51
|
Sabareesh V, Ranganayaki RS, Raghothama S, Bopanna MP, Balaram H, Srinivasan MC, Balaram P. Identification and characterization of a library of microheterogeneous cyclohexadepsipeptides from the fungus Isaria. JOURNAL OF NATURAL PRODUCTS 2007; 70:715-29. [PMID: 17477570 DOI: 10.1021/np060532e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ten new cyclic hexadepsipeptides, six isariins and four isaridins, from the fungus Isaria have been identified and characterized by high-performance liquid chromatography, coupled to tandem electrospray ionization mass spectrometry (LC-ESIMS/MS). The isariins possess a beta-hydroxy acid residue and five alpha-amino acids, while isaridins contain a beta-amino acid, an alpha-hydroxy acid, and four alpha-amino acids. One- and two-dimensional NMR spectroscopy confirmed the chemical identity of some of the isariin fractions. Mass spectral fragmentation patterns of [M + H]+ ions reveal clear diagnostic fragment ions for the isariins and isaridins. Previously described cyclic depsipeptides, isarfelins from Isaria felina (Guo, Y. X.; Liu, Q. H.; Ng, T. B.; Wang H. X. Peptides 2005, 26, 2384), are now reassigned as members of the isaridin family. Examination of isaridin sequences revealed significant similarities with cyclic hexadepsipeptides such as destruxins and roseotoxins. The structure of an isariin (isariin A) investigated by NMR spectroscopy indicated the presence of a hybrid alphabeta C11 turn, formed by the beta-hydroxy acid and glycine residues and a D Leu-L Ala type II' beta-turn. Additionally, the inhibitory effect of isariins and an isaridin on the intra-erythrocytic growth of Plasmodium falciparum is presented.
Collapse
Affiliation(s)
- V Sabareesh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Determined efforts are being made to explore the non-photosynthetic plastid organelle of Plasmodium falciparum as a target for drug development. Certain antibiotics that block organellar protein synthesis are already in clinical use as antimalarials. However, all the indications are that these should be used only in combination with conventional antimalarials. The use of antibiotics such as doxycycline and clindamycin may reduce the development of drug resistant parasites and such means to avoid drug resistance should be explored hand-in-hand with drug development. Genomic information predicts that fatty acid type II (FAS II) and isoprenoid biosynthetic pathways are localized to the plastid. However, clinical trials with fosmidomycin (a specific inhibitor of DOXP reductase in the non-mevalonate pathway for isoprenoids) suggest it too should only be used in drug combinations. Prospects for more potent antimalarial compounds have emerged from studies of several of the enzymes involved in the FAS II pathway. Lead antibiotics such as thiolactomycin (an inhibitor of beta-ketoacyl-ACP synthase) and triclosan (a specific inhibitor of enoyl-ACP reductase) have led to structurally similar, active compounds that rapidly kill ring- and trophozoite-stage parasites. The FAS II pathway is of particular interest to the pharma-industry.
Collapse
Affiliation(s)
- S Sato
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
53
|
Rathore D, McCutchan TF, Sullivan M, Kumar S. Antimalarial drugs: current status and new developments. Expert Opin Investig Drugs 2006; 14:871-83. [PMID: 16022576 DOI: 10.1517/13543784.14.7.871] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Malaria continues to be a major threat in the developing world, with > 1 million clinical episodes and 3000 deaths every day. In the last century, malaria claimed between 150 and 300 million lives, accounting for 2 - 5% of all deaths. Currently approximately 40% of the world population resides in areas of active malaria transmission. The disease symptoms are most severe in young children and pregnant women. A total of 90% of the disease-associated mortality occurs in Subsaharan Africa, despite the fact that malaria is indigenous to most tropical regions. A licensed vaccine for malaria has not become a reality and antimalarial drugs are the only available method of treatment. Although chloroquine, the first synthetically developed antimalarial, proved to be an almost magical cure for > 30 years, the emergence and spread of chloroquine-resistant parasites has made it virtually ineffective in most parts of the world. Currently, artemisinin, a plant-derived antimalarial, is the only available drug that is globally effective against the parasite. Although several new drugs have been introduced in the past 30 years, widespread or isolated cases of resistance indicate that their window of effectiveness will be limited. Thus, there is an urgent need to develop new therapeutics and regimens for malaria control. This article presents an overview of the currently available antimalarial chemotherapy options and the efforts being undertaken to develop new drugs based on both the recent technological advances and modifications to the old remedies, and on combination therapies.
Collapse
Affiliation(s)
- Dharmendar Rathore
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
54
|
Wiesner J, Seeber F. The plastid-derived organelle ofprotozoan human parasites asa target of established and emerging drugs. Expert Opin Ther Targets 2005; 9:23-44. [PMID: 15757480 DOI: 10.1517/14728222.9.1.23] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human diseases like malaria, toxoplasmosis or cryptosporidiosis are caused by intracellular protozoan parasites of the phylum Apicomplexa and are still a major health problem worldwide. In the case of Plasmodium falciparum, the causative agent of tropical malaria, resistance against previously highly effective drugs is widespread and requires the continued development of new and affordable drugs. Most apicomplexan parasites possess a single plastid-derived organelle called apicoplast, which offers the great opportunity to tailor highly specific inhibitors against vital metabolic pathways resident in this compartment. This is due to the fact that several of these pathways, being of bacterial or algal origin, are absent in the mammalian host. In fact, the targets of several antibiotics already in use for years against some of these diseases can now be traced to the apicoplast and by knowing the molecular entities which are affected by these substances, improved drugs or drug combinations can be envisaged to emerge from this knowledge. Likewise, apicoplast-resident pathways like fatty acid or isoprenoid biosynthesis have already been proven to be the likely targets of the next drug generation. In this review the current knowledge on the different targets and available inhibitors (both established and experimental) will be summarised and an overview of the clinical efficacy of drugs that inhibit functions in the apicoplast and which have been tested in humans so far will be given.
Collapse
Affiliation(s)
- Jochen Wiesner
- Justus-Liebig-Universität Giessen, Biochemisches Institut, Friedrichstr. 24, D-35392 Giessen, Germany
| | | |
Collapse
|
55
|
Affiliation(s)
- Mark C Bagley
- School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, CF10 3AT, Wales, United Kingdom.
| | | | | | | |
Collapse
|
56
|
Abstract
Apicoplast, the plastid-like organelle of apicomplexan parasites, has generated interest as a putative drug target. Although transcripts for genes encoded by the 35 kb circular plastid DNA have been detected, the actual presence of their protein products has only been postulated. We provide evidence for translation of the tufA gene encoded by the Plasmodium falciparum apicoplast genome. Translation elongation factor Tu (EF-Tu), the product of tufA, was localized within the organelle. TufA was found to express maximally in the trophozoite stage of the intraerythrocytic cycle. Additionally, the drug thiostrepton that has a binding site in apicoplast LSU rRNA, reduced P. falciparum apicoplast EF-Tu levels thus strengthening the view that translation in the apicoplast is the site of action of this drug.
Collapse
Affiliation(s)
- Sushma Chaubey
- Division of Molecular and Structural Biology, Central Drug Research Institute, Lucknow-226001, India
| | | | | | | |
Collapse
|
57
|
Mathis A, Wild P, Deplazes P, Boettger EC. The mitochondrial ribosome of the protozoan Acanthamoeba castellanii is the target for macrolide antibiotics. Mol Biochem Parasitol 2004; 135:225-9. [PMID: 15110464 DOI: 10.1016/j.molbiopara.2004.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 02/06/2004] [Accepted: 02/24/2004] [Indexed: 11/20/2022]
Affiliation(s)
- Alexander Mathis
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266A, 8057 Zürich, Switzerland.
| | | | | | | |
Collapse
|
58
|
Foth BJ, McFadden GI. The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:57-110. [PMID: 12722949 DOI: 10.1016/s0074-7696(05)24003-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apicomplexan parasites cause severe diseases such as malaria, toxoplasmosis, and coccidiosis (caused by Plasmodium spp., Toxoplasma, and Eimeria, respectively). These parasites contain a relict plastid-termed "apicoplast"--that originated from the engulfment of an organism of the red algal lineage. The apicoplast is indispensable but its exact role in parasites is unknown. The apicoplast has its own genome and expresses a small number of genes, but the vast majority of the apicoplast proteome is encoded in the nuclear genome. The products of these nuclear genes are posttranslationally targeted to the organelle via the secretory pathway courtesy of a bipartite N-terminal leader sequence. Apicoplasts are nonphotosynthetic but retain other typical plastid functions such as fatty acid, isoprenoid and heme synthesis, and products of these pathways might be exported from the apicoplast for use by the parasite. Apicoplast pathways are essentially prokaryotic and therefore excellent drug targets. Some antibiotics inhibiting these molecular processes are already in chemotherapeutic use, whereas many new drugs will hopefully spring from our growing understanding of this intriguing organelle.
Collapse
Affiliation(s)
- Bernardo J Foth
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
59
|
Abstract
This review offers a snapshot of our current understanding of the origin, biology, and metabolic significance of the non-photosynthetic plastid organelle found in apicomplexan parasites. These protists are of considerable medical and veterinary importance world-wide, Plasmodium spp., the causative agent of malaria being foremost in terms of human disease. It has been estimated that approximately 8% of the genes currently recognized by the malarial genome sequencing project (now nearing completion) are of bacterial/plastid origin. The bipartite presequences directing the products of these genes back to the plastid have provided fresh evidence that secondary endosymbiosis accounts for this organelle's presence in these parasites. Mounting phylogenetic evidence has strengthened the likelihood that the plastid originated from a red algal cell. Most importantly, we now have a broad understanding of several bacterial metabolic systems confined within the boundaries of the parasite plastid. The primary ones are type II fatty acid biosynthesis and isoprenoid biosynthesis. Some aspects of heme biosynthesis also might take place there. Retention of the plastid's relict genome and its still ill-defined capacity to participate in protein synthesis might be linked to an important house-keeping process, i.e. guarding the type II fatty acid biosynthetic pathway from oxidative damage. Fascinating observations have shown the parasite plastid does not divide by constriction as in typical plants, and that plastid-less parasites fail to thrive after invading a new cell. The modes of plastid DNA replication within the phylum also have provided surprises. Besides indicating the potential of the parasite plastid for therapeutic intervention, this review exposes many gaps remaining in our knowledge of this intriguing organelle. The rapid progress being made shows no sign of slackening.
Collapse
Affiliation(s)
- R J M Iain Wilson
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
60
|
Carnio MC, Stachelhaus T, Francis KP, Scherer S. Pyridinyl polythiazole class peptide antibiotic micrococcin P1, secreted by foodborne Staphylococcus equorum WS2733, is biosynthesized nonribosomally. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6390-401. [PMID: 11737193 DOI: 10.1046/j.0014-2956.2001.02591.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, foodborne Staphylococcus equorum WS2733 was isolated from a French red smear cheese on account of its strong inhibitory activity against Gram-positive pathogens such as Listeria. The antagonistic substance was identified as macrocyclic peptide antibiotic micrococcin P1, which had previously not been reported for the genus Staphylococcus. Micrococcin P1, also a potent inhibitor of the malaria parasite Plasmodium falciparum, is structurally related to thiostrepton, thiocillins and nosiheptide. Although all of these peptide antibiotics have been known for quite a long time, their mode of biosynthesis had not been determined in detail yet. By using degenerated PCR, a gene fragment encoding a nonribosomal peptide synthetase (NRPS) could be amplified from S. equorum. The corresponding chromosomal locus was disrupted by insertional mutagenesis, and it could be shown that all mutants obtained displayed a micrococcin P1-deficient phenotype. Sequence analysis of a coherent 2.8-kb fragment revealed extensive homology to known NRPSs, and allowed the assignment of the domain organization 'condensation-adenylation-thiolation-condensation'; an arrangement predicted only for two loci within the presumably 14-modular, 1.6-MDa biosynthetic NRPS template. Biochemical characterization of the adenylation domain exhibited selectivity for the substrate amino-acid threonine. All of these data substantiate that the macrocyclic peptide antibiotic is biosynthesized nonribosomally, and provide the basis for the characterization of the entire biosynthetic gene cluster. The biosynthetic machinery of micrococcin will serve as a model system for structurally related, pharmacologically important pyridinyl polythiazole class peptide antibiotics. Furthermore, this knowledge will enable the manipulation of its NRPS template, which in turn may grant the targeted engineering of even more potent anti-listerial and anti-malaria drugs.
Collapse
Affiliation(s)
- M C Carnio
- Institut für Mikrobiologie, FML Weihenstephan, Technische Universität München, Freising, Germany
| | | | | | | |
Collapse
|
61
|
Abstract
Resistance to commonly used malaria drugs is spreading and new drugs are required urgently. The recent identification of a relict chloroplast (apicoplast) in malaria and related parasites offers numerous new targets for drug therapy using well-characterized compounds. The apicoplast contains a range of metabolic pathways and housekeeping processes that differ radically to those of the host thereby presenting ideal strategies for drug therapy. Indeed, many compounds targeting these plastid pathways are antimalarial and have favourable profiles based on extensive knowledge from their use as antibacterials.
Collapse
Affiliation(s)
- S A Ralph
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Australia
| | | | | |
Collapse
|
62
|
He CY, Shaw MK, Pletcher CH, Striepen B, Tilney LG, Roos DS. A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 2001; 20:330-9. [PMID: 11157740 PMCID: PMC133478 DOI: 10.1093/emboj/20.3.330] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apicomplexan parasites--including the causative agents of malaria (Plasmodium sp.) and toxoplasmosis (Toxoplasma gondii)--harbor a secondary endosymbiotic plastid, acquired by lateral genetic transfer from a eukaryotic alga. The apicoplast has attracted considerable attention, both as an evolutionary novelty and as a potential target for chemotherapy. We report a recombinant fusion (between a nuclear-encoded apicoplast protein, the green fluorescent protein and a rhoptry protein) that targets to the apicoplast but grossly alters its morphology, preventing organellar segregation during parasite division. Apicoplast-deficient parasites replicate normally in the first infectious cycle and can be isolated by fluorescence-activated cell sorting, but die in the subsequent host cell, confirming the 'delayed death' phenotype previously described pharmacologically, and validating the apicoplast as essential for parasite viability.
Collapse
Affiliation(s)
| | | | - Charles H. Pletcher
- Department of Biology, 305 Goddard Laboratories and
Cancer Center Flow Cytometry Shared Resource, University of Pennsylvania, Philadelphia, PA 19104, USA Present address: Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA Corresponding author e-mail:
| | - Boris Striepen
- Department of Biology, 305 Goddard Laboratories and
Cancer Center Flow Cytometry Shared Resource, University of Pennsylvania, Philadelphia, PA 19104, USA Present address: Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA Corresponding author e-mail:
| | | | - David S. Roos
- Department of Biology, 305 Goddard Laboratories and
Cancer Center Flow Cytometry Shared Resource, University of Pennsylvania, Philadelphia, PA 19104, USA Present address: Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA Corresponding author e-mail:
| |
Collapse
|
63
|
Abstract
An extrachromosomal genome of between 27 and 35 kb has been described in several apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Examination of sequence data proved the genomes to be a remnant plastid genome, from which all genes encoding photosynthetic functions had been lost. Localisation studies had shown that the genome was located within a multi-walled organelle, anterior to the nucleus. This organelle had been previously described in ultrastructural studies of several genera of apicomplexa, but no function had been attributed to it. This invited review describes the evolution of knowledge on the apicomplexan plastid, then discusses current research findings on the likely role of the plastid in the Apicomplexa. How the plastid may be used to effect better drug treatments for apicomplexan diseases, and its potential as a marker for investigating phylogenetic relationships among the Apicomplexa, are discussed.
Collapse
Affiliation(s)
- M T Gleeson
- Department of Cell and Molecular Biology, Faculty of Science, University of Technology, Westbourne Street, Gore Hill NSW 2065, Sydney, Australia.
| |
Collapse
|
64
|
Sullivan M, Li J, Kumar S, Rogers MJ, McCutchan TF. Effects of interruption of apicoplast function on malaria infection, development, and transmission. Mol Biochem Parasitol 2000; 109:17-23. [PMID: 10924753 DOI: 10.1016/s0166-6851(00)00226-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A chloroplast-like organelle is present in many species of the Apicomplexa phylum. We have previously demonstrated that the plastid organelle of Plasmodium faciparum is essential to the survival of the blood-stage malaria parasite in culture. One known function of the plastid organelle in another Apicomplexan, Toxoplasma gondii, involves the formation of the parasitophorous vacuole. The effects of interruption of plastid function on sporozoites and sexual-stage parasites have not been investigated. In our previous studies of the effects of thiostrepton, a polypeptide antibiotic from streptococcus spp., on erythrocytic schizongony of the human malaria P. falciparium, we found that this antibiotic appears to interact with the guanosine triphosphatase (GTPase) binding domain of the organellar large subunit ribosomal RNA, as it does in bacteria. We investigate here the effects of this drug on life-cycle stages of the malaria parasite in vivo. Preincubation of mature infective sporozoites with thiostrepton has no observable effect on their infectivity. Sporozoite infection both by mosquito bite and sporozoite injection was prevented by pretreatment of mice with thiostrepton. Thiostrepton eliminates infection with erythrocytic forms of Plasmodium berghei in mice. Clearance of infected red blood cells follows the delayed kinetics associated with drugs that interact with the apicoplast. Thiostrepton treatment of infected mice reduces transmission of parasites by more than ten-fold, indicating that the plastid has a role in sexual development of the parasite. These results indicate that the plastid function is accessible to drug action in vivo and important to the development of both sexual and asexual forms of the parasite.
Collapse
Affiliation(s)
- M Sullivan
- Growth and Developmnent Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | | | | | |
Collapse
|
65
|
Carnio MC, Höltzel A, Rudolf M, Henle T, Jung G, Scherer S. The macrocyclic peptide antibiotic micrococcin P(1) is secreted by the food-borne bacterium Staphylococcus equorum WS 2733 and inhibits Listeria monocytogenes on soft cheese. Appl Environ Microbiol 2000; 66:2378-84. [PMID: 10831414 PMCID: PMC110537 DOI: 10.1128/aem.66.6.2378-2384.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1999] [Accepted: 03/21/2000] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus equorum WS 2733 was found to produce a substance exhibiting a bacteriostatic effect on a variety of gram-positive bacteria. The metabolite was purified to homogeneity by ammonium sulfate precipitation and semipreparative reversed-phase high-performance liquid chromatography. Electrospray mass spectrometry confirmed the high purity of the compound and revealed a molecular mass of 1,143 Da. By two-dimensional nuclear magnetic resonance spectroscopy the substance was identified as micrococcin P(1) which is a macrocyclic peptide antibiotic that has not yet been reported for the genus Staphylococcus. A total of 95 out of 95 Listeria strains and 130 out of 135 other gram-positive bacteria were inhibited by this substance, while none of 37 gram-negative bacteria were affected. The antilisterial potential of this food-grade strain as a protective starter culture was evaluated by its in situ application in cheese-ripening experiments under laboratory conditions. A remarkable growth reduction of Listeria monocytogenes could be achieved compared to control cheese ripened with a nonbacteriocinogenic type strain of Staphylococcus equorum. In order to prove that inhibition was due to micrococcin P(1), a micrococcin-deficient mutant was constructed which did not inhibit L. monocytogenes in cheese-ripening experiments.
Collapse
Affiliation(s)
- M C Carnio
- Institut für Mikrobiologie, FML Weihenstephan, Technische Universität München, D-85354 Freising, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Both the chromosomal and extrachromosomal components of the apicomplexan genome have been supplemented by genes from a plastid-bearing endocytobiont: probably an algal cell. The sequence of the apicomplexan plastid's vestigial genome indicates that a large number (>100) of genes of endocytobiotic origin must have transferred laterally to the host cell nucleus where they control maintenance of the plastid organelle and supply its functional components by means of post-translational protein trafficking. Should the nuclear genes prove to be less divergent phylogenetically than those left on the plastid genome, they might give better clues than we have at present to the origin of the plastid-bearing endocytobiont. Most of these nuclear genes still await discovery, but the on-going genome sequencing project will reveal the function of the organelle, as well as many "housekeeping" processes of interest on a wider front. The plastid's own protein synthetic machinery, being cyanobacterial in origin, offers conventional targets for antibiotic intervention, and this is discussed here using a structural model of elongation factor Tu. Uncovering the vital function(s) of the plastid organelle will provide new drug targets.
Collapse
Affiliation(s)
- S Sato
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|
67
|
Meinnel T. Peptide deformylase of eukaryotic protists: a target for new antiparasitic agents? PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:165-8. [PMID: 10725904 DOI: 10.1016/s0169-4758(99)01627-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Peptide deformylase is found only in Eubacteria, making it a logical target for discovering new antibacterial agents. Although this protein is absent from animal or fungal cells, evidence supports its existence in eukaryotic protists, including the causative agents of malaria, sleeping sickness, Chagas disease and leishmaniosis. Here, Thierry Meinnel discusses the idea that deformylase inhibitors could be used as very broad-spectrum antibiotics against bacterial infections, as well as parasitic diseases.
Collapse
Affiliation(s)
- T Meinnel
- Institut des Sciences Végétales, UPR40, Centre National de la Recherche Scientifique, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
68
|
Bagley MC, Bashford KE, Hesketh CL, Moody CJ. Total Synthesis of the Thiopeptide Promothiocin A. J Am Chem Soc 2000. [DOI: 10.1021/ja994247b] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark C. Bagley
- Contribution from the School of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| | - Katherine E. Bashford
- Contribution from the School of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| | - Claire L. Hesketh
- Contribution from the School of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| | - Christopher J. Moody
- Contribution from the School of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| |
Collapse
|
69
|
Ferreras A, Triana L, Correia H, Sánchez E, Herrera F. An in vitro system from Plasmodium falciparum active in endogenous mRNA translation. Mem Inst Oswaldo Cruz 2000; 95:231-5. [PMID: 10733745 DOI: 10.1590/s0074-02762000000200017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An in vitro translation system has been prepared from Plasmodium falciparum by saponin lysis of infected-erythrocytes to free parasites which were homogeneized with glass beads, centrifuged to obtain a S-30 fraction followed by Sephadex G-25 gel filtration. This treatment produced a system with very low contamination of host proteins (<1%). The system, optimized for Mg2+ and K+, translates endogenous mRNA and is active for 80 min which suggests that their protein factors and mRNA are quite stable.
Collapse
Affiliation(s)
- A Ferreras
- Centro de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad de Carabobo, Maracay, Aragua, Venezuela
| | | | | | | | | |
Collapse
|
70
|
Clough B, Rangachari K, Strath M, Preiser PR, Wilson RJ. Antibiotic inhibitors of organellar protein synthesis in Plasmodium falciparum. Protist 1999; 150:189-95. [PMID: 10505418 DOI: 10.1016/s1434-4610(99)70021-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elongation factor Tu (EF-Tu) is encoded by the tuf gene of the plastid organelle of the malaria parasite Plasmodium falciparum. A range of structurally unrelated inhibitors of this GTP-dependent translation factor was shown to have antimalarial activity in blood cultures. The most active was the cyclic thiazolyl peptide amythiamicin A with an IC50 = 0.01 microM. Demonstrable complexes were formed in vitro between a recombinant version of P. falciparum EF-Tu(pl) and inhibitors that bind to different sites on EF-Tu; these included the antibiotics kirromycin, GE2270A and enacyloxin IIa.
Collapse
Affiliation(s)
- B Clough
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
71
|
Abstract
Prokaryotic metabolic pathways in the relict plastid of apicomplexan parasites make this organelle a promising target for drug development. The parasiticidal activity of several herbicides and antibacterial antibiotics is suspected to be a result of their ability to inhibit key plastid activities.
Collapse
Affiliation(s)
- G I McFadden
- Plant Cell Biology Research Center, School of Botany, University of Melbourne, Parkville, VIC 3052, Australia.
| | | |
Collapse
|
72
|
Abstract
The plastid organelle of malarial and other apicomplexan parasites contains ribosome-like particles as well as a genome dedicated largely to specifying components of a protein expression system. We have identified plastid ribosomes using hybridization studies and show that in erythrocytic stages of Plasmodium falciparum a subset of polysomes carries plastid-specified rRNAs and mRNA, supporting the idea that protein synthesis is active in the plastid.
Collapse
Affiliation(s)
- A Roy
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | |
Collapse
|
73
|
Porse BT, Cundliffe E, Garrett RA. The antibiotic micrococcin acts on protein L11 at the ribosomal GTPase centre. J Mol Biol 1999; 287:33-45. [PMID: 10074405 DOI: 10.1006/jmbi.1999.2600] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Micrococcin-resistant mutants of Bacillus megaterium that carry mutations affecting ribosomal protein L11 have been characterised. The mutants fall into two groups. "L11-minus" strains containing an L11 gene with deletions, insertions or nonsense mutations which grow 2.5-fold slower than the wild-type strain, whereas other mutants carrying single-site substitutions within an 11 amino acid residue segment of the N-terminal domain of L11 grow normally. Protein L11 binds to 23 S rRNA within the ribosomal GTPase centre which regulates GTP hydrolysis on ribosomal factors. Micrococcin binding within the rRNA component of this centre was probed on wild-type and mutant ribosomes, in vivo, using dimethyl sulphate where it generated an rRNA footprint indistinguishable from that produced in vitro, even after the cell growth had been arrested by treatment with either kirromycin or fusidic acid. No drug-rRNA binding was detected in vivo for the L11-minus mutants, while reduced binding (approximately 30-fold) was observed for two single-site mutants P23L and P26L. For the latter, the reduced drug affinity alone did not account for the resistance-phenotype because rapid cell growth occurred even at drug concentrations that would saturate the ribosomes. Micrococcin was also bound to complexes containing an rRNA fragment and wild-type or mutant L11, expressed as fusion proteins, and they were probed with proteinases. The drug produced strong protection effects on the wild-type protein and weak effects on the P23L and P26L mutant proteins. We infer that inhibition of cell growth by micrococcin, as for thiostrepton, results from the imposition of a conformational constraint on protein L11 which, in turn, perturbs the function(s) of the ribosomal factor-guanosine nucleotide complexes.
Collapse
Affiliation(s)
- B T Porse
- RNA Regulation Centre Institute of Molecular Biology, University of Copenhagen, Solvgade 83H, Copenhagen K, DK1307, Denmark
| | | | | |
Collapse
|
74
|
McConkey GA. Targeting the shikimate pathway in the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 1999; 43:175-7. [PMID: 9869588 PMCID: PMC89043 DOI: 10.1128/aac.43.1.175] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The shikimate pathway presents an attractive target for malaria chemotherapy. Three shikimic acid analogs exhibited different effects on Plasmodium falciparum growth. (6R)-6-Fluoro-shikimate and (6S)-6-fluoro-shikimate inhibited growth (50% inhibitory concentrations, 1.5 x 10(-5) and 2.7 x 10(-4) M, respectively), whereas 2-fluoro-shikimate had no effect. para-Aminobenzoic acid abrogated the inhibition, demonstrating that the shikimate pathway was specifically targeted.
Collapse
Affiliation(s)
- G A McConkey
- Department of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
75
|
Lang-Unnasch N, Reith ME, Munholland J, Barta JR. Plastids are widespread and ancient in parasites of the phylum Apicomplexa. Int J Parasitol 1998; 28:1743-54. [PMID: 9846612 DOI: 10.1016/s0020-7519(98)00136-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Current evidence supports the presence of a non-photosynthetic chloroplast-like organelle in several apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii. This apicomplexan organelle, referred to here as the "plastid", may have been acquired through a primary or secondary endosymbiosis of a photosynthetic organism. Alternatively, apicomplexan plastids may have been acquired through several independent endosymbiotic events, as appears to be the case for the acquisition of chloroplasts by dinoflagellates. The likelihood of multiple origins of an apicomplexan plastid is enhanced by the close evolutionary relatedness of apicomplexan and dinoflagellate taxa. In this study, we have tested the hypothesis that apicomplexan plastids are derived from a single ancient ancestor. Two lines of evidence supporting this hypothesis are presented. First, this study supports the widespread presence of plastid DNA in apicomplexan species. Second, the topologies of the phylogenetic trees derived from plastid and nuclear-encoded rRNA gene sequences suggest the co-evolution of the DNAs localised in these two compartments. Taken together, these data support a single ancient lineage for the plastids of parasites in the phylum Apicomplexa.
Collapse
Affiliation(s)
- N Lang-Unnasch
- Department of Medicine, University of Alabama at Birmingham 35294-2170, USA.
| | | | | | | |
Collapse
|