51
|
Myintzaw P, Pennone V, McAuliffe O, Begley M, Callanan M. Association of Virulence, Biofilm, and Antimicrobial Resistance Genes with Specific Clonal Complex Types of Listeria monocytogenes. Microorganisms 2023; 11:1603. [PMID: 37375105 DOI: 10.3390/microorganisms11061603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Precise classification of foodborne pathogen Listeria monocytogenes is a necessity in efficient foodborne disease surveillance, outbreak detection, and source tracking throughout the food chain. In this study, a total of 150 L. monocytogenes isolates from various food products, food processing environments, and clinical sources were investigated for variations in virulence, biofilm formation, and the presence of antimicrobial resistance genes based on their Whole-Genome Sequences. Clonal complex (CC) determination based on Multi-Locus Sequence Typing (MLST) revealed twenty-eight CC-types including eight isolates representing novel CC-types. The eight isolates comprising the novel CC-types share the majority of the known (cold and acid) stress tolerance genes and are all genetic lineage II, serogroup 1/2a-3a. Pan-genome-wide association analysis by Scoary using Fisher's exact test identified eleven genes specifically associated with clinical isolates. Screening for the presence of antimicrobial and virulence genes using the ABRicate tool uncovered variations in the presence of Listeria Pathogenicity Islands (LIPIs) and other known virulence genes. Specifically, the distributions of actA, ecbA, inlF, inlJ, lapB, LIPI-3, and vip genes across isolates were found to be significantly CC-dependent while the presence of ami, inlF, inlJ, and LIPI-3 was associated with clinical isolates specifically. In addition, Roary-derived phylogenetic grouping based on Antimicrobial-Resistant Genes (AMRs) revealed that the thiol transferase (FosX) gene was present in all lineage I isolates, and the presence of the lincomycin resistance ABC-F-type ribosomal protection protein (lmo0919_fam) was also genetic-lineage-dependent. More importantly, the genes found to be specific to CC-type were consistent when a validation analysis was performed with fully assembled, high-quality complete L. monocytogenes genome sequences (n = 247) extracted from the National Centre for Biotechnology Information (NCBI) microbial genomes database. This work highlights the usefulness of MLST-based CC typing using the Whole-Genome Sequence as a tool in classifying isolates.
Collapse
Affiliation(s)
- Peter Myintzaw
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Vincenzo Pennone
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Callanan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
52
|
Shobo CO, Amoako DG, Allam M, Ismail A, Essack SY, Bester LA. A Genomic Snapshot of Antibiotic-Resistant Enterococcus faecalis within Public Hospital Environments in South Africa. Glob Health Epidemiol Genom 2023; 2023:6639983. [PMID: 37342729 PMCID: PMC10279497 DOI: 10.1155/2023/6639983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Enterococci are among the most common opportunistic hospital pathogens. This study used whole-genome sequencing (WGS) and bioinformatics to determine the antibiotic resistome, mobile genetic elements, clone and phylogenetic relationship of Enterococcus faecalis isolated from hospital environments in South Africa. This study was carried out from September to November 2017. Isolates were recovered from 11 frequently touched sites by patients and healthcare workers in different wards at 4 levels of healthcare (A, B, C, and D) in Durban, South Africa. Out of the 245 identified E. faecalis isolates, 38 isolates underwent whole-genome sequencing (WGS) on the Illumina MiSeq platform, following microbial identification and antibiotic susceptibility tests. The tet(M) (31/38, 82%) and erm(C) (16/38, 42%) genes were the most common antibiotic-resistant genes found in isolates originating from different hospital environments which corroborated with their antibiotic resistance phenotypes. The isolates harboured mobile genetic elements consisting of plasmids (n = 11) and prophages (n = 14) that were mostly clone-specific. Of note, a large number of insertion sequence (IS) families were found on the IS3 (55%), IS5 (42%), IS1595 (40%), and Tn3 transposons the most predominant. Microbial typing using WGS data revealed 15 clones with 6 major sequence types (ST) belonging to ST16 (n = 7), ST40 (n = 6), ST21 (n = 5), ST126 (n = 3), ST23 (n = 3), and ST386 (n = 3). Phylogenomic analysis showed that the major clones were mostly conserved within specific hospital environments. However, further metadata insights revealed the complex intraclonal spread of these E. faecalis major clones between the sampling sites within each specific hospital setting. The results of these genomic analyses will offer insights into antibiotic-resistantE. faecalis in hospital environments relevant to the design of optimal infection prevention strategies in hospital settings.
Collapse
Affiliation(s)
- Christiana O. Shobo
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- School of Laboratory Medicine and Medical Science, Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4000, South Africa
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Daniel G. Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, UAE
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Sabiha Y. Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Linda A. Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| |
Collapse
|
53
|
Liu CM, Aziz M, Park DE, Wu Z, Stegger M, Li M, Wang Y, Schmidlin K, Johnson TJ, Koch BJ, Hungate BA, Nordstrom L, Gauld L, Weaver B, Rolland D, Statham S, Hall B, Sariya S, Davis GS, Keim PS, Johnson JR, Price LB. Using source-associated mobile genetic elements to identify zoonotic extraintestinal E. coli infections. One Health 2023; 16:100518. [PMID: 37363239 PMCID: PMC10288061 DOI: 10.1016/j.onehlt.2023.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
A one-health perspective may provide new and actionable information about Escherichia coli transmission. E. coli colonizes a broad range of vertebrates, including humans and food-production animals, and is a leading cause of bladder, kidney, and bloodstream infections in humans. Substantial evidence supports foodborne transmission of pathogenic E. coli strains from food animals to humans. However, the relative contribution of foodborne zoonotic E. coli (FZEC) to the human extraintestinal disease burden and the distinguishing characteristics of such strains remain undefined. Using a comparative genomic analysis of a large collection of contemporaneous, geographically-matched clinical and meat-source E. coli isolates (n = 3111), we identified 17 source-associated mobile genetic elements - predominantly plasmids and bacteriophages - and integrated them into a novel Bayesian latent class model to predict the origins of clinical E. coli isolates. We estimated that approximately 8 % of human extraintestinal E. coli infections (mostly urinary tract infections) in our study population were caused by FZEC. FZEC strains were equally likely to cause symptomatic disease as non-FZEC strains. Two FZEC lineages, ST131-H22 and ST58, appeared to have particularly high virulence potential. Our findings imply that FZEC strains collectively cause more urinary tract infections than does any single non-E. coli uropathogenic species (e.g., Klebsiella pneumoniae). Our novel approach can be applied in other settings to identify the highest-risk FZEC strains, determine their sources, and inform new one-health strategies to decrease the heavy public health burden imposed by extraintestinal E. coli infections.
Collapse
Affiliation(s)
- Cindy M. Liu
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
- The Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Room 210 Building 56, Applied Research & Development, 1395 S Knoles Drive, Flagstaff, AZ 86011, USA
| | - Maliha Aziz
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Daniel E. Park
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Zhenke Wu
- Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Michigan Institute for Data Science (MIDAS), University of Michigan, 500 Church Street, Suite 600, Ann Arbor, MI 48109, USA
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Mengbing Li
- Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Yashan Wang
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Kara Schmidlin
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), 3051 W Shamrell Blvd, Flagstaff, AZ 86005, USA
| | - Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN 55108, USA
| | - Benjamin J. Koch
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Bruce A. Hungate
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Lora Nordstrom
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), 3051 W Shamrell Blvd, Flagstaff, AZ 86005, USA
| | - Lori Gauld
- Flagstaff Medical Center, 1200 N. Beaver St. Flagstaff, AZ 86001, USA
| | - Brett Weaver
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), 3051 W Shamrell Blvd, Flagstaff, AZ 86005, USA
| | - Diana Rolland
- Flagstaff Medical Center, 1200 N. Beaver St. Flagstaff, AZ 86001, USA
| | - Sally Statham
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), 3051 W Shamrell Blvd, Flagstaff, AZ 86005, USA
| | - Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sanjeev Sariya
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Gregg S. Davis
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Paul S. Keim
- The Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Room 210 Building 56, Applied Research & Development, 1395 S Knoles Drive, Flagstaff, AZ 86011, USA
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), 3051 W Shamrell Blvd, Flagstaff, AZ 86005, USA
| | - James R. Johnson
- Minneapolis Veterans Affairs Health Care System, 1 Veterans Dr, Minneapolis, MN 55417, USA
| | - Lance B. Price
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), 3051 W Shamrell Blvd, Flagstaff, AZ 86005, USA
| |
Collapse
|
54
|
Song Z, Zheng J, Zhao Y, Yin J, Zheng D, Hu H, Liu H, Sun M, Ruan L, Liu F. Population genomics and pathotypic evaluation of the bacterial leaf blight pathogen of rice reveals rapid evolutionary dynamics of a plant pathogen. Front Cell Infect Microbiol 2023; 13:1183416. [PMID: 37305415 PMCID: PMC10250591 DOI: 10.3389/fcimb.2023.1183416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
The Xanthomonas oryzae pv. oryzae (Xoo) is a bacterial pathogen causing bacterial blight disease in rice, resulting in significant yield reductions of up to 50% in rice production. Despite its serious threat to food production globally, knowledge of its population structure and virulence evolution is relatively limited. In this study, we employed whole-genome sequencing to explore the diversity and evolution of Xoo in the main rice-growing areas of China over the past 30 years. Using phylogenomic analysis, we revealed six lineages. CX-1 and CX-2 primarily contained Xoo isolates from South China, while CX-3 represented Xoo isolates from North China. Xoo isolates belonging to CX-5 and CX-6 were the most prevalent across all studied areas, persisting as dominant lineages for several decades. Recent sporadic disease outbreaks were primarily caused by Xoo isolates derived from the two major lineages, CX-5 and CX-6, although Xoo isolates from other lineages also contributed to these outbreaks. The lineage and sub-lineage distributions of Xoo isolates were strongly correlated with their geographical origin, which was found to be mainly determined by the planting of the two major rice subspecies, indica and japonica. Moreover, large-scale virulence testing was conducted to evaluate the diversity of pathogenicity for Xoo. We found rapid virulence evolution against rice, and its determinant factors included the genetic background of Xoo, rice resistance genes, and planting environment of rice. This study provides an excellent model for understanding the evolution and dynamics of plant pathogens in the context of their interactions with their hosts, which are shaped by a combination of geographical conditions and farming practices. The findings of this study may have important implications for the development of effective strategies for disease management and crop protection in rice production systems.
Collapse
Affiliation(s)
- Zhiwei Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiakang Yin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Huifeng Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
55
|
Stoppani N, Colussi S, Pastorino P, Prearo M, Sciuto S, Altinok I, Öztürk RÇ, Ture M, Vela AI, Blanco MDM, Kotzamanidis C, Bitchava K, Malousi A, Fariano L, Volpatti D, Acutis PL, Fernández-Garayzábal JF. 16S-23S rRNA Internal Transcribed Spacer Region ( ITS) Sequencing: A Potential Molecular Diagnostic Tool for Differentiating Lactococcus garvieae and Lactococcus petauri. Microorganisms 2023; 11:1320. [PMID: 37317294 DOI: 10.3390/microorganisms11051320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Lactococcus garvieae is the etiological agent of lactococcosis, a clinically and economically significant infectious disease affecting farmed rainbow trout. L. garvieae had been considered the only cause of lactococcosis for a long time; however, L. petauri, another species of the genus Lactococcus, has lately been linked to the same disease. The genomes and biochemical profiles of L. petauri and L. garvieae have a high degree of similarity. Traditional diagnostic tests currently available cannot distinguish between these two species. The aim of this study was to use the transcribed spacer (ITS) region between 16S rRNA and 23S rRNA as a potential useful molecular target to differentiate L. garvieae from L. petauri, saving time and money compared to genomics methods currently used as diagnostic tools for accurate discrimination between these two species. The ITS region of 82 strains was amplified and sequenced. The amplified fragments varied in size from 500 to 550 bp. Based on the sequence, seven SNPs were identified that separate L. garvieae from L. petauri. The 16S-23S rRNA ITS region has enough resolution to distinguish between closely related L. garvieae and L. petauri and it can be used as a diagnostic marker to quickly identify the pathogens in a lactococcosis outbreak.
Collapse
Affiliation(s)
- Nadia Stoppani
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Silvia Colussi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Simona Sciuto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Ilhan Altinok
- Faculty of Marine Sciences, Karadeniz Technical University, Sürmene, 61530 Trabzon, Turkey
| | - Rafet Çağrı Öztürk
- Faculty of Marine Sciences, Karadeniz Technical University, Sürmene, 61530 Trabzon, Turkey
| | - Mustafa Ture
- Central Fisheries Research Institute (SUMAE), 61250 Trabzon, Turkey
| | - Ana Isabel Vela
- VISAVET and Department of Animal Health, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Maria Del Mar Blanco
- VISAVET and Department of Animal Health, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Konstantina Bitchava
- School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Lucio Fariano
- Azienda Agricola Canali Cavour, 12044 Centallo, Italy
| | - Donatella Volpatti
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100 Udine, Italy
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | | |
Collapse
|
56
|
Tjandra KC, Ram-Mohan N, Abe R, Wang TH, Yang S. Rapid Molecular Phenotypic Antimicrobial Susceptibility Test for Neisseria gonorrhoeae Based on Propidium Monoazide Viability PCR. ACS Infect Dis 2023; 9:1160-1167. [PMID: 37115656 DOI: 10.1021/acsinfecdis.3c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Neisseria gonorrhoeae (NG) is an urgent threat to antimicrobial resistance (AMR) worldwide. NG has acquired rapid resistance to all previously recommended treatments, leaving ceftriaxone monotherapy as the first and last line of therapy for uncomplicated NG. The ability to rapidly determine susceptibility, which is currently nonexistent for NG, has been proposed as a strategy to preserve ceftriaxone by using alternative treatments. Herein, we used a DNA-intercalating dye in combination with NG-specific primers/probes to generate qPCR cycle threshold (Ct) values at different concentrations of 2 NG-relevant antimicrobials. Our proof-of-concept dual-antimicrobial logistic regression model based on the differential Ct measurements achieved an AUC of 0.93 with a categorical agreement for the susceptibility of 84.6%. When surveying the performance against each antimicrobial separately, the model predicted 90 and 75% susceptible and resistant strains, respectively, to ceftriaxone and 66.7 and 83.3% susceptible and resistant strains, respectively, to ciprofloxacin. We further validated the model against the individual replicates and determined the accuracy of the model in classifying susceptibility agnostic of the inoculum size. We demonstrated a novel PCR-based approach to determine phenotypic ciprofloxacin and ceftriaxone susceptibility information for NG with reasonable accuracy within 30 min, a significant improvement compared to the conventional method which could take multiple days.
Collapse
Affiliation(s)
- Kristel C Tjandra
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California 94305, United States
| | - Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California 94305, United States
| | - Ryuichiro Abe
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California 94305, United States
| | - Tza-Huei Wang
- Departments of Mechanical Engineering and Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California 94305, United States
| |
Collapse
|
57
|
Goswami AG, Basu S, Banerjee T, Shukla VK. Biofilm and wound healing: from bench to bedside. Eur J Med Res 2023; 28:157. [PMID: 37098583 PMCID: PMC10127443 DOI: 10.1186/s40001-023-01121-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023] Open
Abstract
The bubbling community of microorganisms, consisting of diverse colonies encased in a self-produced protective matrix and playing an essential role in the persistence of infection and antimicrobial resistance, is often referred to as a biofilm. Although apparently indolent, the biofilm involves not only inanimate surfaces but also living tissue, making it truly ubiquitous. The mechanism of biofilm formation, its growth, and the development of resistance are ever-intriguing subjects and are yet to be completely deciphered. Although an abundance of studies in recent years has focused on the various ways to create potential anti-biofilm and antimicrobial therapeutics, a dearth of a clear standard of clinical practice remains, and therefore, there is essentially a need for translating laboratory research to novel bedside anti-biofilm strategies that can provide a better clinical outcome. Of significance, biofilm is responsible for faulty wound healing and wound chronicity. The experimental studies report the prevalence of biofilm in chronic wounds anywhere between 20 and 100%, which makes it a topic of significant concern in wound healing. The ongoing scientific endeavor to comprehensively understand the mechanism of biofilm interaction with wounds and generate standardized anti-biofilm measures which are reproducible in the clinical setting is the challenge of the hour. In this context of "more needs to be done", we aim to explore various effective and clinically meaningful methods currently available for biofilm management and how these tools can be translated into safe clinical practice.
Collapse
Affiliation(s)
| | - Somprakas Basu
- All India Institute of Medical Sciences, Rishikesh, 249203, India.
| | | | | |
Collapse
|
58
|
Yang FA, Wu YT, Liu YW, Liao WC. Hybridization chain reaction-assisted enzyme cascade genosensor for the detection of Listeria monocytogenes. Talanta 2023; 254:124193. [PMID: 36549135 DOI: 10.1016/j.talanta.2022.124193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Foodborne diseases caused by pathogens may threaten public health and the social economy. We demonstrated a method for identifying pathogenic Listeria monocytogenes using DNA logic operations. To achieve accurate species distinguishing, three specific sequences of Listeria monocytogenes genomic DNA were screened out and used as the feature sequences. Three complementary probes with tag modification were designed as sensing elements and exert affinity for magnetic beads, glucose oxidase (GOx), and horseradish peroxidase (HRP). To obtain a digital output (YES/NO answer) for rapid determination, a Boolean logic function was employed. Three sensing probes enabled the recognition of the target sequence (input) and the formation of a target DNA/probe hybrid. Through magnetic separation and affinity binding events, the target DNA/probes hybrid led to the construction of GOx/HRP enzyme cascade, which produced a visualized color signal (output) in the presence of substrates, glucose, and 3, 3', 5, 5'-tetramethylbenzidine (TMB). A hybridization chain reaction (HCR) was coupled with this sensing scaffold to increase the binding of the enzyme cascade and amplify the output signal. The logical functional biosensor showed high selectivity of Listeria monocytogenes over other Listeria species. This sensing platform provides a simple, sensitive, and highly specific method for detecting Listeria monocytogenes.
Collapse
Affiliation(s)
- Fu-An Yang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Ting Wu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yen-Wenn Liu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wei-Ching Liao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
59
|
Jun SY, Kim YA, Lee SJ, Jung WW, Kim HS, Kim SS, Kim H, Yong D, Lee K. Performance Comparison Between Fourier-Transform Infrared Spectroscopy-based IR Biotyper and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for Strain Diversity. Ann Lab Med 2023; 43:174-179. [PMID: 36281511 PMCID: PMC9618903 DOI: 10.3343/alm.2023.43.2.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/30/2022] [Accepted: 09/29/2022] [Indexed: 12/27/2022] Open
Abstract
Background Development of an accessible method to routinely evaluate the clonality of strains is needed in microbiology laboratories. We compared the discriminatory power of the Fourier-transform infrared (FTIR) spectroscopy-based IR Biotyper (Bruker Daltonics GmbH, Bremen, Germany) to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), using whole-genome sequencing (WGS) as the reference method. Methods Eighty-three extended-spectrum β-lactamase-producing Escherichia coli isolates were tested using WGS, MALDI-TOF MS, and IR Biotyper. Simpson's diversity index (SDI), a statistical analysis for testing the homogeneity of a dendrogram, and the adjusted Rand index (aRI) were used to compare the discriminatory ability between typing tests. Results The SDI (95% confidence interval) was 0.969 (0.952-0.985) for WGS, 0.865 (0.807-0.924) for MALDI-TOF MS, and 0.974 (0.965-0.983) for IR Biotyper. Compared with WGS, IR Biotyper showed compatible diversity, whereas MALDI-TOF MS did not. The concordance and aRI improved from 66.3% to 84.3% and from 0.173 to 0.538, respectively, for IR Biotyper versus MALDI-TOF MS with WGS as the reference method. IR Biotyper showed substantially improved performance in strain typing compared with MALDI-TOF MS. Conclusions IR Biotyper is useful for diversity analysis with improved discriminatory power over MALDI-TOF MS in comparison with WGS as a reference method. IR Biotyper is an accessible method to evaluate the clonality of strains and could be applied in epidemiological analysis during an outbreak of a health care facility, as well as for research on the transmission of resistant bacteria in community settings.
Collapse
Affiliation(s)
- Son Young Jun
- Department of Laboratory Medicine, National Insurance Service Ilsan Hospital, Goyang, Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Insurance Service Ilsan Hospital, Goyang, Korea
| | - Suk-Jun Lee
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju, Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju, Korea
| | - Hyun-Sook Kim
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju, Korea
| | - Sung-Soo Kim
- Department of Health Administration & Healthcare, Cheongju University, Cheongju, Korea
| | - Hyunsoo Kim
- Department of Laboratory Medicine, National Police Hospital, Seoul, Korea
| | - Dongeun Yong
- Research Institute of Bacterial Resistance and Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungwon Lee
- Research Institute of Bacterial Resistance and Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea.,Seoul Clinical Laboratories, Yongin, Korea
| |
Collapse
|
60
|
Li H, Mattingly AE, Smith RD, Melander RJ, Ernst RK, Melander C. 6-Bromoindirubin-3'-oxime derivatives are highly active colistin adjuvants against Klebsiella pneumoniae. RSC Med Chem 2023; 14:247-252. [PMID: 36846374 PMCID: PMC9945867 DOI: 10.1039/d2md00370h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Multidrug resistant (MDR) bacterial infections have become increasingly common, leading clinicians to rely on last-resort antibiotics such as colistin. However, the utility of colistin is becoming increasingly compromised as a result of increasing polymyxin resistance. Recently we discovered that derivatives of the eukaryotic kinase inhibitor meridianin D abrogate colistin resistance in several Gram-negative species. A subsequent screen of three commercial kinase inhibitor libraries led to the identification of several scaffolds that potentiate colistin activity, including 6-bromoindirubin-3'-oxime, which potently suppresses colistin resistance in Klebsiella pneumoniae. Herein we report the activity of a library of 6-bromoindirubin-3'-oxime analogs and identify four derivatives that show equal or increased colistin potentiation activity compared to the parent compound.
Collapse
Affiliation(s)
- Haoting Li
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Anne E Mattingly
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, University of Maryland Baltimore Maryland USA
| | - Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland Baltimore Maryland USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| |
Collapse
|
61
|
Forde BM, Bergh H, Cuddihy T, Hajkowicz K, Hurst T, Playford EG, Henderson BC, Runnegar N, Clark J, Jennison AV, Moss S, Hume A, Leroux H, Beatson SA, Paterson DL, Harris PNA. Clinical Implementation of Routine Whole-genome Sequencing for Hospital Infection Control of Multi-drug Resistant Pathogens. Clin Infect Dis 2023; 76:e1277-e1284. [PMID: 36056896 DOI: 10.1093/cid/ciac726] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Prospective whole-genome sequencing (WGS)-based surveillance may be the optimal approach to rapidly identify transmission of multi-drug resistant (MDR) bacteria in the healthcare setting. METHODS We prospectively collected methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), carbapenem-resistant Acinetobacter baumannii (CRAB), extended-spectrum beta-lactamase (ESBL-E), and carbapenemase-producing Enterobacterales (CPE) isolated from blood cultures, sterile sites, or screening specimens across three large tertiary referral hospitals (2 adult, 1 paediatric) in Brisbane, Australia. WGS was used to determine in silico multi-locus sequence typing (MLST) and resistance gene profiling via a bespoke genomic analysis pipeline. Putative transmission events were identified by comparison of core genome single nucleotide polymorphisms (SNPs). Relevant clinical meta-data were combined with genomic analyses via customised automation, collated into hospital-specific reports regularly distributed to infection control teams. RESULTS Over 4 years (April 2017 to July 2021) 2660 isolates were sequenced. This included MDR gram-negative bacilli (n = 293 CPE, n = 1309 ESBL), MRSA (n = 620), and VRE (n = 433). A total of 379 clinical reports were issued. Core genome SNP data identified that 33% of isolates formed 76 distinct clusters. Of the 76 clusters, 43 were contained to the 3 target hospitals, suggesting ongoing transmission within the clinical environment. The remaining 33 clusters represented possible inter-hospital transmission events or strains circulating in the community. In 1 hospital, proven negligible transmission of non-multi-resistant MRSA enabled changes to infection control policy. CONCLUSIONS Implementation of routine WGS for MDR pathogens in clinical laboratories is feasible and can enable targeted infection prevention and control interventions.
Collapse
Affiliation(s)
- Brian M Forde
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Haakon Bergh
- Central Microbiology, Pathology Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Thom Cuddihy
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Krispin Hajkowicz
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Trish Hurst
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - E Geoffrey Playford
- Infection Management Services, Princess Alexandra Hospital, Metro South Hospital and Health Service, Brisbane, QLD, Australia
| | - Belinda C Henderson
- Infection Management Services, Princess Alexandra Hospital, Metro South Hospital and Health Service, Brisbane, QLD, Australia
| | - Naomi Runnegar
- Infection Management Services, Princess Alexandra Hospital, Metro South Hospital and Health Service, Brisbane, QLD, Australia.,Faculty of Medicine, PA-Southside Clinical School, University of Queensland, Brisbane, QLD, Australia
| | - Julia Clark
- Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, QLD, Australia.,Centre for Children's Health Research, Children's Health Queensland, Brisbane, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, Australia
| | - Susan Moss
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, Australia
| | - Anna Hume
- Central Microbiology, Pathology Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia.,Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Hugo Leroux
- Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - David L Paterson
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia.,Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Patrick N A Harris
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia.,Central Microbiology, Pathology Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
62
|
Armitage EP, Keeley AJ, de Crombrugghe G, Senghore E, Camara FE, Jammeh M, Bittaye A, Ceesay H, Ceesay I, Samateh B, Manneh M, Sesay AK, Kampmann B, Kucharski A, de Silva TI, Marks M. Streptococcus pyogenes carriage acquisition, persistence and transmission dynamics within households in The Gambia (SpyCATS): protocol for a longitudinal household cohort study. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18716.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Streptococcus pyogenes (StrepA) causes a significant burden of disease globally from superficial infections to invasive disease. It is responsible for over 500,000 deaths each year, predominantly in low- and middle-income countries (LMIC). Superficial StrepA infections of the skin and pharynx can lead to rheumatic heart disease, the largest cause of StrepA-related deaths in LMIC. StrepA can also asymptomatically colonise normal skin and the pharynx (carriage), potentially increasing infection risk. Streptococcus dysgalactiae subsp. equisimilis (SDSE) carriage is also common in LMIC and may interact with StrepA. This study aims to investigate StrepA and SDSE carriage and infection epidemiology, transmission dynamics and naturally acquired immunity within households in The Gambia. Methods A longitudinal household observational cohort study will be conducted over one year. 45 households will be recruited from the urban area of Sukuta, The Gambia, resulting in approximately 450 participants. Households will be visited monthly, and available participants will undergo oropharyngeal and normal skin swabbing. Incident cases of pharyngitis and pyoderma will be captured via active case reporting, with swabs taken from disease sites. Swabs will be cultured for the presence of group A, C and G beta-haemolytic streptococci. Isolates will undergo whole genome sequencing. At each visit, clinical, socio-demographic and social mixing data will be collected. Blood serum will be collected at baseline and final visit. Oral fluid and dried blood spot samples will be collected at each visit. Mucosal and serum anti-StrepA antibody responses will be measured. Outcome This study will report StrepA and SDSE clinical epidemiology, risk factors, transmission dynamics, and serological responses to carriage and infection. Detailed social mixing behaviour will be combined with phylogenetic relatedness to model the extent of transmission occurring withing and between households. The study will provide data to help meet global strategic StrepA research goals.
Collapse
|
63
|
Li W, Wang J, Li C, Zong Z, Zhao J, Gao H, Liu D. Achieving Ultrasensitive Chromogenic Probes for Rapid, Direct Detection of Carbapenemase-Producing Bacteria in Sputum. JACS AU 2023; 3:227-238. [PMID: 36711106 PMCID: PMC9875220 DOI: 10.1021/jacsau.2c00607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Carbapenemase-producing bacteria (CPB) stand as the most dangerous "superbugs" in the clinic. Rapid point-of-care (POC) detection of CPB in clinical samples is key to timely and effective infection management. We herein report the first ultrasensitive chromogenic probe that allows direct POC detection of CPB in clinical sputum samples at a sample-to-result time of less than 15 min. This chromogenic probe is modularly designed by conjugating the carbapenem core with a benzene derivative bearing an electronegativity-tunable substituent. Unexpectedly high sensitivity was achieved simply by choosing strong electron-withdrawing substituents, such as -N+(CH3)3, without resorting to complex molecular design. Through integrating the probes with a portable paper chip, 24 out of 80 clinical sputum samples from sepsis patients with lung infections were quickly diagnosed as CPB-positive, exhibiting 100% clinical sensitivity and specificity. This low-cost paper chip assay can be readily performed on-site, breaking through the dilemma of rapid CPB detection, especially in resource-limited settings.
Collapse
Affiliation(s)
- Wenshuai Li
- State
Key Laboratory of Medicinal Chemical Biology, Research Center for
Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition
and Biosensing, Frontiers Science Center for New Organic Matter, College
of Chemistry, Nankai University, Tianjin300071, China
| | - Jingjing Wang
- Department
of Intensive Care Unit, Key Laboratory for Critical Care Medicine
of the Ministry of Health, Emergency Medicine Research Institute,
Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin300071, China
| | - Chen Li
- College
of Arts and Sciences, Shanxi Agricultural
University, Taigu030801, China
| | - Zhiyou Zong
- State
Key Laboratory of Medicinal Chemical Biology, Research Center for
Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition
and Biosensing, Frontiers Science Center for New Organic Matter, College
of Chemistry, Nankai University, Tianjin300071, China
| | - Jinzhong Zhao
- College
of Arts and Sciences, Shanxi Agricultural
University, Taigu030801, China
| | - Hongmei Gao
- Department
of Intensive Care Unit, Key Laboratory for Critical Care Medicine
of the Ministry of Health, Emergency Medicine Research Institute,
Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin300071, China
| | - Dingbin Liu
- State
Key Laboratory of Medicinal Chemical Biology, Research Center for
Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition
and Biosensing, Frontiers Science Center for New Organic Matter, College
of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
64
|
Svetlicic E, Jaén-Luchoro D, Klobucar RS, Jers C, Kazazic S, Franjevic D, Klobucar G, Shelton BG, Mijakovic I. Genomic characterization and assessment of pathogenic potential of Legionella spp. isolates from environmental monitoring. Front Microbiol 2023; 13:1091964. [PMID: 36713227 PMCID: PMC9879626 DOI: 10.3389/fmicb.2022.1091964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Several species in the genus Legionella are known to cause an acute pneumonia when the aerosols containing the bacteria from man-made water systems are inhaled. The disease is usually caused by Legionella pneumophila, but other species have been implicated in the infection. The disease is frequently manifested as an outbreak, which means several people are affected when exposed to the common source of Legionella contamination. Therefor environmental surveillance which includes isolation and identification of Legionella is performed routinely. However, usually no molecular or genome-based methods are employed in further characterization of the isolates during routine environmental monitoring. During several years of such monitoring, isolates from different geographical locations were collected and 39 of them were sequenced by hybrid de novo approach utilizing short and long sequencing reads. In addition, the isolates were typed by standard culture and MALDI-TOF method. The sequencing reads were assembled and annotated to produce high-quality genomes. By employing discriminatory genome typing, four potential new species in the Legionella genus were identified, which are yet to be biochemically and morphologically characterized. Moreover, functional annotations concerning virulence and antimicrobial resistance were performed on the sequenced genomes. The study contributes to the knowledge on little-known non-pneumophila species present in man-made water systems and establishes support for future genetic relatedness studies as well as understanding of their pathogenic potential.
Collapse
Affiliation(s)
- Ema Svetlicic
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases (Sahlgrenska Academy) at the University of Gothenburg, Gothenburg, Sweden
| | | | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
| | - Snjezana Kazazic
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruder Boskovic Institute, Zagreb, Croatia
| | - Damjan Franjevic
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Goran Klobucar
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden,*Correspondence: Ivan Mijakovic,
| |
Collapse
|
65
|
Dost I, Abdel-Glil M, Schmoock G, Menge C, Berens C, González-Santamarina B, Wiegand E, Neubauer H, Schwarz S, Seyboldt C. Clostridioides difficile in South American Camelids in Germany: First Insights into Molecular and Genetic Characteristics and Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010086. [PMID: 36671289 PMCID: PMC9854998 DOI: 10.3390/antibiotics12010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Little is known about zoonotic pathogens and their antimicrobial resistance in South American camelids (SAC) in Germany including Clostridioides (C.) difficile. The aim of this study was to investigate prevalence, molecular characteristics and antimicrobial resistance of C. difficile in SAC. Composite SAC faecal samples were collected in 43 husbandries in Central Germany and cultured for C. difficile. Toxinotyping and ribotyping was done by PCR. Whole genome sequencing was performed with Illumina® Miseq™. The genomes were screened for antimicrobial resistance determinants. Genetic relatedness of the isolates was investigated using core genome multi locus sequence typing (cgMLST) and single nucleotide polymorphism analysis. Antimicrobial susceptibility testing was done using the Etest® method. Eight C. difficile isolates were recovered from seven farms. The isolates belonged to different PCR ribotypes. All isolates were toxinogenic. cgMLST revealed a cluster containing isolates recovered from different farms. Seven isolates showed similar resistance gene patterns. Different phenotypic resistance patterns were found. Agreement between phenotypic and genotypic resistance was identified only in some cases. Consequently, SAC may act as a reservoir for C. difficile. Thus, SAC may pose a risk regarding zoonotic transmission of toxinogenic, potentially human-pathogenic and resistant C. difficile isolates.
Collapse
Affiliation(s)
- Ines Dost
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
- Correspondence: ; Tel.: +49-3641-804-2488
| | - Mostafa Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Gernot Schmoock
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Belén González-Santamarina
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Elisabeth Wiegand
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| |
Collapse
|
66
|
Calero-Cáceres W, Ortuño-Gutiérrez N, Sunyoto T, Gomes-Dias CA, Bastidas-Caldes C, Ramírez MS, Harries AD. Whole-genome sequencing for surveillance of antimicrobial resistance in Ecuador: present and future implications. Rev Panam Salud Publica 2023; 47:e8. [PMID: 37082537 PMCID: PMC10105595 DOI: 10.26633/rpsp.2023.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 04/22/2023] Open
Abstract
Whole-genome sequencing is becoming the gold standard for pathogen characterization and offers considerable advantages for understanding the evolution and dissemination of new determinants of antimicrobial resistance. Despite the benefits of whole-genome sequencing for pathogen characterization, implementation costs and lack of expertise may limit its use by public health laboratories. This article reviews the advantages of whole-genome sequencing for pathogen characterization and the current status of the use of whole-genome sequencing for antimicrobial resistance surveillance in Ecuador. A roadmap is suggested for including whole-genome sequencing for pathogen characterization based on the needs of the health reference institutions through alliances with Ecuadorian universities. Establishing a partnership between public health institutions and academia would be valuable for clinicians, policy-makers, and epidemiologists who could then take reasonable measures in those areas and establish a basis for adapting One Health strategies to tackle antimicrobial resistance in Ecuador.
Collapse
Affiliation(s)
- William Calero-Cáceres
- UTA-RAM One HealthDepartment of Food and Biotechnology Science and EngineeringUniversidad Técnica de AmbatoAmbatoEcuadorUTA-RAM One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador.
- William Calero-Cáceres,
| | | | - Temmy Sunyoto
- MSF OCB Luxembourg Operational Research (LuxOR) UnitLuxembourgLuxembourgMSF OCB Luxembourg Operational Research (LuxOR) Unit, Luxembourg, Luxembourg.
| | - Cícero-Armídio Gomes-Dias
- Department of Basic Health SciencesFederal University of Health Sciences of Porto AlegrePorto AlegreBrazilDepartment of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| | - Carlos Bastidas-Caldes
- Faculty of Engineering and Applied SciencesUniversidad de las AméricasQuitoEcuadorFaculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador.
| | - Ma. Soledad Ramírez
- Department of Biological ScienceCollege of Natural Sciences and MathematicsCalifornia State University FullertonFullertonUSADepartment of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, USA.
| | - Anthony D. Harries
- International Union Against Tuberculosis and Lung DiseaseParisFranceInternational Union Against Tuberculosis and Lung Disease, Paris, France.
| |
Collapse
|
67
|
Shayea RH, Ali MR. Whole-genome Study of Carbapenem-resistant Acinetobacter baumannii Virulence and Resistance. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2023. [DOI: 10.30699/ijmm.17.1.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
68
|
Pereira GC. An Automated Strategy to Handle Antigenic Variability in Immunisation Protocols, Part I: Nanopore Sequencing of Infectious Agent Variants. Methods Mol Biol 2023; 2575:305-321. [PMID: 36301483 DOI: 10.1007/978-1-0716-2716-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Infectious agents often challenge therapeutics, from antibiotics resistance to antigenic variability affecting inoculation measures. Over the last decades, genome sequencing arose as an important ally to address such challenges. In bacterial infection, whole-genome-sequencing (WGS) supports tracking pathogenic alterations affecting the human microbiome. In viral infection, the analysis of the relevant sequence of nucleotides helps with determining historical variants of a virus and elucidates details about infection clusters and their distribution. Additionally, genome sequencing is now an important step in inoculation protocols, isolating target genes to design more robust immunisation assays. Ultimately, genetic engineering has empowered repurposing at scale, allowing long-lasting repeating clinical trials to be automated within a much shorter time-frame, by adjusting existing protocols. This is particularly important during sanitary emergencies as the ones caused by the 2014 West African Ebola outbreak, the Zika virus rapid spread in both South and North America in 2015, followed by Asia in 2016, and the pandemic caused by the SARS-CoV-2, which has infected more than 187 million people and caused more than 4 million deaths, worldwide, as per July 2021 statistics. In this scenery, this chapter presents a novel fully automated strategy to handle antigenic variability in immunisation protocols. The methodology comprises of two major steps (1) nanopore sequencing of infectious agent variants - the focus is on the SARS-CoV-2 and its variants; followed by (2) mRNA vector design for immunotherapy. This chapter presents the nanopore sequencing step and Chapter 17 introduces a protocol for mRNA vector design.
Collapse
|
69
|
Piergiacomo F, Brusetti L, Pagani L. Understanding the Interplay between Antimicrobial Resistance, Microplastics and Xenobiotic Contaminants: A Leap towards One Health? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:42. [PMID: 36612363 PMCID: PMC9819104 DOI: 10.3390/ijerph20010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
According to the World Health Organization, the two major public health threats in the twenty-first century are antibiotic-resistant bacteria and antibiotic-resistant genes. The reason for the global prevalence and the constant increase of antibiotic-resistant bacteria is owed to the steady rise in overall antimicrobial consumption in several medical, domestic, agricultural, industrial, and veterinary applications, with consequent environmental release. These antibiotic residues may directly contaminate terrestrial and aquatic environments in which antibiotic-resistance genes are also present. Reports suggest that metal contamination is one of the main drivers of antimicrobial resistance (AMR). Moreover, the abundance of antibiotic-resistance genes is directly connected to the predominance of metal concentrations in the environment. In addition, microplastics have become a threat as emerging contaminants because of their ubiquitous presence, bio-inertness, toughness, danger to aquatic life, and human health implications. In the environment, microplastics and AMR are interconnected through biofilms, where genetic information (e.g., ARGs) is horizontally transferred between bacteria. From this perspective, we tried to summarize what is currently known on this topic and to propose a more effective One Health policy to tackle these threats.
Collapse
Affiliation(s)
- Federica Piergiacomo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 1, 39100 Bolzano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Piazza Università 1, 39100 Bolzano, Italy
| | - Leonardo Pagani
- Antimicrobial Stewardship Project, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, 39100 Bolzano, Italy
| |
Collapse
|
70
|
Pillay S, Calderón-Franco D, Urhan A, Abeel T. Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. Front Microbiol 2022; 13:1066995. [PMID: 36532424 PMCID: PMC9755710 DOI: 10.3389/fmicb.2022.1066995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 08/12/2023] Open
Abstract
The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance.
Collapse
Affiliation(s)
- Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | | | - Aysun Urhan
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
71
|
Tozzo P, Delicati A, Caenazzo L. Human microbiome and microbiota identification for preventing and controlling healthcare-associated infections: A systematic review. Front Public Health 2022; 10:989496. [PMID: 36530685 PMCID: PMC9754121 DOI: 10.3389/fpubh.2022.989496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Objective This systematic review describes the role of the human microbiome and microbiota in healthcare-associated infections (HAIs). Studies on the microbiota of patients, healthcare environment (HE), medical equipment, or healthcare workers (HCW) and how it could be transmitted among the different subjects will be described in order to define alarming risk factors for HAIs spreading and to identify strategies for HAIs control or prevention. Methods This review was performed in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. After retrieval in databases, identification, and screening of available records, 36 published studies were considered eligible and included in the review. Results A multifaceted approach is required and the analyses of the many factors related to human microbiota, which can influence HAIs onset, could be of paramount importance in their prevention and control. In this review, we will focus mainly on the localization, transmission, and prevention of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) bacteria and Clostridium difficile which are the most common pathogens causing HAIs. Conclusions Healthcare workers' microbiota, patient's microbiota, environmental and medical equipment microbiota, ecosystem characteristics, ways of transmission, cleaning strategies, and the microbial resistome should be taken into account for future studies on more effective preventive and therapeutic strategies against HAIs.
Collapse
Affiliation(s)
- Pamela Tozzo
- Legal Medicine Unit, Laboratory of Forensic Genetics, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy,*Correspondence: Pamela Tozzo
| | - Arianna Delicati
- Legal Medicine Unit, Laboratory of Forensic Genetics, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Luciana Caenazzo
- Legal Medicine Unit, Laboratory of Forensic Genetics, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
72
|
Khoder M, Osman M, Kassem II, Rafei R, Shahin A, Fournier PE, Rolain JM, Hamze M. Whole Genome Analyses Accurately Identify Neisseria spp. and Limit Taxonomic Ambiguity. Int J Mol Sci 2022; 23:13456. [PMID: 36362240 PMCID: PMC9657967 DOI: 10.3390/ijms232113456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 10/27/2023] Open
Abstract
Genome sequencing facilitates the study of bacterial taxonomy and allows the re-evaluation of the taxonomic relationships between species. Here, we aimed to analyze the draft genomes of four commensal Neisseria clinical isolates from the semen of infertile Lebanese men. To determine the phylogenetic relationships among these strains and other Neisseria spp. and to confirm their identity at the genomic level, we compared the genomes of these four isolates with the complete genome sequences of Neisseria gonorrhoeae and Neisseria meningitidis and the draft genomes of Neisseria flavescens, Neisseria perflava, Neisseria mucosa, and Neisseria macacae that are available in the NCBI Genbank database. Our findings revealed that the WGS analysis accurately identified and corroborated the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) species identities of the Neisseria isolates. The combination of three well-established genome-based taxonomic tools (in silico DNA-DNA Hybridization, Ortho Average Nucleotide identity, and pangenomic studies) proved to be relatively the best identification approach. Notably, we also discovered that some Neisseria strains that are deposited in databases contain many taxonomical errors. The latter is very important and must be addressed to prevent misdiagnosis and missing emerging etiologies. We also highlight the need for robust cut-offs to delineate the species using genomic tools.
Collapse
Affiliation(s)
- May Khoder
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
- Institut de Recherche pour le Développement (IRD), Microbes, Evolution, Phylogénie et Infection (MEPHI), Faculté de Médecine et de Pharmacie, Aix Marseille Université, 13005 Marseille, France
| | - Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Issmat I Kassem
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30223-1797, USA
| | - Rayane Rafei
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Ahmad Shahin
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Pierre Edouard Fournier
- Institut de Recherche pour le Développement (IRD), Microbes, Evolution, Phylogénie et Infection (MEPHI), Faculté de Médecine et de Pharmacie, Aix Marseille Université, 13005 Marseille, France
| | - Jean-Marc Rolain
- Institut de Recherche pour le Développement (IRD), Microbes, Evolution, Phylogénie et Infection (MEPHI), Faculté de Médecine et de Pharmacie, Aix Marseille Université, 13005 Marseille, France
| | - Monzer Hamze
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| |
Collapse
|
73
|
Domínguez-Maqueda M, Pérez-Gómez O, Grande-Pérez A, Esteve C, Seoane P, Tapia-Paniagua ST, Balebona MC, Moriñigo MA. Pathogenic strains of Shewanella putrefaciens contain plasmids that are absent in the probiotic strain Pdp11. PeerJ 2022; 10:e14248. [PMID: 36312754 PMCID: PMC9610664 DOI: 10.7717/peerj.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Shewanella putrefaciens Pdp11 is a strain described as a probiotic for use in aquaculture. However, S. putrefaciens includes strains reported to be pathogenic or saprophytic to fish. Although the probiotic trait has been related to the presence of a group of genes in its genome, the existence of plasmids that could determine the probiotic or pathogenic character of this bacterium is unknown. In the present work, we searched for plasmids in several strains of S. putrefaciens that differ in their pathogenic and probiotic character. Under the different conditions tested, plasmids were only found in two of the five pathogenic strains, but not in the probiotic strain nor in the two saprophytic strains tested. Using a workflow integrating Sanger and Illumina reads, the complete consensus sequences of the plasmids were obtained. Plasmids differed in one ORF and encoded a putative replication initiator protein of the repB family, as well as proteins related to plasmid stability and a toxin-antitoxin system. Phylogenetic analysis showed some similarity to functional repB proteins of other Shewanella species. The implication of these plasmids in the probiotic or pathogenic nature of S. putrefaciens is discussed.
Collapse
Affiliation(s)
| | | | - Ana Grande-Pérez
- Área de Genética, Universidad de Málaga, Málaga, Spain,Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Consuelo Esteve
- Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Pedro Seoane
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Madrid, Spain,Departmento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | | |
Collapse
|
74
|
Wu D, Luo R, Gong G, Zhang L, Huang J, Cai C, Li Y, Irshad I, Song R, Suolang S. Antimicrobial susceptibility and multilocus sequence typing of Clostridium perfringens isolated from yaks in Qinghai-Tibet plateau, China. Front Vet Sci 2022; 9:1022215. [DOI: 10.3389/fvets.2022.1022215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens (C. perfringens) is an opportunistic pathogen that cause necrotic enteritis, food poisoning and even death in animals. In this study, we explored the prevalence, antibiotic resistance and genetic diversity of Clostridium perfringens isolated from yak in the Qinghai-Tibet plateau, China. A total of 744 yak fecal samples were collected and assessed for toxin genes, antimicrobial susceptibility and multilocus sequence typing (MLST). Results indicated that 144 out of 744 (19.35%) yak fecal samples were tested to be positive for C. perfringens, 75% (n = 108, 108/144) were C. perfringens type A, 17.36% (n = 25, 25/144) were C. perfringens type C, 2.78% (n = 4, 4/144) were C. perfringens type D, and 4.86% (n = 7, 7/144) were C. perfringens type F. In addition, 2.78% (n = 4, 4/144) of the isolates were positive for cpb2 toxin gene. Antimicrobial susceptibility testing revealed that 98.61% (142/144) of the isolates showed multiple-antibiotic resistance. According to MLST and phylogenetic tree, 144 yak-derived C. perfringens isolates had an average of 12.95 alleles and could be divided into 89 sequence types (STs) and clustered in 11 clonal complexes (CCs). The most of isolates belong to type A with a considerable genetic diversity, having Simpson index up to 0.9754. MLST and phylogenetic analysis showed that the isolates under the same clade came from multiple regions. Cross-transmission among isolates and interconnectedness were observed in the genetic evolution. According to the study, the most of the isolates exhibited broad-spectrum antibacterial resistance, diverse alleles, and multiple lethal toxin genes of C. perfringens.
Collapse
|
75
|
Zhang R, Yang T, Zhang Q, Liu D, Elhadidy M, Ding T. Whole-genome sequencing: a perspective on sensing bacterial risk for food safety. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
76
|
Meagher KM, Watson S, Suh GA, Virk A. The New Precision Stewards? J Pers Med 2022; 12:jpm12081308. [PMID: 36013256 PMCID: PMC9409858 DOI: 10.3390/jpm12081308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
The precision health era is likely to reduce and respond to antimicrobial resistance (AMR). Our stewardship and precision efforts share terminology, seeking to deliver the “right drug, at the right dose, at the right time.” Already, rapid diagnostic testing, phylogenetic surveillance, and real-time outbreak response provide just a few examples of molecular advances we dub “precision stewardship.” However, the AMR causal factors range from the molecular to that of global health policy. Mirroring the cross-sectoral nature of AMR science, the research addressing the ethical, legal and social implications (ELSI) of AMR ranges across academic scholarship. As the rise of AMR is accompanied by an escalating sense of its moral and social significance, what is needed is a parallel field of study. In this paper, we offer a gap analysis of this terrain, or an agenda for “the ELSI of precision stewardship.” In the first section, we discuss the accomplishments of a multi-decade U.S. national investment in ELSI research attending to the advances in human genetics. In the next section, we provide an overview of distinct ELSI topics pertinent to AMR. The distinctiveness of an ELSI agenda for precision stewardship suggests new opportunities for collaboration to build the stewardship teams of the future.
Collapse
Affiliation(s)
- Karen M. Meagher
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-293-9528
| | - Sara Watson
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina A. Suh
- Division of Public Health, Infectious Disease, and Occupational Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Abinash Virk
- Division of Public Health, Infectious Disease, and Occupational Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
77
|
Lowe M, Singh-Moodley A, Ismail H, Thomas T, Chibabhai V, Nana T, Lowman W, Ismail A, Chan WY, Perovic O. Molecular characterisation of Acinetobacter baumannii isolates from bloodstream infections in a tertiary-level hospital in South Africa. Front Microbiol 2022; 13:863129. [PMID: 35992699 PMCID: PMC9391000 DOI: 10.3389/fmicb.2022.863129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/14/2022] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen and causes various infections in patients. This study aimed to describe the clinical, epidemiological and molecular characteristics of A. baumannii isolated from BCs in patients at a tertiary-level hospital in South Africa. Ninety-six isolates from bloodstream infections were collected. Clinical characteristics of patients were recorded from patient files. Organism identification and AST was performed using automated systems. PCR screening for the mcr-1 to mcr-5 genes was done. To infer genetic relatedness, a dendrogram was constructed using MALDI-TOF MS. All colistin-resistant isolates (n = 9) were selected for WGS. The patients were divided into three groups, infants (<1 year; n = 54), paediatrics (1–18 years; n = 6) and adults (≥19 years; n = 36) with a median age of 13 days, 1 and 41 years respectively. Of the 96 A. baumannii bacteraemia cases, 96.9% (93/96) were healthcare-associated. The crude mortality rate at 30 days was 52.2% (48/92). The majority of the isolates were multidrug-resistant (MDR). All isolates were PCR-negative for the mcr-1 to mcr-5 genes. The majority of the isolates belonged to cluster 1 (62/96) according to the MALDI-TOF MS dendrogram. Colistin resistance was confirmed in nine A. baumannii isolates (9.4%). The colistin-resistant isolates belonged to sequence type (ST) 1 (5/6) and ST2 (1/6). The majority of ST1 isolates showed low SNP diversity (≤4 SNPs). All the colistin-resistant isolates were resistant to carbapenems, exhibited an XDR phenotype and harboured the blaOXA–23 gene. The blaNDM gene was only detected in ST1 colistin-resistant isolates (n = 5). The lpsB gene was detected in all colistin-resistant isolates as well as various efflux pump genes belonging to the RND, the MFS and the SMR families. The lipooligosaccharide OCL1 was detected in all colistin-resistant ST1 and ST2 isolates and the capsular polysaccharide KL3 and KL17 were detected in ST2 and ST1 respectively. This study demonstrated a 9.4% prevalence of colistin-resistant ST1 and ST2 A. baumannii in BC isolates. The detection of the lpsB gene indicates a potential threat and requires close prospective monitoring.
Collapse
Affiliation(s)
- Michelle Lowe
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
- *Correspondence: Michelle Lowe,
| | - Ashika Singh-Moodley
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| | - Husna Ismail
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Teena Thomas
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
- Infection Control Services Laboratory, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| | - Vindana Chibabhai
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
- Microbiology Laboratory, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| | - Trusha Nana
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
- Microbiology Laboratory, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| | - Warren Lowman
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
- Pathcare/Vermaak Pathologists, Johannesburg, South Africa
- Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Arshad Ismail
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Wai Yin Chan
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Olga Perovic
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
78
|
López-Hernández I, López-Cerero L, Fernández-Cuenca F, Pascual Á. The role of the microbiology laboratory in the diagnosis of multidrug-resistant Gram-negative bacilli infections. The importance of the determination of resistance mechanisms. Med Intensiva 2022; 46:455-464. [PMID: 35643635 DOI: 10.1016/j.medine.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 06/15/2023]
Abstract
Early diagnosis and treatment has an important impact on the morbidity and mortality of infections caused by multidrug-resistant bacteria. Multidrug-resistant gram-negative bacilli (MR-GNB) constitute the main current threat in hospitals and especially in intensive care units (ICU). The role of the microbiology laboratory is essential in providing a rapid and effective response. This review updates the microbiology laboratory procedures for the rapid detection of BGN-MR and its resistance determinants. The role of the laboratory in the surveillance and control of outbreaks caused by these bacteria, including typing techniques, is also studied. The importance of providing standardized resistance maps that allow knowing the epidemiological situation of the different units is emphasized. Finally, the importance of effective communication systems for the transmission of results and decision making in the management of patients infected by BGN-MR is reviewed.
Collapse
Affiliation(s)
- I López-Hernández
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - L López-Cerero
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - F Fernández-Cuenca
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | - Á Pascual
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
79
|
Costa SP, Nogueira CL, Cunha AP, Lisac A, Carvalho CM. Potential of bacteriophage proteins as recognition molecules for pathogen detection. Crit Rev Biotechnol 2022:1-18. [PMID: 35848817 DOI: 10.1080/07388551.2022.2071671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial pathogens are leading causes of infections with high mortality worldwide having a great impact on healthcare systems and the food industry. Gold standard methods for bacterial detection mainly rely on culture-based technologies and biochemical tests which are laborious and time-consuming. Regardless of several developments in existing methods, the goal of achieving high sensitivity and specificity, as well as a low detection limit, remains unaccomplished. In past years, various biorecognition elements, such as antibodies, enzymes, aptamers, or nucleic acids, have been widely used, being crucial for the pathogens detection in different complex matrices. However, these molecules are usually associated with high detection limits, demand laborious and costly production, and usually present cross-reactivity. (Bacterio)phage-encoded proteins, especially the receptor binding proteins (RBPs) and cell-wall binding domains (CBDs) of endolysins, are responsible for the phage binding to the bacterial surface receptors in different stages of the phage lytic cycle. Due to their remarkable properties, such as high specificity, sensitivity, stability, and ability to be easily engineered, they are appointed as excellent candidates to replace conventional recognition molecules, thereby contributing to the improvement of the detection methods. Moreover, they offer several possibilities of application in a variety of detection systems, such as magnetic, optical, and electrochemical. Herein we provide a review of phage-derived bacterial binding proteins, namely the RBPs and CBDs, with the prospect to be employed as recognition elements for bacteria. Moreover, we summarize and discuss the various existing methods based on these proteins for the detection of nosocomial and foodborne pathogens.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Catarina L Nogueira
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Alexandra P Cunha
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Ana Lisac
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
80
|
Zhang J, Liu J, Chen C, Wang Y, Chen X, Li X, Xu F. Resistance and Pathogenicity of Salmonella Thompson Isolated from Incubation End of a Poultry Farm. Vet Sci 2022; 9:vetsci9070349. [PMID: 35878365 PMCID: PMC9323645 DOI: 10.3390/vetsci9070349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Non-typhoid Salmonella is the general term of Salmonella other than typhoid and paratyphoid, which often causes foodborne gastroenteritis in humans, but some serotypes have been proved to be pathogenic to poultry. Salmonella Enterica and Salmonella Typhimurium are the common serotypes pathogenic to poultry and have been systematically studied, but other serotypes have rarely been studied. During Salmonella surveillance in farms, we discovered by chance that Salmonella Thompson, a common non-typhoid Salmonella, is also pathogenic to avian embryos. Therefore, this study aimed to explore antimicrobial resistance and pathogenicity of clinical S. Thompson. Firstly, we found that the core-genome multilocus sequence typing of 14 clinical S. Thompson was consistent with two strains of S. Thompson from humans in China. Secondly, the antimicrobial resistance gene analysis demonstrated that all strains carried the polymyxin resistance gene mcr-9, which had not appeared resistance phenotype. Meanwhile, many essential virulence genes were also found in each S. Thompson isolate. Finally, the bacterial inoculation experiment revealed that clinical S. Thompson was highly pathogenic to newborn chicks after yolk sac inoculation. This study suggests that Salmonella Thompson can circulate between humans and poultry farms and transmit drug resistance genes and demonstrated that Salmonella Thompson is highly pathogenic to chicks and should be guarded against in the hatching stage of poultry farms. Abstract Salmonella Thompson, an important foodborne pathogen, is rarely found to be pathogenic to poultry. Accidentally, S. Thompson was found to be pathogenic to embryos of white feather broiler at a poultry farm in China. Therefore, this study aimed to explore antimicrobial resistance and pathogenicity of clinical S. Thompson isolated from dead poultry embryos. The phylogenetic tree based on 16S rRNA and seven housekeeping genes showed that the 14 clinical S. Thompson were closely related. The core-genome multilocus sequence typing of 14 clinical S. Thompson based on whole-genome sequencing was cgST-12774, consistent with the only two strains of S. Thompson from humans in China as reported in the NCBI database. The antimicrobial resistance gene analysis demonstrated that all strains carried aac(6′)-Iaa and the polymyxin resistance gene mcr-9. Antimicrobial sensitivity tests for 18 antibiotics showed that S. Thompson isolates displayed resistance against streptomycin (100%), ampicillin (35.7%), and doxycycline (14.3%), but sensitivity to polymyxin B, proving that the mcr-9 gene had not appeared resistance phenotype. Virulence genes Salmonella pathogenicity island (SPI) SPI1-5, type I fimbriae gene (fimA), flagellar assembly genes (bcfC, flhD, fliA, fliC, fljB, flgK, and lpfC), and other virulence genes (iroN, pagC, and cigR) were found in each S. Thompson isolate. Additionally, the bacterial inoculation experiment with 1-day-old chicks revealed that clinical S. Thompson was highly pathogenic to newborn chicks after yolk sac inoculation. This study highlighted that the S. Thompson isolated from poultry embryos and the S. Thompson causing human foodborne diarrhea in some parts of China belong to the same cgMLST typology (cgST-12774) and showed the pathogenicity of this clinical S. Thompson to chicks.
Collapse
|
81
|
Priyamvada P, Debroy R, Anbarasu A, Ramaiah S. A comprehensive review on genomics, systems biology and structural biology approaches for combating antimicrobial resistance in ESKAPE pathogens: computational tools and recent advancements. World J Microbiol Biotechnol 2022; 38:153. [PMID: 35788443 DOI: 10.1007/s11274-022-03343-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022]
Abstract
In recent decades, antimicrobial resistance has been augmented as a global concern to public health owing to the global spread of multidrug-resistant strains from different ESKAPE pathogens. This alarming trend and the lack of new antibiotics with novel modes of action in the pipeline necessitate the development of non-antibiotic ways to treat illnesses caused by these isolates. In molecular biology, computational approaches have become crucial tools, particularly in one of the most challenging areas of multidrug resistance. The rapid advancements in bioinformatics have led to a plethora of computational approaches involving genomics, systems biology, and structural biology currently gaining momentum among molecular biologists since they can be useful and provide valuable information on the complex mechanisms of AMR research in ESKAPE pathogens. These computational approaches would be helpful in elucidating the AMR mechanisms, identifying important hub genes/proteins, and their promising targets together with their interactions with important drug targets, which is a crucial step in drug discovery. Therefore, the present review aims to provide holistic information on currently employed bioinformatic tools and their application in the discovery of multifunctional novel therapeutic drugs to combat the current problem of AMR in ESKAPE pathogens. The review also summarizes the recent advancement in the AMR research in ESKAPE pathogens utilizing the in silico approaches.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Bio-Sciences, SBST, VIT, 632014, Vellore, India
| | - Reetika Debroy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Bio-Medical Sciences, SBST, VIT, 632014, Vellore, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Biotechnology, SBST, VIT, 632014, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India. .,Department of Bio-Sciences, SBST, VIT, 632014, Vellore, India. .,School of Biosciences and Technology VIT, 632014, Vellore, Tamil Nadu, India.
| |
Collapse
|
82
|
Ba X, Raisen CL, Zhou ZC, Harrison EM, Peacock SJ, Holmes MA. Simultaneously screening for methicillin-resistant Staphylococcus aureus and its susceptibility to potentiated penicillins. J Med Microbiol 2022; 71. [PMID: 35867942 DOI: 10.1099/jmm.0.001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. We recently revealed that a significant proportion of clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates are susceptible to pencillins and clavulanic acid (potentiated penicillins), including widely available combinations such as co-amoxiclav. These isolates also showed increased susceptibility to oxacillin on Iso-Sensitest Agar (ISA).Hypothesis/Gap Statement. The increased susceptibility to oxacillin displayed on ISA by these MRSA isolates may be used to distinguish them from the resistant ones.Aim. We aimed to develop a method to simultaneously screen a S. aureus clinical isolate for its susceptibility to methicillin and potentiated penicillins.Methodology. A double-disc diffusion method using 10 µg cefoxitin and 1 µg oxacillin discs on ISA was developed and tested against a panel of 120 whole genome-sequenced MRSA isolates. The sensitivity of the method was compared with that of previously published genotypic and phenotypic methods. In addition, double-disc diffusion was performed for all isolates on Müller-Hinton agar (MHA) following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) protocol.Results. All isolates (120/120) were reconfirmed to be phenotypically MRSA, as indicated by the result of cefoxitin disc diffusion testing. All isolates (40/40) that had a pencillins and clavulanic acid (Pen-Clav)-resistant genotype were not inhibited by oxacillin, while 77/80 (96.3 %) isolates that had a Pen-Clav-susceptible genotype were inhibited by oxacillin on ISA. The results also showed that the EUCAST method using MHA correctly identified all isolates as MRSA but failed to distinguish the Pen-Clav-susceptible isolates from the Pen-Clav-resistant isolates.Conclusions. This double-disc diffusion method using ISA could be used to accurately screen for clinical MRSA isolates and determine their susceptibility to Pen-Clav simultaneously, rapidly identifying MRSA infections that might be suitable for treatment with potentiated penicillins.
Collapse
Affiliation(s)
- Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Claire L Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Zhen-Chao Zhou
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Institute of Environmental Technology College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ewan M Harrison
- Wellcome Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
83
|
Genomic Diversity of Hospital-Acquired Infections Revealed through Prospective Whole-Genome Sequencing-Based Surveillance. mSystems 2022; 7:e0138421. [PMID: 35695507 PMCID: PMC9238379 DOI: 10.1128/msystems.01384-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Healthcare-associated infections (HAIs) cause mortality, morbidity, and waste of health care resources. HAIs are also an important driver of antimicrobial resistance, which is increasing around the world. Beginning in November 2016, we instituted an initiative to detect outbreaks of HAIs using prospective whole-genome sequencing-based surveillance of bacterial pathogens collected from hospitalized patients. Here, we describe the diversity of bacteria sampled from hospitalized patients at a single center, as revealed through systematic analysis of bacterial isolate genomes. We sequenced the genomes of 3,004 bacterial isolates from hospitalized patients collected over a 25-month period. We identified bacteria belonging to 97 distinct species, which were distributed among 14 groups of related species. Within these groups, isolates could be distinguished from one another by both average nucleotide identity (ANI) and principal-component analysis of accessory genes (PCA-A). Core genome genetic distances and rates of evolution varied among species, which has practical implications for defining shared ancestry during outbreaks and for our broader understanding of the origins of bacterial strains and species. Finally, antimicrobial resistance genes and putative mobile genetic elements were frequently observed, and our systematic analysis revealed patterns of occurrence across the different species sampled from our hospital. Overall, this study shows how understanding the population structure of diverse pathogens circulating in a single health care setting can improve the discriminatory power of genomic epidemiology studies and can help define the processes leading to strain and species differentiation. IMPORTANCE Hospitalized patients are at increased risk of becoming infected with antibiotic-resistant organisms. We used whole-genome sequencing to survey and compare over 3,000 clinical bacterial isolates collected from hospitalized patients at a large medical center over a 2-year period. We identified nearly 100 different bacterial species, which we divided into 14 different groups of related species. When we examined how genetic relatedness differed between species, we found that different species were likely evolving at different rates within our hospital. This is significant because the identification of bacterial outbreaks in the hospital currently relies on genetic similarity cutoffs, which are often applied uniformly across organisms. Finally, we found that antibiotic resistance genes and mobile genetic elements were abundant and were shared among the bacterial isolates we sampled. Overall, this study provides an in-depth view of the genomic diversity and evolutionary processes of bacteria sampled from hospitalized patients, as well as genetic similarity estimates that can inform hospital outbreak detection and prevention efforts.
Collapse
|
84
|
Girolamini L, Pascale MR, Mazzotta M, Spiteri S, Marino F, Salaris S, Grottola A, Orsini M, Cristino S. Combining Traditional and Molecular Techniques Supports the Discovery of a Novel Legionella Species During Environmental Surveillance in a Healthcare Facility. Front Microbiol 2022; 13:900936. [PMID: 35770167 PMCID: PMC9234573 DOI: 10.3389/fmicb.2022.900936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Legionella surveillance plays a significant role not only to prevent the risk of infection but also to study the ecology of isolates, their characteristics, and how their prevalence changes in the environment. The difficulty in Legionella isolation, identification, and typing results in a low notification rate; therefore, human infection is still underestimated. In addition, during Legionella surveillance, the special attention given to Legionella pneumophila leads to an underestimation of the prevalence and risk of infection for other species. This study describes the workflow performed during environmental Legionella surveillance that resulted in the isolation of two strains, named 8cVS16 and 9fVS26, associated with the genus Legionella. Traditional and novel approaches such as standard culture technique, MALDI-TOF MS, gene sequencing, and whole-genome sequencing (WGS) analysis were combined to demonstrate that isolates belong to a novel species. The strain characteristics, the differences between macrophage infectivity potential (mip), RNA polymerase β subunit (rpoB), and reference gene sequences, the average nucleotide identity (ANI) of 90.4%, and the DNA–DNA digital hybridization (dDDH) analysis of 43% demonstrate that these isolates belong to a new Legionella species. The finding suggests that, during the culture technique, special attention should be paid to the characteristics of the isolates that are less associated with the Legionella genus in order to investigate the differences found using more sensitive methods. The characterization of the two newly discovered isolates based on morphological, biochemical, and microscopic characteristics is currently underway and will be described in another future study.
Collapse
Affiliation(s)
- Luna Girolamini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - Maria Rosaria Pascale
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Bologna, Italy
| | - Marta Mazzotta
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Simona Spiteri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Federica Marino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Silvano Salaris
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Antonella Grottola
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Legionella Infections (ESGLI), Basel, Switzerland
- Regional Reference Laboratory for Clinical Diagnosis of Legionellosis, Molecular Microbiology and Virology Unit, University Hospital-Policlinico Modena, Modena, Italy
| | - Massimiliano Orsini
- Laboratory of Microbial Ecology and Genomics of Microorganisms, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Sandra Cristino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Legionella Infections (ESGLI), Basel, Switzerland
- *Correspondence: Sandra Cristino
| |
Collapse
|
85
|
Oslan SNH, Yusoff AH, Mazlan M, Lim SJ, Khoo JJ, Oslan SN, Ismail A. Comprehensive approaches for the detection of Burkholderia pseudomallei and diagnosis of melioidosis in human and environmental samples. Microb Pathog 2022; 169:105637. [PMID: 35710088 DOI: 10.1016/j.micpath.2022.105637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly. It is intrinsically resistant to a variety of antibiotics. In this paper, we present a comprehensive overview of the current trends on melioidosis cases, treatments, B. pseudomallei virulence factors, and molecular techniques to detect the bacterium from different samples. The clinical and microbial diagnosis methods of identification and detection of B. pseudomallei are commonly used for the rapid diagnosis and typing of strains, such as polymerase chain reaction or multi-locus sequence typing. The genotyping strategies and techniques have been constantly evolving to identify genomic loci linked to or associated with this human disease. More research strategies for detecting and controlling melioidosis should be encouraged and conducted to understand the current situation. In conclusion, we review existing diagnostic methodologies for melioidosis detection and provide insights on prospective diagnostic methods for the bacterium.
Collapse
Affiliation(s)
- Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Abdul Hafidz Yusoff
- Gold Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Kelantan, Malaysia.
| | - Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Si Jie Lim
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jing Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), High Impact Research Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Aziah Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
86
|
Myintzaw P, Pennone V, McAuliffe O, Begley M, Callanan M. Correlation of organic acid tolerance and genotypic characteristics of Listeria monocytogenes food and clinical isolates. Food Microbiol 2022; 104:104004. [DOI: 10.1016/j.fm.2022.104004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
|
87
|
Assembly and Comparison of Ca. Neoehrlichia mikurensis Genomes. Microorganisms 2022; 10:microorganisms10061134. [PMID: 35744652 PMCID: PMC9227406 DOI: 10.3390/microorganisms10061134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ca. Neoehrlichia mikurensis is widely prevalent in I. ricinus across Europe and has been associated with human disease. However, diagnostic modalities are limited, and much is still unknown about its biology. Here, we present the first complete Ca. Neoehrlichia mikurensis genomes directly derived from wildlife reservoir host tissues, using both long- and short-read sequencing technologies. This pragmatic approach provides an alternative to obtaining sufficient material from clinical cases, a difficult task for emerging infectious diseases, and to expensive and challenging bacterial isolation and culture methods. Both genomes exhibit a larger chromosome than the currently available Ca. Neoehrlichia mikurensis genomes and expand the ability to find new targets for the development of supportive laboratory diagnostics in the future. Moreover, this method could be utilized for other tick-borne pathogens that are difficult to culture.
Collapse
|
88
|
Systems biology approach to functionally assess the Clostridioides difficile pangenome reveals genetic diversity with discriminatory power. Proc Natl Acad Sci U S A 2022; 119:e2119396119. [PMID: 35476524 PMCID: PMC9170149 DOI: 10.1073/pnas.2119396119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceClostridioides difficile infections are the most common source of hospital-acquired infections and are responsible for an extensive burden on the health care system. Strains of the C. difficile species comprise diverse lineages and demonstrate genome variability, with advantageous trait acquisition driving the emergence of endemic lineages. Here, we present a systems biology analysis of C. difficile that evaluates strain-specific genotypes and phenotypes to investigate the overall diversity of the species. We develop a strain typing method based on similarity of accessory genomes to identify and contextualize genetic loci capable of discriminating between strain groups.
Collapse
|
89
|
Roy S, Nag S, Saini A, Choudhury L. Association of human gut microbiota with rare diseases: A close peep through. Intractable Rare Dis Res 2022; 11:52-62. [PMID: 35702576 PMCID: PMC9161125 DOI: 10.5582/irdr.2022.01025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/05/2022] Open
Abstract
The human body harbors approximately 1014 cells belonging to a diverse group of microorganisms. Bacteria outnumbers protozoa, fungi and viruses inhabiting our gastrointestinal tract (GIT), commonly referred to as the "human gut microbiome". Dysbiosis occurs when the balanced relationship between the host and the gut microbiota is disrupted, altering the usual microbial population there. This increases the susceptibility of the host to pathogens, and chances of its morbidity. It is due to the fact that the gut microbiome plays an important role in human health; it influences the progression of conditions varying from colorectal cancer to GIT disorders linked with the nervous system, autoimmunity, metabolism and inheritance. A rare disease is a lethal and persistent condition affecting 2-3 people per 5,000 populaces. This review article intends to discuss such rare neurological, autoimmune, cardio-metabolic and genetic disorders of man, focusing on the fundamental mechanism that links them with their gut microbiome. Ten rare diseases, including Pediatric Crohn's disease (PCD), Lichen planus (LP), Hypophosphatasia (HPP), Discitis, Cogan's syndrome, Chancroid disease, Sennetsu fever, Acute cholecystitis (AC), Grave's disease (GD) and Tropical sprue (TS) stands to highlight as key examples, along with personalized therapeutics meant for them. This medicinal approach addresses the individual's genetic and genomic pathography, and tackles the illness with specific and effective treatments.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tamil Nadu, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), New Delhi, India
| | - Lopamudra Choudhury
- Department of Microbiology, Sarsuna College (under Calcutta University), Kolkata, India
| |
Collapse
|
90
|
Liu Y, Jeraldo P, Herbert W, McDonough S, Eckloff B, Schulze-Makuch D, de Vera JP, Cockell C, Leya T, Baqué M, Jen J, Walther-Antonio M. Whole genome sequencing of cyanobacterium Nostoc sp. CCCryo 231-06 using microfluidic single cell technology. iScience 2022; 25:104291. [PMID: 35573199 PMCID: PMC9095746 DOI: 10.1016/j.isci.2022.104291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
The Nostoc sp. strain CCCryo 231-06 is a cyanobacterial strain capable of surviving under extreme conditions and thus is of great interest for the astrobiology community. The knowledge of its complete genome sequence would serve as a guide for further studies. However, a major concern has been placed on the effects of contamination on the quality of sequencing data without a reference genome. Here, we report the use of microfluidic technology combined with single cell sequencing and de novo assembly to minimize the contamination and recover the complete genome of the Nostoc strain CCCryo 231-06 with high quality. 100% of the whole genome was recovered with all contaminants removed and a strongly supported phylogenetic tree. The data reported can be useful for comparative genomics for phylogenetic and taxonomic studies. The method used in this work can be applied to studies that require high-quality assemblies of genomes of unknown microorganisms. This work uses a microfluidic platform for Nostoc single cell sequencing This technology provides minimal contamination in single cell sequencing Complete genome of the Nostoc strain CCCryo 231-06 was recovered with high quality
Collapse
|
91
|
van der Putten BCL, Huijsmans NAH, Mende DR, Schultsz C. Benchmarking the topological accuracy of bacterial phylogenomic workflows using in silico evolution. Microb Genom 2022; 8. [PMID: 35290758 PMCID: PMC9176278 DOI: 10.1099/mgen.0.000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic analyses are widely used in microbiological research, for example to trace the progression of bacterial outbreaks based on whole-genome sequencing data. In practice, multiple analysis steps such as de novo assembly, alignment and phylogenetic inference are combined to form phylogenetic workflows. Comprehensive benchmarking of the accuracy of complete phylogenetic workflows is lacking. To benchmark different phylogenetic workflows, we simulated bacterial evolution under a wide range of evolutionary models, varying the relative rates of substitution, insertion, deletion, gene duplication, gene loss and lateral gene transfer events. The generated datasets corresponded to a genetic diversity usually observed within bacterial species (≥95 % average nucleotide identity). We replicated each simulation three times to assess replicability. In total, we benchmarked 19 distinct phylogenetic workflows using 8 different simulated datasets. We found that recently developed k-mer alignment methods such as kSNP and ska achieve similar accuracy as reference mapping. The high accuracy of k-mer alignment methods can be explained by the large fractions of genomes these methods can align, relative to other approaches. We also found that the choice of de novo assembly algorithm influences the accuracy of phylogenetic reconstruction, with workflows employing SPAdes or skesa outperforming those employing Velvet. Finally, we found that the results of phylogenetic benchmarking are highly variable between replicates. We conclude that for phylogenomic reconstruction, k-mer alignment methods are relevant alternatives to reference mapping at the species level, especially in the absence of suitable reference genomes. We show de novo genome assembly accuracy to be an underappreciated parameter required for accurate phylogenomic reconstruction.
Collapse
Affiliation(s)
- Boas C L van der Putten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Niek A H Huijsmans
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel R Mende
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Constance Schultsz
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
92
|
Li K, Zhu Q, Jiang F, Li H, Liu J, Yu T, Du Y, Yang L, He Z, Hu S. Monitoring microbial communities in intensive care units over one year in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152353. [PMID: 34914984 DOI: 10.1016/j.scitotenv.2021.152353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Healthcare-associated infections (HAIs) seriously threaten patient health in intensive care units (ICUs). Profiling the microbial composition and diversity in ICU is important to prevent HAI-related spreading. Given that microbial communities vary across different environments, the time-scale characteristics of pathogens in ICUs have not been explored in China. In our study, to study the bacterial communities of two different ICUs in China, we proceeded dynamic monitoring using 16S rRNA sequencing for a whole year among the bed sheets, bed rails, shared pulse oximeters, bedside lockers, nurses' hands, floor, and carts. Our results showed that the microbial composition significantly changed within months. Significant differences in alpha and beta diversities were also observed among the 12 sampling months in each ICU. Additionally, we found the persistence of several HAI-related bacteria, including Acinetobacter, Pseudomonas, Staphylococcus, Escherichia, and Enterococcus. Source tracking analysis showed that most bacteria in both ICUs came from buildings or human skin. With deep investigations of hospital microbial surveillance on a long-term time-scale, we hope that these results will provide constructive guidelines to prevent the spread of HAIs in ICUs.
Collapse
Affiliation(s)
- Kexin Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qianhui Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fan Jiang
- The Fourth People's Hospital of Sichuan Province, Chengdu, China
| | - Huixia Li
- The Fourth People's Hospital of Sichuan Province, Chengdu, China
| | - Jingying Liu
- The Fourth People's Hospital of Sichuan Province, Chengdu, China
| | - Tao Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yiyang Du
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Li Yang
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang, China.
| | - Zilong He
- School of Engineering Medicine, Beihang University, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
93
|
Rebelo AR, Ibfelt T, Bortolaia V, Leekitcharoenphon P, Hansen DS, Nielsen HL, Ellermann-Eriksen S, Kemp M, Røder BL, Frimodt-Møller N, Søndergaard TS, Coia JE, Østergaard C, Pedersen M, Westh H, Aarestrup FM. One Day in Denmark: Nationwide point-prevalence survey of human bacterial isolates and comparison of classical and whole-genome sequence-based species identification methods. PLoS One 2022; 17:e0261999. [PMID: 35148318 PMCID: PMC8836320 DOI: 10.1371/journal.pone.0261999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives Implementing whole-genome sequencing (WGS) technologies in clinical microbiology laboratories can increase the amount and quality of information available for healthcare practitioners. In this study, we analysed the applicability of this method and determined the distribution of bacterial species processed in clinical settings in Denmark. Methods We performed a point-prevalence study of all bacterial isolates (n = 2,009) processed and reported in the Clinical Microbiology Laboratories in Denmark in one day in January 2018. We compared species identification as performed by classical methods (MALDI-TOF) and by bioinformatics analysis (KmerFinder and rMLST) of WGS (Illumina NextSeq) data. We compared the national point-prevalence of bacterial isolates observed in clinical settings with the research attention given to those same genera in scientific literature. Results The most prevalent bacterium was Escherichia coli isolated from urine (n = 646), followed by Staphylococcus spp. from skin or soft tissues (n = 197). The distribution of bacterial species throughout the country was not homogeneous. We observed concordance of species identification for all methods in 95.7% (n = 1,919) of isolates, furthermore obtaining concordance for 99.7% (n = 1,999) at genus level. The number of scientific publications in the country did not correlate with the number of bacterial isolates of each genera analysed in this study. Conclusions WGS technologies have the potential to be applied in clinical settings for routine diagnostics purposes. This study also showed that bioinformatics databases should be continuously improved and results from local point-prevalence surveys should not be applied at national levels without previously determining possible regional variations.
Collapse
Affiliation(s)
- Ana Rita Rebelo
- Technical University of Denmark, National Food Institute, Kongens Lyngby, Denmark
- * E-mail:
| | - Tobias Ibfelt
- Hvidovre Hospital, Department of Clinical Microbiology, Hvidovre, Denmark
| | - Valeria Bortolaia
- Technical University of Denmark, National Food Institute, Kongens Lyngby, Denmark
| | | | | | - Hans Linde Nielsen
- Aalborg University Hospital, Department of Clinical Microbiology, Aalborg, Denmark
| | | | - Michael Kemp
- Odense University Hospital, Department of Clinical Microbiology, Odense, Denmark
| | - Bent Løwe Røder
- Slagelse Hospital, Department of Clinical Microbiology, Slagelse, Denmark
| | | | | | - John Eugenio Coia
- Sydvestjysk Hospital, Department of Clinical Microbiology, Esbjerg, Denmark
| | - Claus Østergaard
- Vejle Hospital, Department of Clinical Microbiology, Vejle, Denmark
| | - Michael Pedersen
- Hvidovre Hospital, Department of Clinical Microbiology, Hvidovre, Denmark
| | - Henrik Westh
- Hvidovre Hospital, Department of Clinical Microbiology, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
94
|
Dien Bard J, Babady NE. The Successes and Challenges of SARS-CoV-2 Molecular Testing in the United States. Clin Lab Med 2022; 42:147-160. [PMID: 35636819 PMCID: PMC8901381 DOI: 10.1016/j.cll.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS#32, Los Angeles, CA 90027, USA; Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - N Esther Babady
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 327 East 64th Street, CLM-522, NY 10065, USA; Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
95
|
Wang H, Zhang L, Cao L, Zeng X, Gillespie B, Lin J. Isolation and characterization of Escherichia albertii originated from the broiler farms in Mississippi and Alabama. Vet Microbiol 2022; 267:109379. [PMID: 35219009 DOI: 10.1016/j.vetmic.2022.109379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 01/05/2023]
Abstract
Escherichia albertii is an emerging foodborne enteropathogen with increasing outbreaks worldwide, particularly in Japan recently. However, major features of this zoonotic pathogen, such as prevalence, virulence, and antibiotic resistance (AR), still remain under characterized. In a recent pilot study, we reported isolation of E. albertii from a chicken farm in Tennessee, suggesting chicken is an important reservoir for E. albertii. In this large-scale study, we examined prevalence of E. albertii in 9 farms in Mississippi and Alabama. Of a total of 270 cloacal swabs (30 per farm), 43 were PCR positive and 12 E. albertii strains were isolated with different isolation rates in individual farms ranging from 0 to 23.3 %. Both PFGE and whole genome analysis showed the E. albertii from different farms were phylogenetically distant, but those from the same farm displayed clonal relationships. Consistently, the antibiogram, AR gene profiles, and plasmid replicon types were similar across the strains in the same farm. Notably, 9 of the 12 E. albertii strains displayed multidrug resistance; one strain was even resistant to imipenem, a clinically important carbapenem antibiotic. In addition, comparative genomics analysis showed that two chicken E. albertii clusters displayed very close evolutionary relationships and similar virulence gene profiles to human E. albertii strains. In vitro growth assay demonstrated that the anti-enterobactin antibodies could dramatically inhibit the growth of two representative chicken E. albertii, supporting the feasibility of the novel enterobactin-based immune intervention for controlling this emerging pathogen. Taken together, the findings from this study further indicated chickens as an important reservoir for E. albertii in the U.S., highlighting the need to prevent and control E. albertii in poultry production.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Liu Cao
- Department of Animal Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Barbara Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
96
|
Kaewprasert O, Tongsima S, Ong RTH, Faksri K. Optimized analysis parameters of variant calling for whole genome-based phylogeny of Mycobacteroides abscessus. Arch Microbiol 2022; 204:190. [PMID: 35194683 DOI: 10.1007/s00203-022-02792-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Whole-genome sequence (WGS) analysis provides the best resolution for reconstructing bacterial phylogeny. However, the resulting tree could vary according to parameters used in the WGS pipeline, making it difficult to compare results across multiple studies. This study compares effects on phylogenies when applying different parameter stringencies. We used as the study model to optimize parameters strains of Mycobacteroides abscessus serially isolated at various intervals, isolates known to represent persistent infection (PI) cases or re-infection (RI) cases and isolates from different subspecies. Un-optimized parameters with low stringency provided an excessive number of SNPs (823) compared to the optimized setting (3 SNPs) between paired strains isolated 1 day apart from PI cases, discordant tree topology and misclassification of subspecies and of instances of RI. We demonstrated that using high-quality variants provides more accuracy for recognizing serial isolates of the same clone versus different clones and for phylogenetic analysis of M. abscessus. Our approach might be used as a model for analyses requiring phylogenetic reconstruction of other bacteria.
Collapse
Affiliation(s)
- Orawee Kaewprasert
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
- National Center for Genetics Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
97
|
El papel del laboratorio de microbiología en el diagnóstico de infecciones por bacilos gramnegativos multirresistentes. Importancia de la determinación de mecanismos de resistencias. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
98
|
Development of Single Nucleotide Polymorphism (SNP)-Based Triplex PCR Marker for Serotype-Specific Escherichia coli Detection. Pathogens 2022; 11:pathogens11020115. [PMID: 35215059 PMCID: PMC8874422 DOI: 10.3390/pathogens11020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are one of the most common forms of genetic variation and as such are powerful tools for the identification of bacterial strains, their genetic diversity, phylogenetic analysis, and outbreak surveillance. In this study, we used 15 sets of SNP-containing primers to amplify and sequence the target Escherichia coli. Based on the combination of the 15-sequence primer sets, each SNP site encompassing forward and reverse primer sequences (620–919 bp) were aligned and an SNP-based marker was designed. Each SNP marker exists in at least two SNP sites at the 3′ end of each primer; one natural and the other artificially created by transition or transversion mutation. Thus, 12 sets of SNP primers (225–488 bp) were developed for validation by amplifying the target E. coli. Finally, a temperature gradient triplex PCR kit was designed to detect target E. coli strains. The selected primers were amplified in three genes (ileS, thrB, and polB), with fragment sizes of 401, 337, and 232 bp for E. coli O157:H7, E. coli, and E. coli O145:H28, respectively. This allele-specific SNP-based triplex primer assay provides serotype-specific detection of E. coli strains in one reaction tube. The developed marker would be used to diagnose, investigate, and control food-borne E. coli outbreaks.
Collapse
|
99
|
Karanth S, Tanui CK, Meng J, Pradhan AK. Exploring the predictive capability of advanced machine learning in identifying severe disease phenotype in Salmonella enterica. Food Res Int 2022; 151:110817. [PMID: 34980422 DOI: 10.1016/j.foodres.2021.110817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
The past few years have seen a significant increase in availability of whole genome sequencing information, allowing for its incorporation in predictive modeling for foodborne pathogens to account for inter- and intra-species differences in their virulence. However, this is hindered by the inability of traditional statistical methods to analyze such large amounts of data compared to the number of observations/isolates. In this study, we have explored the applicability of machine learning (ML) models to predict the disease outcome, while identifying features that exert a significant effect on the prediction. This study was conducted on Salmonella enterica, a major foodborne pathogen with considerable inter- and intra-serovar variation. WGS of isolates obtained from various sources (i.e., human, chicken, and swine) were used as input in four machine learning models (logistic regression with ridge, random forest, support vector machine, and AdaBoost) to classify isolates based on disease severity (extraintestinal vs. gastrointestinal) in the host. The predictive performances of all models were tested with and without Elastic Net regularization to combat dimensionality issues. Elastic Net-regularized logistic regression model showed the best area under the receiver operating characteristic curve (AUC-ROC; 0.86) and outcome prediction accuracy (0.76). Additionally, genes coding for transcriptional regulation, acidic, oxidative, and anaerobic stress response, and antibiotic resistance were found to be significant predictors of disease severity. These genes, which were significantly associated with each outcome, could possibly be input in amended, gene-expression-specific predictive models to estimate virulence pattern-specific effect of Salmonella and other foodborne pathogens on human health.
Collapse
Affiliation(s)
- Shraddha Karanth
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Collins K Tanui
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA
| | - Jianghong Meng
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA; Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA
| | - Abani K Pradhan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
100
|
Yoon S, Lee YJ. Molecular characteristics of ESBL-producing Escherichia coli isolated from chickens with colibacillosis. J Vet Sci 2022; 23:e37. [PMID: 35332711 PMCID: PMC9149503 DOI: 10.4142/jvs.21105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 12/31/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|