51
|
Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol 2012; 2:12. [PMID: 22919604 PMCID: PMC3417661 DOI: 10.3389/fcimb.2012.00012] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 01/31/2012] [Indexed: 12/17/2022] Open
Abstract
One key aspect of the virulence of Staphylococcus aureus lies in its ability to target the host cell membrane with a large number of membrane-damaging toxins and peptides. In this review, we describe the hemolysins, the bi-component leukocidins (which include the Panton Valentine leukocidin, LukAB/GH, and LukED), and the cytolytic peptides (phenol soluble modulins). While at first glance, all of these factors might appear redundant, it is now clear that some of these factors play specific roles in certain S. aureus life stages and diseases or target specific cell types or species. In this review, we present an update of the literature on toxin receptors and their cell type and species specificities. Furthermore, we review epidemiological studies and animal models illustrating the role of these membrane-damaging factors in various diseases. Finally, we emphasize the interplay of these factors with the host immune system and highlight all their non-lytic functions.
Collapse
Affiliation(s)
- François Vandenesch
- Bacterial Pathogenesis and Innate Immunity Laboratory, INSERM U851 "Immunity, Infection and Vaccination," Lyon, France
| | | | | |
Collapse
|
52
|
Identification of anti-alpha toxin monoclonal antibodies that reduce the severity of Staphylococcus aureus dermonecrosis and exhibit a correlation between affinity and potency. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:377-85. [PMID: 22237895 DOI: 10.1128/cvi.05589-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Staphylococcus aureus alpha toxin (AT) is an important virulence determinant and may be a valid target for immunoprophylaxis against staphylococcal disease. Here we report the identification of potent inhibitory anti-AT monoclonal antibodies (MAbs) derived using B-cell hybridoma technology from VelocImmune mice engineered to produce IgG with a human variable domain. A small panel of inhibitory MAbs blocked AT-mediated lysis of rabbit red blood cells, A549 human lung epithelial cells, and THP-1 human monocytic cells, in a dose-dependent manner. Binding studies indicated that these MAbs recognize a similar epitope on AT and exhibit dissociation constants (K(D)) ranging from 0.50 to 15 nM. In an S. aureus dermonecrosis model, mice passively immunized with anti-AT inhibitory MAbs exhibited significant reductions of lesion size relative to mice treated with an irrelevant IgG control. Interestingly, there was a correlation between MAb affinity for a single epitope, the 50% inhibitory concentration (IC(50)) in the AT hemolytic assay, and lesion size reduction in the dermonecrosis model. A representative high-affinity MAb, 2A3.1, was demonstrated to significantly reduce lesion size following infection with three different clinical isolates (USA300, CC30, and CC5). Taken together, these results indicate that in vitro potency of anti-AT MAbs predicts in vivo potency in this model, supporting their continued preclinical evaluation as molecules for immunoprophylaxis against staphylococcal skin and soft tissue infections caused by diverse clinical isolates.
Collapse
|
53
|
Kraemer BF, Campbell RA, Schwertz H, Cody MJ, Franks Z, Tolley ND, Kahr WHA, Lindemann S, Seizer P, Yost CC, Zimmerman GA, Weyrich AS. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog 2011; 7:e1002355. [PMID: 22102811 PMCID: PMC3213094 DOI: 10.1371/journal.ppat.1002355] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/20/2011] [Indexed: 12/11/2022] Open
Abstract
Human β-defensins (hBD) are antimicrobial peptides that curb microbial activity. Although hBD's are primarily expressed by epithelial cells, we show that human platelets express hBD-1 that has both predicted and novel antibacterial activities. We observed that activated platelets surround Staphylococcus aureus (S. aureus), forcing the pathogens into clusters that have a reduced growth rate compared to S. aureus alone. Given the microbicidal activity of β-defensins, we determined whether hBD family members were present in platelets and found mRNA and protein for hBD-1. We also established that hBD-1 protein resided in extragranular cytoplasmic compartments of platelets. Consistent with this localization pattern, agonists that elicit granular secretion by platelets did not readily induce hBD-1 release. Nevertheless, platelets released hBD-1 when they were stimulated by α-toxin, a S. aureus product that permeabilizes target cells. Platelet-derived hBD-1 significantly impaired the growth of clinical strains of S. aureus. hBD-1 also induced robust neutrophil extracellular trap (NET) formation by target polymorphonuclear leukocytes (PMNs), which is a novel antimicrobial function of β-defensins that was not previously identified. Taken together, these data demonstrate that hBD-1 is a previously-unrecognized component of platelets that displays classic antimicrobial activity and, in addition, signals PMNs to extrude DNA lattices that capture and kill bacteria. Platelets are small cells in the bloodstream whose primary function is to stop bleeding. In addition to their clotting functions, we show that human platelets stall bacterial growth. This inhibitory property of platelets is due to β-defensin 1, a small antimicrobial protein that kills bacteria. β-defensin 1 also induces white blood cells to discharge spider-like webs that trap and kill bacteria. Together, these findings indicate that human platelets use β-defensin 1 to fight off bacterial infection.
Collapse
Affiliation(s)
- Bjoern F. Kraemer
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
- Medizinische Klinik III, Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Robert A. Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
- Department of Surgery, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark J. Cody
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Zechariah Franks
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Neal D. Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Walter H. A. Kahr
- Division of Haematology/Oncology, Program in Cell Biology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | | - Peter Seizer
- Medizinische Klinik III, Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Christian C. Yost
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Guy A. Zimmerman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew S. Weyrich
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
54
|
In vitro cross-resistance to daptomycin and host defense cationic antimicrobial peptides in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 2011; 55:4012-8. [PMID: 21709105 DOI: 10.1128/aac.00223-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the hypothesis that methicillin-resistant Staphylococcus aureus (MRSA) isolates developing reduced susceptibilities to daptomycin (DAP; a calcium-dependent molecule acting as a cationic antimicrobial peptide [CAP]) may also coevolve reduced in vitro susceptibilities to host defense cationic antimicrobial peptides (HDPs). Ten isogenic pairs of clinical MRSA DAP-susceptible/DAP-resistant (DAP(s)/DAP(r)) strains were tested against two distinct HDPs differing in structure, mechanism of action, and origin (thrombin-induced platelet microbicidal proteins [tPMPs] and human neutrophil peptide-1 [hNP-1]) and one bacterium-derived CAP, polymyxin B (PMB). Seven of 10 DAP(r) strains had point mutations in the mprF locus (with or without yyc operon mutations), while three DAP(r) strains had neither mutation. Several phenotypic parameters previously associated with DAP(r) were also examined: cell membrane order (fluidity), surface charge, and cell wall thickness profiles. Compared to the 10 DAP(s) parental strains, their respective DAP(r) strains exhibited (i) significantly reduced susceptibility to killing by all three peptides (P < 0.05), (ii) increased cell membrane fluidity, and (iii) significantly thicker cell walls (P < 0.0001). There was no consistent pattern of surface charge profiles distinguishing DAP(s) and DAP(r) strain pairs. Reduced in vitro susceptibility to two HDPs and one bacterium-derived CAP tracked closely with DAP(r) in these 10 recent MRSA clinical isolates. These results suggest that adaptive mechanisms involved in the evolution of DAP(r) also provide MRSA with enhanced survivability against HDPs. Such adaptations appear to correlate with MRSA variations in cell membrane order and cell wall structure. DAP(r) strains with or without mutations in the mprF locus demonstrated significant cross-resistance profiles to these unrelated CAPs.
Collapse
|
55
|
Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 2011; 9:1097-107. [PMID: 21435167 DOI: 10.1111/j.1538-7836.2011.04264.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has become clear that platelets are not simply cell fragments that plug the leak in a damaged blood vessel; they are, in fact, also key components in the innate immune system, which is supported by the presence of Toll-like receptors (TLRs) on platelets. As the cells that respond first to a site of injury, they are well placed to direct the immune response to deal with any resulting exposure to pathogens. The response is triggered by bacteria binding to platelets, which usually triggers platelet activation and the secretion of antimicrobial peptides. The main platelet receptors that mediate these interactions are glycoprotein (GP)IIb-IIIa, GPIbα, FcγRIIa, complement receptors, and TLRs. This process may involve direct interactions between bacterial proteins and the receptors, or can be mediated by plasma proteins such as fibrinogen, von Willebrand factor, complement, and IgG. Here, we review the variety of interactions between platelets and bacteria, and look at the potential for inhibiting these interactions in diseases such as infective endocarditis and sepsis.
Collapse
Affiliation(s)
- D Cox
- Molecular and Cellular Therapeutics School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | | | |
Collapse
|
56
|
Liang X, Hall JW, Yang J, Yan M, Doll K, Bey R, Ji Y. Identification of single nucleotide polymorphisms associated with hyperproduction of alpha-toxin in Staphylococcus aureus. PLoS One 2011; 6:e18428. [PMID: 21494631 PMCID: PMC3072997 DOI: 10.1371/journal.pone.0018428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/06/2011] [Indexed: 12/02/2022] Open
Abstract
The virulence factor α-toxin (hla) is needed by Staphylococcus aureus in order to cause infections in both animals and humans. Although the complicated regulation of hla expression has been well studied in human S. aureus isolates, the mechanisms of of hla regulation in bovine S. aureus isolates remain undefined. In this study, we found that many bovine S. aureus isolates, including the RF122 strain, generate dramatic amounts of α-toxin in vitro compared with human clinical S. aureus isolates, including MRSA WCUH29 and MRSA USA300. To elucidate potential regulatory mechanisms, we analyzed the hla promoter regions and identified predominant single nucleotide polymorphisms (SNPs) at positions −376, −483, and −484 from the start codon in α-toxin hyper-producing isolates. Using site-directed mutagenesis and hla promoter-gfp-luxABCDE dual reporter approaches, we demonstrated that the SNPs contribute to the differential control of hla expression among bovine and human S. aureus isolates. Using a DNA affinity assay, gel-shift assays and a null mutant, we identified and revealed that an hla positive regulator, SarZ, contributes to the involvement of the SNPs in mediating hla expression. In addition, we found that the bovine S. aureus isolate RF122 exhibits higher transcription levels of hla positive regulators, including agrA, saeR, arlR and sarZ, but a lower expression level of hla repressor rot compared to the human S. aureus isolate WCUH29. Our results indicate α-toxin hyperproduction in bovine S. aureus is a multifactorial process, influenced at both the genomic and transcriptional levels. Moreover, the identification of predominant SNPs in the hla promoter region may provide a novel method for genotyping the S. aureus isolates.
Collapse
Affiliation(s)
- Xudong Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jeffrey W. Hall
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Junshu Yang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Meiying Yan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Katherine Doll
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Russell Bey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
57
|
Schubert S, Schwertz H, Weyrich AS, Franks ZG, Lindemann S, Otto M, Behr H, Loppnow H, Schlitt A, Russ M, Presek P, Werdan K, Buerke M. Staphylococcus aureus α-toxin triggers the synthesis of B-cell lymphoma 3 by human platelets. Toxins (Basel) 2011; 3:120-33. [PMID: 22069700 PMCID: PMC3202813 DOI: 10.3390/toxins3020120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 01/20/2023] Open
Abstract
The frequency and severity of bacteremic infections has increased over the last decade and bacterial endovascular infections (i.e., sepsis or endocarditis) are associated with high morbidity and mortality. Bacteria or secreted bacterial products modulate platelet function and, as a result, affect platelet accumulation at sites of vascular infection and inflammation. However, whether bacterial products regulate synthetic events in platelets is not known. In the present study, we determined if prolonged contact with staphylococcal α-toxin signals platelets to synthesize B-cell lymphoma (Bcl-3), a protein that regulates clot retraction in murine and human platelets. We show that α-toxin induced α(IIb)β(3)-dependent aggregation (EC(50) 2.98 µg/mL ± 0.64 µg/mL) and, over time, significantly altered platelet morphology and stimulated de novo accumulation of Bcl-3 protein in platelets. Adherence to collagen or fibrinogen also increased the expression of Bcl-3 protein by platelets. α-toxin altered Bcl-3 protein expression patterns in platelets adherent to collagen, but not fibrinogen. Pretreatment of platelets with inhibitors of protein synthesis or the mammalian Target of Rapamycin (mTOR) decreased Bcl-3 protein expression in α-toxin stimulated platelets. In conclusion, Staphylococcusaureus-derived α-toxin, a pore forming exotoxin, exerts immediate (i.e., aggregation) and prolonged (i.e., protein synthesis) responses in platelets, which may contribute to increased thrombotic events associated with gram-positive sepsis or endocarditis.
Collapse
Affiliation(s)
- Sebastian Schubert
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Hansjörg Schwertz
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; (H.S.); (A.S.W.); (Z.G.F.)
| | - Andrew S. Weyrich
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; (H.S.); (A.S.W.); (Z.G.F.)
| | - Zechariah G. Franks
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA; (H.S.); (A.S.W.); (Z.G.F.)
| | - Stephan Lindemann
- Department of Medicine III, Eberhard Karls University, Tübingen, Germany;
| | - Monika Otto
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Hagen Behr
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Harald Loppnow
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Axel Schlitt
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Martin Russ
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Peter Presek
- Clinical Pharmacology, Martin Luther University, Halle, Saale, Germany;
| | - Karl Werdan
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| | - Michael Buerke
- Department of Medicine III, Martin Luther University, Halle, Saale, Germany; (S.S.); (M.O.); (H.B.); (H.L.); (A.S.); (M.R.); (K.W.)
| |
Collapse
|
58
|
Abstract
To cause infections, microbial pathogens elaborate a multitude of factors that interact with host components. Using these host–pathogen interactions to their advantage, pathogens attach, invade, disseminate, and evade host defense mechanisms to promote their survival in the hostile host environment. Many viruses, bacteria, and parasites express adhesins that bind to cell surface heparan sulfate proteoglycans (HSPGs) to facilitate their initial attachment and subsequent cellular entry. Some pathogens also secrete virulence factors that modify HSPG expression. HSPGs are ubiquitously expressed on the cell surface of adherent cells and in the extracellular matrix. HSPGs are composed of one or several heparan sulfate (HS) glycosaminoglycan chains attached covalently to specific core proteins. For most intracellular pathogens, cell surface HSPGs serve as a scaffold that facilitates the interaction of microbes with secondary receptors that mediate host cell entry. Consistent with this mechanism, addition of HS or its pharmaceutical functional mimic, heparin, inhibits microbial attachment and entry into cultured host cells, and HS-binding pathogens can no longer attach or enter cultured host cells whose HS expression has been reduced by enzymatic treatment or chemical mutagenesis. In pathogens where the specific HS adhesin has been identified, mutant strains lacking HS adhesins are viable and show normal growth rates, suggesting that the capacity to interact with HSPGs is strictly a virulence activity. The goal of this chapter is to provide a mechanistic overview of our current understanding of how certain microbial pathogens subvert HSPGs to promote their infection, using specific HSPG–pathogen interactions as representative examples.
Collapse
Affiliation(s)
- Mauro S.G. Pavão
- , Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco 255, Rio de Janeiro, 21941-913 Rio de Janeiro Brazil
| |
Collapse
|
59
|
Yeaman MR. Bacterial-platelet interactions: virulence meets host defense. Future Microbiol 2010; 5:471-506. [PMID: 20210555 DOI: 10.2217/fmb.09.112] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Platelets have historically been viewed as cell fragments that only mediate blood coagulation. Yet, platelets have as - or perhaps even more - important roles in tissue remodeling, modulation of inflammation and antimicrobial host defense. It is evident that platelets interact with prokaryotes directly and indirectly through multiple molecular and cellular mechanisms. The important roles of platelets in antibacterial host defense can be exemplified through contemporary themes in platelet immunobiology. Platelets have unambiguous structures and functions of host defense effector cells. Recent discoveries reveal platelet expression of toll-like and purinonergic receptors, which enable detection and response to bacterial infection, degranulation of an array of microbicidal peptides and coordination of other molecular and cellular host defenses. From multiple perspectives, platelets are now increasingly recognized as critical innate immune effector cells that also bridge and facilitate optimization of adaptive immunity. It follows that clinical deficiencies in platelet quantity or quality are now recognized correlates of increased risk and severity of bacterial and other infections. Along these lines, new evidence suggests that certain prokaryotic organisms may be capable of exploiting platelet interactions to gain a virulence advantage. Indeed, certain bacterial pathogens appear to have evolved highly coordinated means by which to seize opportunities to bind to surfaces of activated platelets, and exploit them to establish or propagate infection. Hence, it is conceivable that certain bacterial pathogens subvert platelet functions. From these perspectives, the net consequences of bacterial virulence versus platelet host defenses likely decide initial steps towards the ultimate result of infection versus immunity.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Harbor-UCLA Medical Center, 1124 West Carson Street, RB-2, Torrance, CA 90502, USA.
| |
Collapse
|
60
|
Biological relevance of natural alpha-toxin fragments from Staphylococcus aureus. J Membr Biol 2010; 233:93-103. [PMID: 20155474 DOI: 10.1007/s00232-010-9229-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Serine proteases represent an essential part of cellular homeostasis by generating biologically active peptides. In bacteria, proteolysis serves two different roles: a major housekeeping function and the destruction of foreign or target cell proteins, thereby promoting bacterial invasion. In the process, other virulence factors such as exotoxins become affected. In Staphylococcus aureus culture supernatant, the pore-forming alpha-toxin is cleaved by the coexpressed V8 protease and aureolysin. The oligomerizing and pore-forming abilities of five such spontaneously occurring N- and C-terminal alpha-toxin fragments were studied. (3)H-marked alpha-toxin fragments bound to rabbit erythrocyte membranes but only fragments with intact C termini, missing 8, 12 and 71 amino acids from their N-terminal, formed stable oligomers. All isolated fragments induced intoxication of mouse adrenocortical Y1 cells in vitro, though the nature of membrane damage for a fragment, degraded at its C terminus, remained obscure. Only one fragment, missing the first eight N-terminal amino acids, induced irreversible intoxication of Y1 cells in the same manner as the intact toxin. Four of the isolated fragments caused swelling, indicating altered channel formation. Fragments missing 12 and 71 amino acids from the N terminus occupied the same binding sites on Y1 cell membranes, though they inhibited membrane damage caused by intact toxin. In conclusion, N-terminal deletions up to 71 amino acids are tolerated, though the kinetics of channel formation and the channel's properties are altered. In contrast, digestion at the C terminus results in nonfunctional species.
Collapse
|
61
|
Abstract
Platelets interact with bacterial pathogens through a wide array of cellular and molecular mechanisms. The consequences of this interaction may significantly influence the balance between infection and immunity. On the one hand, recent data indicate that certain bacteria may be capable of exploiting these interactions to gain a virulence advantage. Indeed, certain bacterial pathogens appear to have evolved specific ways in which to subvert activated platelets. Hence, it is conceivable that some bacterial pathogens exploit platelet responses. On the other hand, platelets are now known to possess unambiguous structures and functions of host defense effector cells. Recent discoveries emphasize critical features enabling such functions, including expression of toll-like receptors that detect hallmark signals of bacterial infection, an array of microbicidal peptides, as well as other host defense molecules and functions. These concepts are consistent with increased risk and severity of bacterial infection as correlates of clinical abnormalities in platelet quantity and quality. In these respects, the molecular and cellular roles of platelets in host defense against bacterial pathogens are explored with attention on advances in platelet immunobiology.
Collapse
Affiliation(s)
- Michael R Yeaman
- Division of Infectious Diseases, St. John's Cardiovascular Research Center, Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA 90502, USA.
| |
Collapse
|
62
|
Staphylococcal alpha-toxin is not sufficient to mediate escape from phagolysosomes in upper-airway epithelial cells. Infect Immun 2009; 77:3611-25. [PMID: 19564384 DOI: 10.1128/iai.01478-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intracellular Staphylococcus aureus has been implicated in the establishment of chronic infections. It is therefore imperative to understand by what means S. aureus is able to survive within cells. Here we use two expression systems with a fluorescent readout to assay alpha-toxin expression and function within phagolysosomes of infected upper-airway epithelial cells: avirulent Staphylococcus carnosus TM300 and phenotypically alpha-toxin-negative S. aureus laboratory strains. Data from CFU recovery assays suggest that the presence of alpha-toxin is not beneficial for the intracellular survival of recombinant Staphylococcus strains. This finding was corroborated by immunofluorescence studies: whereas S. carnosus and S. aureus are able to deliver S. aureus alpha-toxin to lumina of host cell phagolysosomes, the membrane integrity of these organelles was not affected. Alpha-toxin-expressing strains were detected exclusively within lysosome-associated membrane protein 1 (LAMP1)-yellow fluorescent protein (YFP)-positive vesicles. Measurements of intraphagosomal pH illustrated that all infected phagolysosomes acidified regardless of alpha-toxin expression. In contrast, S. aureus expressing Listeria monocytogenes listeriolysin O leads to the breakdown of the phagolysosomal membrane, as indicated by staphylococci that are not associated with LAMP1-YFP-decorated vesicles and that do not reside within an acidic cellular environment. Thus, our results suggest that staphylococcal alpha-toxin is not sufficient to mediate phagolysosomal escape in upper-airway epithelial cells.
Collapse
|
63
|
Eisen DP, Corey GR, McBryde ES, Fowler VG, Miro JM, Cabell CH, Street AC, Paiva MG, Ionac A, Tan RS, Tribouilloy C, Pachirat O, Jones SB, Chipigina N, Naber C, Pan A, Ravasio V, Gattringer R, Chu VH, Bayer AS. Reduced valve replacement surgery and complication rate in Staphylococcus aureus endocarditis patients receiving acetyl-salicylic acid. J Infect 2009; 58:332-8. [DOI: 10.1016/j.jinf.2009.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/29/2008] [Accepted: 03/07/2009] [Indexed: 10/21/2022]
|
64
|
The H35A mutated alpha-toxin interferes with cytotoxicity of staphylococcal alpha-toxin. Infect Immun 2008; 77:977-83. [PMID: 19103771 DOI: 10.1128/iai.00920-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal alpha-toxin is an important virulence factor for Staphylococcus aureus to cause severe infections. In this study, we explored whether the toxoid of alpha-toxin may be utilized to block the toxicity of wild-type alpha-toxin. We created a series of H35A mutated alpha-toxin expression strains and revealed that the H35A mutation eliminates the activity of alpha-toxin using a human lung epithelial cell line (A549). More importantly, we found that either the pretreatment or simultaneous treatment of the epithelial cells with alpha-toxin-H35A completely disrupted the cytotoxicity of alpha-toxin. Specifically, we demonstrated that alpha-toxin-H35A can effectively interfere with the pore formation and the internalization of alpha-toxin using cytotoxicity and immunofluorescence assays. In addition, we found that the removal of either the 30-amino-acid (aa) or 99-aa C-terminal region of alpha-toxin-H35A reactivated its cytotoxicity, indicating that interactions between the alanine residue at position 35 and these C-terminal regions may be associated with interrupting the toxic activity of alpha-toxin-H35A. Taken together, these results suggest that the alpha-toxin-H35A protein may be developed as a potential alternative therapeutic agent for treating early stages of S. aureus infections.
Collapse
|
65
|
Jarry TM, Memmi G, Cheung AL. The expression of alpha-haemolysin is required forStaphylococcus aureusphagosomal escape after internalization in CFT-1 cells. Cell Microbiol 2008; 10:1801-14. [DOI: 10.1111/j.1462-5822.2008.01166.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Methicillin-sensitive Staphylococcus aureus bacteraemia and endocarditis among injection drug users and nonaddicts: host factors, microbiological and serological characteristics. J Infect 2008; 56:249-56. [PMID: 18314197 DOI: 10.1016/j.jinf.2008.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/31/2007] [Accepted: 01/15/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Endocarditis has been associated with lower mortality and fewer complications among injection drug users (IDUs) than nonaddicts in Staphylococcus aureus bacteraemia (SAB). The better prognosis of IDUs has not been clarified but it has generally been explained by younger age and other host factors. In this study, bacterial strains, their virulence factors, and host immune responses were compared among IDUs and nonaddicts with SAB, including those with and without endocarditis. METHODS A total of 430 consecutive adult patients with methicillin-sensitive SAB were followed prospectively for 3 months. All 44 IDUs were included, and 44 nonaddicts as controls for them. According to the modified Duke criteria, 20 patients in both groups had endocarditis. For each addict without endocarditis, an age and sex matched nonaddict was selected as a control. S. aureus isolates were assigned a genotype by PFGE, Panton-Valentine leukocidin (PVL), staphylokinase (SAK), protease, and haemolysin production. Acute and convalescent sera were tested for antibodies to alpha-haemolysin (ASTA) and teichoic acid (TAA). RESULTS There were no differences between IDUs and nonaddicts with SAB in the proportion of patients with a deep infection (98% vs 86%, P=0.06) or a thromboembolic complication (30% vs 14%, P=0.12). Endocarditis among IDUs was not associated with any specific strains, and only the FIN-4 strain was observed more often in IDUs than in nonaddicts (21% vs 5%, P=0.03). The majority of isolates (98%) were PVL negative, and there were no differences in the numbers of SAK, protease and haemolysin production among strains between IDUs and nonaddicts. However, haemolytic properties were found more frequently in strains from IDUs without endocarditis than those with endocarditis (88% vs 47%, P=0.007). IDUs displayed more often elevated TAA titers than nonaddicts, especially in endocarditis at acute phase (33% vs 5%, P=0.04) and at convalescent phase (50% vs 10%, P=0.01). The ASTA titer was more frequently initially positive among IDUs without endocarditis than with endocarditis (44% vs 6%, P=0.01). CONCLUSIONS Characterization of the bacterial strains and their virulence factors, and host immune responses did not reveal significant differences between IDUs and nonaddicts with similar clinical picture of SAB. Serological tests were not helpful in identifying patients with endocarditis.
Collapse
|
67
|
Cassat J, Dunman PM, Murphy E, Projan SJ, Beenken KE, Palm KJ, Yang SJ, Rice KC, Bayles KW, Smeltzer MS. Transcriptional profiling of a Staphylococcus aureus clinical isolate and its isogenic agr and sarA mutants reveals global differences in comparison to the laboratory strain RN6390. MICROBIOLOGY-SGM 2007; 152:3075-3090. [PMID: 17005987 DOI: 10.1099/mic.0.29033-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The production of Staphylococcus aureus virulence factors is under the control of complex regulatory circuits. Most studies aimed at defining these regulatory networks have focused on derivatives of the strain NCTC 8325, most notably RN6390. However, all NCTC 8325 derivatives, including RN6390, possess an 11 bp deletion in rsbU. This deletion renders NCTC 8325 derivatives naturally sigma-factor-B deficient. Recent studies have shown that RN6390 is also deficient, in comparison to clinical isolates, with respect to biofilm formation, a process which is important for both pathogenesis and antimicrobial resistance. Based on these considerations, the authors carried out genome-scale transcriptional profiling, comparing RN6390 with the virulent rsbU-positive clinical isolate UAMS-1. The results revealed significant genome-wide differences in expression patterns between RN6390 and UAMS-1, and suggested that the overall transcriptional profile of UAMS-1 is geared toward expression of factors that promote colonization and biofilm formation. In contrast, the transcriptional profile of RN6390 was heavily influenced by RNAIII expression, resulting in a phenotype characterized by increased production of exoproteins, and decreased capacity to form a biofilm. The greater influence of agr in RN6390 relative to UAMS-1 was also evident when the transcriptional profile of UAMS-1 was compared with that of its isogenic sarA and agr mutants. Specifically, the results indicate that, in contrast to NCTC 8325 derivatives, agr plays a limited role in overall regulation of gene expression in UAMS-1, when compared with sarA. Furthermore, by defining the sarA regulon in a biofilm-positive clinical isolate, and comparing the results with transcriptional profiling experiments defining biofilm-associated gene expression patterns in the same strain, the authors identified a sarA-regulated operon (alsSD) that is also induced in biofilms, and demonstrated that mutation of alsSD results in reduced capacity to form a biofilm.
Collapse
Affiliation(s)
- James Cassat
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Paul M Dunman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | - Karen E Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Katherine J Palm
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Soo-Jin Yang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kelly C Rice
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
68
|
Antimicrobial Host Defense. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
69
|
Liang X, Ji Y. Alpha-toxin interferes with integrin-mediated adhesion and internalization of Staphylococcus aureus by epithelial cells. Cell Microbiol 2006; 8:1656-68. [PMID: 16984420 DOI: 10.1111/j.1462-5822.2006.00740.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Staphylococcus aureus is an important human and animal pathogen. During infection, this bacterium is able to attach to and enter host cells by using its cell surface-associated factors to bind to the host's extracellular matrix (ECM) proteins. In this study, we determined that a protein exported by S. aureus, alpha-toxin, can interfere with the integrin-mediated adhesion and internalization of S. aureus by human lung epithelial cells (A549). The downregulation of alpha-toxin production significantly increased bacterial adhesion and invasion into the epithelial cells. In contrast, bacterial adhesion and invasion was inhibited by both overproduction of alpha-toxin and the addition of alpha-toxin to the culture medium. Moreover, our results showed that the quantitative effects on invasion closely parallel those of adherence. This suggests that the effect on invasion is probably secondary to, and a consequence of, the reduced adherence caused by alpha-toxin exposure. Specifically, we demonstrated that alpha-toxin interacts with the hosts' ECM protein's receptor, beta1-integrin, which indicates that beta1-integrin may be a potential receptor of alpha-toxin on epithelial cells. Taken together, our results indicate that exported alpha-toxin inhibits the adhesion and internalization of S. aureus by interfering with integrin-mediated pathogen-host cell interactions.
Collapse
Affiliation(s)
- Xudong Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
| | | |
Collapse
|
70
|
Abstract
It has been estimated that there are more microorganisms within and upon the human body than there are human cells. By necessity, every accessible niche must be defended by innate mechanisms to prevent invasive infection, and ideally that precludes the need for robust inflammatory responses. Yet the potential for pathogens to transcend the integument actively or passively and access the bloodstream emphasizes the need for rapid and potent antimicrobial defense mechanisms within the vascular compartment. Antimicrobial peptides from leukocytes have long been contemplated as being integral to defense against these infections. Recently, platelets are increasingly recognized for their likely multiple roles in antimicrobial host defense. Platelets and leukocytes share many structural and functional archetypes. Once activated, both cell types respond in specific ways that emphasize key roles for their antimicrobial peptides in host defense efficacy: (a) targeted accumulation at sites of tissue injury or infection; (b) direct interaction with pathogens; and (c) deployment of intracellular (leukocyte phagosomes) or extracellular (platelet secretion) antimicrobial peptides. Antimicrobial peptides from these cells exert rapid, potent, and direct antimicrobial effects against organisms that commonly access the bloodstream. Experimental models in vitro and in vivo show that antimicrobial peptides from these cells significantly contribute to prevent or limit infection. Moreover, certain platelet antimicrobial proteins are multifunctional kinocidins (microbicidal chemokines) that recruit leukocytes to sites of infection, and potentiate the antimicrobial mechanisms of these cells. In turn, pathogens pre-decorated by kinocidins may be more efficiently phagocytosed and killed by leukocytes and their antimicrobial peptide arsenal. Hence, multiple and relevant interactions between platelets and leukocytes have immunologic functions yet to be fully understood. A clearer definition of these interactions, and the antimicrobial peptide effectors contributing to these functions, will significantly advance our understanding of antimicrobial host defense against invasive infection. In addition, this knowledge may accelerate development of novel anti-infective agents and strategies against pathogens that have become refractory to conventional antimicrobials.
Collapse
Affiliation(s)
- M R Yeaman
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, LAC-Harbor UCLA Medical Center, Torrance 90502, USA.
| | | |
Collapse
|
71
|
Widmer E, Que YA, Entenza JM, Moreillon P. New concepts in the pathophysiology of infective endocarditis. Curr Infect Dis Rep 2006; 8:271-9. [PMID: 16822370 DOI: 10.1007/s11908-006-0071-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Endocarditis pathogens colonize valves with pre-existing sterile vegetations or valves with minimal endothelial lesions. Inflamed endothelia produce cytokines, integrins, and tissue factor, which in turn attract fibronectin, monocytes, and platelets. Bacteria attaching to such structures further activate the cascade, becoming embedded and protected from host defenses. Staphylococcus aureus also actively invade the endothelium, causing apoptosis and endothelial damage. Knowledge of this interplay identifies host factors as potential therapeutic targets. Blocking infection by modulating host factors might be opportune because host factors are conserved. In contrast, interfering with bacterial virulence factors might be more complicated because they vary among different bacteria.
Collapse
Affiliation(s)
- Eleonora Widmer
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
72
|
Abstract
In recent years, the frequency of serious cardiovascular infections such as endocarditis has increased, particularly in association with nosocomially acquired antibiotic-resistant pathogens. Growing evidence suggests a crucial role for the interaction of bacteria with human platelets in the pathogenesis of cardiovascular infections. Here, we review the nature of the interactions between platelets and bacteria, and the role of these interactions in the pathogenesis of endocarditis and other cardiovascular diseases.
Collapse
Affiliation(s)
- J Ross Fitzgerald
- Centre for Infectious Diseases, The Chancellor's Building, New Royal Infirmary, University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK
| | | | | |
Collapse
|
73
|
McNamara PJ, Bayer AS. A rot mutation restores parental virulence to an agr-null Staphylococcus aureus strain in a rabbit model of endocarditis. Infect Immun 2005; 73:3806-9. [PMID: 15908418 PMCID: PMC1111829 DOI: 10.1128/iai.73.6.3806-3809.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in rot restore in vitro toxin production to agr-negative strains of Staphylococcus aureus. We show that a rot mutation returns wild-type virulence to an agr mutant, as measured in experimental endocarditis infections by target organ bacterial counts. Implications of our data are discussed in terms of agr antagonist strategies.
Collapse
Affiliation(s)
- Peter J McNamara
- Department of Medical Microbiology & Immunology, 1300 University Avenue, University of Wisconsin, Biochemistry Building, Room 250, Madison, WI 53706, USA.
| | | |
Collapse
|
74
|
Kupferwasser LI, Yeaman MR, Nast CC, Kupferwasser D, Xiong YQ, Palma M, Cheung AL, Bayer AS. Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus. J Clin Invest 2003; 112:222-33. [PMID: 12865410 PMCID: PMC164286 DOI: 10.1172/jci16876] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aspirin has been previously shown to reduce the in vivo virulence of Staphylococcus aureus in experimental endocarditis, through antiplatelet and antimicrobial mechanisms. In the present study, salicylic acid, the major in vivo metabolite of aspirin, mitigated two important virulence phenotypes in both clinical and laboratory S. aureus strains: alpha-hemolysin secretion and fibronectin binding in vitro. In addition, salicylic acid reduced the expression of the alpha-hemolysin gene promoter, hla, and the fibronectin gene promoter, fnbA. Transcriptional analysis, fluorometry, and flow cytometry revealed evidence of salicylic acid-mediated activation of the stress-response gene sigB. Expression of the sigB-repressible global regulon sarA and the global regulon agr were also mitigated by salicylic acid, corresponding to the reduced expression of the hla and fnbA genes in vitro. Studies in experimental endocarditis confirmed the key roles of both sarA and sigB in mediating the antistaphylococcal effects of salicylic acid in vivo. Therefore, aspirin has the potential to be an adjuvant therapeutic agent against endovascular infections that result from S. aureus, by downmodulating key staphylococcal global regulons and structural genes in vivo, thus abrogating relevant virulence phenotypes.
Collapse
Affiliation(s)
- Leon Iri Kupferwasser
- Division of Infectious Disease, Harbor-UCLA (University of California-Los Angeles), Torrance, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Kupferwasser LI, Yeaman MR, Nast CC, Kupferwasser D, Xiong YQ, Palma M, Cheung AL, Bayer AS. Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus. J Clin Invest 2003. [DOI: 10.1172/jci200316876] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
76
|
Abstract
Aspirin has been shown to cause a reduction in the virulence of Staphylococcus aureus-associated endocarditis. A new study reveals that salicylic acid, the major metabolite of aspirin, acts at the level of transcription to downregulate the production of fibrinogen, fibronectin, and alpha-hemolysin - virulence factors necessary for bacterial replication in host tissues and, now, potential therapeutic targets.
Collapse
Affiliation(s)
- Mathias Herrmann
- Department of Bacteriology and Hygiene, Institute of Microbiology and Hygiene, Building 43, Kirrberger Street, 66421 Homburg/Saar, Germany.
| |
Collapse
|
77
|
Abstract
Staphylococcus aureus is a common pathogen associated with nosocomial infections. It can persist in clinical settings and gain increased resistance to antimicrobial agents through biofilm formation. We have found that alpha-toxin, a secreted, multimeric, hemolytic toxin encoded by the hla gene, plays an integral role in biofilm formation. The hla mutant was unable to fully colonize plastic surfaces under both static and flow conditions. Based on microscopy studies, we propose that alpha-hemolysin is required for cell-to-cell interactions during biofilm formation.
Collapse
Affiliation(s)
- Nicky C Caiazza
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
78
|
Moreillon P, Que YA, Bayer AS. Pathogenesis of streptococcal and staphylococcal endocarditis. Infect Dis Clin North Am 2002; 16:297-318. [PMID: 12092474 DOI: 10.1016/s0891-5520(01)00009-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although streptococcal and S. aureus IE share the same primary site of infection, their pathogenesis and clinical evolution present several major differences. Streptococci adhere to cardiac valves with pre-existing endothelial lesions. In contrast, S. aureus can colonize either damaged endothelium or invade physically intact endothelial cells. These interactions are mediated by multiple surface adhesins, some of which have been only partially characterized. Streptococci produce surface glucans (gtf and ftf), ECM adhesins (e.g., fibronectin-binding proteins, FimA), and platelet aggregating factors (phase I and phase II antigens, pblA, pblB, and pblT), all of which have been.
Collapse
Affiliation(s)
- Philippe Moreillon
- Division of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, BH19 Rue du Bugnon, 1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
79
|
Buerke M, Sibelius U, Grandel U, Buerke U, Grimminger F, Seeger W, Meyer J, Darius H. Staphylococcus aureus alpha toxin mediates polymorphonuclear leukocyte-induced vasocontraction and endothelial dysfunction. Shock 2002; 17:30-5. [PMID: 11795666 DOI: 10.1097/00024382-200201000-00006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effect of Staphylococcus aureus alpha toxin (alpha-toxin) on selectin-mediated neutrophil adhesion was investigated in polymorphonuclear leukocyte- (PMN) induced vasocontraction and endothelial dysfunction. Adherence of human PMNs to rat aortic endothelium increased significantly following stimulation of the endothelium with alpha-toxin (0.1, 0.5, and 1 microg/mL). This effect could be significantly attenuated by monoclonal antibodies directed against P-selectin or fucoidin, a carbohydrate known to block selectins. Unstimulated human PMNs (10(6)cells/mL) were added to organ chambers containing rat aortic rings stimulated with alpha-toxin (0.5 microg/mL). PMNs elicited a significant vasocontraction in alpha-toxin-stimulated, but not in control aortic, rings (142+/-12 mg versus 12+/-4 mg, P < 0.05). This PMN-induced vasocontraction was virtually blunted by pretreatment with MAb directed against P-selectin or fucoidin (P < 0.05). Endothelial function as assessed by endothelium-dependent vasorelaxation to acetylcholine was substantially inhibited after induction of PMN-induced vasocontraction in alpha-toxin-stimulated aortic rings. This endothelial dysfunction was reduced by P-selectin MAb or fucoidin. In contrast, endothelium-independent relaxation to sodium nitrite was not altered by PMN incubation, indicating that vascular smooth muscle function was unaffected. Thus, PMN-endothelial interaction following S. aureus a-toxin activation of the vascular endothelium is at least, in part, mediated by selectins. As a consequence, PMN-induced vasocontraction and endothelial dysfunction occur. Such mechanisms may be involved in microcirculation abnormalities encountered in sepsis or septic shock due to S. aureus infection.
Collapse
Affiliation(s)
- Michael Buerke
- Department of Medicine, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Stutzmann Meier P, Entenza JM, Vaudaux P, Francioli P, Glauser MP, Moreillon P. Study of Staphylococcus aureus pathogenic genes by transfer and expression in the less virulent organism Streptococcus gordonii. Infect Immun 2001; 69:657-64. [PMID: 11159952 PMCID: PMC97936 DOI: 10.1128/iai.69.2.657-664.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Because Staphylococcus aureus strains contain multiple virulence factors, studying their pathogenic role by single-gene inactivation generated equivocal results. To circumvent this problem, we have expressed specific S. aureus genes in the less virulent organism Streptococcus gordonii and tested the recombinants for a gain of function both in vitro and in vivo. Clumping factor A (ClfA) and coagulase were investigated. Both gene products were expressed functionally and with similar kinetics during growth by streptococci and staphylococci. ClfA-positive S. gordonii was more adherent to platelet-fibrin clots mimicking cardiac vegetations in vitro and more infective in rats with experimental endocarditis (P < 0.05). Moreover, deleting clfA from clfA-positive streptococcal transformants restored both the low in vitro adherence and the low in vivo infectivity of the parent. Coagulase-positive transformants, on the other hand, were neither more adherent nor more infective than the parent. Furthermore, coagulase did not increase the pathogenicity of clfA-positive streptococci when both clfA and coa genes were simultaneously expressed in an artificial minioperon in streptococci. These results definitively attribute a role for ClfA, but not coagulase, in S. aureus endovascular infections. This gain-of-function strategy might help solve the role of individual factors in the complex the S. aureus-host relationship.
Collapse
Affiliation(s)
- P Stutzmann Meier
- Division of Infectious Diseases, Department of Internal Medicine Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
Infective endocarditis (IE) caused by Staphylococcus aureus is serious, burgeoning frequency, and growing increasingly resistant to antibiotics. S. aureus IE is associated with high morbidity and mortality rates in nosocomial and community-acquired settings. S. aureus is the most common, most virulent IE etiologic pathogen. S. aureus IE pathogenesis depends upon complex interaction among the pathogen, platelets, plasma proteins, and vascular endothelial cells. S. aureus coordinates the expression of key virulence factors required for the specific pathogenic phases of IE. Platelets, now appear to play an important role in antimicrobial host defense against S. aureus IE and other endovascular infections. Platelet microbicidal proteins are believed to significantly contribute to the antimicrobial properties of platelets; however, abnormal disposition of native or prosthetic cardiac valves is an important risk factor in S. aureus IE establishment and severity. Thus, the need to define the molecular mechanisms of S. aureus pathogenesis and host defense against IE is urgent. Understanding these mechanisms will yield new approaches for the prevention and treatment of such life-threatening cardiovascular infections due to S. aureus.
Collapse
Affiliation(s)
- MR Yeaman
- Division of Infectious Diseases, St. John's Cardiovascular Research Center, Harbor-UCLA Research and Education Institute, 1124 West Carson Street-RB-2, Torrance, CA 90502, USA
| | | |
Collapse
|
82
|
Mercier RC, Rybak MJ, Bayer AS, Yeaman MR. Influence of platelets and platelet microbicidal protein susceptibility on the fate of Staphylococcus aureus in an in vitro model of infective endocarditis. Infect Immun 2000; 68:4699-705. [PMID: 10899875 PMCID: PMC98414 DOI: 10.1128/iai.68.8.4699-4705.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several lines of evidence indicate that platelets protect against endovascular infections such as infective endocarditis (IE). It is highly likely that a principal mechanism of this platelet host defense role is the release of platelet microbicidal proteins (PMPs) in response to agonists generated at sites of endovascular infection. We studied the ability of platelets to limit the colonization and proliferation of Staphylococcus aureus in an in vitro model of IE. Three isogenic S. aureus strains, differing in their in vitro susceptibility to thrombin-induced platelet microbicidal protein-1 (tPMP), were used: ISP479C (parental strain; highly susceptible to tPMP [tPMP(s)]); ISP479R (transposon mutant derived from ISP479; tPMP resistant [tPMP(r)]); or 757-5 (tPMP(r) transductant of the ISP479R genotype in the ISP479 parental background). Time-kill assays and in vitro IE models were used to examine the temporal relationship between thrombin-induced platelet activation and S. aureus killing. In time-kill studies, early platelet activation (30 min prior to bacterial exposure) correlated with a significant bactericidal effect against tPMP(s) ISP479C (r(2) > 0.90, P < 0.02) but not against tPMP(r) strains, ISP479R or 757-5. In the IE model, thrombin activation significantly inhibited proliferation of ISP479C within simulated vegetations compared to strains ISP479R or 757-5 (P < 0.05). The latter differences were observed despite there being no detectable differences among the three S. aureus strains in initial colonization of simulated vegetations. Collectively, these data indicate that platelets limit intravegetation proliferation of tPMP(s) but not tPMP(r) S. aureus. These findings underscore the likelihood that platelets play an important antimicrobial host defense role in preventing and/or limiting endovascular infections due to tPMP(s) pathogens.
Collapse
Affiliation(s)
- R C Mercier
- The Anti-Infective Research Laboratory, Detroit Receiving Hospital/University Health Center and College of Pharmacy, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
83
|
Que YA, Haefliger JA, Francioli P, Moreillon P. Expression of Staphylococcus aureus clumping factor A in Lactococcus lactis subsp. cremoris using a new shuttle vector. Infect Immun 2000; 68:3516-22. [PMID: 10816506 PMCID: PMC97637 DOI: 10.1128/iai.68.6.3516-3522.2000] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus harbors redundant adhesins mediating tissue colonization and infection. To evaluate their intrinsic role outside of the staphylococcal background, a system was designed to express them in Lactococcus lactis subsp. cremoris 1363. This bacterium is devoid of virulence factors and has a known genetic background. A new Escherichia coli-L. lactis shuttle and expression vector was constructed for this purpose. First, the high-copy-number lactococcal plasmid pIL253 was equipped with the oriColE1 origin, generating pOri253 that could replicate in E. coli. Second, the lactococcal promoters P23 or P59 were inserted at one end of the pOri253 multicloning site. Gene expression was assessed by a luciferase reporter system. The plasmid carrying P23 (named pOri23) expressed luciferase constitutively at a level 10,000 times greater than did the P59-containing plasmid. Transcription was absent in E. coli. The staphylococcal clumping factor A (clfA) gene was cloned into pOri23 and used as a model system. Lactococci carrying pOri23-clfA produced an unaltered and functional 130-kDa ClfA protein attached to their cell walls. This was indicated both by the presence of the protein in Western blots of solubilized cell walls and by the ability of ClfA-positive lactococci to clump in the presence of plasma. ClfA-positive lactococci had clumping titers (titer of 4,112) similar to those of S. aureus Newman in soluble fibrinogen and bound equally well to solid-phase fibrinogen. These experiments provide a new way to study individual staphylococcal pathogenic factors and might complement both classical knockout mutagenesis and modern in vivo expression technology and signature tag mutagenesis.
Collapse
Affiliation(s)
- Y A Que
- Division of Infectious Diseases, Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
84
|
Ji Y, Marra A, Rosenberg M, Woodnutt G. Regulated antisense RNA eliminates alpha-toxin virulence in Staphylococcus aureus infection. J Bacteriol 1999; 181:6585-90. [PMID: 10542157 PMCID: PMC94120 DOI: 10.1128/jb.181.21.6585-6590.1999] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to selectively disrupt gene function remains a critical element in elucidating information regarding gene essentiality for bacterial growth and/or pathogenesis. In this study, we adapted a tet regulatory expression system for use in Staphylococcus aureus, with the goal of downregulating gene expression via induction of antisense RNA. We demonstrate that this system exhibits a 50- to 100-fold dose-dependent level of induction in bacterial cells grown in culture (i.e., in vitro) and also functions in mice (i.e., in vivo) following oral administration of inducer. To determine whether induced antisense RNA could interfere with chromosomally derived gene expression, we cloned a fragment of the S. aureus alpha-toxin gene (hla) in antisense orientation downstream of the tet promoter system and introduced the construct into S. aureus. Induced antisense hla RNA downregulated chromosomally derived hla gene expression in vitro approximately 14-fold. Similarly, induction of hla antisense RNA in vivo dramatically reduced alpha-toxin expression in two different murine models of S. aureus infection. Most importantly, this reduction completely eliminated the lethality of the infection. These results indicate that the tet regulatory system functions efficiently in S. aureus and induced antisense RNA can effectively downregulate chromosomal gene expression both in vitro and in vivo.
Collapse
Affiliation(s)
- Y Ji
- Department of Microbiology, SmithKline Beecham Pharmaceuticals Research and Development, Collegeville, Pennsylvania 19426, USA.
| | | | | | | |
Collapse
|
85
|
Kupferwasser LI, Yeaman MR, Shapiro SM, Nast CC, Sullam PM, Filler SG, Bayer AS. Acetylsalicylic acid reduces vegetation bacterial density, hematogenous bacterial dissemination, and frequency of embolic events in experimental Staphylococcus aureus endocarditis through antiplatelet and antibacterial effects. Circulation 1999; 99:2791-7. [PMID: 10351974 DOI: 10.1161/01.cir.99.21.2791] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Platelets are integral to cardiac vegetations that evolve in infectious endocarditis. It has been postulated that the antiplatelet aggregation effect of aspirin (ASA) might diminish vegetation evolution and embolic rates. METHODS AND RESULTS Rabbits with Staphylococcus aureus endocarditis were given either no ASA (controls) or ASA at 4, 8, or 12 mg. kg-1. d-1 IV for 3 days beginning 1 day after infection. Vegetation weights and serial echocardiographic vegetation size, vegetation and kidney bacterial densities, and extent of renal embolization were evaluated. In addition, the effect of ASA on early S aureus adherence to sterile vegetations was assessed. In vitro, bacterial adherence to platelets, fibrin matrices, or fibrin-platelet matrices was quantified with either platelets exposed to ASA or S aureus preexposed to salicylic acid (SAL). ASA at 8 mg. kg-1. d-1 (but not at 4 or 12 mg. kg-1. d-1) was associated with substantial decreases in vegetation weight (P<0.05), echocardiographic vegetation growth (P<0.001), vegetation (P<0.05) and renal bacterial densities and renal embolic lesions (P<0.05) versus controls. Diminished aggregation resulted when platelets were preexposed to ASA or when S aureus was preexposed to SAL (P<0.05). S aureus adherence to sterile vegetations (P<0.05) or to platelets in suspension (P<0.05), fibrin matrices (P<0.05), or fibrin-platelet matrices (P<0.05) was significantly reduced when bacteria were preexposed to SAL. CONCLUSIONS ASA reduces several principal indicators of severity and metastatic events in experimental S aureus endocarditis. These benefits involve ASA effects on both the platelet and the microbe.
Collapse
Affiliation(s)
- L I Kupferwasser
- Division of Adult Infectious Diseases, Division of Cardiology (S.M.S.), St. John's Cardiovascular Research Center, Harbor-UCLA Medical Center, Torrance, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
The fact that platelets play a key role in host defense against infection has been demonstrated by the following observations(1): (a) platelets rapidly respond to sites of endovascular trauma and chemotactic stimuli associated with microbial colonization, and they are the earliest and predominant cells at sites of microbial colonization of vascular endothelium; (b) platelets have surface receptors and cytoplasmic granules comparable in structure and function to those of neutrophils, monocytes, or macrophages; (c) platelets adhere directly to, and may internalize, microbial pathogens, thereby enhancing their clearance from the bloodstream and limiting their potential for hematogenous dissemination; (d) bacterial, fungal, and protozoal pathogens are damaged or killed by activated platelets in vitro; (e) platelets are capable of initiating or amplifying complement fixation in the presence of microorganisms; (f) platelets generate oxygen metabolites which likely contribute to their antimicrobial activity; (g) platelets and leukocytes interact synergistically to exert enhanced antimicrobial functions in vitro; (h) thrombocytopenia increases susceptibility to and severity of certain infections. Importantly, rabbit and human platelets are now known to contain and release microbicidal proteins (termed platelet microbicidal proteins [PMPs] or thrombin-induced PMPs [tPMPs]) when stimulated with microorganisms or platelet agonists associated with infection in vitro. It is hypothesized that these microbicidal peptides accumulate locally at sites of endovascular damage or infection. Recent investigations have confirmed that tPMP-susceptible pathogens are less capable of proliferation or hematogenous dissemination in vivo as compared with their isogenic counterpart strains that are resistant to PMPs. Collectively, the above observations strongly suggest that platelets play key and multi-faceted roles in antimicrobial host defense which appear to be significantly mediated by PMPs and tPMPs. Copyright 1999 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Michael R. Yeaman
- Division of Infectious Diseases, Department of Medicine, St. John's Cardiovascular Research Center, Harbor-UCLA Medical Center, Los Angeles, California, USA
| | | |
Collapse
|
87
|
Cheung AL, Chien YT, Bayer AS. Hyperproduction of alpha-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus. Infect Immun 1999; 67:1331-7. [PMID: 10024579 PMCID: PMC96465 DOI: 10.1128/iai.67.3.1331-1337.1999] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the role of SigB in modulating the expression of virulence determinants in Staphylococcus aureus, we constructed a sigB mutant of RN6390, a prototypic S. aureus strain. The mutation in the sigB gene was confirmed by the absence of the SigB protein in the mutant on an immunoblot as well as the failure of the mutant to activate sigmaB-dependent promoters (e.g., the sarC promoter) of S. aureus. Phenotypic analysis indicated that both alpha-hemolysin level and fibrinogen-binding capacity were up-regulated in the mutant strain compared with the parental strain. The increase in fibrinogen-binding capacity correlated with enhanced expression of clumping factor and coagulase on immunoblots. The effect of the sigB mutation on the enhanced expression of the alpha-hemolysin gene (hla) was primarily transcriptional. Upon complementation with a plasmid containing the sigB gene, hla expression returned to near parental levels in the mutant. Detailed immunoblot analysis as well as a competitive enzyme-linked immunosorbent assay of the cell extract of the sigB mutant with anti-SarA monoclonal antibody 1D1 revealed that the expression of SarA was higher in the mutant than in the parental control. Despite an elevated SarA level, the transcription of RNAII and RNAIII of the agr locus remained unaltered in the sigB mutant. Because of a lack of perturbation in agr, we hypothesize that inactivation of sigB leads to increased expression of SarA which, in turn, modulates target genes via an agr-independent but SarA-dependent pathway.
Collapse
Affiliation(s)
- A L Cheung
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York 10021, USA.
| | | | | |
Collapse
|
88
|
Bayer AS, Coulter SN, Stover CK, Schwan WR. Impact of the high-affinity proline permease gene (putP) on the virulence of Staphylococcus aureus in experimental endocarditis. Infect Immun 1999; 67:740-4. [PMID: 9916085 PMCID: PMC96381 DOI: 10.1128/iai.67.2.740-744.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1998] [Accepted: 11/10/1998] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus causes a wide variety of invasive human infections. However, delineation of the genes which are essential for the in vivo survival of this pathogen has not been accomplished to date. Using signature tag mutagenesis techniques and large mutant pool screens, previous investigators identified several major gene classes as candidate essential gene loci for in vivo survival; these include genes for amino acid transporters, oligopeptide transporters, and lantibiotic synthesis (W. R. Schwan, S. N. Coulter, E. Y. W. Ng, M. H. Langhorne, H. D. Ritchie, L. L. Brody, S. Westbrock-Wadman, A. S. Bayer, K. R. Folger, and C. K. Stover, Infect. Immun. 66:567-572, 1998). In this study, we directly compared the virulence of four such isogenic signature tag mutants with that of the parental strain (RN6390) by using a prototypical model of invasive S. aureus infection, experimental endocarditis (IE). The oligonucleotide signature tag (OST) mutant with insertional inactivation of the gene (putP) which encodes the high-affinity transporter for proline uptake exhibited significantly reduced virulence in the IE model across three challenge inocula (10(4) to 10(6) CFU) in terms of achievable intravegetation densities (P, <0.05). The negative impact of putP inactivation on in vivo survival in the IE model was confirmed by simultaneous challenge with the original putP mutant and the parental strain as well as by challenge with a putP mutant in which this genetic inactivation was transduced into a distinct parental strain (S6C). In contrast, inactivation of loci encoding an oligopeptide transporter, a purine repressor, and lantibiotic biosynthesis had no substantial impact on the capacity of OST mutants to survive within IE vegetations. Thus, genes encoding the uptake of essential amino acids may well represent novel targets for new drug development. These data also confirm the utility of the OST technique as an important screening methodology for identifying candidate genes as requisite loci for the in vivo survival of S. aureus.
Collapse
Affiliation(s)
- A S Bayer
- St. John's Cardiovascular Research Center, Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California 90509, USA.
| | | | | | | |
Collapse
|
89
|
Cheung AL, Nast CC, Bayer AS. Selective activation of sar promoters with the use of green fluorescent protein transcriptional fusions as the detection system in the rabbit endocarditis model. Infect Immun 1998; 66:5988-93. [PMID: 9826382 PMCID: PMC108758 DOI: 10.1128/iai.66.12.5988-5993.1998] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1998] [Accepted: 08/13/1998] [Indexed: 01/09/2023] Open
Abstract
The global regulatory locus sar is composed of three overlapping transcripts initiated from a triple-promoter system (designated P1, P3, and P2). To explore if the individual sar promoters are differentially expressed in vitro and in vivo, we constructed a shuttle plasmid (pALC1434) containing a promoterless gfpUV gene (a gfp derivative [Clontech]) preceded by a polylinker region. Recombinant shuttle vectors containing individual sar promoters upstream of the gfpUV reporter gene were then introduced into Staphylococcus aureus RN6390. Northern and immunoblot analysis revealed that P1 is stronger than the P2 and P3 promoters in vitro. Additionally, the levels of the gfpUV transcript driven by individual sar promoters also correlated with the growth cycle dependency of these promoters in liquid cultures, thus suggesting the utility of pALC1434 as a vehicle for reporter fusion. Using the rabbit endocarditis model, we examined the expression of these three GFPUV fusions in vivo by fluorescence microscopy of infected cardiac vegetations 24 h after initial intravenous challenge. Similar to the in vitro findings, P1 was activated both in the center and on the surface of the vegetations. In contrast, the P3 promoter was silent both in vivo and in vitro as determined by fluorescence microscopy. Remarkably, P2 was silent in vitro but became highly activated in vivo. In particular, the sar P2 promoter was activated on the surface of the vegetation but not in the center of the lesion. These data imply that in vivo promoter activation of sar differed from that observed in vitro. Moreover, the individual sar promoters may be differentially expressed in different areas within the same anatomic niche, presumably reflecting the microbial physiological response to distinct host microenvironments. As the sar locus controls the synthesis of both extracellular and cell wall virulence determinants, these promoter-gfpUV constructs should be useful to characterize many aspects of S. aureus gene regulation in vivo.
Collapse
Affiliation(s)
- A L Cheung
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York 10021, Los Angeles, California 90024, USA.
| | | | | |
Collapse
|
90
|
Yeaman MR, Bayer AS, Koo SP, Foss W, Sullam PM. Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J Clin Invest 1998; 101:178-87. [PMID: 9421480 PMCID: PMC508554 DOI: 10.1172/jci562] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Platelet microbicidal proteins (PMPs) are hypothesized to exert microbicidal effects via cytoplasmic membrane disruption. Transmission electron microscopy demonstrated a temporal association between PMP exposure, damage of the Staphylococcus aureus cytoplasmic membrane ultrastructure, and subsequent cell death. To investigate the mechanisms of action of PMPs leading to membrane damage, we used flow cytometry to compare the effects of two distinct PMPs (thrombin-induced PMP-1 [tPMP-1] or PMP-2) with human neutrophil defensin-1 (hNP-1) on transmembrane potential (Deltapsi), membrane permeabilization, and killing of S. aureus. Related strains 6850 (Deltapsi -150 mV) and JB-1 (Deltapsi -100 mV; a respiration-deficient menadione auxotroph of 6850) were used to assess the influence of Deltapsi on peptide microbicidal effects. Propidium iodide (PI) uptake was used to detect membrane permeabilization, retention of 3,3'-dipentyloxacarbocyanine (DiOC5) was used to monitor membrane depolarization (Deltapsi), and quantitative culture or acridine orange accumulation was used to measure viability. PMP-2 rapidly depolarized and permeabilized strain 6850, with the extent of permeabilization inversely related to pH. tPMP-1 failed to depolarize strain 6850, but did permeabilize this strain in a manner directly related to pH. Depolarization, permeabilization, and killing of strain JB-1 due to PMPs were significantly less than in strain 6850. Growth in menadione reconstituted Deltapsi of JB-1 to a level equivalent to 6850, and was associated with greater depolarization due to PMP-2, but not tPMP-1. Reconstitution of Deltapsi also enhanced permeabilization and killing of JB-1 due to tPMP-1 or PMP-2. Both PMP-2 and tPMP-1 caused significant reductions in viability of strain 6850. In contrast to tPMP-1 or PMP-2, defensin hNP-1 depolarized, permeabilized, and killed both strains 6850 and JB-1 equally, and in a manner directly related to pH. Collectively, these data indicate that membrane dysfunction and cell death due to tPMP-1, PMP-2, or hNP-1 likely involve different mechanisms. These findings may also reveal new insights into the microbicidal activities versus mammalian cell toxicities of antimicrobial peptides.
Collapse
Affiliation(s)
- M R Yeaman
- Division of Infectious Diseases, St. John's Cardiovascular Research Center, LAC-Harbor UCLA Medical Center, Torrance, California 90509, USA.
| | | | | | | | | |
Collapse
|