51
|
Hummel A, Holzapfel WH, Franz CMAP. Characterisation and transfer of antibiotic resistance genes from enterococci isolated from food. Syst Appl Microbiol 2007; 30:1-7. [PMID: 16563685 DOI: 10.1016/j.syapm.2006.02.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Indexed: 10/24/2022]
Abstract
The genetic determinants responsible for the resistances against the antibiotics tetracycline [tet(M), tet(O), tet(S), tet(K) and tet(L)], erythromycin (ermA,B,C; mefA,E; msrA/B; and ereA,B) and chloramphenicol (cat) of 38 antibiotic-resistant Enterococcus faecium and Enterococcus faecalis strains from food were characterised. In addition, the transferability of resistance genes was also assessed using filter mating assays. The tet(L) determinant was the most commonly detected among tetracycline-resistant enterococci (94% of the strains), followed by the tet(M) gene, which occurred in 63.0% of the strains. Tet(K) occurred in 56.0% of the resistant strains, while genes for tet(O) and tet(S) could not be detected. The integrase gene of the Tn916-1545 family of transposons was present in 81.3% of the tetracycline resistant strains, indicating that resistance genes might be transferable by transposons. All chloramphenicol-resistant strains carried a cat gene. 81.8% of the erythromycin-resistant strains carried the ermB gene. Two (9.5%) of the 21 erythromycin-resistant strains, which did not contain ermA,B,C, ereA,B and mphA genes harboured the msrC gene encoding an erythromycin efflux pump, which was confirmed by sequencing the PCR amplicon. In addition, all E. faecium strains contained the msrC gene, but none of the E. faecalis strains. Transfer of the genetic determinants for antibiotic resistance could only be demonstrated in one filter mating experiment, where both the tet(M) and tet(L) genes were transferred from E. faecalis FAIR-E 315 to the E. faecalis OG1X recipient strain. Our results show the presence of various types of resistance genes as well as transposon integrase genes associated with transferable resistances in enterococci, indicating a potential for gene transfer in the food environment.
Collapse
Affiliation(s)
- Anja Hummel
- Federal Research Centre for Nutrition and Food, Institute of Hygiene and Toxicology, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany
| | | | | |
Collapse
|
52
|
Marquez B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie 2006; 87:1137-47. [PMID: 15951096 DOI: 10.1016/j.biochi.2005.04.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
It is now well established that bacterial resistance to antibiotics has become a serious problem of public health that concerns almost all antibacterial agents and that manifests in all fields of their application. Among the three main mechanisms involved in bacterial resistance (target modification, antibiotic inactivation or default of its accumulation within the cell), efflux pumps, responsible for the extrusion of the antibiotic outside the cell, have recently received a particular attention. Actually, these systems, classified into five families, can confer resistance to a specific class of antibiotics or to a large number of drugs, thus conferring a multi-drug resistance (MDR) phenotype to bacteria. To face this issue, it is urgent to find new molecules active against resistant bacteria. Among the strategies employed, the search for inhibitors of resistance mechanisms seems to be attractive because such molecules could restore antibiotic activity. In the case of efflux systems, efflux pump inhibitors (EPIs) are expected to block the pumps and such EPIs, if active against MDR pumps, would be of great interest. This review will focus on the families of bacterial efflux systems conferring drug resistance, and on the EPIs that have been identified to restore antibiotic activity.
Collapse
Affiliation(s)
- Béatrice Marquez
- UMR CNRS 7573 - ENSCP, Laboratoire de Biochimie, 11, rue Pierre-et-Marie-Curie, 75005 Paris, France.
| |
Collapse
|
53
|
Nallapareddy SR, Singh KV, Murray BE. Construction of improved temperature-sensitive and mobilizable vectors and their use for constructing mutations in the adhesin-encoding acm gene of poorly transformable clinical Enterococcus faecium strains. Appl Environ Microbiol 2006; 72:334-45. [PMID: 16391062 PMCID: PMC1352270 DOI: 10.1128/aem.72.1.334-345.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inactivation by allelic exchange in clinical isolates of the emerging nosocomial pathogen Enterococcus faecium has been hindered by lack of efficient tools, and, in this study, transformation of clinical isolates was found to be particularly problematic. For this reason, a vector for allelic replacement (pTEX5500ts) was constructed that includes (i) the pWV01-based gram-positive repAts replication region, which is known to confer a high degree of temperature intolerance, (ii) Escherichia coli oriR from pUC18, (iii) two extended multiple-cloning sites located upstream and downstream of one of the marker genes for efficient cloning of flanking regions for double-crossover mutagenesis, (iv) transcriptional terminator sites to terminate undesired readthrough, and (v) a synthetic extended promoter region containing the cat gene for allelic exchange and a high-level gentamicin resistance gene, aph(2'')-Id, to distinguish double-crossover recombination, both of which are functional in gram-positive and gram-negative backgrounds. To demonstrate the functionality of this vector, the vector was used to construct an acm (encoding an adhesin to collagen from E. faecium) deletion mutant of a poorly transformable multidrug-resistant E. faecium endocarditis isolate, TX0082. The acm-deleted strain, TX6051 (TX0082Deltaacm), was shown to lack Acm on its surface, which resulted in the abolishment of the collagen adherence phenotype observed in TX0082. A mobilizable derivative (pTEX5501ts) that contains oriT of Tn916 to facilitate conjugative transfer from the transformable E. faecalis strain JH2Sm::Tn916 to E. faecium was also constructed. Using this vector, the acm gene of a nonelectroporable E. faecium wound isolate was successfully interrupted. Thus, pTEX5500ts and its mobilizable derivative demonstrated their roles as important tools by helping to create the first reported allelic replacement in E. faecium; the constructed this acm deletion mutant will be useful for assessing the role of acm in E. faecium pathogenesis using animal models.
Collapse
Affiliation(s)
- Sreedhar R Nallapareddy
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin St., MSB 2.112, Houston, TX 77030, USA
| | | | | |
Collapse
|
54
|
Reynolds ED, Cove JH. Resistance to telithromycin is conferred by msr(A), msrC and msr(D) in Staphylococcus aureus. J Antimicrob Chemother 2005; 56:1179-80. [PMID: 16223938 DOI: 10.1093/jac/dki378] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
55
|
Aakra A, Vebø H, Snipen L, Hirt H, Aastveit A, Kapur V, Dunny G, Murray BE, Murray B, Nes IF. Transcriptional response of Enterococcus faecalis V583 to erythromycin. Antimicrob Agents Chemother 2005; 49:2246-59. [PMID: 15917518 PMCID: PMC1140525 DOI: 10.1128/aac.49.6.2246-2259.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A transcriptional profile of Enterococcus faecalis V583 (V583) treated with erythromycin is presented. This is the first study describing a complete transcriptional profile of Enterococcus. E. faecalis is a common and nonvirulent bacterium in many natural environments, but also an important cause of nosocomial infections. We have used a genome-wide microarray based on the genome sequence of V583 to study gene expression in cells exposed to erythromycin. V583 is resistant to relatively high concentrations of erythromycin, but growth is retarded by the treatment. The effect of erythromycin treatment on V583 was studied by a time course experiment; samples were extracted at five time points over a period of 90 min. A drastic change in gene transcription was seen with the erythromycin-treated cells compared to the untreated cells. Altogether, 260 genes were down-regulated at one or more time points, while 340 genes were up-regulated. Genes encoding hypothetical proteins and genes encoding transport and binding proteins were the two most dominating groups of differentially expressed genes. The gene encoding ermB (EFA0007) was expressed, but not differentially, which indicated that other genes are important for the survival and growth maintenance of V583 treated with erythromycin. One of these genes is a putative MsrC-like protein, which was up-regulated at all time points studied. Other specific genes that were found to be up-regulated were genes encoding ABC transporters and two-component regulatory systems, and these may be genes that are important for the specific response of V583 to erythromycin.
Collapse
Affiliation(s)
- Agot Aakra
- Laboratory of Microbial Gene Technology, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 As, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
57
|
Chesneau O, Ligeret H, Hosan-Aghaie N, Morvan A, Dassa E. Molecular analysis of resistance to streptogramin A compounds conferred by the Vga proteins of staphylococci. Antimicrob Agents Chemother 2005; 49:973-80. [PMID: 15728891 PMCID: PMC549225 DOI: 10.1128/aac.49.3.973-980.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Vga and Msr resistance determinants, encoded by mobile genetic elements in various staphylococcal strains, belong to a family of ATP-binding cassette (ABC) proteins whose functions and structures are ill defined. Their amino acid sequences are similar to those of proteins involved in the immunity of streptomycetes to the macrolide-lincosamide-streptogramin antibiotics that they produce. Sequence analysis of the genomes of the gram-positive bacteria with low G+C contents revealed that Lmo0919 from Listeria monocytogenes is more closely related to Vga variants than to Msr variants. In the present study we compared the antibiotic resistance profiles conferred by the Vga-like proteins in two staphylococcal hosts. It was shown that Vga(A), the Vga(A) variant [Vga(A)v], and Lmo0919 can confer resistance to lincosamides and streptogramin A compounds, while only Vga(B) is able to increase the level of resistance to pristinamycin, a mixture of streptogramin A and streptogramin B compounds. By using polyclonal antibodies, we found that the Vga(A) protein colocalized with the beta subunit of the F(1)-F(0) ATPase in the membrane fractions of staphylococcal cells. In order to identify functional units in these atypical ABC proteins, such as regions that might be involved in substrate specificity and/or membrane targeting, we analyzed the resistance phenotypes conferred by various plasmids carrying parts or modified versions of the vga(A) gene and we determined the subcellular localization of the gene products. Only polypeptides composed of two ABC domains were detected in the cell membranes. No region of drug specificity was identified. Resistance properties were dependent on the integrities of both Walker B motifs.
Collapse
Affiliation(s)
- Olivier Chesneau
- Unité des Staphylocoques, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
58
|
Roberts MC. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol 2005; 28:47-62. [PMID: 15456963 DOI: 10.1385/mb:28:1:47] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Macrolides have enjoyed a resurgence as new derivatives and related compounds have come to market. These newer compounds have become important in the treatment of community-acquired pneumoniae and nontuberculosis-Mycobacterium diseases. In this review, the bacterial mechanisms of resistance to the macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics, the distribution of the various acquired genes that confer resistance, as well as mutations that have been identified in clinical and laboratory strains are examined.
Collapse
Affiliation(s)
- Marilyn C Roberts
- Department of Pathobiology, Box 357238, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
59
|
Jalava J, Marttila H. Application of molecular genetic methods in macrolide, lincosamide and streptogramin resistance diagnostics and in detection of drug-resistant Mycobacterium tuberculosis. APMIS 2005; 112:838-55. [PMID: 15638840 DOI: 10.1111/j.1600-0463.2004.apm11211-1209.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial susceptibility testing has traditionally been based on measurements of minimal inhibitory concentrations of antimicrobials. Molecular genetic studies on antimicrobial resistance have produced a great deal of genetic information which can be used for diagnosis of antimicrobial resistance determinants. Bacteria can acquire resistance to macrolides, lincosamides and streptogramin antibiotics by modification of the target site of the drugs, by active efflux of the drugs, and by inactivation of the drugs. The genetic backgrounds of these resistance mechanisms are well known and several molecular methods for detection of resistance determinants have been developed. Outbreaks of multidrug-resistant tuberculosis have focused international attention on the emergence of Mycobacterium tuberculosis strains that are resistant to antimycobacterial agents. Knowledge of the antimycobacterial resistance genetics and progress in molecular methods has made it possible to develop rapid molecular methods for susceptibility testing. This review presents the genetic background of drug resistance and introduces some methods for genotypic susceptibility testing.
Collapse
Affiliation(s)
- Jari Jalava
- National Public Health Institute, Department of Human Microbial Ecology and Inflammation, Turku University Central Hospital, Turku, Finland.
| | | |
Collapse
|
60
|
Reynolds E, Cove JH. Enhanced resistance to erythromycin is conferred by the enterococcal msrC determinant in Staphylococcus aureus. J Antimicrob Chemother 2005; 55:260-4. [PMID: 15649995 DOI: 10.1093/jac/dkh541] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The msrC gene, found on the chromosome of Enterococcus faecium, shares a high degree of similarity with the staphylococcal erythromycin resistance determinant msr(A). The enterococcal determinant was cloned into Staphylococcus aureus to determine whether msrC could confer antibiotic resistance in staphylococci. METHODS A shuttle vector comprising pBluescript and pSK265 was used to introduce multiple copies of msrC into S. aureus RN4220. The integration vector pCL84 was employed to insert a single copy of msrC into the S. aureus chromosome. MICs were determined by the broth microdilution method. RESULTS Expression of msrC from both chromosomal and plasmid loci in erythromycin-susceptible S. aureus RN4220 (MIC 0.25 mg/L) gave rise to enhanced protection against erythromycin, with an MIC of 32-64 mg/L for S. aureus RN4220 containing msrC in multiple copies and an MIC of 16-64 mg/L with msrC inserted as a single copy in the S. aureus chromosome. CONCLUSIONS MsrC mediates high-level resistance to erythromycin in S. aureus.
Collapse
Affiliation(s)
- Elinor Reynolds
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
61
|
Koch S, Hufnagel M, Theilacker C, Huebner J. Enterococcal infections: host response, therapeutic, and prophylactic possibilities. Vaccine 2004; 22:822-30. [PMID: 15040934 DOI: 10.1016/j.vaccine.2003.11.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The emergence of resistance against multiple antibiotics and the increasing frequency with which Enterococcus faecalis and Enterococcus faecium are isolated from hospitalized patients underscore the necessity for a better understanding of the virulence mechanisms of this pathogen and the development of alternatives to current antibiotic treatments. The genetic plasticity of enterococci and their ability to rapidly acquire and/or develop resistance against many clinically important antibiotics and to transfer these resistance determinants to other more pathogenic microorganisms makes the search for alternative treatment and preventive options even more important. A capsular polysaccharide antigen has recently been characterized that is the target of opsonic antibodies. A limited number of clinically relevant serotypes exist, and the development of an enterococcal vaccine based on capsular polysaccharides may improve our ability to prevent and treat these infections. Additional enterococcal surface antigens, including ABC transporter proteins and other virulence factors, such as aggregation substance (AS), may also be useful targets for therapeutic antibodies.
Collapse
Affiliation(s)
- Stefanie Koch
- Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
62
|
Teng F, Kawalec M, Weinstock GM, Hryniewicz W, Murray BE. An Enterococcus faecium secreted antigen, SagA, exhibits broad-spectrum binding to extracellular matrix proteins and appears essential for E. faecium growth. Infect Immun 2003; 71:5033-41. [PMID: 12933846 PMCID: PMC187350 DOI: 10.1128/iai.71.9.5033-5041.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 05/28/2003] [Accepted: 06/17/2003] [Indexed: 11/20/2022] Open
Abstract
A gene encoding a major secreted antigen, SagA, was identified in Enterococcus faecium by screening an E. faecium genomic expression library with sera from patients with E. faecium-associated endocarditis. Recombinant SagA protein showed broad-spectrum binding to extracellular matrix (ECM) proteins, including fibrinogen, collagen type I, collagen type IV, fibronectin, and laminin. A fibrinogen-binding protein, purified from culture supernatants of an E. faecium clinical isolate, was found to match the N-terminal sequence of the predicted SagA protein and to react with the anti-SagA antibody, confirming that it was the SagA protein; this protein appeared as an 80- to 90-kDa smear on a Western blot that was sensitive to proteinase K and resistant to periodate treatment and glycoprotein staining. When overexpressed in E. faecium and Escherichia coli, the native and recombinant SagA proteins formed stable oligomers, apparently via their C-terminal domains. The SagA protein is composed of three domains: (i) a putative coiled-coil N-terminal domain that shows homology to the N-terminal domain of Streptococcus mutans SagA protein (42% similarity), previously shown to be involved in cell wall integrity and cell shape maintenance, and to the P45 protein of Listeria monocytogenes (41% similarity); (ii) a central domain containing direct repeats; and (iii) a C-terminal domain that is similar to that found in various proteins, including P45 (50% similarity) and P60 (52% similarity) of L. monocytogenes. The P45 and P60 proteins both have cell wall hydrolase activity, and the latter has also been shown to be involved in virulence, whereas cell wall hydrolase activity was not detected for SagA protein. The E. faecium sagA gene, like the S. mutans homologue, is located in a cluster of genes encoding proteins that appear to be involved in cell wall metabolism and could not be disrupted unless it was first transcomplemented, suggesting that the sagA gene is essential for E. faecium growth and may be involved in cell wall metabolism. In conclusion, the extracelluar E. faecium SagA protein is apparently essential for growth, shows broad-spectrum binding to ECM proteins, forms oligomers, and is antigenic during infection.
Collapse
Affiliation(s)
- Fang Teng
- Division of Infectious Disease, Department of Internal Medicine and Center for the Study of Emerging and Reemerging Pathogens, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
63
|
Pai SR, Singh KV, Murray BE. In vivo efficacy of the ketolide ABT-773 (cethromycin) against enterococci in a mouse peritonitis model. Antimicrob Agents Chemother 2003; 47:2706-9. [PMID: 12878548 PMCID: PMC166088 DOI: 10.1128/aac.47.8.2706-2709.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using six Enterococcus faecalis and five Enterococcus faecium strains, the ketolide ABT-773 (ABT), now known as cethromycin, was found to have in vivo efficacy against both erythromycin (ERY)-susceptible (Ery(s)) and -intermediate (Ery(i)) enterococci (ABT 50% protective doses [PD(50)s], 0.5 to 4.1 and 10.3 to 16.2 mg/kg of body weight, respectively). Against four highly Ery-resistant (Ery(r)) strains for which ABT MICs were low, ABT showed much greater activity (PD(50), 6.3 to 32.5 mg/kg) than ERY (PD(50), >200 mg/kg) but was not protective for strains for which ABT MICs were high. In conclusion, ABT-773 showed in vivo efficacy and considerably greater activity than ERY in a mouse peritonitis model.
Collapse
Affiliation(s)
- Suresh R Pai
- Center for the Study of Emerging and Re-Emerging Pathogens, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
64
|
Dina J, Malbruny B, Leclercq R. Nonsense mutations in the lsa-like gene in Enterococcus faecalis isolates susceptible to lincosamides and Streptogramins A. Antimicrob Agents Chemother 2003; 47:2307-9. [PMID: 12821484 PMCID: PMC161836 DOI: 10.1128/aac.47.7.2307-2309.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lsa gene confers intrinsic resistance to lincosamides and streptogramins A in Enterococcus faecalis, probably by active efflux. The lsa-like genes of two clinical isolates of E. faecalis susceptible to lincosamides and dalfopristin contained mutations that produced premature termination codons. Revertant mutants were obtained by selection on agar plates containing clindamycin.
Collapse
Affiliation(s)
- Julia Dina
- Service de Microbiologie, CHU Côte de Nacre, 14033 Caen Cedex, France
| | | | | |
Collapse
|
65
|
Boneca IG, Chiosis G. Vancomycin resistance: occurrence, mechanisms and strategies to combat it. Expert Opin Ther Targets 2003; 7:311-28. [PMID: 12783569 DOI: 10.1517/14728222.7.3.311] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vancomycin has long been considered the antibiotic of last resort against serious and multi-drug-resistant infections caused by Gram-positive bacteria. However, vancomycin resistance has emerged, first in enterococci and, more recently, in Staphylococcus aureus. Here, the authors attempt to review the prevalence and the mechanisms of such resistance. Furthermore, they focus on strategies that have been developed or are under current investigation to overcome infections caused by vancomycin-resistant strains. Among these are glycopeptide derivatives with higher potency than vancomycin, small molecules that resensitise bacteria to the antibiotic and novel non-glycopeptide antibiotics. These agents are targeted to interfere with protein and/or peptidoglycan (PG) synthesis and integrity or with membrane permeability. Whilst most of these agents are still in clinical or preclinical development, some have entered the clinic and currently represent the only option for treating vancomycin-resistant enterococci (VRE).
Collapse
Affiliation(s)
- Ivo G Boneca
- Unité de Pathogénie Bactérienne des Muqueuses, Institut Pasteur, 25 - 28 Rue du Docteur Roux, 75724 Paris cedex 15, France.
| | | |
Collapse
|
66
|
Haroche J, Morvan A, Davi M, Allignet J, Bimet F, El Solh N. Clonal diversity among streptogramin A-resistant Staphylococcus aureus isolates collected in French hospitals. J Clin Microbiol 2003; 41:586-91. [PMID: 12574251 PMCID: PMC149720 DOI: 10.1128/jcm.41.2.586-591.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed 62 clinical isolates of streptogramin A-resistant (SGA(r)) Staphylococcus aureus collected between 1981 and 2001 in 14 hospitals located in seven French cities. These isolates, including five with decreased susceptibility to glycopeptides, were distributed into 45 antibiotypes and 38 SmaI genotypes. Each of these genotypes included between 1 and 11 isolates, the SmaI patterns of which differed by no more than three bands. Although numerous clones were identified, we observed the spread of monoclonal isolates either within the same hospital or within hospitals in distinct cities and at large time intervals. Hybridization with probes directed against 10 SGA(r) genes (vatA, vatB, vatC, vatD, vatE, vgaA, vgaB, vgaAv, vgbA, and vgbB) revealed six patterns: vgaAv (21 isolates), vatA-vgbA (24 isolates), vgaAv-vatB-vgaB (14 isolates), vgaAv-vatA-vgbA (1 isolate), vgaAv-vatA-vgbA-vatB-vgaB (1 isolate), and vgaA (1 isolate). We detected at least one SGA(r) determinant in all of the tested isolates. vgaAv, which is part of the recently characterized transposon Tn5406, was found in 59.7% of the tested isolates. Of the 16 streptogramin B-susceptible isolates, 14 carried vgaAv alone and were susceptible to the mixtures of streptogramins, whereas the 2 isolates carrying vgaAv-vatB-vgaB were resistant to these mixtures. vatA-vgbA was found on plasmids of the same apparent size in 26 (42%) of the tested clinical isolates from 18 unrelated SmaI genotypes. The possible dissemination of some of the multiple clones characterized in the present study with an expected increased selective pressure of streptogramins following the recent licensing of Synercid (quinupristin-dalfopristin) must be carefully monitored.
Collapse
Affiliation(s)
- Julien Haroche
- Staphylococci Unit, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
67
|
Burnie J, Carter T, Rigg G, Hodgetts S, Donohoe M, Matthews R. Identification of ABC transporters in vancomycin-resistant Enterococcus faecium as potential targets for antibody therapy. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 33:179-89. [PMID: 12110480 DOI: 10.1111/j.1574-695x.2002.tb00589.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The occurrence of an outbreak of septicaemias due to vancomycin-resistant Enterococcus faecium (VRE), in Manchester, UK, provided an opportunity to examine the antibody responses in patients infected by the same strain. Immunoblotting sera from 24 cases, six of whom died, showed an immunodominant cluster of antigens at 34, 54 and 97 kDa, with a statistically significant correlate between survival and immunoglobulin G to the 34 and 97 kDa bands (P<0.05). Screening a genomic expression library of VRE with seropositive serum and peritoneal dialysate from a survivor gave a recombinant clone with two contiguous open reading frames, the derived amino acid sequences of which both showed sequence homologue with ABC transporters, with a Walker A and Walker B motif and the signature sequence LSGGQ. The first open reading frame (putative VRE ABC1) showed 57% homologue with YbxA from Bacillus subtilis. A partial sequence (putative VRE ABC2) was also obtained, in the same recombinant clone, of a second ABC transporter with 72% homologue with ybaE from B. subtilis. Affinity selection with the seropositive serum and peritoneal dialysate used to screen the library showed that the eluted antibody bound to the 97, 54, 34 and 30 kDa bands. Direct amino acid sequencing identified this as a possible ABC transporter. Rabbit antiserum against peptides representing Walker A and an area adjacent to the Walker B site cross-reacted with bands at 34, 54, 97, 110 kDa and at 30, 34 and 54 kDa respectively. This therefore appeared to be an immunodominant complex of ABC transporters of which the smallest was the 30 kDa antigen. Epitope mapping of this antigen with seropositive patients' sera delineated three linear epitopes (KVGIV, FGPKNF and RVAI). The Walker A site represented by peptide 1 (GHNGSGKSTLAKTIN), epitope RVAI represented by peptides 2 (MRRVAIAGVLAMPRE) and 3 (ELSGGQMRRVAIAGV), epitope KVGIV represented by peptide 4 (LKPIRKKVGIVFQFP), and recombinant VRE ABC1 and VRE ABC2 expressed in Escherichia coli pBAD were then used to isolate human genetically recombinant antibodies from a phage antibody display library. An assessment of the protective potential of these antibodies was carried out in a mouse model of the infection. This study suggests that an ABC transporter homologue could be a target for antibody therapy against VRE infections.
Collapse
Affiliation(s)
- James Burnie
- Infectious Diseases Research Group, University of Manchester, Oxford Road, Manchester M13 9WL, UK.
| | | | | | | | | | | |
Collapse
|
68
|
Werner G, Klare I, Witte W. Molecular analysis of streptogramin resistance in enterococci. Int J Med Microbiol 2002; 292:81-94. [PMID: 12195739 DOI: 10.1078/1438-4221-00194] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The new semi-synthetic streptogramin antibiotic combination quinupristin/dalfopristin (Synercid) is a promising alternative for a treatment of infections with multiple resistant gram-positive pathogens, e.g. glycopeptide- and multi-resistant Enterococcus faecium. Streptogramins consist of two unrelated compounds, a streptogramin A and B, which act synergistically when given in combination. Mechanisms conferring resistance against both components are essential for resistance against the combination in E. faecium. In this species resistance to streptogramin A compounds is mediated via related acetyltransferases VatD and VatE. Resistance against streptogramins B is either encoded by the widespread ermB gene cluster conferring resistance to macrolide-lincosamide-streptogramin B antibiotics or via expression of the vgbA gene, which encodes a staphylococcal-type lactonase. E. faecalis is intrinsically resistant to streptogramins. Due to a wide use of streptogramins (virginiamycins S/M) in commercial animal farming a reservoir of streptogramin-resistant E. faecium isolates had already been selected. Determinants for streptogramin resistance are localized on plasmids that can be transferred into an E. faecium recipient both in vitro in filter-matings and in vivo in the digestive tracts of rats. Hybridization and sequencing experiments revealed a linkage of resistance determinants for streptogramins A and B on definite plasmid fragments.
Collapse
Affiliation(s)
- Guido Werner
- Robert Koch Institute, Wernigerode Branch, Burgstr. 37, D-38855 Wernigerode, Germany.
| | | | | |
Collapse
|
69
|
Singh KV, Weinstock GM, Murray BE. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother 2002; 46:1845-50. [PMID: 12019099 PMCID: PMC127256 DOI: 10.1128/aac.46.6.1845-1850.2002] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Accepted: 03/21/2002] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis isolates are resistant to clindamycin (CLI) and quinupristin-dalfopristin (Q-D), and this is thought to be a species characteristic. Disruption of a gene (abc-23, now designated lsa, for "lincosamide and streptogramin A resistance") of E. faecalis was associated with a > or =40-fold decrease in MICs of Q-D (to 0.75 microg/ml), CLI (to 0.12 to 0.5 microg/ml), and dalfopristin (DAL) (to 4 to 8 microg/ml) for the wild-type E. faecalis parental strain (Q-D MIC, 32 microg/ml; CLI MIC, 32 to 48 microg/ml; DAL MIC, 512 microg/ml). Complementation of the disruption mutant with lsa on a shuttle plasmid resulted in restoration of the MICs of CLI, Q-D, and DAL to wild-type levels. Under high-stringency conditions, lsa was found in 180 of 180 isolates of E. faecalis but in none of 189 other enterococci. Among 19 erm(B)-lacking Enterococcus faecium strains, 9 (47%) were highly susceptible to CLI (MIC, 0.06 to 0.25 microg/ml) and had DAL MICs of 4 to 16 microg/ml; for the remaining erm(B)-lacking E. faecium strains, the CLI and DAL MICs were 4 to > 256 and 2 to > 128 microg/ml, respectively. In contrast, none of 32 erm(B)-lacking E. faecalis strains were susceptible (CLI MIC range, 16 to 32 microg/ml; DAL MIC range, > or =32 microg/ml). When lsa was introduced into an E. faecium strain initially susceptible to CLI, the MICs of CLI and DAL increased > or =60-fold and that of Q-D increased 6-fold (to 3 to 6 microg/ml). Introduction of lsa into two DAL-resistant (MICs, > 128 microg/ml), Q-D-susceptible (MICs, 0.5 and 1.5 microg/ml) E. faecium strains (CLI MICs, 12 and >256 microg/ml) resulted in an increase in the Q-D MICs from 3- to 10-fold (to 8 and >32 microg/ml), respectively. Although efflux was not studied, the similarity (41 to 64%) of the predicted Lsa protein to ABC proteins such as Vga(A), Vga(B), and Msr(A) of Staphylococcus aureus and YjcA of Lactococcus lactis and the presence of Walker A and B ATP-binding motifs suggest that this resistance may be related to efflux of these antibiotics. In conclusion, lsa appears to be an intrinsic gene of E. faecalis that explains the characteristic resistance of this species to CLI and Q-D.
Collapse
Affiliation(s)
- Kavindra V Singh
- Center for the Study of Emerging and Reemerging Pathogens, Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical School at Houston, 77030, USA
| | | | | |
Collapse
|
70
|
Roberts MC. Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol Biotechnol 2002; 20:261-83. [PMID: 11936257 DOI: 10.1385/mb:20:3:261] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The discovery and use of antimicrobial agents in the last 50 yr has been one of medicine's greatest achievements. These agents have reduced morbidity and mortality of humans and animals and have directly contributed to human's increased life span. However, bacteria are becoming increasingly resistant to these agents by mutations, which alter existing bacterial proteins, and/or acquisition of new genes, which provide new proteins. The latter are often associated with mobile elements that can be exchanged quickly across bacterial populations and may carry multiple antibiotic genes for resistance. In some case, virulence factors are also found on these same mobile elements. There is mounting evidence that antimicrobial use in agriculture, both plant and animal, and for environmental purposes does influence the antimicrobial resistant development in bacteria important in humans and in reverse. In this article, we will examine the genes which confer resistance to tetracycline, macrolide-lincosamide-streptogramin (MLS), trimethoprim, and sulfonamide.
Collapse
Affiliation(s)
- Marilyn C Roberts
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195, USA.
| |
Collapse
|
71
|
Werner G, Hildebrandt B, Witte W. The newly described msrC gene is not equally distributed among all isolates of Enterococcus faecium. Antimicrob Agents Chemother 2001; 45:3672-3. [PMID: 11724034 PMCID: PMC90897 DOI: 10.1128/aac.45.12.3672-3673.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|