51
|
Nies SC, Alter TB, Nölting S, Thiery S, Phan ANT, Drummen N, Keasling JD, Blank LM, Ebert BE. High titer methyl ketone production with tailored Pseudomonas taiwanensis VLB120. Metab Eng 2020; 62:84-94. [PMID: 32810591 DOI: 10.1016/j.ymben.2020.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes. One challenge in the development of a highly productive microbe is the high demand for reducing power. Here, we engineered Pseudomonas taiwanensis VLB120 for methyl ketone production as this microbe has been shown to sustain exceptionally high NAD(P)H regeneration rates. The implementation of published strategies resulted in 2.1 g Laq-1 methyl ketones in fed-batch fermentation. We further increased the production by eliminating competing reactions suggested by metabolic analyses. These efforts resulted in the production of 9.8 g Laq-1 methyl ketones (corresponding to 69.3 g Lorg-1 in the in situ extraction phase) at 53% of the maximum theoretical yield. This represents a 4-fold improvement in product titer compared to the initial production strain and the highest titer of recombinantly produced methyl ketones reported to date. Accordingly, this study underlines the high potential of P. taiwanensis VLB120 to produce methyl ketones and emphasizes model-driven metabolic engineering to rationalize and accelerate strain optimization efforts.
Collapse
Affiliation(s)
- Salome C Nies
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Tobias B Alter
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Sophia Nölting
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Susanne Thiery
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - An N T Phan
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Noud Drummen
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark; Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA; Virtual Institute of Microbial Stress and Survival, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Dept. of Bioengineering, University of California, Berkeley, CA, 94720, USA; Dept. of Chemical Engineering, University of California, Berkeley, CA, 94720, USA; Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Birgitta E Ebert
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia.
| |
Collapse
|
52
|
Applying Statistical Design of Experiments To Understanding the Effect of Growth Medium Components on Cupriavidus necator H16 Growth. Appl Environ Microbiol 2020; 86:AEM.00705-20. [PMID: 32561588 PMCID: PMC7440812 DOI: 10.1128/aem.00705-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023] Open
Abstract
Chemically defined media (CDM) for cultivation of C. necator vary in components and compositions. This lack of consensus makes it difficult to optimize new processes for the bacterium. This study employed statistical design of experiments (DOE) to understand how basic components of defined media affect C. necator growth. Our growth model predicts that C. necator can be cultivated to high cell density with components held at low concentrations, arguing that CDM for large-scale cultivation of the bacterium for industrial purposes will be economically competitive. Although existing CDM for the bacterium are without amino acids, addition of a few amino acids to growth medium shortened lag phase of growth. The interactions highlighted by our growth model show how factors can interact with each other during a process to positively or negatively affect process output. This approach is efficient, relying on few well-structured experimental runs to gain maximum information on a biological process, growth. Cupriavidus necator H16 is gaining significant attention as a microbial chassis for range of biotechnological applications. While the bacterium is a major producer of bioplastics, its lithoautotrophic and versatile metabolic capabilities make the bacterium a promising microbial chassis for biofuels and chemicals using renewable resources. It remains necessary to develop appropriate experimental resources to permit controlled bioengineering and system optimization of this microbe. In this study, we employed statistical design of experiments to gain understanding of the impact of components of defined media on C. necator growth and built a model that can predict the bacterium’s cell density based on medium components. This highlighted medium components, and interaction between components, having the most effect on growth: fructose, amino acids, trace elements, CaCl2, and Na2HPO4 contributed significantly to growth (t values of <−1.65 or >1.65); copper and histidine were found to interact and must be balanced for robust growth. Our model was experimentally validated and found to correlate well (r2 = 0.85). Model validation at large culture scales showed correlations between our model-predicted growth ranks and experimentally determined ranks at 100 ml in shake flasks (ρ = 0.87) and 1 liter in a bioreactor (ρ = 0.90). Our approach provides valuable and quantifiable insights on the impact of medium components on cell growth and can be applied to model other C. necator responses that are crucial for its deployment as a microbial chassis. This approach can be extended to other nonmodel microbes of medical and industrial biotechnological importance. IMPORTANCE Chemically defined media (CDM) for cultivation of C. necator vary in components and compositions. This lack of consensus makes it difficult to optimize new processes for the bacterium. This study employed statistical design of experiments (DOE) to understand how basic components of defined media affect C. necator growth. Our growth model predicts that C. necator can be cultivated to high cell density with components held at low concentrations, arguing that CDM for large-scale cultivation of the bacterium for industrial purposes will be economically competitive. Although existing CDM for the bacterium are without amino acids, addition of a few amino acids to growth medium shortened lag phase of growth. The interactions highlighted by our growth model show how factors can interact with each other during a process to positively or negatively affect process output. This approach is efficient, relying on few well-structured experimental runs to gain maximum information on a biological process, growth.
Collapse
|
53
|
Bommareddy RR, Wang Y, Pearcy N, Hayes M, Lester E, Minton NP, Conradie AV. A Sustainable Chemicals Manufacturing Paradigm Using CO 2 and Renewable H 2. iScience 2020; 23:101218. [PMID: 32559729 PMCID: PMC7303982 DOI: 10.1016/j.isci.2020.101218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 12/01/2022] Open
Abstract
The chemical industry must decarbonize to align with UN Sustainable Development Goals. A shift toward circular economies makes CO2 an attractive feedstock for producing chemicals, provided renewable H2 is available through technologies such as supercritical water (scH2O) gasification. Furthermore, high carbon and energy efficiency is paramount to favorable techno-economics, which poses a challenge to chemo-catalysis. This study demonstrates continuous gas fermentation of CO2 and H2 by the cell factory, Cupriavidus necator, to (R,R)-2,3-butanediol and isopropanol as case studies. Although a high carbon efficiency of 0.75 [(C-mol product)/(C-mol CO2)] is exemplified, the poor energy efficiency of biological CO2 fixation requires ∼8 [(mol H2)/(mol CO2)], which is techno-economically infeasible for producing commodity chemicals. Heat integration between exothermic gas fermentation and endothermic scH2O gasification overcomes this energy inefficiency. This study unlocks the promise of sustainable manufacturing using renewable feedstocks by combining the carbon efficiency of bio-catalysis with energy efficiency enforced through process engineering.
Collapse
Affiliation(s)
- Rajesh Reddy Bommareddy
- BBSRC/EPSRC Synthetic Biology Research Centre, Biodiscovery Institute (BDI), School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Yanming Wang
- BBSRC/EPSRC Synthetic Biology Research Centre, Biodiscovery Institute (BDI), School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nicole Pearcy
- BBSRC/EPSRC Synthetic Biology Research Centre, Biodiscovery Institute (BDI), School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin Hayes
- Johnson Matthey Technology Centre, 28 Cambridge Science Park, Milton Road, Cambridge CB4 0 FP, UK
| | - Edward Lester
- Department of Chemical & Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, Biodiscovery Institute (BDI), School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alex V Conradie
- Department of Chemical & Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
54
|
Pander B, Mortimer Z, Woods C, McGregor C, Dempster A, Thomas L, Maliepaard J, Mansfield R, Rowe P, Krabben P. Hydrogen oxidising bacteria for production of single‐cell protein and other food and feed ingredients. ENGINEERING BIOLOGY 2020; 4:21-24. [PMID: 36970394 PMCID: PMC9996702 DOI: 10.1049/enb.2020.0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/04/2020] [Indexed: 11/19/2022] Open
Abstract
Using hydrogen oxidising bacteria to produce protein and other food and feed ingredients is a form of industrial biotechnology that is gaining traction. The technology fixes carbon dioxide into products without the light requirements of agriculture and biotech that rely on primary producers such as plants and algae while promising higher growth rates, drastically less land, fresh water, and mineral requirements. The significant body of scientific knowledge on hydrogen oxidising bacteria continues to grow and genetic engineering tools are well developed for specific species. The scale-up success of other types of gas- fermentation using carbon monoxide or methane has paved the way for scale-up of a process that uses a mix of hydrogen, oxygen, and carbon dioxide to produce bacteria as a food and feed ingredients in a highly sustainable fashion.
Collapse
Affiliation(s)
| | - Zahara Mortimer
- School of Lifesciences University of Nottingham Nottingham UK
| | - Craig Woods
- Deep Branch Biotechnology Ltd Nottingham UK
- School of Lifesciences University of Nottingham Nottingham UK
| | - Callum McGregor
- Deep Branch Biotechnology Ltd Nottingham UK
- School of Lifesciences University of Nottingham Nottingham UK
| | - Andrew Dempster
- School of Lifesciences University of Nottingham Nottingham UK
| | | | - Joshua Maliepaard
- Deep Branch Biotechnology Ltd Nottingham UK
- Leiden Academic Centre for Drug Research University of Leiden Leiden The Netherlands
| | - Robert Mansfield
- Deep Branch Biotechnology Ltd Nottingham UK
- School of Lifesciences University of Nottingham Nottingham UK
| | - Peter Rowe
- Deep Branch Biotechnology Ltd Nottingham UK
| | | |
Collapse
|
55
|
Yan Q, Simmons TR, Cordell WT, Hernández Lozada NJ, Breckner CJ, Chen X, Jindra MA, Pfleger BF. Metabolic engineering of β-oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone. Metab Eng 2020; 61:335-343. [PMID: 32479802 DOI: 10.1016/j.ymben.2020.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
Medium-chain length methyl ketones are potential blending fuels due to their cetane numbers and low melting temperatures. Biomanufacturing offers the potential to produce these molecules from renewable resources such as lignocellulosic biomass. In this work, we designed and tested metabolic pathways in Escherichia coli to specifically produce 2-heptanone, 2-nonanone and 2-undecanone. We achieved substantial production of each ketone by introducing chain-length specific acyl-ACP thioesterases, blocking the β-oxidation cycle at an advantageous reaction, and introducing active β-ketoacyl-CoA thioesterases. Using a bioprospecting approach, we identified fifteen homologs of E. coli β-ketoacyl-CoA thioesterase (FadM) and evaluated the in vivo activity of each against various chain length substrates. The FadM variant from Providencia sneebia produced the most 2-heptanone, 2-nonanone, and 2-undecanone, suggesting it has the highest activity on the corresponding β-ketoacyl-CoA substrates. We tested enzyme variants, including acyl-CoA oxidases, thiolases, and bi-functional 3-hydroxyacyl-CoA dehydratases to maximize conversion of fatty acids to β-keto acyl-CoAs for 2-heptanone, 2-nonanone, and 2-undecanone production. In order to address the issue of product loss during fermentation, we applied a 20% (v/v) dodecane layer in the bioreactor and built an external water cooling condenser connecting to the bioreactor heat-transferring condenser coupling to the condenser. Using these modifications, we were able to generate up to 4.4 g/L total medium-chain length methyl ketones.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Trevor R Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - William T Cordell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Néstor J Hernández Lozada
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christian J Breckner
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xuanqi Chen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael A Jindra
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
56
|
Hu M, Xiong B, Li Z, Liu L, Li S, Zhang C, Zhang X, Bi C. A novel gene expression system for Ralstonia eutropha based on the T7 promoter. BMC Microbiol 2020; 20:121. [PMID: 32429840 PMCID: PMC7236105 DOI: 10.1186/s12866-020-01812-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Ralstonia eutropha (syn. Cupriavidus necator) is a model microorganism for studying metabolism of polyhydroxyalkanoates (PHAs) and a potential chassis for protein expression due to various advantages. Although current plasmid systems of R. eutropha provide a basic platform for gene expression, the performance of the expression-inducing systems is still limited. In addition, the sizes of the cloned genes are limited due to the large sizes of the plasmid backbones. Results In this study, an R. eutropha T7 expression system was established by integrating a T7 RNA polymerase gene driven by the PBAD promoter into the genome of R. eutropha, as well as adding a T7 promoter into a pBBR1-derived plasmid for gene expression. In addition, the essential DNA sequence necessary for pBBR1 plasmid replication was identified, and the redundant parts were deleted reducing the expression plasmid size to 3392 bp, which improved the electroporation efficiency about 4 times. As a result, the highest expression level of RFP was enhanced, and the L-arabinose concentration for expression induction was decreased 20 times. Conclusions The R. eutropha T7 expression system provides an efficient platform for protein production and synthetic biology applications.
Collapse
Affiliation(s)
- Muzi Hu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Bin Xiong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Zhongkang Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Li Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Chunzhi Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
57
|
Plasmid expression level heterogeneity monitoring via heterologous eGFP production at the single-cell level in Cupriavidus necator. Appl Microbiol Biotechnol 2020; 104:5899-5914. [PMID: 32358761 DOI: 10.1007/s00253-020-10616-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
A methodology for plasmid expression level monitoring of eGFP expression suitable for dynamic processes was assessed during fermentation. This technique was based on the expression of a fluorescent biosensor (eGFP) encoded on a recombinant plasmid coupled to single-cell analysis. Fluorescence intensity at single-cell level was measured by flow cytometry. We demonstrated that promoter evaluation based on single-cell analysis versus classic global analysis brings valuable insights. Single-cell analysis pointed out the fact that intrinsic fluorescence increased with the strength of the promoter up to a threshold. Beyond that, cell permeability increases to excrete the fluorescent protein in the medium. The metabolic load due to the increase in the eGFP production in the case of strong constitutive promoters leads to slower growth kinetics compared with plasmid-free cells. With the strain Cupriavidus necator Re2133, growth rate losses were measured from 3% with the weak constitutive promoter Plac to 56% with the strong constitutive promoter Pj5. Through this work, it seems crucial to find a compromise between the fluorescence intensity in single cells and the metabolic load; in our conditions, the best compromise found was the weak promoter Plac. The plasmid expression level monitoring method was tested in the presence of a heterogeneous population induced by plasmid-curing methods. For all the identified subpopulations, the plasmid expression level heterogeneity was significantly detected at the level of fluorescence intensity in single cells. After cell sorting, growth rate and cultivability were assessed for each subpopulation. In conclusion, this eGFP biosensor makes it possible to follow the variations in the level of plasmid expression under conditions of population heterogeneity.Key Points•Development of a plasmid expression level monitoring method at the single-cell level by flow cytometry.•Promoter evaluation by single-cell analysis: cell heterogeneity and strain robustness.•Reporter system optimization for efficient subpopulation detection in pure cultures.
Collapse
|
58
|
Garrigues L, Maignien L, Lombard E, Singh J, Guillouet SE. Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor. N Biotechnol 2020; 56:16-20. [DOI: 10.1016/j.nbt.2019.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
|
59
|
Shih CI, Chou YC, Chen HY, Chen KH, Wang IH, Yeh YC. Colorimetric and Fluorometric Paper-Based Assay for Cu 2+ Detection Based on Green Synthesis of 2-Aminoterephthalic Acid-Derived Pigments. ACS APPLIED BIO MATERIALS 2020; 3:2516-2521. [PMID: 35025302 DOI: 10.1021/acsabm.0c00212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we developed a simple and economical method for the green synthesis of Cu2+ sensors based on betaxanthin pigments. Aminoisophthalic acid-betaxanthin was synthesized by coupling 2-aminoisophthalic acid and betalamic acid produced from DOPA-extradiol-4,5-dioxygenase in situ and in vitro. The resulting 2-aminoterephthalic acid-betaxanthin (2-AIPA-BX) presented a satisfying fluorescence quantum yield in water and a high degree of selectivity for Cu2+ over interfering metal ions. The bioproduction process of 2-AIPA-BX was scaled up from test tubes to 1 L-flasks, indicating the robustness and reproducibility of this method. Additionally, we successfully incorporated 2-AIPA-BX into paper-based analytical devices to facilitate simple, inexpensive, and portable setup with lower sample consumption for onsite monitoring of environmental and biological samples.
Collapse
Affiliation(s)
- Chia-I Shih
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yi-Chieh Chou
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Huei-Yu Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Kuan-Han Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - I-Hsiang Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
60
|
Tremblay PL, Xu M, Chen Y, Zhang T. Nonmetallic Abiotic-Biological Hybrid Photocatalyst for Visible Water Splitting and Carbon Dioxide Reduction. iScience 2019; 23:100784. [PMID: 31962238 PMCID: PMC6971392 DOI: 10.1016/j.isci.2019.100784] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Both artificial photosystems and natural photosynthesis have not reached their full potential for the sustainable conversion of solar energy into specific chemicals. A promising approach is hybrid photosynthesis combining efficient, non-toxic, and low-cost abiotic photocatalysts capable of water splitting with metabolically versatile non-photosynthetic microbes. Here, we report the development of a water-splitting enzymatic photocatalyst made of graphitic carbon nitride (g-C3N4) coupled with H2O2-degrading catalase and its utilization for hybrid photosynthesis with the non-photosynthetic bacterium Ralstonia eutropha for bioplastic production. The g-C3N4-catalase system has an excellent solar-to-hydrogen efficiency of 3.4% with a H2 evolution rate up to 55.72 μmol h−1 while evolving O2 stoichiometrically. The hybrid photosynthesis system built with the water-spitting g-C3N4-catalase photocatalyst doubles the production of the bioplastic polyhydroxybutyrate by R. eutropha from CO2 and increases it by 1.84-fold from fructose. These results illustrate how synergy between abiotic non-metallic photocatalyst, enzyme, and bacteria can augment solar-to-multicarbon chemical conversion. H2O2-degrading enzymes from R. eutropha enable visible-light water splitting by C3N4 C3N4 coupled with bovine catalase has a solar-to-hydrogen efficiency of 3.4% C3N4-catalase increases CO2 conversion into bioplastic under light by R. eutropha Heterotrophic bioplastic production by R. eutropha is also improved by C3N4-catalase
Collapse
Affiliation(s)
- Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengying Xu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yiming Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
61
|
Walker LM, Li B, Niks D, Hille R, Elliott SJ. Deconvolution of reduction potentials of formate dehydrogenase from Cupriavidus necator. J Biol Inorg Chem 2019; 24:889-898. [PMID: 31463592 DOI: 10.1007/s00775-019-01701-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
Abstract
The formate dehydrogenase enzyme from Cupriavidus necator (FdsABG) carries out the two-electron oxidation of formate to CO2, but is also capable of reducing CO2 back to formate, a potential biofuel. FdsABG is a heterotrimeric enzyme that performs this transformation using nine redox-active cofactors: a bis(molybdopterin guanine dinucleotide) (bis-MGD) at the active site coupled to seven iron-sulfur clusters, and one equivalent of flavin mononucleotide (FMN). To better understand the pathway of electron flow in FdsABG, the reduction potentials of the various cofactors were examined through direct electrochemistry. Given the redundancy of cofactors, a truncated form of the FdsA subunit was developed that possesses only the bis-MGD active site and a singular [4Fe-4S] cluster. Electrochemical characterization of FdsABG compared to truncated FdsA shows that the measured reduction potentials are remarkably similar despite the truncation with two observable features at - 265 mV and - 455 mV vs SHE, indicating that the voltammetry of the truncated enzyme is representative of the reduction potentials of the intact heterotrimer. By producing truncated FdsA without the necessary maturation factors required for bis-MGD insertion, a form of the truncated FdsA that possesses only the [4Fe-4S] was produced, which gives a single voltammetric feature at - 525 mV, allowing the contributions of the molybdenum cofactor to be associated with the observed feature at - 265 mV. This method allowed for the deconvolution of reduction potentials for an enzyme with highly complex cofactor content to know more about the thermodynamic landscape of catalysis.
Collapse
Affiliation(s)
- Lindsey M Walker
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Bin Li
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Russ Hille
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Sean J Elliott
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
62
|
Lazar CS, Lehmann R, Stoll W, Rosenberger J, Totsche KU, Küsel K. The endolithic bacterial diversity of shallow bedrock ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:35-44. [PMID: 31078773 DOI: 10.1016/j.scitotenv.2019.04.281] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Terrestrial subsurface microbial communities are not restricted to the fluid-filled void system commonly targeted during groundwater sampling but are able to inhabit and dwell in rocks. However, compared to the exploration of the deep biosphere, endolithic niches in shallow sedimentary bedrock have received little interest so far. Despite the potential contribution of rock matrix dwellers to matter cycling and groundwater resource quality, their identity and diversity patterns are largely unknown. Here, we investigated the bacterial diversity in twenty-two rock cores in common limestone-mudstone alternations that differed in rock permeabilities and other geostructural and petrological factors. 16S rRNA gene analysis showed the existence of a unique rock matrix microbiome compared to surrounding groundwater. Typically, shallow weathered limestones contained bacterial groups most likely originating from soil habitats. In low-permeable mudstones, we found similar communities of oligotrophic heterotrophs, and thiosulfate-oxidizing autotrophs, without relation to depth, rock type and bulk rock permeability. In fractured limestone, the bacterial communities of fracture surfaces were distinct from their matrix counterparts and ranged from organic matter decomposers in outcrop areas to autotrophs in downdip positions that receive limited surface input. Contrastingly, rock matrices from lithologically corresponding, but highly isolated environments, were dominated by spore-forming bacteria, oligotrophic heterotrophs and hydrogen-oxidizing autotrophs. Neither depth, matrix permeability nor major mineralogy dominantly controlled the endolithic bacterial diversity. Instead, a combination of subsurface factors drives the supply of niches by fluids, matter and energy as well as the (re)dispersal conditions that likely shape bacterial diversity.
Collapse
Affiliation(s)
- Cassandre Sara Lazar
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Robert Lehmann
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Wenke Stoll
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Julia Rosenberger
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Kai Uwe Totsche
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103 Leipzig, Germany.
| |
Collapse
|
63
|
Windhorst C, Gescher J. Efficient biochemical production of acetoin from carbon dioxide using Cupriavidus necator H16. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:163. [PMID: 31297151 PMCID: PMC6598341 DOI: 10.1186/s13068-019-1512-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/21/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cupriavidus necator is the best-studied knallgas (also termed hydrogen oxidizing) bacterium and provides a model organism for studying the production of the storage polymer polyhydroxybutyrate (PHB). Genetically engineered strains could be applied for the autotrophic production of valuable chemicals. Nevertheless, the efficiency of the catalyzed processes is generally believed to be lower than with acetogenic bacteria. Experimental data on the potential efficiency of autotrophic production with C. necator are sparse. Hence, this study aimed at developing a strain for the production of the bulk chemical acetoin from carbon dioxide and to analyze the carbon and electron yield in detail. RESULTS We developed a constitutive promoter system based on the natural PHB promoter of this organism. Codon-optimized versions of the acetolactate dehydrogenase (alsS) and acetolactate decarboxylase (alsD) from Bacillus subtilis were cloned under control of the PHB promoter in order to produce acetoin from pyruvate. The production process's efficiency could be significantly increased by deleting the PHB synthase phaC2. Further deletion of the other PHB synthase encoded in the genome (phaC1) led to a strain that produced acetoin with > 100% carbon efficiency. This increase in efficiency is most probably due to a minor amount of cell lysis. Using a variation in hydrogen and oxygen gas mixtures, we observed that the optimal oxygen concentration for the process was between 15 and 20%. CONCLUSION To the best of our knowledge, this study describes for the first time a highly efficient process for the chemolithoautotrophic production of the platform chemical acetoin.
Collapse
Affiliation(s)
- Carina Windhorst
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
64
|
Lim CK, Villada JC, Chalifour A, Duran MF, Lu H, Lee PKH. Designing and Engineering Methylorubrum extorquens AM1 for Itaconic Acid Production. Front Microbiol 2019; 10:1027. [PMID: 31143170 PMCID: PMC6520949 DOI: 10.3389/fmicb.2019.01027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
Methylorubrum extorquens (formerly Methylobacterium extorquens) AM1 is a methylotrophic bacterium with a versatile lifestyle. Various carbon sources including acetate, succinate and methanol are utilized by M. extorquens AM1 with the latter being a promising inexpensive substrate for use in the biotechnology industry. Itaconic acid (ITA) is a high-value building block widely used in various industries. Given that no wildtype methylotrophic bacteria are able to utilize methanol to produce ITA, we tested the potential of M. extorquens AM1 as an engineered host for this purpose. In this study, we successfully engineered M. extorquens AM1 to express a heterologous codon-optimized gene encoding cis-aconitic acid decarboxylase. The engineered strain produced ITA using acetate, succinate and methanol as the carbon feedstock. The highest ITA titer in batch culture with methanol as the carbon source was 31.6 ± 5.5 mg/L, while the titer and productivity were 5.4 ± 0.2 mg/L and 0.056 ± 0.002 mg/L/h, respectively, in a scaled-up fed-batch bioreactor under 60% dissolved oxygen saturation. We attempted to enhance the carbon flux toward ITA production by impeding poly-β-hydroxybutyrate accumulation, which is used as carbon and energy storage, via mutation of the regulator gene phaR. Unexpectedly, ITA production by the phaR mutant strain was not higher even though poly-β-hydroxybutyrate concentration was lower. Genome-wide transcriptomic analysis revealed that phaR mutation in the ITA-producing strain led to complex rewiring of gene transcription, which might result in a reduced carbon flux toward ITA production. Besides poly-β-hydroxybutyrate metabolism, we found evidence that PhaR might regulate the transcription of many other genes including those encoding other regulatory proteins, methanol dehydrogenases, formate dehydrogenases, malate:quinone oxidoreductase, and those synthesizing pyrroloquinoline quinone and thiamine co-factors. Overall, M. extorquens AM1 was successfully engineered to produce ITA using acetate, succinate and methanol as feedstock, further supporting this bacterium as a feasible host for use in the biotechnology industry. This study showed that PhaR could have a broader regulatory role than previously anticipated, and increased our knowledge of this regulator and its influence on the physiology of M. extorquens AM1.
Collapse
Affiliation(s)
- Chee Kent Lim
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Juan C Villada
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Annie Chalifour
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Maria F Duran
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Hongyuan Lu
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
65
|
de Souza Pinto Lemgruber R, Valgepea K, Tappel R, Behrendorff JB, Palfreyman RW, Plan M, Hodson MP, Simpson SD, Nielsen LK, Köpke M, Marcellin E. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab Eng 2019; 53:14-23. [DOI: 10.1016/j.ymben.2019.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 11/26/2022]
|
66
|
Dong J, Chen Y, Benites VT, Baidoo EEK, Petzold CJ, Beller HR, Eudes A, Scheller HV, Adams PD, Mukhopadhyay A, Simmons BA, Singer SW. Methyl ketone production by Pseudomonas putida is enhanced by plant-derived amino acids. Biotechnol Bioeng 2019; 116:1909-1922. [PMID: 30982958 DOI: 10.1002/bit.26995] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/13/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023]
Abstract
Plants are an attractive sourceof renewable carbon for conversion to biofuels and bio-based chemicals. Conversion strategies often use a fraction of the biomass, focusing on sugars from cellulose and hemicellulose. Strategies that use plant components, such as aromatics and amino acids, may improve the efficiency of biomass conversion. Pseudomonas putida is a promising host for its ability to metabolize a wide variety of organic compounds. P. putida was engineered to produce methyl ketones, which are promising diesel blendstocks and potential platform chemicals, from glucose and lignin-related aromatics. Unexpectedly, P. putida methyl ketone production using Arabidopsis thaliana hydrolysates was enhanced 2-5-fold compared with sugar controls derived from engineered plants that overproduce lignin-related aromatics. This enhancement was more pronounced (~seven-fold increase) with hydrolysates from nonengineered switchgrass. Proteomic analysis of the methyl ketone-producing P. putida suggested that plant-derived amino acids may be the source of this enhancement. Mass spectrometry-based measurements of plant-derived amino acids demonstrated a high correlation between methyl ketone production and amino acid concentration in plant hydrolysates. Amendment of glucose-containing minimal media with a defined mixture of amino acids similar to those found in the hydrolysates studied led to a nine-fold increase in methyl ketone titer (1.1 g/L).
Collapse
Affiliation(s)
- Jie Dong
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Veronica Teixeira Benites
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Harry R Beller
- Joint BioEnergy Institute, Emeryville, California.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, California.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, California.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, California.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
67
|
Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory. J Ind Microbiol Biotechnol 2019; 46:783-790. [PMID: 30810844 DOI: 10.1007/s10295-019-02156-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Massive emission of CO2 into atmosphere from consumption of carbon deposit is causing climate change. Researchers have applied metabolic engineering and synthetic biology techniques for improving CO2 fixation efficiency in many species. One solution might be the utilization of autotrophic bacteria, which have great potential to be engineered into microbial cell factories for CO2 fixation and the production of chemicals, independent of fossil resources. In this work, several pathways of Ralstonia eutropha H16 were modulated by manipulation of heterologous and endogenous genes related to fatty acid synthesis. The resulting strain B2(pCT, pFP) was able to produce 124.48 mg/g (cell dry weight) free fatty acids with fructose as carbon source, a fourfold increase over the parent strain H16. To develop a truly autotrophic fermentation technique with H2, CO2 and O2 as substrates, we assembled a relatively safe, continuous, lab-scale gas fermentation system using micro-fermentation tanks, H2 supplied by a hydrogen generator, and keeping the H2 to O2 ratio at 7:1. The system was equipped with a H2 gas alarm, rid of heat sources and placed into a fume hood to further improve the safety. With this system, the best strain B2(pCT, pFP) produced 60.64 mg free fatty acids per g biomass within 48 h, growing in minimal medium supplemented with 9 × 103 mL/L/h hydrogen gas. Thus, an autotrophic fermentation technique to produce fatty acids was successfully established, which might inspire further research on autotrophic gas fermentation with a safe, lab-scale setup, and provides an alternative solution for environmental and energy problems.
Collapse
|
68
|
Perspectives for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha and other ‘Knallgas’ bacteria. Appl Microbiol Biotechnol 2019; 103:2113-2120. [DOI: 10.1007/s00253-019-09636-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/03/2023]
|
69
|
Lauterbach L, Lenz O. How to make the reducing power of H 2 available for in vivo biosyntheses and biotransformations. Curr Opin Chem Biol 2018; 49:91-96. [PMID: 30544016 DOI: 10.1016/j.cbpa.2018.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
Solar-driven electrolysis enables sustainable production of molecular hydrogen (H2), which represents a cheap and carbon-free reductant. Knallgas bacteria like Ralstonia eutropha are able to split H2 to supply energy in form of ATP and NADH, which can be subsequently used to power reactions of interest. R. eutropha employs the Calvin-Benson-Bassham cycle for the fixation of CO2, which is considered as an abundant and non-competing raw material. In this article, we summarize state-of-the-art approaches for H2-driven biosyntheses using engineered R. eutropha. Furthermore, we describe strategies for synthetic H2-driven NADH recycling. Major challenges for technical application and future perspectives are discussed.
Collapse
Affiliation(s)
- Lars Lauterbach
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Oliver Lenz
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
70
|
Thomas PJ, Boller AJ, Satagopan S, Tabita FR, Cavanaugh CM, Scott KM. Isotope discrimination by form IC RubisCO from
Ralstonia eutropha
and
Rhodobacter sphaeroides
, metabolically versatile members of ‘
Proteobacteria
’ from aquatic and soil habitats. Environ Microbiol 2018; 21:72-80. [DOI: 10.1111/1462-2920.14423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/18/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Phaedra J. Thomas
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Amanda J. Boller
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Sriram Satagopan
- Department of Microbiology The Ohio State University Columbus OH USA
| | - F. Robert Tabita
- Department of Microbiology The Ohio State University Columbus OH USA
| | - Colleen M. Cavanaugh
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Kathleen M. Scott
- Department of Integrative Biology University of South Florida Tampa FL USA
| |
Collapse
|
71
|
Yuzawa S, Mirsiaghi M, Jocic R, Fujii T, Masson F, Benites VT, Baidoo EEK, Sundstrom E, Tanjore D, Pray TR, George A, Davis RW, Gladden JM, Simmons BA, Katz L, Keasling JD. Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nat Commun 2018; 9:4569. [PMID: 30385744 PMCID: PMC6212451 DOI: 10.1038/s41467-018-07040-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023] Open
Abstract
Microbial production of fuels and commodity chemicals has been performed primarily using natural or slightly modified enzymes, which inherently limits the types of molecules that can be produced. Type I modular polyketide synthases (PKSs) are multi-domain enzymes that can produce unique and diverse molecular structures by combining particular types of catalytic domains in a specific order. This catalytic mechanism offers a wealth of engineering opportunities. Here we report engineered microbes that produce various short-chain (C5-C7) ketones using hybrid PKSs. Introduction of the genes into the chromosome of Streptomyces albus enables it to produce >1 g · l-1 of C6 and C7 ethyl ketones and several hundred mg · l-1 of C5 and C6 methyl ketones from plant biomass hydrolysates. Engine tests indicate these short-chain ketones can be added to gasoline as oxygenates to increase the octane of gasoline. Together, it demonstrates the efficient and renewable microbial production of biogasolines by hybrid enzymes.
Collapse
Affiliation(s)
- Satoshi Yuzawa
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States. .,Joint BioEnegy Institute, Emeryville, California, 94608, United States. .,Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Mona Mirsiaghi
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Renee Jocic
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Tatsuya Fujii
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,Research Institute for Sustainable Chemistry, Institute for Synthetic Biology, National Institute of Advanced Industrial Science and Technology, Higashi-hiroshima, Hiroshima, 739-0046, Japan
| | - Fabrice Masson
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Veronica T Benites
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Joint BioEnegy Institute, Emeryville, California, 94608, United States
| | - Edward E K Baidoo
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Joint BioEnegy Institute, Emeryville, California, 94608, United States
| | - Eric Sundstrom
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Deepti Tanjore
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Todd R Pray
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Anthe George
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,Department of Biomass Science and Conversion Technologies, Sandia National Laboratory, Livermore, California, 94551, United States
| | - Ryan W Davis
- Department of Biomass Science and Conversion Technologies, Sandia National Laboratory, Livermore, California, 94551, United States
| | - John M Gladden
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,Department of Biomass Science and Conversion Technologies, Sandia National Laboratory, Livermore, California, 94551, United States
| | - Blake A Simmons
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Joint BioEnegy Institute, Emeryville, California, 94608, United States
| | - Leonard Katz
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,QB3 Institute, University of California, Berkeley, California, 94720, United States
| | - Jay D Keasling
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States. .,Joint BioEnegy Institute, Emeryville, California, 94608, United States. .,QB3 Institute, University of California, Berkeley, California, 94720, United States. .,Department of Bioengineering, University of California, Berkeley, California, 94720, United States. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, 94720, United States. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kgs, Lyngby, Denmark. .,Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
72
|
Functional Genetic Elements for Controlling Gene Expression in Cupriavidus necator H16. Appl Environ Microbiol 2018; 84:AEM.00878-18. [PMID: 30030234 PMCID: PMC6146998 DOI: 10.1128/aem.00878-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
A robust and predictable control of gene expression plays an important role in synthetic biology and biotechnology applications. Development and quantitative evaluation of functional genetic elements, such as constitutive and inducible promoters as well as ribosome binding sites (RBSs), are required. In this study, we designed, built, and tested promoters and RBSs for controlling gene expression in the model lithoautotroph Cupriavidus necator H16. A series of variable-strength, insulated, constitutive promoters exhibiting predictable activity within a >700-fold dynamic range was compared to the native P phaC , with the majority of promoters displaying up to a 9-fold higher activity. Positively (AraC/P araBAD -l-arabinose and RhaRS/P rhaBAD -l-rhamnose) and negatively (AcuR/P acuRI -acrylate and CymR/P cmt -cumate) regulated inducible systems were evaluated. By supplying different concentrations of inducers, a >1,000-fold range of gene expression levels was achieved. Application of inducible systems for controlling expression of the isoprene synthase gene ispS led to isoprene yields that exhibited a significant correlation to the reporter protein synthesis levels. The impact of designed RBSs and other genetic elements, such as mRNA stem-loop structure and A/U-rich sequence, on gene expression was also evaluated. A second-order polynomial relationship was observed between the RBS activities and isoprene yields. This report presents quantitative data on regulatory genetic elements and expands the genetic toolbox of C. necatorIMPORTANCE This report provides tools for robust and predictable control of gene expression in the model lithoautotroph C. necator H16. To address a current need, we designed, built, and tested promoters and RBSs for controlling gene expression in C. necator H16. To answer a question on how existing and newly developed inducible systems compare, two positively (AraC/P araBAD -l-arabinose and RhaRS/P rhaBAD -l-rhamnose) and two negatively (AcuR/P acuRI -acrylate and CymR/P cmt -cumate) regulated inducible systems were quantitatively evaluated and their induction kinetics analyzed. To establish if gene expression can be further improved, the effect of genetic elements, such as mRNA stem-loop structure and A/U-rich sequence, on gene expression was evaluated. Using isoprene production as an example, the study investigated if and to what extent chemical compound yield correlates to the level of gene expression of product-synthesizing enzyme.
Collapse
|
73
|
Crépin L, Barthe M, Leray F, Guillouet SE. Alka(e)ne synthesis in
Cupriavidus necator
boosted by the expression of endogenous and heterologous ferredoxin–ferredoxin reductase systems. Biotechnol Bioeng 2018; 115:2576-2584. [DOI: 10.1002/bit.26805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Lucie Crépin
- LISBP, Université de Toulouse, CNRS, INRA, INSAToulouse France
| | - Manon Barthe
- LISBP, Université de Toulouse, CNRS, INRA, INSAToulouse France
| | - Florence Leray
- LISBP, Université de Toulouse, CNRS, INRA, INSAToulouse France
| | | |
Collapse
|
74
|
Johnson AO, Gonzalez-Villanueva M, Tee KL, Wong TS. An Engineered Constitutive Promoter Set with Broad Activity Range for Cupriavidus necator H16. ACS Synth Biol 2018; 7:1918-1928. [PMID: 29949349 DOI: 10.1021/acssynbio.8b00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Well-characterized promoters with variable strength form the foundation of heterologous pathway optimization. It is also a key element that bolsters the success of microbial engineering and facilitates the development of biological tools like biosensors. In comparison to microbial hosts such as Escherichia coli and Saccharomyces cerevisiae, the promoter repertoire of Cupriavidus necator H16 is highly limited. This limited number of characterized promoters poses a significant challenge during the engineering of C. necator H16 for biomanufacturing and biotechnological applications. In this article, we first examined the architecture and genetic elements of the four most widely used constitutive promoters of C. necator H16 (i.e., P phaC1, P rrsC, P j5, and P g25) and established a narrow 6-fold difference in their promoter activities. Next, using these four promoters as starting points and applying a range of genetic modifications (including point mutation, length alteration, incorporation of regulatory genetic element, promoter hybridization, and configuration alteration), we created a library of 42 constitutive promoters, all of which are functional in C. necator H16. Although these promoters are also functional in E. coli, they show different promoter strength and hierarchical rank of promoter activity. Subsequently, the activity of each promoter was individually characterized, using l-arabinose-inducible P BAD promoter as a benchmark. This study has extended the range of constitutive promoter activities to 137-fold, with some promoter variants exceeding the l-arabinose-inducible range of P BAD promoter. Not only has the work enhanced our flexibility in engineering C. necator H16, it presented novel strategies in adjusting promoter activity in C. necator H16 and highlighted similarities and differences in transcriptional activity between this organism and E. coli.
Collapse
Affiliation(s)
- Abayomi Oluwanbe Johnson
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Miriam Gonzalez-Villanueva
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Kang Lan Tee
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Tuck Seng Wong
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
75
|
Hanko EK, Denby CM, Sànchez i Nogué V, Lin W, Ramirez KJ, Singer CA, Beckham GT, Keasling JD. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production. Metab Eng 2018; 48:52-62. [DOI: 10.1016/j.ymben.2018.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/14/2018] [Accepted: 05/27/2018] [Indexed: 11/17/2022]
|
76
|
Yu J. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J Microbiol Biotechnol 2018; 34:89. [PMID: 29886519 DOI: 10.1007/s11274-018-2473-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/04/2018] [Indexed: 01/03/2023]
Abstract
With rapid technology progress and cost reduction, clean hydrogen from water electrolysis driven by renewable powers becomes a potential feedstock for CO2 fixation by hydrogen-oxidizing bacteria. Cupriavidus necator (formally Ralstonia eutropha), a representative member of the lithoautotrophic prokaryotes, is a promising producer of polyhydroxyalkanoates and single cell proteins. This paper reviews the fundamental properties of the hydrogen-oxidizing bacterium, the metabolic activities under limitation of individual gases and nutrients, and the value-added products from CO2, including the products with large potential markets. Gas fermentation and bioreactor safety are discussed for achieving high cell density and high productivity of desired products under chemolithotrophic conditions. The review also updates the recent research activities in metabolic engineering of C. necator to produce novel metabolites from CO2.
Collapse
Affiliation(s)
- Jian Yu
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, USA.
| |
Collapse
|
77
|
Kutralam-Muniasamy G, Peréz-Guevara F. Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16. World J Microbiol Biotechnol 2018; 34:79. [DOI: 10.1007/s11274-018-2460-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 11/28/2022]
|
78
|
Thakur IS, Kumar M, Varjani SJ, Wu Y, Gnansounou E, Ravindran S. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges. BIORESOURCE TECHNOLOGY 2018; 256:478-490. [PMID: 29459105 DOI: 10.1016/j.biortech.2018.02.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
To meet the CO2 emission reduction targets, carbon dioxide capture and utilization (CCU) comes as an evolve technology. CCU concept is turning into a feedstock and technologies have been developed for transformation of CO2 into useful organic products. At industrial scale, utilization of CO2 as raw material is not much significant as compare to its abundance. Mechanisms in nature have evolved for carbon concentration, fixation and utilization. Assimilation and subsequent conversion of CO2 into complex molecules are performed by the photosynthetic and chemolithotrophic organisms. In the last three decades, substantial research is carry out to discover chemical and biological conversion of CO2 in various synthetic and biological materials, such as carboxylic acids, esters, lactones, polymer biodiesel, bio-plastics, bio-alcohols, exopolysaccharides. This review presents an over view of catalytic transformation of CO2 into biofuels and biomaterials by chemical and biological methods.
Collapse
Affiliation(s)
- Indu Shekhar Thakur
- School of Environmental Sciences, JawaharNehru University, New Delhi 110067, India; Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Manish Kumar
- School of Environmental Sciences, JawaharNehru University, New Delhi 110067, India
| | - Sunita J Varjani
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar 382010, Gujarat, India; Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Sindhu Ravindran
- Microbial Processes and Technology Division, CSIR-NIIST, Trivandrum, India
| |
Collapse
|
79
|
Solvent production by engineered Ralstonia eutropha: channeling carbon to biofuel. Appl Microbiol Biotechnol 2018; 102:5021-5031. [DOI: 10.1007/s00253-018-9026-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
|
80
|
Aboulnaga EA, Zou H, Selmer T, Xian M. Development of a plasmid-based, tunable, tolC-derived expression system for application in Cupriavidus necator H16. J Biotechnol 2018; 274:15-27. [PMID: 29549002 DOI: 10.1016/j.jbiotec.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/24/2018] [Accepted: 03/11/2018] [Indexed: 12/13/2022]
Abstract
Cupriavidus necator H16 gains increasing attention in microbial research and biotechnological application due to its diverse metabolic features. Here we present a tightly controlled gene expression system for C. necator including the pBBR1-vector that contains hybrid promoters originating from C. necator native tolC-promoter in combination with a synthetic tetO-operator. The expression of the reporter gene from these plasmids relies on the addition of the exogenous inducer doxycycline (dc). The novel expression system offers a combination of advantageous features as; (i) high and dose-dependent recombinant protein production, (ii) tight control with a high dynamic range (On/Off ratio), which makes it applicable for harmful pathways or for toxic protein production, (iii) comparable cheap inducer (doxycycline, dc), (iv) effective at low inducer concentration, that makes it useful for large scale application, (v) rapid, diffusion controlled induction, and (vi) the inducer does not interfere within the cell metabolism. As applications of the expression system in C. necator H16, the growth ability on glycerol was enhanced by constitutively expressing the E. coli glpk gene-encoding for glycerol kinase. Likewise, we used the system to overcome the expression toxicity of mevalonate pathway in C. necator H16. With this system, the mevalonate-genes were successfully introduced in the host and the recombinant strains could produce about 200 mg/l mevalonate.
Collapse
Affiliation(s)
- Elhussiny A Aboulnaga
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China; Mansoura University, Faculty of Agriculture, 35516 Mansoura, Egypt.
| | - Huibin Zou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Thorsten Selmer
- Aachen University of Applied Sciences, Campus Juelich, Department of Chemistry and Biotechnology, Heinrich-Mussmann-Str.1, D-52428 Juelich, Germany
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China.
| |
Collapse
|
81
|
Xiong B, Li Z, Liu L, Zhao D, Zhang X, Bi C. Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:172. [PMID: 29951116 PMCID: PMC6011247 DOI: 10.1186/s13068-018-1170-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/12/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Ralstonia eutropha is an important bacterium for the study of polyhydroxyalkanoates (PHAs) synthesis and CO2 fixation, which makes it a potential strain for industrial PHA production and attractive host for CO2 conversion. Although the bacterium is not recalcitrant to genetic manipulation, current methods for genome editing based on group II introns or single crossover integration of a suicide plasmid are inefficient and time-consuming, which limits the genetic engineering of this organism. Thus, developing an efficient and convenient method for R. eutropha genome editing is imperative. RESULTS An efficient genome editing method for R. eutropha was developed using an electroporation-based CRISPR-Cas9 technique. In our study, the electroporation efficiency of R. eutropha was found to be limited by its restriction-modification (RM) systems. By searching the putative RM systems in R. eutropha H16 using REBASE database and comparing with that in E. coli MG1655, five putative restriction endonuclease genes which are related to the RM systems in R. eutropha were predicated and disrupted. It was found that deletion of H16_A0006 and H16_A0008-9 increased the electroporation efficiency 1658 and 4 times, respectively. Fructose was found to reduce the leaky expression of the arabinose-inducible pBAD promoter, which was used to optimize the expression of cas9, enabling genome editing via homologous recombination based on CRISPR-Cas9 in R. eutropha. A total of five genes were edited with efficiencies ranging from 78.3 to 100%. The CRISPR-Cpf1 system and the non-homologous end joining mechanism were also investigated, but failed to yield edited strains. CONCLUSIONS We present the first genome editing method for R. eutropha using an electroporation-based CRISPR-Cas9 approach, which significantly increased the efficiency and decreased time to manipulate this facultative chemolithoautotrophic microbe. The novel technique will facilitate more advanced researches and applications of R. eutropha for PHA production and CO2 conversion.
Collapse
Affiliation(s)
- Bin Xiong
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Zhongkang Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- University of Sciences and Technology of China, Hefei, 230026 People’s Republic of China
| | - Li Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- University of Sciences and Technology of China, Hefei, 230026 People’s Republic of China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| |
Collapse
|
82
|
Raberg M, Volodina E, Lin K, Steinbüchel A. Ralstonia eutrophaH16 in progress: Applications beside PHAs and establishment as production platform by advanced genetic tools. Crit Rev Biotechnol 2017; 38:494-510. [DOI: 10.1080/07388551.2017.1369933] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Matthias Raberg
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Elena Volodina
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kaichien Lin
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
83
|
Expanding the genetic tool box for Cupriavidus necator by a stabilized L-rhamnose inducible plasmid system. J Biotechnol 2017; 263:1-10. [DOI: 10.1016/j.jbiotec.2017.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 11/20/2022]
|
84
|
Nangle SN, Sakimoto KK, Silver PA, Nocera DG. Biological-inorganic hybrid systems as a generalized platform for chemical production. Curr Opin Chem Biol 2017; 41:107-113. [DOI: 10.1016/j.cbpa.2017.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
|
85
|
Heinrich D, Raberg M, Steinbüchel A. Studies on the aerobic utilization of synthesis gas (syngas) by wild type and recombinant strains of Ralstonia eutropha H16. Microb Biotechnol 2017; 11:647-656. [PMID: 29027357 PMCID: PMC6011924 DOI: 10.1111/1751-7915.12873] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
The biotechnical platform strain Ralstonia eutropha H16 was genetically engineered to express a cox subcluster of the carboxydotrophic Oligotropha carboxidovoransOM5, including (i) the structural genes coxM, -S and -L, coding for an aerobic carbon monoxide dehydrogenase (CODH) and (ii) the genes coxD, -E, -F and -G, essential for the maturation of CODH. The coxOc genes expressed under control of the CO2 -inducible promoter PL enabled R. eutropha to oxidize CO to CO2 for the use as carbon source, as demonstrated by 13 CO experiments, but the recombinant strains remained dependent on H2 as external energy supply. Therefore, a synthetic metabolism, which could be described as 'carboxyhydrogenotrophic', was established in R. eutropha. With this extension of the bacterium's substrate range, growth in CO-, H2 - and CO2 -containing artificial synthesis gas atmosphere was enhanced, and poly(3-hydroxybutyrate) synthesis was increased by more than 20%.
Collapse
Affiliation(s)
- Daniel Heinrich
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Matthias Raberg
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany.,Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
86
|
Godoy MS, Mongili B, Fino D, Prieto MA. About how to capture and exploit the CO 2 surplus that nature, per se, is not capable of fixing. Microb Biotechnol 2017; 10:1216-1225. [PMID: 28805313 PMCID: PMC5609282 DOI: 10.1111/1751-7915.12805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022] Open
Abstract
Human activity has been altering many ecological cycles for decades, disturbing the natural mechanisms which are responsible for re-establishing the normal environmental balances. Probably, the most disrupted of these cycles is the cycle of carbon. In this context, many technologies have been developed for an efficient CO2 removal from the atmosphere. Once captured, it could be stored in large geological formations and other reservoirs like oceans. This strategy could present some environmental and economic problems. Alternately, CO2 can be transformed into carbonates or different added-value products, such as biofuels and bioplastics, recycling CO2 from fossil fuel. Currently different methods are being studied in this field. We classified them into biological, inorganic and hybrid systems for CO2 transformation. To be environmentally compatible, they should be powered by renewable energy sources. Although hybrid systems are still incipient technologies, they have made great advances in the recent years. In this scenario, biotechnology is the spearhead of ambitious strategies to capture CO2 and reduce global warming.
Collapse
Affiliation(s)
- Manuel S Godoy
- Polymer Biotechnology Lab, Centro de Investigaciones Biologicas (CIB), C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Beatrice Mongili
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy
| | - Debora Fino
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Centro de Investigaciones Biologicas (CIB), C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
87
|
Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production. Metab Eng 2017; 42:74-84. [DOI: 10.1016/j.ymben.2017.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/30/2017] [Accepted: 05/31/2017] [Indexed: 01/09/2023]
|
88
|
Sydow A, Krieg T, Ulber R, Holtmann D. Growth medium and electrolyte-How to combine the different requirements on the reaction solution in bioelectrochemical systems using Cupriavidus necator. Eng Life Sci 2017; 17:781-791. [PMID: 32624824 DOI: 10.1002/elsc.201600252] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/08/2017] [Accepted: 02/27/2017] [Indexed: 01/23/2023] Open
Abstract
Microbial electrosynthesis is a relatively new research field where microbial carbon dioxide fixation based on the energy supplied by a cathode is investigated. Reaction media used in such bioelectrochemical systems have to fulfill requirements of classical biotechnology as well as electrochemistry. The design and characterization of a medium that enables fast electroautotrophic growth of Cupriavidus necator in microbial electrosynthesis was investigated in detail. The identified chloride-free medium mainly consists of low buffer concentration and is supplied with trace elements. Biotechnologically relevant parameters, such as high-specific growth rates and short lag phases, were determined for growth characterization. Fast growth under all conditions tested, i.e. heterotrophic, autotrophic and electroautotrophic was achieved. The lag phase was shortened by increasing the FeSO₄ concentration. Additionally, electrochemical robustness of the reaction media was proven. Under reductive conditions, no deposits on electrodes or precipitations in the media were observed and no detectable hydrogen peroxide evolved. In the bioelectrochemical system, no lag phase occurred and specific growth rate of C. necator was 0.09 h⁻¹. Using this medium shortens seed train drastically and enables fast electrobiotechnological production processes based on C. necator.
Collapse
Affiliation(s)
- Anne Sydow
- Biochemical Engineering DECHEMA-Forschungsinstitut Frankfurt Germany
| | - Thomas Krieg
- Biochemical Engineering DECHEMA-Forschungsinstitut Frankfurt Germany
| | - Roland Ulber
- Bioprocess Engineering University of Kaiserslautern Kaiserslautern Germany
| | - Dirk Holtmann
- Biochemical Engineering DECHEMA-Forschungsinstitut Frankfurt Germany
| |
Collapse
|
89
|
Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications. Curr Opin Biotechnol 2017; 45:144-155. [PMID: 28371651 DOI: 10.1016/j.copbio.2017.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/04/2017] [Accepted: 03/10/2017] [Indexed: 01/06/2023]
Abstract
Developing new feedstocks for the efficient production of biochemicals and biofuels will be a critical challenge as we diversify away from petrochemicals. One possible opportunity is the utilization of sulfide-based minerals in the Earth's crust. Non-photosynthetic chemolithoautotrophic bacteria are starting to be developed to produce biochemicals from CO2 using energy obtained from the oxidation of inorganic feedstocks. Biomining of metals like gold and copper already exploit the native metabolism of these bacteria and these represent perhaps the largest-scale bioprocesses ever developed. The metabolic engineering of these bacteria could be a desirable alternative to classical heterotrophic bioproduction. In this review, we discuss biomining operations and the challenges and advances in the engineering of associated chemolithoautotrophic bacteria for biofuel production. The co-generation of biofuels integrated with mining operations is a largely unexplored opportunity that will require advances in fundamental microbiology and the development of new genetic tools and techniques for these organisms. Although this approach is presently in its infancy, the production of biochemicals using energy from non-petroleum mineral resources is an exciting new biotechnology opportunity.
Collapse
|
90
|
Woo HM. Solar-to-chemical and solar-to-fuel production from CO 2 by metabolically engineered microorganisms. Curr Opin Biotechnol 2017; 45:1-7. [PMID: 28088091 DOI: 10.1016/j.copbio.2016.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 01/01/2023]
Abstract
Recent development of carbon capture utilization (CCU) for reduction of greenhouse gas emission are reviewed. In the case of CO2 utilization, I describe development of solar-to-chemical and solar-to-fuel technology that refers to the use of solar energy to convert CO2 to desired chemicals and fuels. Photoautotrophic cyanobacterial platforms have been extensively developed on this principle, producing a diverse range of alcohols, organic acids, and isoprenoids directly from CO2. Recent breakthroughs in the metabolic engineering of cyanobacteria were reviewed. In addition, adoption of the light harvesting mechanisms from nature, photovoltaics-derived water splitting technologies have recently been integrated with microbial biotechnology to produce desired chemicals. Studies on the integration of electrode material with next-generation microbes are showcased for alternative solar-to-chemical and solar-to-fuel platforms.
Collapse
Affiliation(s)
- Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
91
|
Huibin Z, Liu H, Aboulnaga E, Liu H, Cheng T, Xian M. Microbial Production of Isoprene: Opportunities and Challenges. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zou Huibin
- Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences, CAS Key Laboratory of Bio-based Materials; No. 189 Songling Road Qingdao 266101 China
- Qingdao University of Science and Technology; College of Chemical Engineering; No. 53 Zhengzhou Road Qingdao 266042 China
| | - Hui Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences, CAS Key Laboratory of Bio-based Materials; No. 189 Songling Road Qingdao 266101 China
| | - Elhussiny Aboulnaga
- Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences, CAS Key Laboratory of Bio-based Materials; No. 189 Songling Road Qingdao 266101 China
- Mansoura University; Faculty of Agriculture; No. 60 Elgomhouria St. Mansoura 35516 Egypt
| | - Huizhou Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences, CAS Key Laboratory of Bio-based Materials; No. 189 Songling Road Qingdao 266101 China
| | - Tao Cheng
- Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences, CAS Key Laboratory of Bio-based Materials; No. 189 Songling Road Qingdao 266101 China
| | - Mo Xian
- Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences, CAS Key Laboratory of Bio-based Materials; No. 189 Songling Road Qingdao 266101 China
| |
Collapse
|
92
|
Arikawa H, Matsumoto K. Evaluation of gene expression cassettes and production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a fine modulated monomer composition by using it in Cupriavidus necator. Microb Cell Fact 2016; 15:184. [PMID: 27793142 PMCID: PMC5084369 DOI: 10.1186/s12934-016-0583-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cupriavidus necator has attracted much attention as a platform for the production of polyhydroxyalkanoate (PHA) and other useful materials. Therefore, an appropriate modulation of gene expression is needed for producing the desired materials effectively. However, there is insufficient information on the genetic engineering techniques required for this in C. necator. RESULTS We found that the disruption of a potential ribosome binding site (RBS) in the phaC1 gene in C. necator caused a small decrease in the PhaC1 expression level. We applied this result to finely regulate the expression of other genes. Several gene expression cassettes were constructed by combining three Escherichia coli derived promoters (PlacUV5, Ptrc and Ptrp) to the potential RBS of phaC1 or its disruptant, respectively. Their expression levels were then determined via a lacZ reporter assay in C. necator strains. The promoter strengths were both ranked similarly for the cells that were cultured with fructose or palm kernel oil as a sole carbon source (Ptrc ≥ PlacUV5 > Ptrp), both of which were much stronger than the phaC1 promoter. The disruption of RBS had minute attenuation effect on the expression level of these expression cassettes with E. coli promoters. Furthermore, they were used to finely regulate the (R)-3-hydroxyhexanoate (3HHx) monomer ratio in the production of poly[(R)-3-hydroxybutyrate-co-3-hydroxyhexanoate] (PHBHHx) via R-specific enoyl-CoA hydratases (PhaJs). The 3HHx composition in PHBHHx is crucial because it defines the thermal and mechanical properties of the resulting plastic material. The C. necator mutant strains, whose PhaJ expression was controlled under the gene expression cassettes, could be used to produce PHBHHx with various 3HHx compositions in the same culture conditions. CONCLUSIONS We constructed and evaluated several gene expression cassettes consisting of promoters and RBSs that finely regulate transcription and translation. These were then applied to finely modulate the monomer composition in the production of PHBHHx by recombinant C. necator.
Collapse
Affiliation(s)
- Hisashi Arikawa
- GP Group, Corporate R&D Planning and Administration Division, KANEKA CORPORATION, 1-8 Miyamae-Cho, Takasago-Cho, Takasago, Hyogo, 676-8688, Japan.
| | - Keiji Matsumoto
- GP Group, Corporate R&D Planning and Administration Division, KANEKA CORPORATION, 1-8 Miyamae-Cho, Takasago-Cho, Takasago, Hyogo, 676-8688, Japan
| |
Collapse
|
93
|
Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO 2 fixation cycle in extremely thermoacidophilic archaea. Metab Eng 2016; 38:446-463. [PMID: 27771364 DOI: 10.1016/j.ymben.2016.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/07/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
The 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle fixes CO2 in extremely thermoacidophilic archaea and holds promise for metabolic engineering because of its thermostability and potentially rapid pathway kinetics. A reaction kinetics model was developed to examine the biological and biotechnological attributes of the 3HP/4HB cycle as it operates in Metallosphaera sedula, based on previous information as well as on kinetic parameters determined here for recombinant versions of five of the cycle enzymes (malonyl-CoA/succinyl-CoA reductase, 3-hydroxypropionyl-CoA synthetase, 3-hydroxypropionyl-CoA dehydratase, acryloyl-CoA reductase, and succinic semialdehyde reductase). The model correctly predicted previously observed features of the cycle: the 35-65% split of carbon flux through the acetyl-CoA and succinate branches, the high abundance and relative ratio of acetyl-CoA/propionyl-CoA carboxylase (ACC) and MCR, and the significance of ACC and hydroxybutyryl-CoA synthetase (HBCS) as regulated control points for the cycle. The model was then used to assess metabolic engineering strategies for incorporating CO2 into chemical intermediates and products of biotechnological importance: acetyl-CoA, succinate, and 3-hydroxypropionate.
Collapse
|
94
|
Cheah WY, Ling TC, Juan JC, Lee DJ, Chang JS, Show PL. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production. BIORESOURCE TECHNOLOGY 2016; 215:346-356. [PMID: 27090405 DOI: 10.1016/j.biortech.2016.04.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 05/04/2023]
Abstract
Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.
Collapse
Affiliation(s)
- Wai Yan Cheah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Joon Ching Juan
- Laboratory of Advanced Catalysis and Environmental Technology, Monash University Sunway Campus, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Manufacturing and Industrial Processes Division, Faculty of Engineering, Centre for Food and Bioproduct Processing, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
95
|
Beller HR, Zhou P, Jewell TNM, Goh EB, Keasling JD. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources. Metab Eng Commun 2016; 3:211-215. [PMID: 29468125 PMCID: PMC5779708 DOI: 10.1016/j.meteno.2016.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/19/2016] [Accepted: 07/04/2016] [Indexed: 11/15/2022] Open
Abstract
Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H2S, while fixing CO2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO2. A modified thioesterase gene from E. coli (‘tesA) was integrated into the T. denitrificans chromosome under the control of Pkan or one of two native T. denitrificans promoters. The relative strength of the two native promoters as assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria to overproduce fatty acid-derived products merits consideration as a technology that could simultaneously produce renewable fuels/chemicals as well as cost-effectively remediate sulfide-contaminated wastewater. Reduced S compounds and CO2 can be feedstocks for biobased chemicals and biofuels. Fatty acids increased 52-fold in Thiobacillus denitrificans with E. coli ‘tesA. Native T. denitrificans promoters driving ‘tesA predictably enhanced fatty acids.
Collapse
Affiliation(s)
- Harry R Beller
- Joint BioEnergy Institute, 5885 Hollis Avenue, Emeryville, CA, USA.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA
| | - Peng Zhou
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA
| | - Talia N M Jewell
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA
| | - Ee-Been Goh
- Joint BioEnergy Institute, 5885 Hollis Avenue, Emeryville, CA, USA.,Biological Systems and Engineering, LBNL, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Avenue, Emeryville, CA, USA.,Biological Systems and Engineering, LBNL, Berkeley, CA, USA.,Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé, DK2970 Hørsholm, Denmark
| |
Collapse
|
96
|
Satagopan S, Tabita FR. RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha. FEBS J 2016; 283:2869-80. [PMID: 27261087 DOI: 10.1111/febs.13774] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED Recapturing atmospheric CO2 is key to reducing global warming and increasing biological carbon availability. Ralstonia eutropha is a biotechnologically useful aerobic bacterium that uses the Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) for CO2 utilization, suggesting that it may be a useful host to bioselect RubisCO molecules with improved CO2 -capture capabilities. A host strain of R. eutropha was constructed for this purpose after deleting endogenous genes encoding two related RubisCOs. This strain could be complemented for CO2 -dependent growth by introducing native or heterologous RubisCO genes. Mutagenesis and suppressor selection identified amino acid substitutions in a hydrophobic region that specifically influences RubisCO's interaction with its substrates, particularly O2 , which competes with CO2 at the active site. Unlike most RubisCOs, the R. eutropha enzyme has evolved to retain optimal CO2 -fixation rates in a fast-growing host, despite the presence of high levels of competing O2 . Yet its structure-function properties resemble those of several commonly found RubisCOs, including the higher plant enzymes, allowing strategies to engineer analogous enzymes. Because R. eutropha can be cultured rapidly under harsh environmental conditions (e.g., with toxic industrial flue gas), in the presence of near saturation levels of oxygen, artificial selection and directed evolution studies in this organism could potentially impact efforts toward improving RubisCO-dependent biological CO2 utilization in aerobic environments. ENZYMES d-ribulose 1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39; phosphoribulokinase, EC 2.7.1.19.
Collapse
Affiliation(s)
- Sriram Satagopan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
97
|
Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production. Metab Eng 2016; 37:92-101. [PMID: 27212691 DOI: 10.1016/j.ymben.2016.05.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/15/2016] [Accepted: 05/05/2016] [Indexed: 11/23/2022]
Abstract
Alkanes of defined carbon chain lengths can serve as alternatives to petroleum-based fuels. Recently, microbial pathways of alkane biosynthesis have been identified and enabled the production of alkanes in non-native producing microorganisms using metabolic engineering strategies. The chemoautotrophic bacterium Cupriavidus necator has great potential for producing chemicals from CO2: it is known to have one of the highest growth rate among natural autotrophic bacteria and under nutrient imbalance it directs most of its carbon flux to the synthesis of the acetyl-CoA derived polymer, polyhydroxybutyrate (PHB), (up to 80% of intracellular content). Alkane synthesis pathway from Synechococcus elongatus (2 genes coding an acyl-ACP reductase and an aldehyde deformylating oxygenase) was heterologously expressed in a C. necator mutant strain deficient in the PHB synthesis pathway. Under heterotrophic condition on fructose we showed that under nitrogen limitation, in presence of an organic phase (decane), the strain produced up to 670mg/L total hydrocarbons containing 435mg/l of alkanes consisting of 286mg/l of pentadecane, 131mg/l of heptadecene, 18mg/l of heptadecane, and 236mg/l of hexadecanal. We report here the highest level of alka(e)nes production by an engineered C. necator to date. We also demonstrated the first reported alka(e)nes production by a non-native alkane producer from CO2 as the sole carbon source.
Collapse
|
98
|
Hyeon JE, Kim SW, Park C, Han SO. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface. Chem Commun (Camb) 2016; 51:10202-5. [PMID: 26017299 DOI: 10.1039/c5cc00832h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enzyme complex for biological conversion of CO to CO2 was anchored on the cell surface of the CO2-utilizing Ralstonia eutropha and successfully resulted in a 3.3-fold increase in conversion efficiency. These results suggest that this complexed system may be a promising strategy for CO2 utilization as a biological tool for the production of bioplastics.
Collapse
Affiliation(s)
- Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| | | | | | | |
Collapse
|
99
|
Magomedova Z, Grecu A, Sensen CW, Schwab H, Heidinger P. Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates. J Biotechnol 2016; 221:78-90. [DOI: 10.1016/j.jbiotec.2016.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/19/2022]
|
100
|
Beller HR, Lee TS, Katz L. Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep 2015. [PMID: 26216573 DOI: 10.1039/c5np00068h] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although natural products are best known for their use in medicine and agriculture, a number of fatty acid-derived and isoprenoid natural products are being developed for use as renewable biofuels and bio-based chemicals. This review summarizes recent work on fatty acid-derived compounds (fatty acid alkyl esters, fatty alcohols, medium- and short-chain methyl ketones, alkanes, α-olefins, and long-chain internal alkenes) and isoprenoids, including hemiterpenes (e.g., isoprene and isopentanol), monoterpenes (e.g., limonene), and sesquiterpenes (e.g., farnesene and bisabolene).
Collapse
Affiliation(s)
- Harry R Beller
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, Emeryville, California, 94608 USA.
| | | | | |
Collapse
|