51
|
Férir G, Palmer KE, Schols D. Synergistic activity profile of griffithsin in combination with tenofovir, maraviroc and enfuvirtide against HIV-1 clade C. Virology 2011; 417:253-8. [PMID: 21802104 DOI: 10.1016/j.virol.2011.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/06/2011] [Accepted: 07/07/2011] [Indexed: 12/19/2022]
Abstract
Griffithsin (GRFT) is possibly the most potent anti-HIV peptide found in natural sources. Due to its potent and broad-spectrum antiviral activity and unique safety profile it has great potential as topical microbicide component. Here, we evaluated various combinations of GRFT against HIV-1 clade B and clade C isolates in primary peripheral blood mononuclear cells (PBMCs) and in CD4(+) MT-4 cells. In all combinations tested, GRFT showed synergistic activity profile with tenofovir, maraviroc and enfuvirtide based on the median effect principle with combination indices (CI) varying between 0.34 and 0.79 at the calculated EC(95) level. Furthermore, the different glycosylation patterns on the viral envelope of clade B and clade C gp120 had no observable effect on the synergistic interactions. Overall, we can conclude that the evaluated two-drug combination increases their antiviral potency and supports further clinical investigations in pre-exposure prophylaxis for GRFT combinations in the context of HIV-1 clade C infection.
Collapse
Affiliation(s)
- Geoffrey Férir
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
52
|
Ashfaq UA, Masoud MS, Khaliq S, Nawaz Z, Riazuddin S. Inhibition of hepatitis C virus 3a genotype entry through Glanthus Nivalis Agglutinin. Virol J 2011; 8:248. [PMID: 21599979 PMCID: PMC3117843 DOI: 10.1186/1743-422x-8-248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/20/2011] [Indexed: 01/22/2023] Open
Abstract
Background Hepatitis C Virus (HCV) has two envelop proteins E1 and E2 which is highly glycosylated and play an important role in cell entry. Inhibition of virus at entry step is an important target to find antiviral drugs against HCV. Glanthus Nivalis Agglutinin (GNA) is a mannose binding lectin which has tendency for specific recognition and reversible binding to the sugar moieties of a wide variety of glycoproteins of enveloped viruses. Results In the present study, HCV pseudoparticles (HCVpp) for genotype 3a were produced to investigate the ability of GNA to block the HCV entry. The results demonstrated that GNA inhibit the infectivity of HCVpp and HCV infected serum in a dose-dependent manner and resulted in 50% reduction of virus at 1 ± 2 μg concentration. Molecular docking of GNA and HCV glycoproteins (E1 and E2) showed that GNA inhibit HCV entry by binding N-linked glycans. Conclusion These results demonstrated that targeting the HCV glycans is a new approach to develop antiviral drugs against HCV.
Collapse
Affiliation(s)
- Usman A Ashfaq
- Division of Molecular Medicine, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | | | | | | |
Collapse
|
53
|
Férir G, Vermeire K, Huskens D, Balzarini J, Van Damme EJM, Kehr JC, Dittmann E, Swanson MD, Markovitz DM, Schols D. Synergistic in vitro anti-HIV type 1 activity of tenofovir with carbohydrate-binding agents (CBAs). Antiviral Res 2011; 90:200-4. [PMID: 21501631 DOI: 10.1016/j.antiviral.2011.03.188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 11/28/2022]
Abstract
Tenofovir, a well-known and highly prescribed anti-HIV-1 drug for the treatment of HIV/AIDS infections, has recently also shown its effectiveness as a potential microbicide drug in the prevention of HIV transmission. Here, we evaluated the combination of tenofovir with various members of the class of carbohydrate-binding agents (CBAs) targeting the glycans on the viral envelope gp120 for their anti-HIV efficacy. The tenofovir/CBA combinations predominantly showed synergistic antiviral activity using the median effect principle. These findings illustrate that combination of tenofovir with CBAs may increase the antiviral potency of the individual drugs and reducing the risk on potential side-effects.
Collapse
Affiliation(s)
- Geoffrey Férir
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Hoorelbeke B, Van Damme EJ, Rougé P, Schols D, Van Laethem K, Fouquaert E, Balzarini J. Differences in the mannose oligomer specificities of the closely related lectins from Galanthus nivalis and Zea mays strongly determine their eventual anti-HIV activity. Retrovirology 2011; 8:10. [PMID: 21314946 PMCID: PMC3048538 DOI: 10.1186/1742-4690-8-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/11/2011] [Indexed: 01/16/2023] Open
Abstract
Background In a recent report, the carbohydrate-binding specificities of the plant lectins Galanthus nivalis (GNA) and the closely related lectin from Zea mays (GNAmaize) were determined by glycan array analysis and indicated that GNAmaize recognizes complex-type N-glycans whereas GNA has specificity towards high-mannose-type glycans. Both lectins are tetrameric proteins sharing 64% sequence similarity. Results GNAmaize appeared to be ~20- to 100-fold less inhibitory than GNA against HIV infection, syncytia formation between persistently HIV-1-infected HuT-78 cells and uninfected CD4+ T-lymphocyte SupT1 cells, HIV-1 capture by DC-SIGN and subsequent transmission of DC-SIGN-captured virions to uninfected CD4+ T-lymphocyte cells. In contrast to GNA, which preferentially selects for virus strains with deleted high-mannose-type glycans on gp120, prolonged exposure of HIV-1 to dose-escalating concentrations of GNAmaize selected for mutant virus strains in which one complex-type glycan of gp120 was deleted. Surface Plasmon Resonance (SPR) analysis revealed that GNA and GNAmaize interact with HIV IIIB gp120 with affinity constants (KD) of 0.33 nM and 34 nM, respectively. Whereas immobilized GNA specifically binds mannose oligomers, GNAmaize selectively binds complex-type GlcNAcβ1,2Man oligomers. Also, epitope mapping experiments revealed that GNA and the mannose-specific mAb 2G12 can independently bind from GNAmaize to gp120, whereas GNAmaize cannot efficiently bind to gp120 that contained prebound PHA-E (GlcNAcβ1,2man specific) or SNA (NeuAcα2,6X specific). Conclusion The markedly reduced anti-HIV activity of GNAmaize compared to GNA can be explained by the profound shift in glycan recognition and the disappearance of carbohydrate-binding sites in GNAmaize that have high affinity for mannose oligomers. These findings underscore the need for mannose oligomer recognition of therapeutics to be endowed with anti-HIV activity and that mannose, but not complex-type glycan binding of chemotherapeutics to gp120, may result in a pronounced neutralizing activity against the virus.
Collapse
Affiliation(s)
- Bart Hoorelbeke
- Rega Institute for Medical Research, K,U,Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
55
|
Recombinant expression of Polygonatum cyrtonema lectin with anti-viral, apoptosis-inducing activities and preliminary crystallization. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
56
|
Ko SM, Kim JO, Oh MJ, Kim D. Effects of an oxidative agent and lectins on the binding inhibition of recombinant hepatitis a virus proteins to oyster digestive tissues. J Food Prot 2011; 74:157-60. [PMID: 21219781 DOI: 10.4315/0362-028x.jfp-10-211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While the exact mechanism of hepatitis A virus (HAV) accumulation remains unclear, it has been demonstrated that viruses related to shellfish-borne gastroenteritis can bind to carbohydrates of oyster tissues. We investigated carbohydrate-binding sites to determine if they were related to the binding of HAV to carbohydrate moieties on oyster digestive tissues (DTs) using recombinant HAV proteins (rHAVPs). In addition, we evaluated lectins to determine if they influenced the inhibition of binding of rHAVPs to carbohydrates present in DT. DT that was treated with 0.5% potassium periodate allowed only 23% ± 3.6% and 33% ± 7.8% binding of VP1-P2A and VP1 rHAVPs, respectively, when compared with a control group (100%) treated with distilled water, indicating that carbohydrate-binding sites are strongly related to the binding of HAV. Soybean agglutinin (SBA) led to the greatest decrease in the binding affinity among six lectins (Helix pomatia, Dolichos biflorus, Ulex europaeus, SBA, Triticum vulgaris, and Arachis hypogaea) tested for inhibition of the binding of rHAVPs to DT, indicating that exposing the virus-contaminated DT to SBA might have the potential to depurate viral contaminants found in shellfish food products by high-affinity binding between SBA and rHAVPs, thus improving food safety.
Collapse
Affiliation(s)
- Sang-Mu Ko
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Jeonnam, Republic of Korea
| | | | | | | |
Collapse
|
57
|
Granell A, Fernández del-Carmen A, Orzáez D. In planta production of plant-derived and non-plant-derived adjuvants. Expert Rev Vaccines 2010; 9:843-58. [PMID: 20673009 DOI: 10.1586/erv.10.80] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant antigen production in plants is a safe and economically sound strategy for vaccine development, particularly for oral/mucosal vaccination, but subunit vaccines usually suffer from weak immunogenicity and require adjuvants that escort the antigens, target them to relevant sites and/or activate antigen-presenting cells for elicitation of protective immunity. Genetic fusions of antigens with bacterial adjuvants as the B subunit of the cholera toxin have been successful in inducing protective immunity of plant-made vaccines. In addition, several plant compounds, mainly plant defensive molecules as lectins and saponins, have shown strong adjuvant activities. The molecular diversity of the plant kingdom offers a vast source of non-bacterial compounds with adjuvant activity, which can be assayed in emerging plant manufacturing systems for the design of new plant vaccine formulations.
Collapse
Affiliation(s)
- Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Spain
| | | | | |
Collapse
|
58
|
Affiliation(s)
- Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India.
| | | |
Collapse
|
59
|
García CC, Acosta EG, Carro AC, Belmonte MCF, Bomben R, Duschatzky CB, Perotti M, Schuff C, Damonte EB. Virucidal Activity and Chemical Composition of Essential Oils from Aromatic Plants of Central West Argentina. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The essential oils of seven aromatic plants from central west argentina were isolated by steam distillation and analyzed by a gas chromatography mass spectrometry technique. The oils were screened for cytotoxicity and In Vitro inhibitory activity against herpes simplex virus type 1 (HSV-1), dengue virus type 2 (DENV-2) and Junin virus (JUNV). The oils showed a variable virucidal action according to the virus. JUNV was the least susceptible virus in comparison with HSV-1 and DENV-2. The better relationship between cytotoxicity and inhibitory activity was observed for the essential oil of Lantana grisebachiii (Seckt.) var. grisebachii against DENV-2 and HSV-1 with IC50 (inhibitory concentration 50%) values of 21.1 and 26.1 ppm, respectively. This effect was specific since the selectivity indices (ratio cytotoxicity/virucidal activity) were > 23.7 and > 19.1 for DENV-2 and HSV-1, respectively. Furthermore, the oil from L. grisebachii was also an effective inhibitor of HSV-2 and acyclovir resistant variants of herpes virus. This study demonstrates the effective and selective inhibitory activity of the essential oil from Lantana grisebachii against HSV and DENV by direct virus inactivation.
Collapse
Affiliation(s)
- Cybele C. García
- Laboratorio De Virología, Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina
| | - Eliana G. Acosta
- Laboratorio De Virología, Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina
| | - Ana C. Carro
- Laboratorio De Virología, Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina
| | | | - Renata Bomben
- Fices, Universidad Nacional De San Luis, 25 De Mayo 384, 5730 Villa Mercedes, Argentina
| | - Claudia B. Duschatzky
- Fices, Universidad Nacional De San Luis, 25 De Mayo 384, 5730 Villa Mercedes, Argentina
| | - Marina Perotti
- Instituto De Química Orgánica, Facultad De Bioquímica, Química Y Farmacia, Universidad Nacional De Tucumán, Ayacucho 471, 4000 San Miguel De Tucumán, Argentina
| | - Carola Schuff
- Instituto De Química Orgánica, Facultad De Bioquímica, Química Y Farmacia, Universidad Nacional De Tucumán, Ayacucho 471, 4000 San Miguel De Tucumán, Argentina
| | - Elsa B. Damonte
- Laboratorio De Virología, Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina
| |
Collapse
|
60
|
François KO, Balzarini J. Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. Med Res Rev 2010; 32:349-87. [PMID: 20577974 PMCID: PMC7168447 DOI: 10.1002/med.20216] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Twenty‐seven years after the discovery of HIV as the cause of AIDS more than 25 drugs directed against four different viral targets (i.e. reverse transcriptase, protease, integrase, envelope gp41) and one cellular target (i.e. CCR5 co‐receptor) are available for treatment. However, the search for an efficient vaccine is still ongoing. One of the main problems is the presence of a continuously evolving dense carbohydrate shield, consisting of N‐linked glycans that surrounds the virion and protects it against efficient recognition and persistent neutralization by the immune system. However, several lectins from the innate immune system specifically bind to these glycans in an attempt to process the virus antigens to provoke an immune response. Across a wide variety of different species in nature lectins can be found that can interact with the glycosylated envelope of HIV‐1 and can block the infection of susceptible cells by the virus. In this review, we will give an overview of the lectins from non‐mammalian origin that are endowed with antiviral properties and discuss the complex interactions between lectins of the innate immune system and HIV‐1. Also, attention will be given to different carbohydrate‐related modalities that can be exploited for antiviral chemotherapy. © 2010 Wiley Periodicals, Inc. Med Res Rev
Collapse
Affiliation(s)
- K O François
- Rega Institute for Medical Research, K. U. Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
61
|
Jenabian MA, Saïdi H, Charpentier C, Bouhlal H, Schols D, Balzarini J, Bell TW, Vanham G, Bélec L. Differential activity of candidate microbicides against early steps of HIV-1 infection upon complement virus opsonization. AIDS Res Ther 2010; 7:16. [PMID: 20546571 PMCID: PMC2895573 DOI: 10.1186/1742-6405-7-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/14/2010] [Indexed: 11/29/2022] Open
Abstract
Background HIV-1 in genital secretions may be opsonized by several molecules including complement components. Opsonized HIV-1 by complement enhances the infection of various mucosal target cells, such as dendritic cells (DC) and epithelial cells. Results We herein evaluated the effect of HIV-1 complement opsonization on microbicide candidates' activity, by using three in vitro mucosal models: CCR5-tropic HIV-1JR-CSF transcytosis through epithelial cells, HIV-1JR-CSF attachment on immature monocyte-derived dendritic cells (iMDDC), and infectivity of iMDDC by CCR5-tropic HIV-1BaL and CXCR4-tropic HIV-1NDK. A panel of 10 microbicide candidates [T20, CADA, lectines HHA & GNA, PVAS, human lactoferrin, and monoclonal antibodies IgG1B12, 12G5, 2G12 and 2F5], were investigated using cell-free unopsonized or opsonized HIV-1 by complements. Only HHA and PVAS were able to inhibit HIV trancytosis. Upon opsonization, transcytosis was affected only by HHA, HIV-1 adsorption on iMDDC by four molecules (lactoferrin, IgG1B12, IgG2G5, IgG2G12), and replication in iMDDC of HIV-1BaL by five molecules (lactoferrin, CADA, T20, IgG1B12, IgG2F5) and of HIV-1NDK by two molecules (lactoferrin, IgG12G5). Conclusion These observations demonstrate that HIV-1 opsonization by complements may modulate in vitro the efficiency of candidate microbicides to inhibit HIV-1 infection of mucosal target cells, as well as its crossing through mucosa.
Collapse
|
62
|
Actinohivin, a broadly neutralizing prokaryotic lectin, inhibits HIV-1 infection by specifically targeting high-mannose-type glycans on the gp120 envelope. Antimicrob Agents Chemother 2010; 54:3287-301. [PMID: 20498311 DOI: 10.1128/aac.00254-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The lectin actinohivin (AH) is a monomeric carbohydrate-binding agent (CBA) with three carbohydrate-binding sites. AH strongly interacts with gp120 derived from different X4 and R5 human immunodeficiency virus (HIV) strains, simian immunodeficiency virus (SIV) gp130, and HIV type 1 (HIV-1) gp41 with affinity constants (KD) in the lower nM range. The gp120 and gp41 binding of AH is selectively reversed by (alpha1,2-mannose)3 oligosaccharide but not by alpha1,3/alpha1,6-mannose- or GlcNAc-based oligosaccharides. AH binding to gp120 prevents binding of alpha1,2-mannose-specific monoclonal antibody 2G12, and AH covers a broader epitope on gp120 than 2G12. Prolonged exposure of HIV-1-infected CEM T-cell cultures with escalating AH concentrations selects for mutant virus strains containing N-glycosylation site deletions (predominantly affecting high-mannose-type glycans) in gp120. In contrast to 2G12, AH has a high genetic barrier, since several concomitant N-glycosylation site deletions in gp120 are required to afford significant phenotypic drug resistance. AH is endowed with broadly neutralizing activity against laboratory-adapted HIV strains and a variety of X4 and/or R5 HIV-1 clinical clade isolates and blocks viral entry within a narrow concentration window of variation (approximately 5-fold). In contrast, the neutralizing activity of 2G12 varied up to 1,000-fold, depending on the virus strain. Since AH efficiently prevents syncytium formation in cocultures of persistently HIV-1-infected HuT-78 cells and uninfected CD4+ T lymphocytes, inhibits dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-mediated capture of HIV-1 and subsequent virus transmission to CD4+ T lymphocytes, does not upregulate cellular activation markers, lacks mitogenic activity, and does not induce cytokines/chemokines in peripheral blood mononuclear cell cultures, it should be considered a potential candidate drug for microbicidal use.
Collapse
|
63
|
Jay JI, Lai BE, Myszka DG, Mahalingam A, Langheinrich K, Katz DF, Kiser PF. Multivalent benzoboroxole functionalized polymers as gp120 glycan targeted microbicide entry inhibitors. Mol Pharm 2010; 7:116-29. [PMID: 20014858 DOI: 10.1021/mp900159n] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbicides are women-controlled prophylactics for sexually transmitted infections. The most important class of microbicides target HIV-1 and contain antiviral agents formulated for topical vaginal delivery. Identification of new viral entry inhibitors that target the HIV-1 envelope is important because they can inactivate HIV-1 in the vaginal lumen before virions can come in contact with CD4+ cells in the vaginal mucosa. Carbohydrate binding agents (CBAs) demonstrate the ability to act as entry inhibitors due to their ability to bind to glycans and prevent gp120 binding to CD4+ cells. However, as proteins they present significant challenges in regard to economical production and formulation for resource-poor environments. We have synthesized water-soluble polymer CBAs that contain multiple benzoboroxole moieties. A benzoboroxole-functionalized monomer was synthesized and incorporated into linear oligomers with 2-hydroxypropylmethacrylamide (HPMAm) at different feed ratios using free radical polymerization. The benzoboroxole small molecule analogue demonstrated weak affinity for HIV-1BaL gp120 by SPR; however, the 25 mol % functionalized benzoboroxole oligomer demonstrated a 10-fold decrease in the K(D) for gp120, suggesting an increased avidity for the multivalent polymer construct. High molecular weight polymers functionalized with 25, 50, and 75 mol % benzoboroxole were synthesized and tested for their ability to neutralize HIV-1 entry for two HIV-1 clades and both R5 and X4 coreceptor tropism. All three polymers demonstrated activity against all viral strains tested with EC(50)s that decrease from 15000 nM (1500 microg mL(-1)) for the 25 mol % functionalized polymers to 11 nM (1 microg mL(-1)) for the 75 mol % benzoboroxole-functionalized polymers. These polymers exhibited minimal cytotoxicity after 24 h exposure to a human vaginal cell line.
Collapse
Affiliation(s)
- Julie I Jay
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112-5820, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Swanson MD, Winter HC, Goldstein IJ, Markovitz DM. A lectin isolated from bananas is a potent inhibitor of HIV replication. J Biol Chem 2010; 285:8646-55. [PMID: 20080975 DOI: 10.1074/jbc.m109.034926] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BanLec is a jacalin-related lectin isolated from the fruit of bananas, Musa acuminata. This lectin binds to high mannose carbohydrate structures, including those found on viruses containing glycosylated envelope proteins such as human immunodeficiency virus type-1 (HIV-1). Therefore, we hypothesized that BanLec might inhibit HIV-1 through binding of the glycosylated HIV-1 envelope protein, gp120. We determined that BanLec inhibits primary and laboratory-adapted HIV-1 isolates of different tropisms and subtypes. BanLec possesses potent anti-HIV activity, with IC(50) values in the low nanomolar to picomolar range. The mechanism for BanLec-mediated antiviral activity was investigated by determining if this lectin can directly bind the HIV-1 envelope protein and block entry of the virus into the cell. An enzyme-linked immunosorbent assay confirmed direct binding of BanLec to gp120 and indicated that BanLec can recognize the high mannose structures that are recognized by the monoclonal antibody 2G12. Furthermore, BanLec is able to block HIV-1 cellular entry as indicated by temperature-sensitive viral entry studies and by the decreased levels of the strong-stop product of early reverse transcription seen in the presence of BanLec. Thus, our data indicate that BanLec inhibits HIV-1 infection by binding to the glycosylated viral envelope and blocking cellular entry. The relative anti-HIV activity of BanLec compared favorably to other anti-HIV lectins, such as snowdrop lectin and Griffithsin, and to T-20 and maraviroc, two anti-HIV drugs currently in clinical use. Based on these results, BanLec is a potential component for an anti-viral microbicide that could be used to prevent the sexual transmission of HIV-1.
Collapse
Affiliation(s)
- Michael D Swanson
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
65
|
Huet T, Kerbarh O, Schols D, Clayette P, Gauchet C, Dubreucq G, Vincent L, Bompais H, Mazinghien R, Querolle O, Salvador A, Lemoine J, Lucidi B, Balzarini J, Petitou M. Long-lasting enfuvirtide carrier pentasaccharide conjugates with potent anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 2010; 54:134-42. [PMID: 19805567 PMCID: PMC2798524 DOI: 10.1128/aac.00827-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/30/2009] [Accepted: 09/29/2009] [Indexed: 11/20/2022] Open
Abstract
Enfuvirtide (also known as Fuzeon, T-20, or DP-178) is an antiretroviral fusion inhibitor which prevents human immunodeficiency virus type 1 (HIV-1) from entering host cells. This linear 36-mer synthetic peptide is indicated, in combination with other antiretroviral agents, for the treatment of HIV-1-infected individuals and AIDS patients with multidrug-resistant HIV infections. Although enfuvirtide is an efficient anti-HIV-1 drug, its clinical use is limited by a short plasma half-life, i.e., approximately 2 h, which requires twice-daily subcutaneous injections, often resulting in skin sensitivity reaction side effects at the injection sites. Ultimately, 80% of patients stop enfuvirtide treatment within 6 months because of these side effects. We report on the development of long-lasting enfuvirtide conjugates by the use of the site-specific conjugation of enfuvirtide to an antithrombin-binding carrier pentasaccharide (CP) through polyethylene glycol (PEG) linkers of various lengths. These conjugates showed consistent and broad anti-HIV-1 activity in the nanomolar range. The coupling of the CP to enfuvirtide only moderately affected the in vitro anti-HIV-1 activity in the presence of antithrombin. Most importantly, one of these conjugates, enfuvirtide-PEG(12)-CP (EP40111), exhibited a prolonged elimination half-life of more than 10 h in rat plasma compared to the half-life of native enfuvirtide, which was 2.8 h. On the basis of the pharmacokinetic properties of antithrombin-binding pentasaccharides, the anticipated half-life of EP40111 in humans would putatively be about 120 h, which would allow subcutaneous injection once a week instead of twice daily. In conclusion, EP40111 is a promising compound with strong potency as a novel long-lasting anti-HIV-1 drug.
Collapse
Affiliation(s)
- Thierry Huet
- Endotis Pharma, Parc Biocitech, 102 Avenue Gaston Roussel, Romainville 93230, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW To highlight promising areas of research and preview future generations of microbicides, this review will focus on reports that described new cellular or viral targets, drug substances, or strategies that are specifically intended for topical microbicides. Those reports that dealt with the design, discovery, and synthesis of anti-HIV agents for use in oral or parenteral formulations, while important for the microbicide field, are beyond the scope of this review. RECENT FINDINGS Drug substances intended for topical microbicides are becoming increasingly target specific and, structurally, more complex. New production methods might reduce the cost of microbicides that contain these complex molecules. Genetically engineered probiotic vaginal bacteria express an even wider range of antiviral compounds, perhaps resulting in uninterrupted, coitally independent protection. Combination microbicides that contain two or more drug substances frequently act synergistically. The discovery of new cellular targets such as syndecan-3 might lead to more effective microbicides. SUMMARY Future generations of microbicides will likely contain one or more complex or highly specific drug substances, resulting in safer and more effective products. Since compliance issues continue to confound HIV and herpes simplex virus trials, efforts to bring practical, coitally independent microbicides to developing countries will become a top priority.
Collapse
|
67
|
Insulin mimetics in Urtica dioica
: structural and computational analyses of Urtica dioica
extracts. Phytother Res 2009; 24 Suppl 2:S175-82. [DOI: 10.1002/ptr.3062] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
68
|
Jenabian MA, Saïdi H, Charpentier C, Van Herrewege Y, Son JC, Schols D, Balzarini J, Vanham G, Bélec L. In vitro synergistic activity against CCR5-tropic HIV-1 with combinations of potential candidate microbicide molecules HHA, KRV2110 and enfuvirtide (T20). J Antimicrob Chemother 2009; 64:1192-5. [PMID: 19875507 DOI: 10.1093/jac/dkp380] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To block the different mechanisms of HIV mucosal transmission, it is likely that use of several microbicide molecules will lead to the best protection against HIV transmission. Indeed, the combination of microbicides with complementary mechanisms of action is expected to increase the antiviral potency of the formulation. METHODS The gp120-interacting plant lectin HHA ('Hippeastrum hybrid agglutinin'), the non-nucleoside reverse transcriptase inhibitor KRV2110 and the fusion inhibitor enfuvirtide (T20) were combined in 12 drug associations by using the Ray combination design method. Their activity against HIV-1(BaL) was assessed by the lymphocyte infectivity reduction assay and by the single-cycle BaL pseudovirus (PV) assay. In addition, their cell tolerance was evaluated for HEC-1 and HeLa epithelial cell lines, both originating from genital tissue. RESULTS All evaluated combinations showed synergistic activity in both lymphocyte infectivity reduction and single-cycle BaL PV assays. The combination HHA + KRV2110 resulted in the highest cell viability, whereas the combinations including T20 exhibited a dose-dependent decrease in cell viability, demonstrating the differential tolerance of epithelial cell lines to the combinations. CONCLUSIONS These observations provide a rational basis for in vitro testing of microbicide candidate molecule combinations, including anti-HIV-1 and cytotoxic cellular assays.
Collapse
Affiliation(s)
- Mohammad-Ali Jenabian
- Université Paris Descartes (Paris V), and Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Peng H, Lv H, Wang Y, Liu YH, Li CY, Meng L, Chen F, Bao JK. Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities. Peptides 2009; 30:1805-15. [PMID: 19577602 PMCID: PMC7115534 DOI: 10.1016/j.peptides.2009.06.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 10/27/2022]
Abstract
A novel mannose-binding lectin (designated CML) was isolated from Clematis montana Buch.-Ham stem (Ranunculaceae) using ion exchange and gel filtration chromatographies on DEAE-Sepharose and Sephacryl S-100. The purified C. montana lectin was a homodimer of 11,968.9 Da subunits as determined by gel filtration and MS. The hemagglutinating activity of CML was inhibited by branched oligomannosides. The N-terminal 15-amino acid sequence of CML, DNVKYSGQVKNTGSA, has not been reported for other lectins. Also, the peptide mass fingerprinting assay confirmed that there is no match result of similar plant lectins for CML, indicating CML may be a novel plant lectin. CML showed marked antiviral activity against various viruses in cell culture. Subsequently, CML was also found to exhibit remarkable inhibitory effect on L929, HeLa, MCF7 and HepG2 cells. Furthermore, CML specially induced L929 cell apoptosis in dose-dependent manner as evidenced by MTT, fluorescent microscopy, LDH activity-based cytotoxicity assays and DNA ladder. Moreover, due to both caspase inhibitors and Western blot analyses, caspase was also found to play the important role in the potential apoptotic mechanism of CML. When the carbohydrate-binding site was fully inhibited by sugars, cytotoxicity was abruptly decreased and apoptotic phenomenon in L929 cells was not observed, suggesting a significant correlation between mannose-binding-specific activity and the antineoplastic mechanism.
Collapse
Affiliation(s)
- Hao Peng
- School of Life Sciences, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Tanaka H, Chiba H, Inokoshi J, Kuno A, Sugai T, Takahashi A, Ito Y, Tsunoda M, Suzuki K, Takénaka A, Sekiguchi T, Umeyama H, Hirabayashi J, Ōmura S. Mechanism by which the lectin actinohivin blocks HIV infection of target cells. Proc Natl Acad Sci U S A 2009; 106:15633-8. [PMID: 19717426 PMCID: PMC2734881 DOI: 10.1073/pnas.0907572106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Indexed: 11/18/2022] Open
Abstract
Various lectins have attracted attention as potential microbicides to prevent HIV transmission. Their capacity to bind glycoproteins has been suggested as a means to block HIV binding and entry into susceptible cells. The previously undescribed lectin actinohivin (AH), isolated by us from an actinomycete, exhibits potent in vitro anti-HIV activity by binding to high-mannose (Man) type glycans (HMTGs) of gp120, an envelope glycoprotein of HIV. AH contains 114 aa and consists of three segments, all of which need to show high affinity to gp120 for the anti-HIV characteristic. To generate the needed mechanistic understanding of AH binding to HIV in anticipation of seeking approval for human testing as a microbicide, we have used multiple molecular tools to characterize it. AH showed a weak affinity to Man alpha(1-2)Man, Man alpha(1-2)Man alpha(1-2)Man, of HMTG (Man8 or Man9) or RNase B (which has a single HMTG), but exhibited a strong and highly specific affinity (K(d) = 3.4 x 10(-8) M) to gp120 of HIV, which contains multiple Man8 and/or Man9 units. We have compared AH to an alternative lectin, cyanovirin-N, which did not display similar levels of discrimination between high- and low-density HMTGs. X-ray crystal analysis of AH revealed a 3D structure containing three sugar-binding pockets. Thus, the strong specific affinity of AH to gp120 is considered to be due to multivalent interaction of the three sugar-binding pockets with three HMTGs of gp120 via the "cluster effect" of lectin. Thus, AH is a good candidate for investigation as a safe microbicide to help prevent HIV transmission.
Collapse
Affiliation(s)
- Haruo Tanaka
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | | | | | - Atsushi Kuno
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan; and
| | | | - Atsushi Takahashi
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | - Masaru Tsunoda
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | - Kaoru Suzuki
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | - Akio Takénaka
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | - Takeshi Sekiguchi
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | | | - Jun Hirabayashi
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan; and
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
71
|
Pacheco-Yépez J, Campos-Rodríguez R, Rojas-Hernández S, Serrano-Luna JJ, Rivera-Aguilar V, Villa-Treviño S, Martínez-Palomo A, Tsutsumi V, Shibayama M. Differential expression of surface glycoconjugates on Entamoeba histolytica and Entamoeba dispar. Parasitol Int 2009; 58:171-7. [PMID: 19269346 DOI: 10.1016/j.parint.2009.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 02/06/2009] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
Abstract
The human large intestine can harbor two morphologically similar amoebae; the invasive Entamoeba histolytica and the non-invasive Entamoeba dispar. Whereas E. histolytica can produce intestinal and extra-intestinal lesions, E. dispar is present in non-symptomatic carriers. Although biochemical, genetic and proteomic studies have identified clear differences between these Entamoebae, it has become clear that several molecules, once assumed to be involved in tissue destruction, exist in both the virulent and the avirulent species. As surface molecules may play a role in invasion and could therefore determine which amoebae are invasive, we analyzed the glycoconjugate composition of E. histolytica and E. dispar using lectins. There was a significant difference between E. histolytica and E. dispar in the expression of glycoconjugates containing d-mannose and N-acetyl-alpha-D-galactosamine residues, but not between virulent and avirulent strains of E. histolytica. N-glycoconjugates with terminal alpha (1-3)-linked mannose residues participate in the adhesion and subsequent cytotoxicity of E. histolytica to cultured hamster hepatocytes. One of them probably is the Gal/GalNAc lectin.
Collapse
Affiliation(s)
- Judith Pacheco-Yépez
- Electron Microscopy Laboratory, Mexican Faculty of Medicine, La Salle University, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Alen MMF, Kaptein SJF, De Burghgraeve T, Balzarini J, Neyts J, Schols D. Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection. Virology 2009; 387:67-75. [PMID: 19264337 DOI: 10.1016/j.virol.2009.01.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/17/2008] [Accepted: 01/26/2009] [Indexed: 12/15/2022]
Abstract
Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) is an important binding receptor for dengue virus (DENV) that recognizes N-glycosylation sites on the viral E-glycoprotein. DENV cannot bind nor infect the human B-cell line Raji/0. However, DENV productively infects Raji/DC-SIGN(+) cells that constitutively express DC-SIGN on their surface. IL-4-treated monocytes, expressing high levels of DC-SIGN, are also susceptible for DENV infection. Several carbohydrate-binding agents (CBAs), such as the plant lectins HHA, GNA (mannose-specific) and UDA (N-acetylglucosamine-specific), inhibited dose-dependently the binding of DENV and subsequently viral replication in Raji/DC-SIGN(+) cells (EC(50): 0.1-2.2 microM). These CBAs were clearly more active against DENV in IL-4-treated monocytes (EC(50): 4-56 nM). However, the CBAs were devoid of antiviral activity in DENV-susceptible Vero-B (DC-SIGN(-)) cells, demonstrating cell type-dependent differences in viral entry mechanisms.
Collapse
Affiliation(s)
- Marijke M F Alen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
73
|
Capillary zone electrophoresis method development for the analysis of Hippeastrum hybrid agglutinin samples. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:563-7. [PMID: 19147415 DOI: 10.1016/j.jchromb.2008.12.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/27/2008] [Accepted: 12/23/2008] [Indexed: 01/14/2023]
Abstract
A capillary zone electrophoresis (CZE) method was developed aiming the analysis of Hippeastrum hybrid agglutinin (HHA) samples. HHA is presently being tested as a vaginal microbicide to prevent HIV transmission. It acts by direct binding to mannose residues that are abundantly present on the HIV gp120 envelope and so interrupts the virus entry process. The final CZE method employs 50mM sodium tetraborate (pH 9.9) as background electrolyte. In this condition, a cluster of about 30 isoform peaks is obtained, with very repeatable patterns. RSDs in the order of 0.2% for the migration time and detection sensitivity in the order of 70microgml(-1) were achieved.
Collapse
|
74
|
Lin J, Zhou X, Gao S, Liu X, Wu W, Sun X, Tang K. cDNA cloning and expression analysis of a mannose-binding lectin from Pinellia pedatisecta. J Biosci 2008; 32:241-9. [PMID: 17435316 DOI: 10.1007/s12038-007-0024-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pinellia pedatisecta agglutinin (PPA)is a very basic protein that accumulates in the tuber of P.pedatisecta .PPA is a hetero-tetramer protein of 40 kDa,composed of two polypeptide chains A (about 12 kDa)and two polypeptides chains B (about 12 kDa).The full-length cDNA of PPA was cloned from P.pedatisecta using SMART RACE-PCR technology; it was 1146 bp and contained a 771 bp open reading frame (ORF)encoding a lectin precursor of 256 amino acid residues with a 24 amino acid signal peptide.The PPA precursor contained 3 mannose-binding sites (QXDXNXVXY) and two conserved domains of 43% identity,PPA-DOM 1 (polypeptides A)and PPA-DOM 2 (polypeptides B).PPA shared varying identities,ranging from 40% to 85%,with mannose-binding lectins from other species of plant families such as Araceae, Alliaceae, Iridaceae, Liliaceae, Amaryllidaceae and Bromeliaceae. Southern blot analysis indicated that ppa belonged to a multi-copy gene family. Expression pattern analysis revealed that ppa expressed in most tested tissues, with high expression being found in spadix,spathe and tuber.Cloning of the ppa gene not only provides a basis for further investigation of its structure,expression and regulatory mechanism,but also enables us to test its potential role in controlling pests and fungal diseases by transferring the gene into plants in the future.
Collapse
Affiliation(s)
- Juan Lin
- State Key Laboratory of Genetic Engineering, Fudan-SJTU-Nottingham Plant Biotechnology R and D Center, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
75
|
Kaur A, Singh R, Singh Kamb S, Singh J, J. Kotwal G. In vitro Antiviral Activity of Crinum latifolium
Lectin Against Poxvirus Replication. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/jbs.2008.1236.1240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
76
|
Konrad R, Ferry N, Gatehouse AMR, Babendreier D. Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis. PLoS One 2008; 3:e2664. [PMID: 18628826 PMCID: PMC2441441 DOI: 10.1371/journal.pone.0002664] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 06/10/2008] [Indexed: 11/21/2022] Open
Abstract
Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis ( = O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products.
Collapse
Affiliation(s)
- Roger Konrad
- Agroscope Reckenholz-Tänikon Research Station ART, Zürich, Switzerland.
| | | | | | | |
Collapse
|
77
|
Huskens D, Vermeire K, Vandemeulebroucke E, Balzarini J, Schols D. Safety concerns for the potential use of cyanovirin-N as a microbicidal anti-HIV agent. Int J Biochem Cell Biol 2008; 40:2802-14. [PMID: 18598778 DOI: 10.1016/j.biocel.2008.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/14/2008] [Accepted: 05/29/2008] [Indexed: 11/18/2022]
Abstract
Based on its antiviral activity profile, cyanovirin-N (CV-N) holds great potential for anti-HIV microbicidal application. However, limited data are available on the possible side-effects of this lectin. A detailed investigation was carried out to obtain better insights in the cytotoxic, inflammatory and (anti)-proliferative properties of CV-N in comparison with several other plant-derived lectins. CV-N affected the cell morphology of PBMCs and enhanced the expression of the cellular activation markers CD25, CD69 and HLA-DR. PBMCs activated by CV-N were more susceptible for R5 HIV-1 infection. In addition, CV-N exerted a pronounced mitogenic activity and significantly enhanced in PBMCs the production of a wide variety of cytokines, as determined by the Bio-Plex human cytokine 27-plex array system. In comparison, other lectins obtained from Hippeastrum hybrid, Galanthus nivalis, and Urtica dioica induced markedly less, if any, stimulatory effects. So, the use of CV-N may be accompanied by various stimulatory effects that may compromise its application for microbicidal use.
Collapse
Affiliation(s)
- Dana Huskens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
78
|
Inhibition of cell-to-cell transmission of human T-cell lymphotropic virus type 1 in vitro by carbohydrate-binding agents. Antimicrob Agents Chemother 2008; 52:2771-9. [PMID: 18505856 DOI: 10.1128/aac.01671-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) from healthy individuals can be infected by human T-lymphotropic virus type 1 (HTLV-1) upon cocultivation of the PBMCs with irradiated HTLV-1-transformed human MT-2 cells. This model system closely mimics HTLV-1 transmission through cell-to-cell contact. Carbohydrate-binding agents (CBAs) such as the alpha(1,3)/alpha(1,6)mannose-specific Hippeastrum hybrid agglutinin and the GlcNAc-specific Urtica dioica agglutinin, and also the small, nonpeptidic alpha(1,2)-mannose-specific antibiotic pradimicin A, were able to efficiently prevent cell-to-cell HTLV-1 transmission at nontoxic concentrations, as evidenced by the lack of appearance of virus-specific mRNA and of the viral protein Tax in the acceptor cells. Consistently, antivirally active doses of CBAs fully prevented HTLV-1-induced stimulation of PBMC growth. The inhibitory effects of CBAs on HTLV-1 transmission were also evident when HTLV-1-infected C5MJ cells were used in place of MT-2 cells as a virus donor cell line. The anti-HTLV-1 properties of the CBAs highlight the importance of the envelope glycans in events underlying HTLV-1 passage from cell to cell and indicate that CBAs should be further investigated for their potential to prevent HTLV-1 infection, including mother-to-child virus transmission by cell-to-cell contact through breast milk feeding.
Collapse
|
79
|
Ndesendo VMK, Pillay V, Choonara YE, Buchmann E, Bayever DN, Meyer LCR. A review of current intravaginal drug delivery approaches employed for the prophylaxis of HIV/AIDS and prevention of sexually transmitted infections. AAPS PharmSciTech 2008; 9:505-20. [PMID: 18431651 PMCID: PMC2976928 DOI: 10.1208/s12249-008-9073-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/04/2008] [Indexed: 12/26/2022] Open
Abstract
The objective of this review is to describe the current status of several intravaginal anti-HIV microbicidal delivery systems these delivery systems and microbicidal compounds in the context of their stage within clinical trials and their potential cervicovaginal defence successes. The global Human Immuno-Deficiency Virus (HIV) pandemic continues to spread at a rate of more than 15,000 new infections daily and sexually transmitted infections (STIs) can predispose people to acquiring HIV infection. Male-to-female transmission is eight times more likely to occur than female-to-male transmission due to the anatomical structure of the vagina as well as socio-economic factors and the disempowerment of women that renders them unable to refuse unsafe sexual practices in some communities. The increased incidence of HIV in women has identified the urgent need for efficacious and safe intravaginal delivery of anti-HIV agents that can be used and controlled by women. To meet this challenge, several intravaginal anti-HIV microbicidal delivery systems are in the process of been developed. The outcomes of three main categories are discussed in this review: namely, dual-function polymeric systems, non-polymeric systems and nanotechnology-based systems. These delivery systems include formulations that modify the genital environment (e.g. polyacrylic acid gels and lactobacillus gels), surfactants (e.g. sodium lauryl sulfate), polyanionic therapeutic polymers (e.g. carageenan and carbomer/lactic acid gels), proteins (e.g. cyanovirin-N, monoclonal antibodies and thromspondin-1 peptides), protease inhibitors and other molecules (e.g. dendrimer based-gels and the molecular condom). Intravaginal microbicide delivery systems are providing a new option for preventing the transmission of STIs and HIV.
Collapse
Affiliation(s)
- Valence M. K. Ndesendo
- />Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193 Johannesburg, South Africa
| | - Viness Pillay
- />Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193 Johannesburg, South Africa
| | - Yahya E. Choonara
- />Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193 Johannesburg, South Africa
| | - Eckhart Buchmann
- />Department of Gynecology and Obstetrics, Chris Hani Baragwanath Hospital, Bertsham, Johannesburg, 2013 South Africa
| | - David N. Bayever
- />Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193 Johannesburg, South Africa
| | - Leith C. R. Meyer
- />Brain Function Research Group, School of Physiology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| |
Collapse
|
80
|
Van Der Bijl P, Van Eyk A, Van Zyl J, Moll L, Schols D, Balzarini J. Diffusion of Two Potential Anti-HIV Microbicides across Intact and De-Epithelialised, Human Vaginal Mucosa. EUR J INFLAMM 2008. [DOI: 10.1177/1721727x0800600103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The lectins derived from Hippeastrum hybrid ( Hippeastrum hybrid agglutinin, HHA) and from the stinging nettle Urtica dioica (UDA) have been investigated as anti-HIV microbicides. The present study was conducted to determine their diffusion through intact and de-epithelialised human vaginal epithelium. Both lectins were labelled with fluorescein isothiocyanate groups (FITC) and analysed by SDS-polyacrylamide gel electrophoresis. While UDA appeared to be fairly homogeneous with an average Mw of ∼ 8.5 kDa, HHA was a heterogeneous mixture of compounds with Mw's ranging between ∼ 13 and 52 kDa. Fresh human vaginal mucosa was snap-frozen in liquid nitrogen and stored at −85°C. Prior to an experiment, the tissue was defrosted to 20°C in PBS buffer, pH 7.4, and placed in the seven flow cells of a flow-through perfusion apparatus. Either FITC-labelled HHA or UDA was then pipetted into the donor chamber of the flow cell. Samples from each flow cell were collected every 2 hours (1.5 ml/h) over a 24-hour period and analysed by fluorospectrophotometry. Permeability experiments were repeated with vaginal mucosa specimens from which the epithelial layers had been removed by heat-stripping. Both lectins diffused through vaginal mucosa at rates proportionate to their average molecular weights, the flux rates of the smaller UDA being ∼ 5x higher than that of the larger HHA. Removal of the vaginal epithelium increased the flux rates of both HHA and UDA across the mucosa and this may have implications for a more rapid in vivo uptake of these lectins when used as anti-HIV microbicides.
Collapse
Affiliation(s)
| | | | | | | | - D. Schols
- Rega Institute for Medical Research, Catholic University, Leuven, Belgium
| | - J. Balzarini
- Rega Institute for Medical Research, Catholic University, Leuven, Belgium
| |
Collapse
|
81
|
Keirstead ND, Lee C, Yoo D, Brooks AS, Hayes MA. Porcine plasma ficolin binds and reduces infectivity of porcine reproductive and respiratory syndrome virus (PRRSV) in vitro. Antiviral Res 2008; 77:28-38. [PMID: 17850894 PMCID: PMC7172368 DOI: 10.1016/j.antiviral.2007.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 07/28/2007] [Accepted: 08/01/2007] [Indexed: 12/27/2022]
Abstract
Ficolins are collagenous lectins that bind N-acetylated glycans and participate in innate immune responses, including phagocytosis and complement activation. Related collagenous lectins such as mannan binding lectin (MBL) and surfactant proteins A and D possess antiviral activity, but this activity has not been demonstrated for ficolins. In these studies, we used purified porcine plasma ficolin alpha and recombinant ficolin alpha to assess their ability to bind and neutralize porcine reproductive and respiratory virus (PRRSV) in various assays. Recombinant ficolin alpha was designed with a C-terminal 6-histidine tag using a pcDNA3.1 expression vector system in CHO K1 cells. Plasma-purified and recombinant ficolin alpha reduced cytopathic effect of PRRSV-infected Marc-145 cells in neutralization assays and inhibited replication of infectious viral particles in a GlcNAc-dependent manner. In vitro replication determined by plaque assay was inhibited in the presence of plasma-purified ficolin alpha and recombinant ficolin. Immunoreactive plasma ficolin alpha and recombinant ficolin alpha also bound PRRSV-coated wells in a GlcNAc-dependent manner. These studies indicate that porcine ficolin can bind and neutralize a common arterivirus that is a major pathogen of swine.
Collapse
Key Words
- anova, analysis of variance
- cho k1 cells, chinese hamster ovary k1 cell line
- cpe, cytopathic effect
- elisa, enzyme-linked immunosorbent assay
- glcnac, n-acetyl-d-glucosamine
- kda, kilodaltons
- mbl, mannan binding lectin
- maldi, matrix-assisted laser desorption/ionization
- marc-145 cells, african monkey kidney cell line
- ms/ms, tandem mass spectrometry
- pfu, plaque-forming units
- pfcn, plasma ficolin α
- pi, isoelectric point
- plsd, protected least significant difference
- prrsv, porcine reproductive and respiratory syndrome virus
- rfcn, recombinant ficolin
- sds-page, sodium dilauryl sulfate-polyacrylamide gel electrophoresis
- ficolins
- mannan binding lectins
- innate immunity
- pigs
- n-acetylglucosamine
- prrsv
Collapse
|
82
|
van der Meer FJUM, de Haan CAM, Schuurman NMP, Haijema BJ, Verheije MH, Bosch BJ, Balzarini J, Egberink HF. The carbohydrate-binding plant lectins and the non-peptidic antibiotic pradimicin A target the glycans of the coronavirus envelope glycoproteins. J Antimicrob Chemother 2007; 60:741-9. [PMID: 17704516 PMCID: PMC7110056 DOI: 10.1093/jac/dkm301] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Objectives Many enveloped viruses carry carbohydrate-containing proteins on their surface. These glycoproteins are key to the infection process as they are mediators of the receptor binding and membrane fusion of the virion with the host cell. Therefore, they are attractive therapeutic targets for the development of novel antiviral therapies. Recently, carbohydrate-binding agents (CBA) were shown to possess antiviral activity towards coronaviruses. The current study further elucidates the inhibitory mode of action of CBA. Methods Different strains of two coronaviruses, mouse hepatitis virus and feline infectious peritonitis virus, were exposed to CBA: the plant lectins Galanthus nivalis agglutinin, Hippeastrum hybrid agglutinin and Urtica dioica agglutinin (UDA) and the non-peptidic mannose-binding antibiotic pradimicin A. Results and conclusions Our results indicate that CBA target the two glycosylated envelope glycoproteins, the spike (S) and membrane (M) protein, of mouse hepatitis virus and feline infectious peritonitis virus. Furthermore, CBA did not inhibit virus–cell attachment, but rather affected virus entry at a post-binding stage. The sensitivity of coronaviruses towards CBA was shown to be dependent on the processing of the N-linked carbohydrates. Inhibition of mannosidases in host cells rendered the progeny viruses more sensitive to the mannose-binding agents and even to the N-acetylglucosamine-binding UDA. In addition, inhibition of coronaviruses was shown to be dependent on the cell-type used to grow the virus stocks. All together, these results show that CBA exhibit promising capabilities to inhibit coronavirus infections.
Collapse
Affiliation(s)
- F. J. U. M. van der Meer
- Department of Infectious Diseases and Immunology, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - C. A. M. de Haan
- Department of Infectious Diseases and Immunology, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - N. M. P. Schuurman
- Department of Infectious Diseases and Immunology, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - B. J. Haijema
- Department of Infectious Diseases and Immunology, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - M. H. Verheije
- Department of Infectious Diseases and Immunology, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - B. J. Bosch
- Department of Infectious Diseases and Immunology, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - J. Balzarini
- Rega Institute for Medical Research, K.U. Leuven, Department of Microbiology and Immunology, Minderbroedersstraat 10 blok x—bus 1030, B-3000 Leuven, Belgium
| | - H. F. Egberink
- Department of Infectious Diseases and Immunology, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
- Corresponding author. Tel: +31-30-2532487; Fax: +31-30-2536723; E-mail:
| |
Collapse
|
83
|
Abstract
Several chronic viral infections (such as HIV and hepatitis C virus) are highly prevalent and are a serious health risk. The adaptation of animal viruses to the human host, as recently exemplified by influenza viruses and the severe acute respiratory syndrome coronavirus, is also a continuous threat. There is a high demand, therefore, for new antiviral lead compounds and novel therapeutic concepts. In this Review, an original therapeutic concept for suppressing enveloped viruses is presented that is based on a specific interaction of carbohydrate-binding agents (CBAs) with the glycans present on viral-envelope glycoproteins. This approach may also be extended to other pathogens, including parasites, bacteria and fungi.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
84
|
Ma L, Lu H, Sprinkle A, Parsek MR, Wozniak DJ. Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol 2007; 189:8353-6. [PMID: 17631634 PMCID: PMC2168683 DOI: 10.1128/jb.00620-07] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas aeruginosa polysaccharide synthesis locus (psl) is predicted to encode an exopolysaccharide which is critical for biofilm formation. Here we used chemical composition analyses and mannose- or galactose-specific lectin staining, followed by confocal laser scanning microscopy and electron microscopy, to show that Psl is a galactose-rich and mannose-rich exopolysaccharide.
Collapse
Affiliation(s)
- Luyan Ma
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | | | | | | | |
Collapse
|
85
|
van der Meer FJUM, Schuurman NMP, Balzarini J, Egberink HF. Comparative evaluation of the activity of antivirals towards feline immunodeficiency virus in different cell culture systems. Antiviral Res 2007; 76:198-201. [PMID: 17640744 DOI: 10.1016/j.antiviral.2007.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/03/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Influences of the cell system on observed EC(50) values of different agents against feline immunodeficiency virus (FIV) were assessed. The activity of various nucleoside reverse transcriptase inhibitors (NRTI) against a lymphotropic FIV strain was evaluated using monocultured thymocytes and a DC-thymocyte coculture. In the second set of experiments activity of carbohydrate binding agents (CBA) towards FIV strains derived from different cell lines (e.g. Crandall feline kidney cells (CRFK) and thymocytes) was compared. We examined three different FIV-based antiviral evaluation systems and obtained marked differences in EC(50) values, especially for CBA entry inhibitors. Our study confirms and extends earlier observed differences between cell systems used for the evaluation of the activity of antivirals towards FIV.
Collapse
Affiliation(s)
- F J U M van der Meer
- Department of Infectious Diseases and Immunology, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | |
Collapse
|
86
|
Saïdi H, Nasreddine N, Jenabian MA, Lecerf M, Schols D, Krief C, Balzarini J, Bélec L. Differential in vitro inhibitory activity against HIV-1 of alpha-(1-3)- and alpha-(1-6)-D-mannose specific plant lectins: implication for microbicide development. J Transl Med 2007; 5:28. [PMID: 17565674 PMCID: PMC1904181 DOI: 10.1186/1479-5876-5-28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 06/12/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant lectins such as Galanthus nivalis agglutinin (GNA) and Hippeastrum hybrid agglutinin (HHA) are natural proteins able to link mannose residues, and therefore inhibit HIV-target cell interactions. Plant lectins are candidate for microbicide development. OBJECTIVE To evaluate the activity against HIV of the mannose-specific plant lectins HHA and GNA at the cellular membrane level of epithelial cells and monocyte-derived dendritic cells (MDDC), two potential target cells of HIV at the genital mucosal level. METHODS The inhibitory effects of HHA and GNA were evaluated on HIV adsorption to genital epithelial HEC-1A cell line, on HIV transcytosis throughout a monolayer of polarized epithelial HEC-1A cells, on HIV adsorption to MDDC and on transfer of HIV from MDDC to autologous T lymphocytes. RESULTS HHA faintly inhibited attachment to HEC-1A cells of the R5-tropic HIV-1Ba-L strain, in a dose-dependent manner, whereas GNA moderately inhibited HIV adsorption in the same context, but only at high drug doses. Only HHA, but not GNA, inhibited HIV-1JR-CSF transcytosis in a dose-dependent manner. By confocal microscopy, HHA, but not GNA, was adsorbed at the epithelial cell surface, suggesting that HHA interacts specifically with receptors mediating HIV-1 transcytosis. Both plant lectins partially inhibited HIV attachment to MDDC. HHA inhibited more efficiently the transfer of HIV from MDDC to T cell, than GNA. Both HHA and GNA lacked toxicity below 200 microg/ml irrespective the cellular system used and do not disturb the monolayer integrity of epithelial cells. CONCLUSION These observations demonstrate higher inhibitory activities of the lectin plant HHA by comparison to GNA, on HIV adsorption to HEC-1A cell line, HIV transcytosis through HEC-1A cell line monolayer, HIV adsorption to MDDC and HIV transfer from MDDC to T cells, highlighting the potential interest of HHA as effective microbicide against HIV.
Collapse
Affiliation(s)
- Hela Saïdi
- Unité INSERM U743, Equipe « Immunité et Biothérapie Muqueuse », Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | | | - Mohammad-Ali Jenabian
- Unité INSERM U743, Equipe « Immunité et Biothérapie Muqueuse », Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | - Maxime Lecerf
- Unité INSERM U743, Equipe « Immunité et Biothérapie Muqueuse », Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | | | - Corinne Krief
- Unité INSERM U743, Equipe « Immunité et Biothérapie Muqueuse », Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | - Jan Balzarini
- Rega Institute for Medical Research, Leuven, Belgium
| | - Laurent Bélec
- Unité INSERM U743, Equipe « Immunité et Biothérapie Muqueuse », Centre de Recherches Biomédicales des Cordeliers, Paris, France
| |
Collapse
|
87
|
van der Meer FJUM, de Haan CAM, Schuurman NMP, Haijema BJ, Peumans WJ, Van Damme EJM, Delputte PL, Balzarini J, Egberink HF. Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture. Antiviral Res 2007; 76:21-9. [PMID: 17560666 PMCID: PMC7132385 DOI: 10.1016/j.antiviral.2007.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/15/2007] [Accepted: 04/24/2007] [Indexed: 01/25/2023]
Abstract
Coronaviruses are important human and animal pathogens, the relevance of which increased due to the emergence of new human coronaviruses like SARS-CoV, HKU1 and NL63. Together with toroviruses, arteriviruses, and roniviruses the coronaviruses belong to the order Nidovirales. So far antivirals are hardly available to combat infections with viruses of this order. Therefore, various antiviral strategies to counter nidoviral infections are under evaluation. Lectins, which bind to N-linked oligosaccharide elements of enveloped viruses, can be considered as a conceptionally new class of virus inhibitors. These agents were recently evaluated for their antiviral activity towards a variety of enveloped viruses and were shown in most cases to inhibit virus infection at low concentrations. However, limited knowledge is available for their efficacy towards nidoviruses. In this article the application of the plant lectins Hippeastrum hybrid agglutinin (HHA), Galanthus nivalis agglutinin (GNA), Cymbidium sp. agglutinin (CA) and Urtica dioica agglutinin (UDA) as well as non-plant derived pradimicin-A (PRM-A) and cyanovirin-N (CV-N) as potential antiviral agents was evaluated. Three antiviral tests were compared based on different evaluation principles: cell viability (MTT-based colorimetric assay), number of infected cells (immunoperoxidase assay) and amount of viral protein expression (luciferase-based assay). The presence of carbohydrate-binding agents strongly inhibited coronaviruses (transmissible gastroenteritis virus, infectious bronchitis virus, feline coronaviruses serotypes I and II, mouse hepatitis virus), arteriviruses (equine arteritis virus and porcine respiratory and reproductive syndrome virus) and torovirus (equine Berne virus). Remarkably, serotype II feline coronaviruses and arteriviruses were not inhibited by PRM-A, in contrast to the other viruses tested.
Collapse
Affiliation(s)
- F J U M van der Meer
- Department of Immunology and Infectious Diseases, Division of Virology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Bertaux C, Daelemans D, Meertens L, Cormier EG, Reinus JF, Peumans WJ, Van Damme EJM, Igarashi Y, Oki T, Schols D, Dragic T, Balzarini J. Entry of hepatitis C virus and human immunodeficiency virus is selectively inhibited by carbohydrate-binding agents but not by polyanions. Virology 2007; 366:40-50. [PMID: 17498767 DOI: 10.1016/j.virol.2007.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 01/24/2007] [Accepted: 04/05/2007] [Indexed: 01/23/2023]
Abstract
We studied the antiviral activity of carbohydrate-binding agents (CBAs), including several plant lectins and the non-peptidic small-molecular-weight antibiotic pradimicin A (PRM-A). These agents efficiently prevented hepatitis C virus (HCV) and human immunodeficiency virus type 1 (HIV-1) infection of target cells by inhibiting the viral entry. CBAs were also shown to prevent HIV and HCV capture by DC-SIGN-expressing cells. Surprisingly, infection by other enveloped viruses such as herpes simplex viruses, respiratory syncytial virus and parainfluenza-3 virus was not inhibited by these agents pointing to a high degree of specificity. Mannan reversed the antiviral activity of CBAs, confirming their association with viral envelope-associated glycans. In contrast, polyanions such as dextran sulfate-5000 and sulfated polyvinylalcohol inhibited HIV entry but were devoid of any activity against HCV infection, indicating that they act through a different mechanism. CBAs could be considered as prime drug leads for the treatment of chronic viral infections such as HCV by preventing viral entry into target cells. They may represent an attractive new option for therapy of HCV/HIV coinfections. CBAs may also have the potential to prevent HCV/HIV transmission.
Collapse
Affiliation(s)
- Claire Bertaux
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Balzarini J. Carbohydrate-binding agents: a potential future cornerstone for the chemotherapy of enveloped viruses? Antivir Chem Chemother 2007; 18:1-11. [PMID: 17354647 DOI: 10.1177/095632020701800101] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbohydrate-binding agents (CBAs) inhibit HIV-1 and it is proposed that therapy with such agents may have important implications for the future of anti-HIV therapy. Examples of CBAs include the procaryotic cyanovirin-N (CV-N), plant lectins such as HHA, GNA, NPA, CA and UDA, the monoclonal antibody 2G12 directed against a glycan-containing epitope on HIV envelope gp120, and the mannose-specific non-peptidic antibiotic Pradimicin A, which inhibits the entry of HIV-1 into its target cells. CBAs prevent not only virus infection of susceptible cells, but also inhibit syncytia formation between persistently HIV-infected cells and uninfected lymphocytes. In addition, CBAs may also prevent DC-SIGN-mediated transmission of HIV to T-lymphocytes. Therefore, CBAs qualify as potential microbicide drugs. Long-term exposure of HIV to CBAs in cell culture results in the progressive deletion of N-glycans of HIV gpl20 in an attempt of the virus to escape drug pressure. In this respect, the CBAs are endowed with a high genetic barrier. Multiple mutations at N-glycosylation sites are required before pronounced phenotypic drug resistance development becomes evident. CBA treatment of HIV may consist of a novel chemotherapeutic concept with a dual mechanism of antiviral action: a direct antiviral activity by preventing HIV entry and transmission to its target cells, and an indirect antiviral activity by forcing HIV to delete glycans in its gpl20 envelope. The latter phenomenon will result in creating 'holes' in the protective glycan shield of the HIV envelope, whereby the immune system may become triggered to produce neutralizing antibodies against previously hidden immunogenic epitopes of gp120. If this concept can be proven in in vivo, low-molecular-weight non-peptidic CBAs such as Pradimycin A may become the cornerstone for the efficient treatment of infections of those viruses that require a glycosylated envelope (that is, HIV, but also hepatitis C virus) for entry into its target cells. In addition, influenza virus and coronavirus infections may also qualify to be treated by CBAs.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium.
| |
Collapse
|
90
|
Huskens D, Van Laethem K, Vermeire K, Balzarini J, Schols D. Resistance of HIV-1 to the broadly HIV-1-neutralizing, anti-carbohydrate antibody 2G12. Virology 2007; 360:294-304. [PMID: 17123566 DOI: 10.1016/j.virol.2006.10.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/10/2006] [Accepted: 10/10/2006] [Indexed: 11/17/2022]
Abstract
The 2G12 mAb inhibits the infection of HIV-1 laboratory-adapted viruses at 50% inhibitory concentrations (IC(50)) ranging from 0.02 to 0.2 microg/ml when evaluated in different cell-types. However, isolates from various HIV-1 subtypes (such as clade C, D, A/E, F and group O) were not inhibited by 2G12 mAb (IC(50) >20 microg/ml). 2G12 mAb pressure in HIV-1 IIIB- and NL4.3-infected T cell cultures selected for resistant viruses containing only few (1 to 3 N-glycosylation) deletions in gp120. The 2G12-resistant viruses keep their full sensitivity to various mannose-specific lectins and other known HIV entry inhibitors. Moreover, we observed that the NL4.3-2G12-resistant virus, with the N295K mutation in gp120, became significantly more sensitive to several mannose-specific lectins. This is, to our knowledge, the first report showing that a resistant virus generated in vitro against a neutralizing mAb and containing a mutation in gp120, has increased sensitivity to another class of HIV entry inhibitors.
Collapse
Affiliation(s)
- Dana Huskens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
91
|
Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, Balzarini J, Van Ranst M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007; 75:179-87. [PMID: 17428553 PMCID: PMC7114093 DOI: 10.1016/j.antiviral.2007.03.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/05/2007] [Accepted: 03/05/2007] [Indexed: 11/26/2022]
Abstract
We describe the antiviral activity of plant lectins with specificity for different glycan structures against the severe acute respiratory syndrome coronavirus (SARS-CoV) and the feline infectious peritonitis virus (FIPV) in vitro. The SARS-CoV emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and FIPV infection causes a chronic and often fatal peritonitis in cats. A unique collection of 33 plant lectins with different specificities were evaluated. The plant lectins possessed marked antiviral properties against both coronaviruses with EC50 values in the lower microgram/ml range (middle nanomolar range), being non-toxic (CC50) at 50–100 μg/ml. The strongest anti-coronavirus activity was found predominantly among the mannose-binding lectins. In addition, a number of galactose-, N-acetylgalactosamine-, glucose-, and N-acetylglucosamine-specific plant agglutinines exhibited anti-coronaviral activity. A significant correlation (with an r-value of 0.70) between the EC50 values of the 10 mannose-specific plant lectins effective against the two coronaviruses was found. In contrast, little correlation was seen between the activity of other types of lectins. Two targets of possible antiviral intervention were identified in the replication cycle of SARS-CoV. The first target is located early in the replication cycle, most probably viral attachment, and the second target is located at the end of the infectious virus cycle.
Collapse
Affiliation(s)
- Els Keyaerts
- Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Leen Vijgen
- Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Belgium
| | - Els Van Damme
- Department of Molecular Biotechnology, University of Gent, Belgium
| | - Willy Peumans
- Department of Molecular Biotechnology, University of Gent, Belgium
| | - Herman Egberink
- Department of Infectious Diseases & Immunology, Veterinary Faculty, Utrecht, The Netherlands
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Belgium
- Corresponding author. Tel.: +32 16 337352; fax: +32 16 337340.
| | - Marc Van Ranst
- Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
- Corresponding author at: Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium. Tel.: +32 16 347908; fax: +32 16 347900.
| |
Collapse
|
92
|
Abstract
25 years after the first HIV/AIDS cases emerged in 1981, the disease continues to spread worldwide, with about 15 000 new infections every day. Although highly active antiretroviral therapy (HAART) has greatly reduced the rate of HIV infection, and the spread of the epidemic, this effect has largely been seen in developed countries. More than 90% of HIV-infected people live in developing countries, most of whom do not have access to this treatment. The development of efficient, widely available, and low-cost microbicides (gels and creams can be applied topically before sex) to prevent sexually transmitted HIV infections should be given high priority. We review different categories of microbicide drugs and lead compounds, their mechanism of action, current status of development, and progress in phase III trials.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, K U Leuven, B-3000 Leuven, Belgium.
| | | |
Collapse
|
93
|
Huskens D, Princen K, Schreiber M, Schols D. The role of N-glycosylation sites on the CXCR4 receptor for CXCL-12 binding and signaling and X4 HIV-1 viral infectivity. Virology 2007; 363:280-7. [PMID: 17331556 DOI: 10.1016/j.virol.2007.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/03/2007] [Accepted: 01/26/2007] [Indexed: 11/24/2022]
Abstract
The chemokine receptor CXCR4 functions as one of the HIV-1 coreceptors and can be considered as an attractive target for the development of novel anti-HIV drugs. Here, we investigated the effect of its two known N-glycosylation sites g1 (NYT) and g2 (NVS) on the antiviral potential of several classes of entry inhibitors. The lack of g1 clearly affected the binding of the amino-terminal directed 2B11 mAb, but not the 12G5 mAb. No dramatic effects on CXCL-12 binding and CXCL-12-induced intracellular calcium responses were observed. Importantly, the anti-HIV-1 activity and antagonistic activity of the prototype compound of CXCR4 inhibitors, AMD3100, were not affected by the presence or absence of the CXCR4 N-glycans. Since CXCR4 N-glycans play a less important role in viral entry compared to the N-glycans on the HIV envelope, cells expressing CXCR4 N-glycosylation mutants might be no relevant alternative to allow HIV-1 escape from antivirals.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids/physiology
- Anti-HIV Agents/pharmacology
- Antibodies/metabolism
- Antibodies/pharmacology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Benzylamines
- Binding Sites/physiology
- Cell Line, Tumor
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemokines, CXC/pharmacology
- Cyclams
- Drug Resistance, Viral
- Glycosylation
- HIV Fusion Inhibitors/pharmacology
- HIV-1/pathogenicity
- HIV-1/physiology
- Heterocyclic Compounds/metabolism
- Heterocyclic Compounds/pharmacology
- Humans
- Lectins/metabolism
- Lectins/pharmacology
- Molecular Sequence Data
- Mutation
- Protein Binding
- Protein Structure, Secondary
- Receptors, CXCR4/drug effects
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Receptors, CXCR4/metabolism
- Receptors, HIV/genetics
- Receptors, HIV/metabolism
- Signal Transduction
- Virulence
- Virus Replication
Collapse
Affiliation(s)
- Dana Huskens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
94
|
Kaur A, Kamboj SS, Singh J, Singh R, Abrahams M, Kotwal GJ, Saxena AK. Purification of 3 monomeric monocot mannose-binding lectins and their evaluation for antipoxviral activity: potential applications in multiple viral diseases caused by enveloped viruses. Biochem Cell Biol 2007; 85:88-95. [PMID: 17464348 DOI: 10.1139/o06-185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Three monomeric monocot lectins from Zephyranthes carinata, Zephyranthes candida, and Gloriosa superba with carbohydrate specificity towards mannose derivatives and (or) oligomannose have been isolated and purified from their storage tissues. The lectins were purified by anion-exchange chromatography on DEAE–Sephacyl and by gel filtration chromatography on Biogel P-200 followed by high-performance liquid chromatography. The purified lectins, Z. carinata, Z. candida, and G. superba had molecular masses of 12, 11.5, and 12.5 kDa, respectively, as determined by gel filtration and SDS–PAGE, indicating that they are monomers. In a hapten inhibition assay, methyl-α-d-mannopyranoside inhibited agglutination of both Z. candida and Z. carinata; the latter was also inhibited by Man(α1-2)Man and Man(α1-3)Man. Gloriosa superba showed inhibition only with Man(α1-4)Man of all of the sugars and glycoproteins tested. All purified lectins agglutinated red blood cells from rabbit, whereas G. superba was also reactive towards erythrocytes from guinea pig. All of the lectins were nonglycosylated and did not require metal ions for their activity. They were labile above 60 °C and were affected by denaturing agents such as urea, thiourea, and guanidine–HCl. The lectins were virtually nonmitogenic, like other members of Amaryllidaceae and Liliaceae. Of the 3 lectins, G. superba was found to be highly toxic to the BSC-1 cell line (African green monkey kidney epithelial cells), while both of the Zephyranthes species showed significant in vitro inhibition of poxvirus replication in BSC-1 cells without any toxic effects to the cells. In addition, Z. candida also exhibited significant anticancer activity against SNB-78, a CNS human cancer cell line.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143 005 Punjab, India
| | | | | | | | | | | | | |
Collapse
|
95
|
Balzarini J, Van Herrewege Y, Vermeire K, Vanham G, Schols D. Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes. Mol Pharmacol 2007; 71:3-11. [PMID: 17056872 DOI: 10.1124/mol.106.030155] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure of HIV-1 to dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-expressing B-lymphoblast Raji cells (Raji/DC-SIGN) but not to wild-type Raji/0 cells results in the capture of HIV-1 particles to the cells as measured by the quantification of cell-associated p24 antigen. Cocultivation of HIV-1-captured Raji/DC-SIGN cells with uninfected CD4+ T lymphocyte C8166 cells results in abundant formation of syncytia within 36 h after cocultivation. Short preexposure of HIV-1 to carbohydrate-binding agents (CBA) dose dependently prevents the Raji/DC-SIGN cells from efficiently binding the virus particles, and no syncytia formation occurs upon subsequent cocultivation with C8166 cells. Thus, the mannose-specific [i.e., the plant lectins Hippeastrum hybrid agglutinin (HHA), Galanthus nivalis agglutinin (GNA), Narcissus pseudonarcissus agglutinin; and Cymbidium agglutinin (CA); the procaryotic cyanovirin-N (CV-N); and the monoclonal antibody 2G12) and N-acetylglucosamine-specific (i.e., the plant lectin Urtica dioica agglutinin) CBAs efficiently abrogate the DC-SIGN-directed HIV-1 capture and subsequent transmission to T lymphocytes. In this assay, the CD4-down-regulating cyclotriazodisulfonamide derivative, the CXCR4 and CCR5 coreceptor antagonists 1-[[4-(1,4,8,11-tetrazacyclotetradec-1-ylmethyl)phenyl]methyl] - 1,4,8,11 - tetrazacyclotetradecane (AMD3100) and maraviroc, the gp41-binding enfuvirtide, and the polyanionic substances dextran sulfate (M(r) 5000), sulfated polyvinyl alcohol, and the naphthalene sulfonate polymer PRO-2000 were markedly less efficient or even completely ineffective. Similar observations were made in primary monocyte-derived dendritic cell cultures that were infected with HIV-1 particles that had been shortly pre-exposed to the CBAs CV-N, CA, HHA, and GNA and the polyanions DS-5000 and PRO-2000. The potential of CBAs, but not polyanions and other structural/functional classes of entry inhibitors, to impair DC-SIGN-expressing cells in their capacity of transmitting HIV to T lymphocytes might be an important property to be taken into consideration in the eventual choice to move microbicide candidate drugs to the clinical setting.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
96
|
De Clercq E. Status Presens of Antiviral Drugs And Strategies: Part I: DNA Viruses and Retroviruses. ADVANCES IN ANTIVIRAL DRUG DESIGN 2007; 5:1-58. [PMID: 32288472 PMCID: PMC7146823 DOI: 10.1016/s1075-8593(06)05001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
More than 40 compounds have been formally licensed for clinical use as antiviral drugs, and half of these are used for the treatment of HIV infections. The others have been approved for the therapy of herpesvirus (HSV, VZV, CMV), hepadnavirus (HBV), hepacivirus (HCV) and myxovirus (influenza, RSV) infections. New compounds are in clinical development or under preclinical evaluation, and, again, half of these are targeting HIV infections. Yet, quite a number of important viral pathogens (i.e. HPV, HCV, hemorrhagic fever viruses) remain in need of effective and/or improved antiviral therapies.
Collapse
|
97
|
De Clercq E. Viruses and Viral Diseases. COMPREHENSIVE MEDICINAL CHEMISTRY II 2007. [PMCID: PMC7151824 DOI: 10.1016/b0-08-045044-x/00211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
More than 40 compounds have been formally licensed for clinical use as antiviral drugs, and half of these are used for the treatment of human immunodeficiency virus (HIV) infections. The others have been approved for the therapy of herpesvirus (herpes simplex virus (HSV), varicella-zoster virus (VZV), cytomegalovirus (CMV)), hepadnavirus (hepatitis B virus (HBV)), hepacivirus (hepatitis C virus (HCV)), and myxovirus (influenza, respiratory synctural virus (RSV)) infections. New compounds are in clinical development or under preclinical evaluation, and, again, half of these target HIV infections. Yet, quite a number of important viral pathogens (i.e., human papilloma virus (HPV), HCV, hemorrhagic fever viruses) remain in need of effective and/or improved antiviral therapies.
Collapse
|
98
|
Balzarini J, Van Laethem K, Daelemans D, Hatse S, Bugatti A, Rusnati M, Igarashi Y, Oki T, Schols D. Pradimicin A, a carbohydrate-binding nonpeptidic lead compound for treatment of infections with viruses with highly glycosylated envelopes, such as human immunodeficiency virus. J Virol 2006; 81:362-73. [PMID: 17050611 PMCID: PMC1797273 DOI: 10.1128/jvi.01404-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pradimicin A (PRM-A), an antifungal nonpeptidic benzonaphtacenequinone antibiotic, is a low-molecular-weight (molecular weight, 838) carbohydrate binding agent (CBA) endowed with a selective inhibitory activity against human immunodeficiency virus (HIV). It invariably inhibits representative virus strains of a variety of HIV-1 clades with X4 and R5 tropisms at nontoxic concentrations. Time-of-addition studies revealed that PRM-A acts as a true virus entry inhibitor. PRM-A specifically interacts with HIV-1 gp120 and efficiently prevents virus transmission in cocultures of HUT-78/HIV-1 and Sup T1 cells. Upon prolonged exposure of HIV-1-infected CEM cell cultures, PRM-A drug pressure selects for mutant HIV-1 strains containing N-glycosylation site deletions in gp120 but not gp41. A relatively long exposure time to PRM-A is required before drug-resistant virus strains emerge. PRM-A has a high genetic barrier, since more than five N-glycosylation site deletions in gp120 are required to afford moderate drug resistance. Such mutated virus strains keep full sensitivity to the other known clinically used anti-HIV drugs. PRM-A represents the first prototype compound of a nonpeptidic CBA lead and, together with peptide-based lectins, belongs to a conceptually novel type of potential therapeutics for which drug pressure results in the selection of glycan deletions in the HIV gp120 envelope.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
|
100
|
Balzarini J, Van Laethem K, Peumans WJ, Van Damme EJM, Bolmstedt A, Gago F, Schols D. Mutational pathways, resistance profile, and side effects of cyanovirin relative to human immunodeficiency virus type 1 strains with N-glycan deletions in their gp120 envelopes. J Virol 2006; 80:8411-21. [PMID: 16912292 PMCID: PMC1563877 DOI: 10.1128/jvi.00369-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Limited data are available on the genotypic and phenotypic resistance profile of the alpha-(1-2)mannose oligomer-specific prokaryotic lectin cyanovirin (CV-N). Therefore, a more systematic investigation was carried out to obtain a better view of the interaction between CV-N and human immunodeficiency virus type 1 (HIV-1) gp120. When HIV-1-infected CEM cell cultures were exposed to CV-N in a dose-escalating manner, a total of eight different amino acid mutations exclusively located at N-glycosylation sites in the envelope surface gp120 were observed. Six of the eight mutations resulted in the deletion of high-mannose type N-glycans (i.e., at amino acid positions 230, 332, 339, 386, 392, and 448). Two mutations (i.e., at position 136 and 160) deleted a complex type N-glycan in the variable V1/V2 domain of gp120. The level of phenotypic resistance of the mutated virus strains against CV-N generally correlated with the number of glycan deletions in gp120, although deletion of the glycans at N-230, N-392, and N-448 generally afforded a more pronounced CV-N resistance than other N-glycan deletions. However, the extent of the decrease of antiviral activity of CV-N against the mutated virus strains was markedly less pronounced than observed for alpha(1-3)- and alpha(1-6)-mannose-specific plant lectins Hippeastrum hybrid agglutinin (HHA) and Galanthus nivalis agglutinin (GNA), which points to the existence of a higher genetic barrier for CV-N. This is in agreement with a more consistent suppression of a wider variety of HIV-1 clades by CV-N than by HHA and GNA. Whereas the antiviral and in vitro antiproliferative activity of CV-N can be efficiently reversed by mannan, the pronounced mitogenic activity of CV-N on peripheral blood mononuclear cells was unaffected by mannan, indicating that some of the observed side effects of CV-N are unrelated to its carbohydrate specificity/activity.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|