an increase in production of insoluble glucans. This effect was influenced by the growth conditions.
Collapse
Affiliation(s)
- Miseon Park
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - John B Sutherland
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| |
Collapse
|
85
|
Zhao Z, Ding C, Wang Y, Tan H, Li J. pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Biomater Sci 2019; 7:1643-1651. [PMID: 30723851 DOI: 10.1039/c8bm01640b] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Traditional antibacterial treatments, such as chlorhexidine (CHX), destroy cariogenic biofilms. However, they exert negative effects in clinical applications, for example, teeth staining, taste disturbance and harm to oral tissue after a long-term exposure. Therefore, biocompatible strategies for efficient antibacterial drug delivery are in high demand. In this study, aimed at dental caries therapy enhancement, we designed a pH-responsive nanocarrier system, capable of releasing CHX in an acidic environment within cariogenic biofilms. Cationic poly(ethylene glycol)-block-poly(2-(((2-aminoethyl)carbamoyl)oxy)ethyl methacrylate) (PEG-b-PAECOEMA) was synthesized first. Modification of PAECOEMA by citraconic anhydride (CA) forms negatively charged PEG-b-PAECOEMA/CA, which could assemble into core-shell polyionic complex micelles (PICMs) when mixed with cationic CHX via electrostatic interactions. PICMs are stable in healthy neutral oral microenvironments with CHX encapsulated in the core and PEG shell exposed. Once in acidic milieu within caries-producing biofilms, they rapidly disassemble and release CHX cargo owing to degradation of citraconic amide groups. Molecular structures of the above copolymers were confirmed using 1H NMR and gel permeation chromatography (GPC) analysis. The pH-dependent degradation rates of citraconic amide in PEG-b-PAECOEMA/CA copolymer were measured by fluorescamine method. Atomic force microscopy (AFM) studies confirmed successful assembly of well-defined spherical PICMs in aqueous solution. The disassembly of PICMs in acidic microenvironment was observed using dynamic light scattering (DLS). PICMs showed an obvious pH-dependent drug release profile when the pH changed from 7.4 to 5.5. More importantly, the micellar system could reduce drug toxicity of CHX and exhibited outstanding antibacterial capability in the biofilm of Streptococcus mutans. Micelles constructed from pH-sensitive PEG-b-PAECOEMA/CA are highly promising for dental caries therapy and provide guidelines for drug-delivery system design in other acidic pathologic systems.
Collapse
Affiliation(s)
- Zhouxiang Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | | | | | | | | |
Collapse
|
86
|
Xiang Z, Li Z, Ren Z, Zeng J, Peng X, Li Y, Li J. EzrA, a cell shape regulator contributing to biofilm formation and competitiveness in Streptococcus mutans. Mol Oral Microbiol 2019; 34:194-208. [PMID: 31287946 DOI: 10.1111/omi.12264] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Bacterial cell division is initiated by tubulin homologue FtsZ that assembles into a ring structure at mid-cell to facilitate cytokinesis. EzrA has been identified to be implicated in FtsZ-ring dynamics and cell wall biosynthesis during cell division of Bacillus subtilis and Staphylococcus aureus, the model rod and cocci. However, its role in pathogenic streptococci remains largely unknown. Here, the role of EzrA was investigated in Streptococcus mutans, the primary etiological agent of human dental caries, by constructing an ezrA in-frame deletion mutant. Our data showed that the ezrA mutant was slow-growing with a shortened length and extended width round cell shape compared to the wild type, indicating a delay in cell division with abnormalities of peptidoglycan biosynthesis. Additionally, FtsZ irregularly localized in dividing ezrA mutant cells forming angled division planes, potentially contributing to an aberrant cell shape. Furthermore, investigation using single-species cariogenic biofilm model revealed that deletion of ezrA resulted in defective biofilm formation with less extracellular polysaccharides and altered three-dimensional biofilm architecture. Unexpectedly, in a dual-species ecological model, the ezrA mutant exhibited substantially lower tolerance for H2 O2 and reduced competitiveness against one commensal species, Streptococcus sanguinis. Taken together, these results demonstrate that EzrA plays a key role in regulating cell division and maintaining a normal morphology in S. mutans and is required for its robust biofilm formation/interspecies competition. Therefore, EzrA protein represents a potential therapeutic target in the development of drugs controlling dental caries and other biofilm-related diseases.
Collapse
Affiliation(s)
- Zhenting Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Zongbo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Zhi Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jumei Zeng
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| |
Collapse
|
87
|
Scharnow AM, Solinski AE, Wuest WM. Targeting S. mutans biofilms: a perspective on preventing dental caries. MEDCHEMCOMM 2019; 10:1057-1067. [PMID: 31391878 PMCID: PMC6644389 DOI: 10.1039/c9md00015a] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
The prevalence of biofilm diseases, and dental caries in particular, have encouraged extensive research on S. mutans biofilms, including methods of preventing its formation. Numerous small molecules with specific anti-biofilm activity against this pathogen have been isolated and synthesized. Generally, these molecules can be characterized into three categories: sucrose-dependent anti-adhesion, sucrose-independent anti-adhesion and cellular signaling interference. This review aims to provide an overview of the current small molecule strategies used for targeting S. mutans biofilms, and a perspective of the future for the field.
Collapse
Affiliation(s)
- Amber M Scharnow
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| | - Amy E Solinski
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| | - William M Wuest
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| |
Collapse
|
88
|
Selective pressures during chronic infection drive microbial competition and cooperation. NPJ Biofilms Microbiomes 2019; 5:16. [PMID: 31263568 PMCID: PMC6555799 DOI: 10.1038/s41522-019-0089-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic infections often contain complex mixtures of pathogenic and commensal microorganisms ranging from aerobic and anaerobic bacteria to fungi and viruses. The microbial communities present in infected tissues are not passively co-existing but rather actively interacting with each other via a spectrum of competitive and/or cooperative mechanisms. Competition versus cooperation in these microbial interactions can be driven by both the composition of the microbial community as well as the presence of host defense strategies. These interactions are typically mediated via the production of secreted molecules. In this review, we will explore the possibility that microorganisms competing for nutrients at the host–pathogen interface can evolve seemingly cooperative mechanisms by controlling the production of subsets of secreted virulence factors. We will also address interspecies versus intraspecies utilization of community resources and discuss the impact that this phenomenon might have on co-evolution at the host–pathogen interface.
Collapse
|
89
|
Wang H, Kang D, Zhou XD, Li YQ. [Prevention of infectious diseases through microecology modulation techniques]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 36:564-567. [PMID: 30465353 DOI: 10.7518/hxkq.2018.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The microbe is small in volume, but large in quantity and species. The symbiotic microbe, which is far more than human cells, code millions times of genes than human being. Somatic cells and these symbiotic microbe distributing in human body skin, respiratory tract, oral cavity and gastrointestinal tract, urinary tract and other parts form a complex ecosystem whose dynamic balance is highly related to body health. With the successful implementation of Human Microbiome Project, more attentions have been paid to the next generation microbiome technologies. New tools and methods for ecological regulation of human microbiome are emerging. The way we improve the world of human microbiology will be more convenient. This paper will make a review on the modulation techniques of human microbiome.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Di Kang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Qing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
90
|
Slater O, Kontoyianni M. The compromise of virtual screening and its impact on drug discovery. Expert Opin Drug Discov 2019; 14:619-637. [PMID: 31025886 DOI: 10.1080/17460441.2019.1604677] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Docking and structure-based virtual screening (VS) have been standard approaches in structure-based design for over two decades. However, our understanding of the limitations, potential, and strength of these techniques has enhanced, raising expectations. Areas covered: Based on a survey of reports in the past five years, we assess whether VS: (1) predicts binding poses in agreement with crystallographic data (when available); (2) is a superior screening tool, as often claimed; (3) is successful in identifying chemical scaffolds that can be starting points for subsequent lead optimization cycles. Data shows that knowledge of the target and its chemotypes in postprocessing lead to viable hits in early drug discovery endeavors. Expert opinion: VS is capable of accurate placements in the pocket for the most part, but does not consistently score screening collections accurately. What matters is capitalization on available resources to get closer to a viable lead or optimizable series. Integration of approaches, subjective hit selection guided by knowledge of the receptor or endogenous ligand, libraries driven by experimental guides, validation studies to identify the best docking/scoring that reproduces experimental findings, constraints regarding receptor-ligand interactions, thoroughly designed methodologies, and predefined cutoff scoring criteria strengthen VS's position in pharmaceutical research.
Collapse
Affiliation(s)
- Olivia Slater
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| | - Maria Kontoyianni
- a Department of Pharmaceutical Sciences , Southern Illinois University Edwardsville , Edwardsville , IL , USA
| |
Collapse
|
91
|
Feng L, Yan Q, Zhang B, Tian X, Wang C, Yu Z, Cui J, Guo D, Ma X, James TD. Ratiometric fluorescent probe for sensing Streptococcus mutans glucosyltransferase, a key factor in the formation of dental caries. Chem Commun (Camb) 2019; 55:3548-3551. [PMID: 30843551 DOI: 10.1039/c9cc00440h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report on a naphthalimide ratiometric fluorescent probe for the real-time sensing and imaging of pathogenic bacterial glucosyltransferases, which are associated with the development of dental caries. Using a high-throughput screening method, we identified that several natural polyphenols from green tea were GTFs inhibitors that could eventually lead to suitable oral treatments to prevent the development of dental caries.
Collapse
Affiliation(s)
- Lei Feng
- College of Pharmacy, Academy of Integrative Medicine, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity. Arch Oral Biol 2019; 99:190-197. [PMID: 30731369 DOI: 10.1016/j.archoralbio.2019.01.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/12/2019] [Accepted: 01/26/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The goal of this study was to analyze the impact of cas3 gene on the biofilm formation and virulence gene expression in S. mutans, since our previous studies have found a connection between CRISPR/Cas systems and biofilm formation in S. mutans. METHODS The cas3 gene in-frame deletion strains of S. mutans UA159 was constructed by a two-step transformation procedure and the cas3 mutant strain was complemented in trans. The biofilm biomass was measured by crystal violet staining, and the synthesis of exopolysaccharides (EPS) was measured by the anthrone-sulfuric method. Biofilm analysis and structural imaging was using confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) assays. The fluorescence in situ hybridization (FISH) was used to analyze the spatiotemporal interactions between S. mutans and Streptococcus sanguinis. Fluoride sensitivity was determined using fluoride tolerance assays. The expression of biofilm formation related genes was evaluated by qRT-PCR. RESULTS Our results showed that S. mutans cas3 deletion strain formed less biofilm and became less competitive when it was co-cultured with S. sanguinis under fluoride treatment. The expression levels of virulence genes including vicR, gtfC, smu0630 and comDE were significantly downregulated. CONCLUSIONS The cas3 gene in S. mutans could regulate biofilm formation and fluoride resistance, consequently affecting S. mutans competitiveness in a dual-species biofilm model under fluoride treatment. These results also provide a potential strategy for enhancing fluoride specificity, with cas3 gene as a potential genetic target in the modulation of oral microecology and the treatment of dental caries.
Collapse
|
93
|
Ren Z, Kim D, Paula AJ, Hwang G, Liu Y, Li J, Daniell H, Koo H. Dual-Targeting Approach Degrades Biofilm Matrix and Enhances Bacterial Killing. J Dent Res 2019; 98:322-330. [PMID: 30678538 DOI: 10.1177/0022034518818480] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biofilm formation is a key virulence factor responsible for a wide range of infectious diseases, including dental caries. Cariogenic biofilms are structured microbial communities embedded in an extracellular matrix that affords bacterial adhesion-cohesion and drug tolerance, making them difficult to treat using conventional antimicrobial monotherapy. Here, we investigated a multitargeted approach combining exopolysaccharide (EPS) matrix-degrading glucanohydrolases with a clinically used essential oils-based antimicrobial to potentiate antibiofilm efficacy. Our data showed that dextranase and mutanase can synergistically break down the EPS glucan matrix in preformed cariogenic biofilms, markedly enhancing bacterial killing by the antimicrobial agent (3-log increase versus antimicrobial alone). Further analyses revealed that an EPS-degrading/antimicrobial (EDA) approach disassembles the matrix scaffold, exposing the bacterial cells for efficient killing while concurrently causing cellular dispersion and "physical collapse" of the bacterial clusters. Unexpectedly, we found that the EDA approach can also selectively target the EPS-producing cariogenic bacteria Streptococcus mutans with higher killing specificity (versus other species) within mixed biofilms, disrupting their accumulation and promoting dominance of commensal bacteria. Together, these results demonstrate a dual-targeting approach that can enhance antibiofilm efficacy and precision by dismantling the EPS matrix and its protective microenvironment, amplifying the killing of pathogenic bacteria within.
Collapse
Affiliation(s)
- Z Ren
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China.,2 Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Kim
- 2 Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A J Paula
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China.,3 Solid-Biological Interface Group (SolBIN), Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - G Hwang
- 2 Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y Liu
- 2 Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Li
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - H Daniell
- 4 Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Koo
- 2 Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
94
|
Baker JL, Edlund A. Exploiting the Oral Microbiome to Prevent Tooth Decay: Has Evolution Already Provided the Best Tools? Front Microbiol 2019; 9:3323. [PMID: 30687294 PMCID: PMC6338091 DOI: 10.3389/fmicb.2018.03323] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
To compete in the relatively exposed oral cavity, resident microbes must avoid being replaced by newcomers. This selective constraint, coupled with pressure on the host to cultivate a beneficial microbiome, has rendered a commensal oral microbiota that displays colonization resistance, protecting the human host from invasive species, including pathogens. Rapid increases in carbohydrate consumption have disrupted the evolved homeostasis between the oral microbiota and dental health, reflected by the high prevalence of dental caries. Development of novel modalities to prevent caries has been the subject of a breadth of research. This mini review provides highlights of these endeavors and discusses the rationale and pitfalls behind the major avenues of approach. Despite efficacy, fluoride and other broad-spectrum interventions are unlikely to further reduce the incidence of dental caries. The most promising methodologies in development are those that exploit the exclusive nature of the healthy oral microbiome. Probiotics derived from the dental plaque of healthy individuals sharply antagonize cariogenic species, such as Streptococcus mutans. Meanwhile, targeted antimicrobials allow for the killing of specific pathogens, allowing reestablishment of a healthy microbiome, presumably with its protective effects. The oral microbiota manufactures a massive array of small molecules, some of which are correlated with health and are likely to antagonize pathogens. The prohibitive cost associated with sufficiently rigorous clinical trials, and the status of dental caries as a non-life-threatening condition will likely continue to impede the advancement of new therapeutics to market. Nevertheless, there is room for optimism, as it appears evolution may have already provided the best tools.
Collapse
Affiliation(s)
| | - Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States
| |
Collapse
|
95
|
Kuang X, Chen V, Xu X. Novel Approaches to the Control of Oral Microbial Biofilms. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6498932. [PMID: 30687755 PMCID: PMC6330817 DOI: 10.1155/2018/6498932] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/13/2018] [Indexed: 02/05/2023]
Abstract
Effective management of biofilm-related oral infectious diseases is a global challenge. Oral biofilm presents increased resistance to antimicrobial agents and elevated virulence compared with planktonic bacteria. Antimicrobial agents, such as chlorhexidine, have proven effective in the disruption/inhibition of oral biofilm. However, the challenge of precisely and continuously eliminating the specific pathogens without disturbing the microbial ecology still exists, which is a major factor in determining the virulence of a multispecies microbial consortium and the consequent development of oral infectious diseases. Therefore, several novel approaches are being developed to inhibit biofilm virulence without necessarily inducing microbial dysbiosis of the oral cavity. Nanoparticles, such as pH-responsive enzyme-mimic nanoparticles, have been developed to specifically target the acidic niches within the oral biofilm where tooth demineralization readily occurs, in effect controlling dental caries. Quaternary ammonium salts (QAS) such as dimethylaminododecyl methacrylate (DMADDM), when incorporated into dental adhesives or resin composite, have also shown excellent and durable antimicrobial activity and thus could effectively inhibit the occurrence of secondary caries. In addition, custom-designed small molecules, natural products and their derivatives, as well as basic amino acids such as arginine, have demonstrated ecological effects by modulating the virulence of the oral biofilm without universally killing the commensal bacteria, indicating a promising approach to the management of oral infectious diseases such as dental caries and periodontal diseases. This article aims to introduce these novel approaches that have shown potential in the control of oral biofilm. These methods may be utilized in the near future to effectively promote the clinical management of oral infectious diseases and thus benefit oral health.
Collapse
Affiliation(s)
- Xinyi Kuang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | | | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
96
|
Wang Y, Zeng Y, Wang Y, Li H, Yu S, Jiang W, Li Y, Zhang L. Antimicrobial peptide GH12 targets Streptococcus mutans to arrest caries development in rats. J Oral Microbiol 2018. [DOI: 10.1080/20002297.2018.1549921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuhao Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu, China
| | - Yuanjing Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu, China
| | - Haoran Li
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sihan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu, China
| | - Wentao Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingxue Li
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
97
|
Rivera-Pérez WA, Yépes-Pérez AF, Martínez-Pabón MC. Molecular docking and in silico studies of the physicochemical properties of potential inhibitors for the phosphotransferase system of Streptococcus mutans. Arch Oral Biol 2018; 98:164-175. [PMID: 30500666 DOI: 10.1016/j.archoralbio.2018.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 10/27/2022]
Abstract
This study identified potential inhibitory compounds of the phosphoenolpyruvate-sugar. Phosphotransferase system of S. mutans, specifically enzyme II mannose transporter (EIIMan) in its subunits IIA, IIB and IIC by means of a selection protocol and in silico molecular analysis. Intervening the phosphotransferase system would compromise the physiological behavior and the pathogenic expression of S. mutans, and possibly other acidogenic bacteria that use phosphotransferases in their metabolism-making the phosphotransferase system a therapeutic target for the selective control of acidogenic microorganisms in caries control. Several computational techniques were used to evaluate molecular, physicochemical, and toxicological aspects of various compounds. Molecular docking was used to calculate the binding potential (ΔG) between receptor protein subunits and more than 836,000 different chemical compounds from the ZINC database. Physicochemical parameters related to the compounds' pharmacokinetic and pharmacodynamic indicators were evaluated, including absorption, distribution, metabolism, excretion, and toxicity (ADMET), and chemical analysis characterized the compounds structures. Thirteen compounds with EII binding potential of the phosphotransferase system of S. mutans and favorable ADMET properties were identified. Six spirooxindoles and three pyrrolidones stand out from the found compounds; unique structural characteristics of spirooxindoles and pyrrolidones associated with various reported biological activities like anti-microbial, antiinflammatory, anticancer, nootropic, neuroprotective and antiepileptic effects, among other pharmacological effects with surprising differences in terms of mechanisms of action. Following studies will provide more evidence of the action of these compounds on the phosphotransferase system of S. mutans, and its possible applications.
Collapse
Affiliation(s)
- Wbeimar Andrey Rivera-Pérez
- Faculty of Dentistry, University of Antioquia- UdeA, 64 Street No. 52-59, Block 31, Oral Microbiology Laboratory No. 216, Health Area, Medellin, Colombia.
| | - Andrés Felipe Yépes-Pérez
- Exact and Natural Sciences School, University of Antioquia-UdeA, Universidad de Antioquia. 67 street No. 53-108, Block 2, Chemistry of Colombian, Plants Laboratory, Office 330, Medellin, Colombia.
| | - Maria Cecilia Martínez-Pabón
- Faculty of Dentistry, University of Antioquia- UdeA, 64 Street No. 52-59, Block 31, Oral Microbiology Laboratory No. 216, Health Area, Medellin, Colombia.
| |
Collapse
|
98
|
Gong T, Tang B, Zhou X, Zeng J, Lu M, Guo X, Peng X, Lei L, Gong B, Li Y. Genome editing in Streptococcus mutans through self-targeting CRISPR arrays. Mol Oral Microbiol 2018; 33:440-449. [PMID: 30329221 DOI: 10.1111/omi.12247] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/12/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023]
Abstract
Streptococcus mutans is the primary etiological agent of human dental caries. Its major virulence factors, glucosyltransferases (Gtfs), utilize sucrose to synthesize extracellular polysaccharides (EPS), leading to the formation of dental plaque biofilm. The current study was designed to develop a novel self-targeting gene editing technology that targeted gtfs to inhibit biofilms formation. The CRISPR-Cas system (ie, clustered regularly interspaced short palindromic repeat, with CRISPR-associated proteins) provides sequence-specific protection against foreign genetic materials in archaea and bacteria, and has been widely developed for genomic engineering. The first aim of this study was to test whether components of the CRISPR-Cas9 system from S mutans UA159 is necessary to defend against foreign DNA. The data showed that a suitable PAM site, tracrRNA, Cas9, and RNase III are indispensable elements to perform normal function of S mutans CRISPR-Cas9 system. Based on these results, we designed self-targeting CRISPR arrays (containing spacer sequences identifying with gtfB) and cloned them onto plasmids. Afterward, we transformed the plasmids and editing templates into UA159 (self-targeting) to acquire desired mutants. Our data showed that this technology performed well and was able to successfully edit gtfB or gtfBgtfC genes. This resulted in high reduction in EPS synthesis and was able to breakdown biofilm formation, which is also a promising tool for dental clinics in order to prevent the formation of S mutans biofilms in the future.
Collapse
Affiliation(s)
- Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- Department of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Miao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxin Guo
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
99
|
Xu J, Yang H, Bi Y, Li W, Wei H, Li Y. Activity of the Chimeric Lysin ClyR against Common Gram-Positive Oral Microbes and Its Anticaries Efficacy in Rat Models. Viruses 2018; 10:v10070380. [PMID: 30036941 PMCID: PMC6070986 DOI: 10.3390/v10070380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Dental caries is a common disease caused by oral bacteria. Streptococcus mutans and Streptococcus sobrinus are the primary cariogenic microbes that often survive as biofilms on teeth. In this study, we evaluated the activity of ClyR, a well-known chimeric lysin with extended streptococcal host range, against common Gram-positive oral microbes and its anticaries efficacy in rat models. ClyR demonstrated high lytic activity against S. mutans MT8148 and S. sobrinus ATCC6715, with minor activity against Streptococcus sanguinis, Streptococcus oralis, and Streptococcus salivarius, which are considered as harmless commensal oral bacteria. Confocal laser scanning microscopy showed that the number of viable cells in 72-h aged S. mutans and S. sobrinus biofilms are significantly (p < 0.05) decreased after treatment with 50 µg/mL ClyR for 5 min. Furthermore, continuous administration of ClyR for 40 days (5 µg/day) significantly (p < 0.05) reduced the severity of caries in rat models infected with a single or a mixed bacteria of S. mutans and S. sobrinus. Therefore, ClyR could be a promising agent or additive for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Jingjing Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yongli Bi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Wuyou Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yuhong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
100
|
Hu X, Wang Y, Gao L, Jiang W, Lin W, Niu C, Yuan K, Ma R, Huang Z. The Impairment of Methyl Metabolism From luxS Mutation of Streptococcus mutans. Front Microbiol 2018; 9:404. [PMID: 29657574 PMCID: PMC5890193 DOI: 10.3389/fmicb.2018.00404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
The luxS gene is present in a wide range of bacteria and is involved in many cellular processes. LuxS mutation can cause autoinducer(AI)-2 deficiency and methyl metabolism disorder. The objective of this study was to demonstrate that, in addition to AI-2-mediated quorum sensing (QS), methyl metabolism plays an important role in LuxS regulation in Streptococcus mutans. The sahH gene from Pseudomonas aeruginosa was amplified and introduced into the S. mutans luxS-null strain to complement the methyl metabolism disruption in a defective QS phenotype. The intracellular activated methyl cycle (AMC) metabolites [S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), homocysteine (HCY), and methionine] were quantified in wild-type S. mutans and its three derivatives to determine the metabolic effects of disrupting the AMC. Biofilm mass and structure, acid tolerance, acid production, exopolysaccharide synthesis of multispecies biofilms and the transcriptional level of related genes were determined. The results indicated that SAH and SAM were relatively higher in S. mutans luxS-null strain and S. mutans luxS null strain with plasmid pIB169 when cultured overnight, and HCY was significantly higher in S. mutans UA159. Consistent with the transcriptional profile, luxS deletion-mediated impairment of biofilm formation and acid tolerance was restored to wild-type levels using transgenic SahH. These results also suggest that methionine methyl metabolism contributes to LuxS regulation in S. mutans to a significant degree.
Collapse
Affiliation(s)
- Xuchen Hu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yuxia Wang
- Department of Endodontics, Tianjin Stomatological Hospital, Nankai University, Tianjin, China
| | - Li Gao
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wenxin Jiang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wenzhen Lin
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Keyong Yuan
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Rui Ma
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|