51
|
Testerman TL, Vazquez-Torres A, Xu Y, Jones-Carson J, Libby SJ, Fang FC. The alternative sigma factor sigmaE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol Microbiol 2002; 43:771-82. [PMID: 11929531 DOI: 10.1046/j.1365-2958.2002.02787.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteria must contend with conditions of nutrient limitation in all natural environments. Complex programmes of gene expression, controlled in part by the alternative sigma factors sigmaS (sigma38, RpoS) and sigmaH (sigma32, RpoH), allow a number of bacterial species to survive conditions of partial or complete starvation. We show here that the alternative sigma factor sigmaE (sigma24, RpoE) also facilitates the survival of Salmonella typhimurium under conditions of nutrient deprivation. Expression of the sigmaE regulon is strongly induced upon entry of Salmonella into stationary phase. A Salmonella mutant lacking sigmaE has reduced survival during stationary phase as well as increased susceptibility to oxidative stress. A Salmonella strain lacking both sigmaE and sigmaS is non-viable after just 24 h in stationary phase, but survival of these mutants is completely preserved under anaerobic stationary-phase conditions, suggesting that oxidative injury is one of the major mechanisms of reduced microbial viability during periods of nutrient deprivation. Moreover, the attenuated virulence of sigmaE-deficient Salmonella for mice can be largely restored by genetic abrogation of the host phagocyte respiratory burst, suggesting that the sigmaE regulon plays an important antioxidant role during Salmonella infection of mammalian hosts.
Collapse
Affiliation(s)
- Traci L Testerman
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
52
|
Yorgey P, Rahme LG, Tan MW, Ausubel FM. The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol Microbiol 2001; 41:1063-76. [PMID: 11555287 DOI: 10.1046/j.1365-2958.2001.02580.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We are exploiting the broad host range of the human opportunistic pathogen Pseudomonas aeruginosa strain PA14 to elucidate the molecular basis of bacterial virulence in plants, nematodes, insects and mice. In this report, we characterize the role that two PA14 gene products, MucD and AlgD, play in virulence. MucD is orthologous to the Escherichia coli periplasmic protease and chaperone DegP. DegP homologues are known virulence factors that play a protective role in stress responses in various species. AlgD is an enzyme involved in the biosynthesis of the exopolysaccharide alginate, which is hyperinduced in mucD mutants. A PA14 mucD mutant was significantly impaired in its ability to cause disease in Arabidopsis thaliana and mice and to kill the nematode Caenorhabditis elegans. Moreover, MucD was found to be required for the production of an extracellular toxin involved in C. elegans killing. In contrast, a PA14 algD mutant was not impaired in virulence in plants, nematodes or mice. A mucDalgD double mutant had the same phenotype as the mucD single mutant in the plant and nematode pathogenesis models. However, the mucDalgD double mutant was synergistically reduced in virulence in mice, suggesting that alginate can partially compensate for the loss of MucD function in mouse pathogenesis.
Collapse
Affiliation(s)
- P Yorgey
- Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
53
|
Manganelli R, Voskuil MI, Schoolnik GK, Smith I. The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression and survival in macrophages. Mol Microbiol 2001; 41:423-37. [PMID: 11489128 DOI: 10.1046/j.1365-2958.2001.02525.x] [Citation(s) in RCA: 333] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In previously published work, we identified three Mycobacterium tuberculosis sigma (sigma) factor genes responding to heat shock (sigB, sigE and sigH). Two of them (sigB and sigE) also responded to SDS exposure. As these responses to stress suggested that the sigma factors encoded by these genes could be involved in pathogenicity, we are studying their role in physiology and virulence. In this work, we characterize a sigE mutant of M. tuberculosis H37Rv. The sigE mutant strain was more sensitive than the wild-type strain to heat shock, SDS and various oxidative stresses. It was also defective in the ability to grow inside both human and murine unactivated macrophages and was more sensitive than the wild-type strain to the killing activity of activated murine macrophages. Using microarray technology and quantitative reverse transcription-polymerase chain reaction (RT-PCR), we started to define the sigmaE regulon of M. tuberculosis and its involvement in the global regulation of the stress induced by SDS. We showed the requirement for a functional sigE gene for full expression of sigB and for its induction after SDS exposure but not after heat shock. We also identified several genes that are no longer induced when sigmaE is absent. These genes encode proteins belonging to different classes including transcriptional regulators, enzymes involved in fatty acid degradation and classical heat shock proteins.
Collapse
Affiliation(s)
- R Manganelli
- TB Center, The Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
54
|
Hild E, Takayama K, Olsson RM, Kjelleberg S. Evidence for a role of rpoE in stressed and unstressed cells of marine Vibrio angustum strain S14. J Bacteriol 2000; 182:6964-74. [PMID: 11092857 PMCID: PMC94822 DOI: 10.1128/jb.182.24.6964-6974.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the cloning, sequencing, and characterization of the rpoE homolog in Vibrio angustum S14. The rpoE gene encodes a protein with a predicted molecular mass of 19.4 kDa and has been demonstrated to be present as a single-copy gene by Southern blot analysis. The deduced amino acid sequence of RpoE is most similar to that of the RpoE homolog of Sphingomonas aromaticivorans, sigma(24), displaying sequence similarity and identity of 63 and 43%, respectively. Northern blot analysis demonstrated the induction of rpoE 6, 12, and 40 min after a temperature shift to 40 degrees C. An rpoE mutant was constructed by gene disruption. There was no difference in viability during logarithmic growth, stationary phase, or carbon starvation between the wild type and the rpoE mutant strain. In contrast, survival of the mutant was impaired following heat shock during exponential growth, as well as after oxidative stress at 24 h of carbon starvation. The mutant exhibited microcolony formation during optimal growth temperatures (22 to 30 degrees C), and cell area measurements revealed an increase in cell volume of the mutant during growth at 30 degrees C, compared to the wild-type strain. Moreover, outer membrane and periplasmic space protein analysis demonstrated many alterations in the protein profiles for the mutant during growth and carbon starvation, as well as following oxidative stress, in comparison with the wild-type strain. It is thereby concluded that RpoE has an extracytoplasmic function and mediates a range of specific responses in stressed as well as unstressed cells of V. angustum S14.
Collapse
Affiliation(s)
- E Hild
- School of Microbiology and Immunology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | |
Collapse
|
55
|
Humphreys S, Stevenson A, Bacon A, Weinhardt AB, Roberts M. The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect Immun 1999; 67:1560-8. [PMID: 10084987 PMCID: PMC96497 DOI: 10.1128/iai.67.4.1560-1568.1999] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, extracytoplasmic stress is partially controlled by the alternative sigma factor, RpoE (sigmaE). In response to environmental stress or alteration in the protein content of the cell envelope, sigmaE upregulates the expression of a number of genes, including htrA. It has been shown that htrA is required for intramacrophage survival and virulence in Salmonella typhimurium. To investigate whether sigmaE-regulated genes other than htrA are involved in salmonella virulence, we inactivated the rpoE gene of S. typhimurium SL1344 by allelic exchange and compared the phenotype of the mutant (GVB311) in vitro and in vivo with its parent and an isogenic htrA mutant (BRD915). Unlike E. coli, sigmaE is not required for the growth and survival of S. typhimurium at high temperatures. However, GVB311 did display a defect in its ability to utilize carbon sources other than glucose. GVB311 was more sensitive to hydrogen peroxide, superoxide, and antimicrobial peptides than SL1344 and BRD915. Although able to invade both macrophage and epithelial cell lines normally, the rpoE mutant was defective in its ability to survive and proliferate in both cell lines. The effect of the rpoE mutation on the intracellular behavior of S. typhimurium was greater than that of the htrA mutation. Both GVB311 and BRD915 were highly attenuated in mice. Neither strain was able to kill mice via the oral route, and the 50% lethal dose (LD50) for both strains via the intravenous (i.v.) route was very high. The i.v. LD50s for SL1344, BRD915, and GVB311 were <10, 5.5 x 10(5), and 1.24 x 10(7) CFU, respectively. Growth in murine tissues after oral and i.v. inoculation was impaired for both the htrA and rpoE mutant, with the latter mutant being more severely affected. Neither mutant was able to translocate successfully from the Peyer's patches to other organs after oral infection or to proliferate in the liver and spleen after i.v. inoculation. However, the htrA mutant efficiently colonized the livers and spleens of mice infected i.v., but the rpoE mutant did not. Previous studies have shown that salmonella htrA mutants are excellent live vaccines. In contrast, oral immunization of mice with GVB311 was unable to protect any of the mice from oral challenge with SL1344. Furthermore, i.v. immunization with a large dose ( approximately 10(6) CFU) of GVB311 protected less than half of the orally challenged mice. Thus, our results indicate that genes in the sigmaE regulon other than htrA play a critical role in the virulence and immunogenicity of S. typhimurium.
Collapse
Affiliation(s)
- S Humphreys
- Department of Veterinary Pathology, Glasgow University Veterinary School, Glasgow G61 1QH, United Kingdom
| | | | | | | | | |
Collapse
|
56
|
Ma S, Selvaraj U, Ohman DE, Quarless R, Hassett DJ, Wozniak DJ. Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J Bacteriol 1998; 180:956-68. [PMID: 9473053 PMCID: PMC106978 DOI: 10.1128/jb.180.4.956-968.1998] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Overproduction of the capsular polysaccharide alginate appears to confer a selective advantage for Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The regulators AlgB and AlgR, which are both required as positive activators in alginate overproduction, have homology with the regulator class of two-component environmental responsive proteins which coordinate gene expression through signal transduction mechanisms. Signal transduction in this class of proteins generally occurs via autophosphorylation of the sensor kinase protein and phosphotransfer from the sensor to a conserved aspartate residue, which is present in the amino terminus of the response regulator. Recently, kinB was identified downstream of algB and was shown to encode the cognate histidine protein kinase that efficiently phosphorylates AlgB. However, we show here that a null mutation in kinB in a mucoid cystic fibrosis isolate, P. aeruginosa FRD1, did not block alginate production. The role of the conserved aspartate residue in the phosphorylation of AlgB was examined. The predicted phosphorylation site of AlgB (D59) was mutated to asparagine (N), and a derivative of an AlgB lacking the entire amino-terminal phosphorylation domain (AlgB delta1-145) was constructed. A hexahistidine tag was included at the amino terminus of the wild-type (H-AlgB), H-AlgB delta1-145, and mutant (H-AlgB.59N) AlgB proteins. These derivatives were purified by Ni2+ affinity chromatography and examined for in vitro phosphorylation by the purified sensor kinase protein, KinB. The results indicated that while KinB efficiently phosphorylated H-AlgB, no phosphorylation of H-AlgB delta1-145 or H-AlgB.D59N was apparent. An allelic exchange system was developed to transfer mutant algB alleles onto the chromosome of a P. aeruginosa algB mutant to examine the effect on alginate production. Despite the defect in AlgB phosphorylation, P. aeruginosa strains expressing AlgB.D59N or H-AlgB delta1-145 remained mucoid. The roles of the conserved aspartate residues in the phosphorylation of AlgR were also examined. As seen with AlgB, mutations in the predicted phosphorylation site of AlgR (AlgR.D54N and AlgR.D85N) did not affect alginate production. These results indicate that in vivo phosphorylation of AlgB and AlgR are not required for their roles in alginate production. Thus, the mechanism by which these response regulators activate alginate genes in mucoid P. aeruginosa appears not to be mediated by conventional phosphorylation-dependent signal transduction.
Collapse
Affiliation(s)
- S Ma
- Department of Microbiology and Immunology, University of Tennessee and Veterans Administration Medical Center, Memphis 38163, USA
| | | | | | | | | | | |
Collapse
|
57
|
Yu H, Boucher J, Deretic V. 7.5 Molecular Analysis of Pseudomonas Aeruginosa Virulence. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70299-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
58
|
Ghani M, Soothill JS. Ceftazidime, gentamicin, and rifampicin, in combination, kill biofilms of mucoid Pseudomonas aeruginosa. Can J Microbiol 1997; 43:999-1004. [PMID: 9436304 DOI: 10.1139/m97-144] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In continuous flow biofilm cultures in medium resembling cystic fibrosis bronchial secretions, Pseudomonas aeruginosa was not eradicated from biofilms by 1 week of treatment with high concentrations of ceftazidime and gentamicin, to which the strains were sensitive on conventional testing. The addition of rifampicin, which has little activity against the strains as measured by the minimum inhibitory concentration, led to the apparent elimination of the bacteria from the biofilms. The effect was not strain specific.
Collapse
Affiliation(s)
- M Ghani
- Department of Pathological Sciences, Manchester Royal Infirmary, U.K
| | | |
Collapse
|
59
|
Hassett DJ, Howell ML, Ochsner UA, Vasil ML, Johnson Z, Dean GE. An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels. J Bacteriol 1997; 179:1452-9. [PMID: 9045799 PMCID: PMC178852 DOI: 10.1128/jb.179.5.1452-1459.1997] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The activities of fumarase- and manganese-cofactored superoxide dismutase (SOD), encoded by the fumC and sodA genes in Pseudomonas aeruginosa, are elevated in mucoid, alginate-producing bacteria and in response to iron deprivation (D. J. Hassett, M. L. Howell, P. A. Sokol, M. L. Vasil, and G. E. Dean, J. Bacteriol. 179:1442-1451, 1997). In this study, a 393-bp open reading frame, fagA (Fur-associated gene), was identified immediately upstream of fumC, in an operon with orfX and sodA. Two iron boxes or Fur (ferric uptake regulatory protein) binding sites were discovered just upstream of fagA. Purified P. aeruginosa Fur caused a gel mobility shift of a PCR product containing these iron box regions. DNA footprinting analysis revealed a 37-bp region that included the Fur binding sites and was protected by Fur. Primer extension analysis and RNase protection assays revealed that the operon is composed of at least three major iron-regulated transcripts. Four mucoid fur mutants produced 1.7- to 2.6-fold-greater fumarase activity and 1.7- to 2.3-greater amounts of alginate than wild-type organisms. A strain devoid of the alternative sigma factor AlgT(U) produced elevated levels of one major transcript and fumarase C and manganase-cofactored SOD activity, suggesting that AlgT(U) may either play a role in regulating this transcript or function in some facet of iron metabolism. These data suggest that the P. aeruginosa fagA, fumC, orfX, and sodA genes reside together on a small operon that is regulated by Fur and is transcribed in response to iron limitation in mucoid, alginate-producing bacteria.
Collapse
Affiliation(s)
- D J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Ohio 45267-0524, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60:539-74. [PMID: 8840786 PMCID: PMC239456 DOI: 10.1128/mr.60.3.539-574.1996] [Citation(s) in RCA: 845] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.
Collapse
Affiliation(s)
- J R Govan
- Department of Medical Microbiology, University of Edinburgh Medical School, Scotland
| | | |
Collapse
|