51
|
Kim S, Woo JH, Kim N, Kim MH, Kim SY, Son JH, Moon DC, Lim SK, Shin M, Lee JC. Characterization Of Chromosome-Mediated Colistin Resistance In Escherichia coli Isolates From Livestock In Korea. Infect Drug Resist 2019; 12:3291-3299. [PMID: 31695448 PMCID: PMC6815941 DOI: 10.2147/idr.s225383] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose Colistin resistance in gram-negative bacteria from humans and livestock has been increasingly reported worldwide. The aim of this study was to investigate the underlying mechanisms of chromosome-mediated colistin resistance in Escherichia coli isolates from livestock in Korea. Materials and methods Thirty mcr-1-negative isolates were selected from a collection of colistin-resistant E. coli isolates collected from livestock in 2005 and 2015 in Korea. Amino acid alterations in PmrAB, PhoPQ, MgrB, and PmrD were investigated. Colistin-resistant derivatives were produced by serial passage of colistin-susceptible E. coli isolates in colistin-containing media. Results Thirty colistin-resistant mcr-negative E. coli isolates were classified into 26 sequence types. Twenty-two isolates carried diverse amino acid alterations in PmrB, PhoP, PhoQ, MgrB, and/or PmrD, whereas no mutation in any of these genes was found in the remaining eight isolates. Sixteen out of the 22 isolates shared a total of nine polymorphic positions that were found in colistin-susceptible E. coli strains. Colistin-resistant derivatives from two colistin-susceptible isolates showed the same genetic alterations that were observed in colistin-resistant clinical isolates. Conclusion Our results suggest that the mechanism underlying chromosome-mediated colistin resistance remain to be discovered in E. coli. Selective pressure of colistin in vitro induced the same genetic mutations associated with colistin resistance in vivo. Efforts to reduce colistin consumption in livestock should be redoubled, to prevent the occurrence of colistin-resistant E. coli strains.
Collapse
Affiliation(s)
- Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Hwa Woo
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hyun Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Se Yeon Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joo Hee Son
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Chan Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
52
|
Abdi M, Mirkalantari S, Amirmozafari N. Bacterial resistance to antimicrobial peptides. J Pept Sci 2019; 25:e3210. [DOI: 10.1002/psc.3210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Milad Abdi
- Student Research Committee, Faculty of MedicineIran University of Medical Sciences Tehran Iran
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Shiva Mirkalantari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| |
Collapse
|
53
|
Spohn R, Daruka L, Lázár V, Martins A, Vidovics F, Grézal G, Méhi O, Kintses B, Számel M, Jangir PK, Csörgő B, Györkei Á, Bódi Z, Faragó A, Bodai L, Földesi I, Kata D, Maróti G, Pap B, Wirth R, Papp B, Pál C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun 2019; 10:4538. [PMID: 31586049 PMCID: PMC6778101 DOI: 10.1038/s41467-019-12364-6] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system.
Collapse
Affiliation(s)
- Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Fanni Vidovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Pramod K Jangir
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- University of California, San Francisco, Department of Microbiology and Immunology, San Francisco, CA, USA
| | - Ádám Györkei
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Zoltán Bódi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Anikó Faragó
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Diána Kata
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bernadett Pap
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
54
|
Ligowska-Marzęta M, Hancock V, Ingmer H, M Aarestrup F. Comparison of Gene Expression Profiles of Uropathogenic Escherichia Coli CFT073 after Prolonged Exposure to Subinhibitory Concentrations of Different Biocides. Antibiotics (Basel) 2019; 8:antibiotics8040167. [PMID: 31569631 PMCID: PMC6963283 DOI: 10.3390/antibiotics8040167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/24/2023] Open
Abstract
Biocides are chemical compounds widely used for sterilization and disinfection. The aim of this study was to examine whether exposure to subinhibitory biocide concentrations influenced transcriptional expression of genes that could improve a pathogen’s drug resistance or fitness. We used DNA microarrays to investigate the transcriptome of the uropathogenic Escherichia coli strain CFT073 in response to prolonged exposure to subinhibitory concentrations of four biocides: benzalkonium chloride, chlorhexidine, hydrogen peroxide and triclosan. Transcription of a gene involved in polymyxin resistance, arnT, was increased after treatment with benzalkonium chloride. However, pretreatment of the bacteria with this biocide did not result in cross-resistance to polymyxin in vitro. Genes encoding products related to transport formed the functional group that was most affected by biocides, as 110 out of 884 genes in this category displayed altered transcription. Transcripts of genes involved in cysteine uptake, sulfate assimilation, dipeptide transport, as well as cryptic phage genes were also more abundant in response to several biocides. Additionally, we identified groups of genes with transcription changes unique to single biocides that might include potential targets for the biocides. The biocides did not increase the resistance potential of the pathogen to other antimicrobials.
Collapse
Affiliation(s)
- Małgorzata Ligowska-Marzęta
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark.
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Viktoria Hancock
- Renal Research & Innovation, Baxter International Inc., SE-220 10 Lund, Sweden.
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
55
|
Nickel chelation therapy as an approach to combat multi-drug resistant enteric pathogens. Sci Rep 2019; 9:13851. [PMID: 31554822 PMCID: PMC6761267 DOI: 10.1038/s41598-019-50027-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022] Open
Abstract
The nickel (Ni)-specific chelator dimethylglyoxime (DMG) has been used for many years to detect, quantitate or decrease Ni levels in various environments. Addition of DMG at millimolar levels has a bacteriostatic effect on some enteric pathogens, including multidrug resistant (MDR) strains of Salmonella Typhimurium and Klebsiella pneumoniae. DMG inhibited activity of two Ni-containing enzymes, Salmonella hydrogenase and Klebsiella urease. Oral delivery of nontoxic levels of DMG to mice previously inoculated with S. Typhimurium led to a 50% survival rate, while 100% of infected mice in the no-DMG control group succumbed to salmonellosis. Pathogen colonization numbers from livers and spleens of mice were 10- fold reduced by DMG treatment of the Salmonella-infected mice. Using Nuclear Magnetic Resonance, we were able to detect DMG in the livers of DMG-(orally) treated mice. Inoculation of Galleria mellonella (wax moth) larvae with DMG prior to injection of either MDR K. pneumoniae or MDR S. Typhimurium led to 40% and 60% survival, respectively, compared to 100% mortality of larvae infected with either pathogen, but without prior DMG administration. Our results suggest that DMG-mediated Ni-chelation could provide a novel approach to combat enteric pathogens, including recalcitrant multi-drug resistant strains.
Collapse
|
56
|
Anandan A, Vrielink A. Structure and function of lipid A-modifying enzymes. Ann N Y Acad Sci 2019; 1459:19-37. [PMID: 31553069 DOI: 10.1111/nyas.14244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharides are complex molecules found in the cell envelop of many Gram-negative bacteria. The toxic activity of these molecules has led to the terminology of endotoxins. They provide bacteria with structural integrity and protection from external environmental conditions, and they interact with host signaling receptors to induce host immune responses. Bacteria have evolved enzymes that act to modify lipopolysaccharides, particularly the lipid A region of the molecule, to enable the circumvention of host immune system responses. These modifications include changes to lipopolysaccharide by the addition of positively charged sugars, such as N-Ara4N, and phosphoethanolamine (pEtN). Other modifications include hydroxylation, acylation, and deacylation of fatty acyl chains. We review the two-component regulatory mechanisms for enzymes that carry out these modifications and provide details of the structures of four enzymes (PagP, PagL, pEtN transferases, and ArnT) that modify the lipid A portion of lipopolysaccharides. We focus largely on the three-dimensional structures of these enzymes, which provide an understanding of how their substrate binding and catalytic activities are mediated. A structure-function-based understanding of these enzymes provides a platform for the development of novel therapeutics to treat antibiotic resistance.
Collapse
Affiliation(s)
- Anandhi Anandan
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
57
|
Cryo-electron microscopy structures of ArnA, a key enzyme for polymyxin resistance, revealed unexpected oligomerizations and domain movements. J Struct Biol 2019; 208:43-50. [PMID: 31344437 DOI: 10.1016/j.jsb.2019.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/20/2019] [Indexed: 11/22/2022]
Abstract
Gram-negative bacteria evade the attack of cationic antimicrobial peptides through modifying their lipid A structure in their outer membranes with 4-amino-4-deoxy-L-arabinose (Ara4N). ArnA is a crucial enzyme in the lipid A modification pathway and its deletion abolishes the polymyxin resistance of gram-negative bacteria. Previous studies by X-ray crystallography have shown that full-length ArnA forms a three-bladed propeller-shaped hexamer. Here, the structures of ArnA determined by cryo-electron microscopy (cryo-EM) reveal that ArnA exists in two 3D architectures, hexamer and tetramer. This is the first observation of a tetrameric ArnA. The hexameric cryo-EM structure is similar to previous crystal structures but shows differences in domain movements and conformational changes. We propose that ArnA oligomeric states are in a dynamic equilibrium, where the hexamer state is energetically more favorable, and its domain movements are important for cooperating with downstream enzymes in the lipid A-Ara4N modification pathway. The results provide us with new possibilities to explore inhibitors targeting ArnA.
Collapse
|
58
|
Bailleul G, Guabiraba R, Virlogeux-Payant I, Lantier I, Trotereau J, Gilbert FB, Wiedemann A, Trotereau A, Velge P, Schouler C, Lalmanach AC. Systemic Administration of Avian Defensin 7: Distribution, Cellular Target, and Antibacterial Potential in Mice. Front Microbiol 2019; 10:541. [PMID: 30972041 PMCID: PMC6444188 DOI: 10.3389/fmicb.2019.00541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Defensins are natural antimicrobial peptides. The avian beta-defensin AvBD7 isolated from the chicken bone marrow possess broad antibacterial spectrum and strong resistance to proteolysis. However, its ability to fight systemic infections of major concern for public health, such as salmonellosis, is unknown. As a first approach, fluorescence labeling of AvBD7 allowed to track its systemic distribution after intraperitoneal injection in mice using whole body live imaging. It was associated to peritoneal cells and to deeper organs such as the liver. In the next step, the use of labeled AvBD7 allowed to observe its interaction with murine macrophages in culture. After incubation, it was able to penetrate inside the cells through an endocytosis-like mechanism. Furthermore, natural AvBD7 contributed to the control of intracellular multiplication of a multidrug resistant Salmonella strain, after incubation with infected macrophages. Finally, administration in a model of systemic lethal Salmonella infection in mice led to significant improvement of mouse survival, consistently with significant reduction of the liver bacterial load. In conclusion, the results reveal a hitherto unknown intracellular antibacterial effect of AvBD7 in Salmonella target cells and support AvBD7 as a candidate of interest for the treatment of infectious diseases caused by multidrug-resistant pathogenic Enterobacteriaceae.
Collapse
Affiliation(s)
- Geoffrey Bailleul
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Rodrigo Guabiraba
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | | | - Isabelle Lantier
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Jérôme Trotereau
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Florence B Gilbert
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Agnès Wiedemann
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Angélina Trotereau
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Philippe Velge
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Catherine Schouler
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | | |
Collapse
|
59
|
Ciumac D, Gong H, Hu X, Lu JR. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci 2019; 537:163-185. [DOI: 10.1016/j.jcis.2018.10.103] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023]
|
60
|
Moffatt JH, Harper M, Boyce JD. Mechanisms of Polymyxin Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:55-71. [PMID: 31364071 DOI: 10.1007/978-3-030-16373-0_5] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymyxin antibiotics are increasingly being used as last-line therapeutic options against a number of multidrug resistant bacteria. These antibiotics show strong bactericidal activity against a range of Gram-negative bacteria, but with the increased use of these antibiotics resistant strains are emerging at an alarming rate. Furthermore, some Gram-negative species, such as Neisseria meningitidis, Proteus mirabilis and Burkholderia spp., are intrinsically resistant to the action of polymyxins. Most identified polymyxin resistance mechanisms in Gram-negative bacteria involve changes to the lipopolysaccharide (LPS) structure, as polymyxins initially interact with the negatively charged lipid A component of LPS. The controlled addition of positively charged residues such as 4-amino-L-arabinose, phosphoethanolamine and/or galactosamine to LPS results in a reduced negative charge on the bacterial surface and therefore reduced interaction between the polymyxin and the LPS. Polymyxin resistant species produce LPS that intrinsically contains one or more of these additions. While the genes necessary for most of these additions are chromosomally encoded, plasmid-borne phosphoethanolamine transferases (mcr-1 to mcr-8) have recently been identified and these plasmids threaten to increase the rate of dissemination of clinically relevant colistin resistance. Uniquely, Acinetobacter baumannii can also become highly resistant to polymyxins via spontaneous mutations in the lipid A biosynthesis genes lpxA, lpxC or lpxD such that they produce no LPS or lipid A. A range of other non-LPS-dependent polymyxin resistance mechanisms has also been identified in bacteria, but these generally result in only low levels of resistance. These include increased anionic capsular polysaccharide production in Klebsiella pneumoniae, expression of efflux systems such as MtrCDE in N. meningitidis, and altered expression of outer membrane proteins in a small number of species.
Collapse
Affiliation(s)
- Jennifer H Moffatt
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia
| | - Marina Harper
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia
| | - John D Boyce
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia. .,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia.
| |
Collapse
|
61
|
|
62
|
Sanz-García F, Hernando-Amado S, Martínez JL. Mutational Evolution of Pseudomonas aeruginosa Resistance to Ribosome-Targeting Antibiotics. Front Genet 2018; 9:451. [PMID: 30405685 PMCID: PMC6200844 DOI: 10.3389/fgene.2018.00451] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023] Open
Abstract
The present work examines the evolutionary trajectories of replicate Pseudomonas aeruginosa cultures in presence of the ribosome-targeting antibiotics tobramycin and tigecycline. It is known that large number of mutations across different genes - and therefore a large number of potential pathways - may be involved in resistance to any single antibiotic. Thus, evolution toward resistance might, to a large degree, rely on stochasticity, which might preclude the use of predictive strategies for fighting antibiotic resistance. However, the present results show that P. aeruginosa populations evolving in parallel in the presence of antibiotics (either tobramycin or tigecycline) follow a set of trajectories that present common elements. In addition, the pattern of resistance mutations involved include common elements for these two ribosome-targeting antimicrobials. This indicates that mutational evolution toward resistance (and perhaps other properties) is to a certain degree deterministic and, consequently, predictable. These findings are of interest, not just for P. aeruginosa, but in understanding the general rules involved in the evolution of antibiotic resistance also. In addition, the results indicate that bacteria can evolve toward higher levels of resistance to antibiotics against which they are considered to be intrinsically resistant, as tigecycline in the case of P. aeruginosa and that this may confer cross-resistance to other antibiotics of therapeutic value. Our results are particularly relevant in the case of patients under empiric treatment with tigecycline, which frequently suffer P. aeruginosa superinfections.
Collapse
Affiliation(s)
| | - Sara Hernando-Amado
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L. Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
63
|
Peñaloza HF, Noguera LP, Riedel CA, Bueno SM. Expanding the Current Knowledge About the Role of Interleukin-10 to Major Concerning Bacteria. Front Microbiol 2018; 9:2047. [PMID: 30279680 PMCID: PMC6153308 DOI: 10.3389/fmicb.2018.02047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin-10 (IL-10) is one of the most important anti-inflammatory cytokine produced during bacterial infection. Two related phenomena explain the importance of IL-10 production in this context: first, the wide range of cells able to produce this cytokine and second, the wide effects that it causes on target cells. In a previous report we described opposing roles of IL-10 production during bacterial infection. Overall, during infections caused by intracellular bacteria or by pathogens that modulate the inflammatory response, IL-10 production facilitates bacterial persistence and dissemination within the host. Whereas during infections caused by extracellular or highly inflammatory bacteria, IL-10 production reduces host tissue damage and facilitates host survival. Given that these data were obtained using antibiotic susceptible bacteria, the potential application of these studies to multi-drug resistant (MDR) bacteria needs to be evaluated. MDR bacteria can become by 2050 a major death cause worldwide, not only for its ability to resist antimicrobial therapy but also because the virulence of these strains is different as compared to antibiotic susceptible strains. Therefore, it is important to understand the interaction of MDR-bacteria with the immune system during infection. This review discusses the current data about the role of IL-10 during infections caused by major circulating antibiotic resistant bacteria. We conclude that the production of IL-10 improves host survival during infections caused by extracellular or highly inflammatory bacteria, however, it is detrimental during infections caused by intracellular bacteria or bacterial pathogens that modulate the inflammatory response. Importantly, during MDR-bacterial infections a differential IL-10 production has been described, compared to non-MDR bacteria, which might be due to virulence factors specific of MDR bacteria that modulate production of IL-10. This knowledge is important for the development of new therapies against infections caused by these bacteria, where antibiotics effectiveness is dramatically decreasing.
Collapse
Affiliation(s)
- Hernán F. Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreani P. Noguera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
64
|
Abstract
Polymyxins (e.g., colistin) are the drugs of last resort to treat multidrug-resistant infections in humans. To control mobile colistin resistance, there is a worldwide trend to limit colistin use in animal production. However, simply limiting colistin use in animal production may still not effectively mitigate colistin resistance due to an overlooked non-colistin usage factor(s). Using controlled systems, in this study, we observed that MCR-1 confers cross-resistance to bacitracin, a popular in-feed antibiotic used in food animals. Thus, imprudent and extensive usage of bacitracin in food animals may serve as a non-colistin usage risk factor for the transmissible colistin resistance. Further comprehensive in vitro and in vivo studies are highly warranted to generate science-based information for risk assessment and risk management of colistin resistance, consequently facilitating the development of proactive and effective strategies to mitigate colistin resistance in animal production system and protect public health. Extensive use of colistin in food animals is deemed a major driving force for the emergence and transmission of mcr-1. However, a non-colistin usage factor(s) contributing to mobile colistin resistance may also exist in animal production systems. Given that polymyxin, a bacterium-derived peptide antibiotic, has been successfully used as a surrogate to study bacterial resistance to antimicrobial peptides (AMPs), acquisition of MCR-1 may confer cross-resistance to the unrelated AMPs implicated in practical applications. To test this, we first constructed Escherichia coli recombinant strains differing only in the presence or absence of functional MCR-1. Among diverse tested AMPs, MCR-1 was observed to confer cross-resistance to bacitracin, an in-feed antibiotic widely used in animal industry. The significantly (2-fold) increased bacitracin MIC was confirmed by using different bacitracin products, broth media, and laboratory host strains for susceptibility tests. Subsequently, an original mcr-1 gene-bearing plasmid, pSLy21, was conjugatively transferred to eight clinical E. coli recipient strains isolated from diarrheic pigs, which also led to significantly increased MICs of both colistin (4-fold to 8-fold) and bacitracin (2-fold). Growth curve examination further demonstrated that MCR-1 provides a growth advantage to various E. coli strains in the presence of bacitracin. Given that bacitracin, a feed additive displaying low absorption in the intestine, can be used in food animals with no withdrawal required, imprudent use of bacitracin in food animals may serve as a risk factor to enhance the ecological fitness of MCR-1-positive E. coli strains, consequently facilitating the persistence and transmission of plasmid-mediated colistin resistance in agricultural ecosystem. IMPORTANCE Polymyxins (e.g., colistin) are the drugs of last resort to treat multidrug-resistant infections in humans. To control mobile colistin resistance, there is a worldwide trend to limit colistin use in animal production. However, simply limiting colistin use in animal production may still not effectively mitigate colistin resistance due to an overlooked non-colistin usage factor(s). Using controlled systems, in this study, we observed that MCR-1 confers cross-resistance to bacitracin, a popular in-feed antibiotic used in food animals. Thus, imprudent and extensive usage of bacitracin in food animals may serve as a non-colistin usage risk factor for the transmissible colistin resistance. Further comprehensive in vitro and in vivo studies are highly warranted to generate science-based information for risk assessment and risk management of colistin resistance, consequently facilitating the development of proactive and effective strategies to mitigate colistin resistance in animal production system and protect public health.
Collapse
|
65
|
Ben Hamed S, Tavares Ranzani-Paiva MJ, Tachibana L, de Carla Dias D, Ishikawa CM, Esteban MA. Fish pathogen bacteria: Adhesion, parameters influencing virulence and interaction with host cells. FISH & SHELLFISH IMMUNOLOGY 2018; 80:550-562. [PMID: 29966687 DOI: 10.1016/j.fsi.2018.06.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Wild fisheries are declining due to over-fishing, climate change, pollution and marine habitat destructions among other factors, and, concomitantly, aquaculture is increasing significantly around the world. Fish infections caused by pathogenic bacteria are quite common in aquaculture, although their seriousness depends on the season. Drug-supplemented feeds are often used to keep farmed fish free from the diseases caused by such bacteria. However, given that bacteria can survive well in aquatic environments independently of their hosts, bacterial diseases have become major impediments to aquaculture development. On the other hand, the indiscriminate uses of antimicrobial agents has led to resistant strains and the need to switch to other antibiotics, although it seems that an integrated approach that considers not only the pathogen but also the host and the environment will be the most effective method in the long-term to improve aquatic animal health. This review covers the mechanisms of bacterial pathogenicity and details the foundations underlying the interactions occurring between pathogenic bacteria and the fish host in the aquatic environment, as well as the factors that influence virulence. Understanding and linking the different phenomena that occur from adhesion to colonization of the host will offer novel and useful means to help design suitable therapeutic strategies for disease prevention and treatment.
Collapse
Affiliation(s)
- Said Ben Hamed
- Fishery Institute-APTA - SAA, Research Center of Aquaculture, Av. Francisco Matarazzo, 455, CEP. 05001-900, Sao Paulo, SP, Brazil
| | - Maria José Tavares Ranzani-Paiva
- Fishery Institute-APTA - SAA, Research Center of Aquaculture, Av. Francisco Matarazzo, 455, CEP. 05001-900, Sao Paulo, SP, Brazil
| | - Leonardo Tachibana
- Fishery Institute-APTA - SAA, Research Center of Aquaculture, Av. Francisco Matarazzo, 455, CEP. 05001-900, Sao Paulo, SP, Brazil
| | - Danielle de Carla Dias
- Fishery Institute-APTA - SAA, Research Center of Aquaculture, Av. Francisco Matarazzo, 455, CEP. 05001-900, Sao Paulo, SP, Brazil
| | - Carlos Massatoshi Ishikawa
- Fishery Institute-APTA - SAA, Research Center of Aquaculture, Av. Francisco Matarazzo, 455, CEP. 05001-900, Sao Paulo, SP, Brazil
| | - María Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence, ''Campus Mare Nostrum'', University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
66
|
Fernández PA, Velásquez F, Garcias-Papayani H, Amaya FA, Ortega J, Gómez S, Santiviago CA, Álvarez SA. Fnr and ArcA Regulate Lipid A Hydroxylation in Salmonella Enteritidis by Controlling lpxO Expression in Response to Oxygen Availability. Front Microbiol 2018; 9:1220. [PMID: 29937757 PMCID: PMC6002686 DOI: 10.3389/fmicb.2018.01220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
Lipid A is the bioactive component of lipopolysaccharide, and presents a dynamic structure that undergoes modifications in response to environmental signals. Many of these structural modifications influence Salmonella virulence. This is the case of lipid A hydroxylation, a modification catalyzed by the dioxygenase LpxO. Although it has been established that oxygen is required for lipid A hydroxylation acting as substrate of LpxO in Salmonella, an additional regulatory role for oxygen in lpxO expression has not been described. The existence of this regulation could be relevant considering that Salmonella faces low oxygen tension during infection. This condition leads to an adaptive response by changing the expression of numerous genes, and transcription factors Fnr and ArcA are major regulators of this process. In this work, we describe for the first time that lipid A hydroxylation and lpxO expression are modulated by oxygen availability in Salmonella enterica serovar Enteritidis (S. Enteritidis). Biochemical and genetic analyses indicate that this process is regulated by Fnr and ArcA controlling the expression of lpxO. In addition, according to our results, this regulation occurs by direct binding of both transcription factors to specific elements present in the lpxO promoter region. Altogether, our observations revealed a novel role for oxygen acting as an environment signal controlling lipid A hydroxylation in S. Enteritidis.
Collapse
Affiliation(s)
- Paulina A Fernández
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Felipe Velásquez
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Héctor Garcias-Papayani
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Fernando A Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jaime Ortega
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Sebastián Gómez
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Sergio A Álvarez
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
67
|
Nelson N, Schwartz DK. Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers. Biophys J 2018; 114:2606-2616. [PMID: 29874611 PMCID: PMC6129183 DOI: 10.1016/j.bpj.2018.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 01/12/2023] Open
Abstract
The molecular interactions between antimicrobial peptides (AMPs) and lipid A-containing supported lipid bilayers were probed using single-molecule total internal reflection fluorescence microscopy. Hybrid supported lipid bilayers with lipid A outer leaflets and phospholipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)) inner leaflets were prepared and characterized, and the spatiotemporal trajectories of individual fluorescently labeled LL37 and Melittin AMPs were determined as they interacted with the bilayer surfaces comprising either monophosphoryl or diphosphoryl lipid A (from Escherichia coli) to determine the impact of electrostatic interactions. Large numbers of trajectories were obtained and analyzed to obtain the distributions of surface residence times and the statistics of the spatial trajectories. Interestingly, the AMP species were sensitive to subtle differences in the charge of the lipid, with both peptides diffusing more slowly and residing longer on the diphosphoryl lipid A. Furthermore, the single-molecule dynamics indicated a qualitative difference between the behavior of AMPs on hybrid Lipid A bilayers and on those composed entirely of DOPE. Whereas AMPs interacting with a DOPE bilayer exhibited two-dimensional Brownian diffusion with a diffusion coefficient of ∼1.7 μm2/s, AMPs adsorbed to the lipid A surface exhibited much slower apparent diffusion (on the order of ∼0.1 μm2/s) and executed intermittent trajectories that alternated between two-dimensional Brownian diffusion and desorption-mediated three-dimensional flights. Overall, these findings suggested that bilayers with lipid A in the outer leaflet, as it is in bacterial outer membranes, are valuable model systems for the study of the initial stage of AMP-bacterium interactions. Furthermore, single-molecule dynamics was sensitive to subtle differences in electrostatic interactions between cationic AMPs and monovalent or divalent anionic lipid A moieties.
Collapse
Affiliation(s)
- Nathaniel Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
68
|
Plasmid-mediated colistin resistance in animals: current status and future directions. Anim Health Res Rev 2018; 18:136-152. [DOI: 10.1017/s1466252317000111] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractColistin, a peptide antibiotic belonging to the polymyxin family, is one of the last effective drugs for the treatment of multidrug resistant Gram-negative infections. Recent discovery of a novel mobile colistin resistance gene,mcr-1, from people and food animals has caused a significant public health concern and drawn worldwide attention. Extensive usage of colistin in food animals has been proposed as a major driving force for the emergence and transmission ofmcr-1; thus, there is a worldwide trend to limit colistin usage in animal production. However, despite lack of colistin usage in food animals in the USA,mcr-1-positiveEscherichia coliisolates were still isolated from swine. In this paper, we provided an overview of colistin usage and epidemiology ofmcr-1in food animals, and summarized the current status of mechanistic and evolutionary studies of the plasmid-mediated colistin resistance. Based on published information, we further discussed several non-colistin usage risk factors that may contribute to the persistence, transmission, and emergence of colistin resistance in an animal production system. Filling the knowledge gaps identified in this review is critical for risk assessment and risk management of colistin resistance, which will facilitate proactive and effective strategies to mitigate colistin resistance in future animal production systems.
Collapse
|
69
|
HilD and PhoP independently regulate the expression of grhD1, a novel gene required for Salmonella Typhimurium invasion of host cells. Sci Rep 2018; 8:4841. [PMID: 29555922 PMCID: PMC5859253 DOI: 10.1038/s41598-018-23068-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/06/2018] [Indexed: 01/28/2023] Open
Abstract
When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.
Collapse
|
70
|
Goto R, Miki T, Nakamura N, Fujimoto M, Okada N. Salmonella Typhimurium PagP- and UgtL-dependent resistance to antimicrobial peptides contributes to the gut colonization. PLoS One 2017; 12:e0190095. [PMID: 29267354 PMCID: PMC5739500 DOI: 10.1371/journal.pone.0190095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022] Open
Abstract
Mucosal barrier formed by cationic antimicrobial peptides (CAMPs) is believed to be crucial for host protection from pathogenic gut infection. However, some pathogens can develop resistance to the CAMPs to survive in hosts. Salmonella enterica is a common cause of acute diarrhea. During the course of this disease, the pathogen must continuously colonize the gut lumen, which contains CAMPs. However, it is incompletely understood whether the resistance of Salmonella strains to CAMPs contributes to the development of gut infections. PhoPQ two-component system-dependent lipid A modifications confer resistance to CAMPs in S. enterica serovar Typhimurium. Therefore, we introduced mutations into the PhoPQ-regulated genes in an S. Typhimurium strain, obtaining pagP ugtL and pmrA mutant strains. Each mutant strain demonstrated a distinct spectrum of the resistance to CAMPs. Using streptomycin mouse model for Salmonella diarrhea, we show that the pagP ugtL, but not pmrA, mutant strain had a gut colonization defect. Furthermore, the pagP ugtL, but not pmrA, mutant strain had decreased outer membrane integrity and susceptibility to magainin 2, an alpha-helical CAMP. Taken together, the PagP- and UgtL-dependent resistance to CAMPs was demonstrated to contribute to sustained colonization in the gut. This may be due to the robust outer membrane of S. Typhimurium, inducing the resistance to alpha-helical CAMPs such as α-defensins. Our findings indicate that the development of resistance to CAMPs is required for the S. Typhimurium gut infection.
Collapse
Affiliation(s)
- Ryosuke Goto
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
- * E-mail:
| | - Nao Nakamura
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Mayuka Fujimoto
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
71
|
Vaccine development targeting lipopolysaccharide structure modification. Microbes Infect 2017; 20:455-460. [PMID: 29233768 DOI: 10.1016/j.micinf.2017.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
Vaccines are one of the most important methods for preventing infectious disease. Structural modification of lipopolysaccharide (LPS) provides a strategy for the development of live attenuated vaccines, either by altering the immunogenicity or by attenuating virulence of the bacteria. This review summarizes various approaches that utilize LPS mutants as whole-cell vaccines.
Collapse
|
72
|
Herrera CM, Henderson JC, Crofts AA, Trent MS. Novel coordination of lipopolysaccharide modifications in Vibrio cholerae promotes CAMP resistance. Mol Microbiol 2017; 106:582-596. [PMID: 28906060 DOI: 10.1111/mmi.13835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 01/02/2023]
Abstract
In the environment and during infection, the human intestinal pathogen Vibrio cholerae must overcome noxious compounds that damage the bacterial outer membrane. The El Tor and classical biotypes of O1 V. cholerae show striking differences in their resistance to membrane disrupting cationic antimicrobial peptides (CAMPs), such as polymyxins. The classical biotype is susceptible to CAMPs, but current pandemic El Tor biotype isolates gain CAMP resistance by altering the net charge of their cell surface through glycine modification of lipid A. Here we report a second lipid A modification mechanism that only functions in the V. cholerae El Tor biotype. We identify a functional EptA ortholog responsible for the transfer of the amino-residue phosphoethanolamine (pEtN) to the lipid A of V. cholerae El Tor that is not functional in the classical biotype. We previously reported that mildly acidic growth conditions (pH 5.8) downregulate expression of genes encoding the glycine modification machinery. In this report, growth at pH 5.8 increases expression of eptA with concomitant pEtN modification suggesting coordinated regulation of these LPS modification systems. Similarly, efficient pEtN lipid A substitution is seen in the absence of lipid A glycinylation. We further demonstrate EptA orthologs from non-cholerae Vibrio species are functional.
Collapse
Affiliation(s)
- Carmen M Herrera
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jeremy C Henderson
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Alexander A Crofts
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - M Stephen Trent
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
73
|
Medina-Aparicio L, Rebollar-Flores JE, Beltrán-Luviano AA, Vázquez A, Gutiérrez-Ríos RM, Olvera L, Calva E, Hernández-Lucas I. CRISPR-Cas system presents multiple transcriptional units including antisense RNAs that are expressed in minimal medium and upregulated by pH in Salmonella enterica serovar Typhi. MICROBIOLOGY-SGM 2017; 163:253-265. [PMID: 28270274 DOI: 10.1099/mic.0.000414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CRISPR-Cas system is involved in bacterial immunity, virulence, gene regulation, biofilm formation and sporulation. In Salmonella enterica serovar Typhi, this system consists of five transcriptional units including antisense RNAs. It was determined that these genetic elements are expressed in minimal medium and are up-regulated by pH. In addition, a transcriptional characterization of cas3 and ascse2-1 is included herein.
Collapse
Affiliation(s)
- Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - América A Beltrán-Luviano
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Alejandra Vázquez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Rosa M Gutiérrez-Ríos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Leticia Olvera
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
74
|
Virulent and pathogenic features on the Cronobacter sakazakii polymyxin resistant pmr mutant strain s-3. Microb Pathog 2017; 110:359-364. [DOI: 10.1016/j.micpath.2017.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022]
|
75
|
Abstract
Covering: 1975 up to the end of 2016The decline in the discovery and development of novel antibiotics has resulted in the emergence of bacteria that are resistant to almost all available antibiotics. Currently, polymyxin B and E (colistin) are being used as the last-line therapy against life-threatening infections, unfortunately resistance to polymyxins in both the community and hospital setting is becoming more common. Octapeptins are structurally related non-ribosomal lipopeptide antibiotics that do not exhibit cross-resistance with polymyxins and have a broader spectrum of activity that includes Gram-positive bacteria. This makes them a precious and finite resource for the development of new antibiotics against these problematic polymyxin-resistant Gram-negative pathogens, in particular Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. This review surveys the progress in understanding octapeptin chemistry, mechanisms of antibacterial activity and biosynthesis. With the lack of cross-resistance and their broad antibacterial activity, the octapeptins represent ideal candidates for the development of a new generation of polymyxin-like lipopeptide antibiotics targeting polymyxin-resistant 'superbugs'.
Collapse
Affiliation(s)
- Tony Velkov
- Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Australia.
| | - Kade D Roberts
- Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Australia. and Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC, 3800, Australia.
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC, 3800, Australia.
| |
Collapse
|
76
|
Sepahi M, Jalal R, Mashreghi M. Antibacterial activity of poly-l-arginine under different conditions. IRANIAN JOURNAL OF MICROBIOLOGY 2017; 9:103-111. [PMID: 29214002 PMCID: PMC5715275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Arginine-rich peptides are an important class of antimicrobial peptides (AMPs) that exert their antibacterial activity via a lytic mechanism. Although the antibacterial activity of arginine-rich peptides has been already evaluated, no reports have so far been evaluated the influence of reaction conditions on their antimicrobial potential. The aim of the present study was to investigate the influence of pH, temperature, and glycine on antibacterial activity of poly-l-arginine (PLA) with a molecular weight of 5-15 kDa against Escherichia coli O157:H7 and Staphylococcus aureus. MATERIALS AND METHODS The percentage of growth inhibition of PLA against both bacteria was analyzed at various pH, temperatures and sub-inhibitory concentrations of glycine by two-fold broth microdilution method. RESULTS The results showed that PLA had antibacterial activity against E. coli O157:H7 and S. aureus and the inhibitory effect increased with increasing PLA concentration. The antimicrobial activity of PLA against both microorganisms was higher in basic media than under acidic or neutral conditions. At 1/2 times the MIC, heat treatment intensified the toxicity of PLA against E. coli O157:H7 whereas the susceptibility to PLA seems to be temperature independent for S. aureus. The MICs of glycine against E. coli O157:H7 and S. aureus were 12.5 and 25 mg ml-1, respectively. The antibacterial activity of PLA against both microorganisms increased, as indicated by the increasing growth inhibition percentage of this peptide with increasing glycine concentration. CONCLUSION The antibacterial activity of PLA against S. aureus and E. coli O157:H7 depends on pH and glycine concentration.
Collapse
Affiliation(s)
- Mohaddeseh Sepahi
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Razieh Jalal
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran,Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author: Razieh Jalal, PhD. Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, University Campus, Azadi Square, Mashhad, Iran. Tel: +98 51 38805537, Fax: +98 51 38807153,
| | - Mansour Mashreghi
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
77
|
Wang L, Pan Y, Yuan ZH, Zhang H, Peng BY, Wang FF, Qian W. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress. PLoS Pathog 2016; 12:e1006133. [PMID: 28036380 PMCID: PMC5231390 DOI: 10.1371/journal.ppat.1006133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/12/2017] [Accepted: 12/16/2016] [Indexed: 12/02/2022] Open
Abstract
Both iron starvation and excess are detrimental to cellular life, especially for animal and plant pathogens since they always live in iron-limited environments produced by host immune responses. However, how organisms sense and respond to iron is incompletely understood. Herein, we reveal that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, VgrS (also named ColS) is a membrane-bound receptor histidine kinase that senses extracytoplasmic iron limitation in the periplasm, while its cognate response regulator, VgrR (ColR), detects intracellular iron excess. Under iron-depleted conditions, dissociation of Fe3+ from the periplasmic sensor region of VgrS activates the VgrS autophosphorylation and subsequent phosphotransfer to VgrR, an OmpR-family transcription factor that regulates bacterial responses to take up iron. VgrR-VgrS regulon and the consensus DNA binding motif of the transcription factor VgrR were dissected by comparative proteomic and ChIP-seq analyses, which revealed that in reacting to iron-depleted environments, VgrR directly or indirectly controls the expressions of hundreds of genes that are involved in various physiological cascades, especially those associated with iron-uptake. Among them, we demonstrated that the phosphorylated VgrR tightly represses the transcription of a special TonB-dependent receptor gene, tdvA. This regulation is a critical prerequisite for efficient iron uptake and bacterial virulence since activation of tdvA transcription is detrimental to these processes. When the intracellular iron accumulates, the VgrR-Fe2+ interaction dissociates not only the binding between VgrR and the tdvA promoter, but also the interaction between VgrR and VgrS. This relieves the repression in tdvA transcription to impede continuous iron uptake and avoids possible toxic effects of excessive iron accumulation. Our results revealed a signaling system that directly senses both extracytoplasmic and intracellular iron to modulate bacterial iron homeostasis. The biological function of iron is like a “double-edge sword” to all cellular life since iron starvation or iron excess leads to cell death. For animal and plant pathogens, they have to compete for iron with their hosts since iron-limitation generally is an immune response against microbial infection. However, how pathogens detect extracellular and intracellular iron concentrations remains unclear. Here we show that a plant bacterial pathogen employs a membrane-bound sensor histidine kinase, VgrS, to directly detect extracytoplasmic iron starvation and activate iron uptake accordingly. As a prerequisite, VgrS phosphorylates cognate VgrR to shut down the transcription of a downstream gene, tdvA, whose expression is harmful to absorb iron and bacterial virulence. However, as intracellular iron concentration increases, the ferrous iron binds to VgrR to release its repression on the tdvA transcription, which results in the block of continuous iron uptake to avoid toxic effect of the metal. Therefore, VgrS and VgrR detect extracytoplasmic and intracellular iron, respectively, and systematically modulate cellular homeostasis to promote bacterial survival in iron-depleted environments, such as in host plant.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Pan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Hui Yuan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Yu Peng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
78
|
Kröger C, Kary SC, Schauer K, Cameron ADS. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii. Genes (Basel) 2016; 8:genes8010012. [PMID: 28036056 PMCID: PMC5295007 DOI: 10.3390/genes8010012] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023] Open
Abstract
Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Stefani C Kary
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Kristina Schauer
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim 85764, Germany.
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, SK S4S 042, Canada.
| |
Collapse
|
79
|
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are small naturally occurring microbicidal molecules produced by the host innate immune response that function as a first line of defense to kill pathogenic microorganisms by inducing deleterious cell membrane damage. AMPs also possess signaling and chemoattractant activities and can modulate the innate immune response to enhance protective immunity or suppress inflammation. Human pathogens have evolved defense molecules and strategies to counter and survive the AMPs released by host immune cells such as neutrophils and macrophages. Here, we review the various mechanisms used by human bacterial pathogens to resist AMP-mediated killing, including surface charge modification, active efflux, alteration of membrane fluidity, inactivation by proteolytic digestion, and entrapment by surface proteins and polysaccharides. Enhanced understanding of AMP resistance at the molecular level may offer insight into the mechanisms of bacterial pathogenesis and augment the discovery of novel therapeutic targets and drug design for the treatment of recalcitrant multidrug-resistant bacterial infections.
Collapse
|
80
|
Liu L, Li Y, Wang X, Guo W. A phosphoethanolamine transferase specific for the 4′-phosphate residue of Cronobacter sakazakii
lipid A. J Appl Microbiol 2016; 121:1444-1456. [DOI: 10.1111/jam.13280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- L. Liu
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi China
- School of Biotechnology; Jiangnan University; Wuxi China
| | - Y. Li
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi China
| | - X. Wang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi China
- School of Biotechnology; Jiangnan University; Wuxi China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi China
| | - W. Guo
- School of Biotechnology; Jiangnan University; Wuxi China
| |
Collapse
|
81
|
Trimble MJ, Mlynárčik P, Kolář M, Hancock REW. Polymyxin: Alternative Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025288. [PMID: 27503996 DOI: 10.1101/cshperspect.a025288] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antibiotic resistance among pathogenic bacteria is an ever-increasing issue worldwide. Unfortunately, very little has been achieved in the pharmaceutical industry to combat this problem. This has led researchers and the medical field to revisit past drugs that were deemed too toxic for clinical use. In particular, the cyclic cationic peptides polymyxin B and colistin, which are specific for Gram-negative bacteria, have been used as "last resort" antimicrobials. Before the 1980s, these drugs were known for their renal and neural toxicities; however, new clinical practices and possibly improved manufacturing have made them safer to use. Previously suggested to primarily attack the membranes of Gram-negative bacteria and to not easily select for resistant mutants, recent research exploring resistance and mechanisms of action has provided new perspectives. This review focuses primarily on the proposed alternative mechanisms of action, known resistance mechanisms, and how these support the alternative mechanisms of action.
Collapse
Affiliation(s)
- Michael J Trimble
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Patrik Mlynárčik
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University, 771 47 Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University, 771 47 Olomouc, Czech Republic
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
82
|
Trent MS, Stead CM, Tran AX, Hankins JV. Invited review: Diversity of endotoxin and its impact on pathogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120040201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharide or LPS is localized to the outer leaflet of the outer membrane and serves as the major surface component of the bacterial cell envelope. This remarkable glycolipid is essential for virtually all Gram-negative organisms and represents one of the conserved microbial structures responsible for activation of the innate immune system. For these reasons, the structure, function, and biosynthesis of LPS has been an area of intense research. The LPS of a number of bacteria is composed of three distinct regions — lipid A, a short core oligosaccharide, and the O-antigen polysaccharide. The lipid A domain, also known as endotoxin, anchors the molecule in the outer membrane and is the bioactive component recognized by TLR4 during human infection. Overall, the biochemical synthesis of lipid A is a highly conserved process; however, investigation of the lipid A structures of various organisms shows an impressive amount of diversity. These differences can be attributed to the action of latent enzymes that modify the canonical lipid A molecule. Variation of the lipid A domain of LPS serves as one strategy utilized by Gram-negative bacteria to promote survival by providing resistance to components of the innate immune system and helping to evade recognition by TLR4. This review summarizes the biochemical machinery required for the production of diverse lipid A structures of human pathogens and how structural modification of endotoxin impacts pathogenesis.
Collapse
Affiliation(s)
- M. Stephen Trent
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA,
| | - Christopher M. Stead
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - An X. Tran
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jessica V. Hankins
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
83
|
The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms. Int J Antimicrob Agents 2016; 48:298-304. [DOI: 10.1016/j.ijantimicag.2016.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 11/23/2022]
|
84
|
Hjort K, Nicoloff H, Andersson DI. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Mol Microbiol 2016; 102:274-289. [PMID: 27381382 DOI: 10.1111/mmi.13459] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 11/30/2022]
Abstract
Heteroresistance, a phenomenon where subpopulations of a bacterial isolate exhibit different susceptibilities to an antibiotic, is a growing clinical problem where the underlying genetic mechanisms in most cases remain unknown. We isolated colistin resistant mutants in Escherichia coli and Salmonella enterica serovar Typhimurium at different concentrations of colistin. Genetic analysis showed that genetically stable pmrAB point mutations were responsible for colistin resistance during selection at high drug concentrations for both species and at low concentrations for E. coli. In contrast, for S. Typhimurium mutants selected at low colistin concentrations, amplification of different large chromosomal regions conferred a heteroresistant phenotype. All amplifications included the pmrD gene, which encodes a positive regulator that up-regulates proteins that modify lipid A, and as a result increase colistin resistance. Inactivation and over-expression of the pmrD gene prevented and conferred resistance, respectively, demonstrating that the PmrD protein is required and sufficient to confer resistance. The heteroresistance phenotype is explained by the variable gene dosage of pmrD in a population, where sub-populations with different copy number of the pmrD gene show different levels of colistin resistance. We propose that variability in gene copy number of resistance genes can explain the heteroresistance observed in clinically isolated pathogenic bacteria.
Collapse
Affiliation(s)
- Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
85
|
The induction and identification of novel Colistin resistance mutations in Acinetobacter baumannii and their implications. Sci Rep 2016; 6:28291. [PMID: 27329501 PMCID: PMC4916428 DOI: 10.1038/srep28291] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/01/2016] [Indexed: 01/25/2023] Open
Abstract
Acinetobacter baumannii is a significant cause of opportunistic hospital acquired infection and has been identified as an important emerging infection due to its high levels of antimicrobial resistance. Multidrug resistant A. baumannii has risen rapidly in Vietnam, where colistin is becoming the drug of last resort for many infections. In this study we generated spontaneous colistin resistant progeny (up to >256 μg/μl) from four colistin susceptible Vietnamese isolates and one susceptible reference strain (MIC <1.5 μg/μl). Whole genome sequencing was used to identify single nucleotide mutations that could be attributed to the reduced colistin susceptibility. We identified six lpxACD and three pmrB mutations, the majority of which were novel. In addition, we identified further mutations in six A. baumannii genes (vacJ, pldA, ttg2C, pheS and conserved hypothetical protein) that we hypothesise have a role in reduced colistin susceptibility. This study has identified additional mutations that may be associated with colistin resistance through novel resistance mechanisms. Our work further demonstrates how rapidly A. baumannii can generate resistance to a last resort antimicrobial and highlights the need for improved surveillance to identified A. baumannii with an extensive drug resistance profile.
Collapse
|
86
|
Genthe NA, Thoden JB, Holden HM. Structure of the Escherichia coli ArnA N-formyltransferase domain in complex with N(5) -formyltetrahydrofolate and UDP-Ara4N. Protein Sci 2016; 25:1555-62. [PMID: 27171345 DOI: 10.1002/pro.2938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022]
Abstract
ArnA from Escherichia coli is a key enzyme involved in the formation of 4-amino-4-deoxy-l-arabinose. The addition of this sugar to the lipid A moiety of the lipopolysaccharide of pathogenic Gram-negative bacteria allows these organisms to evade the cationic antimicrobial peptides of the host immune system. Indeed, it is thought that such modifications may be responsible for the repeated infections of cystic fibrosis patients with Pseudomonas aeruginosa. ArnA is a bifunctional enzyme with the N- and C-terminal domains catalyzing formylation and oxidative decarboxylation reactions, respectively. The catalytically competent cofactor for the formylation reaction is N(10) -formyltetrahydrofolate. Here we describe the structure of the isolated N-terminal domain of ArnA in complex with its UDP-sugar substrate and N(5) -formyltetrahydrofolate. The model presented herein may prove valuable in the development of new antimicrobial therapeutics.
Collapse
Affiliation(s)
- Nicholas A Genthe
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
87
|
Liu MC, Tsai YL, Huang YW, Chen HY, Hsueh PR, Lai SY, Chen LC, Chou YH, Lin WY, Liaw SJ. Stenotrophomonas maltophilia PhoP, a Two-Component Response Regulator, Involved in Antimicrobial Susceptibilities. PLoS One 2016; 11:e0153753. [PMID: 27159404 PMCID: PMC4861329 DOI: 10.1371/journal.pone.0153753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Stenotrophomonas maltophilia, a gram-negative bacterium, has increasingly emerged as an important nosocomial pathogen. It is well-known for resistance to a variety of antimicrobial agents including cationic antimicrobial polypeptides (CAPs). Resistance to polymyxin B, a kind of CAPs, is known to be controlled by the two-component system PhoPQ. To unravel the role of PhoPQ in polymyxin B resistance of S. maltophilia, a phoP mutant was constructed. We found MICs of polymyxin B, chloramphenicol, ampicillin, gentamicin, kanamycin, streptomycin and spectinomycin decreased 2-64 fold in the phoP mutant. Complementation of the phoP mutant by the wild-type phoP gene restored all of the MICs to the wild type levels. Expression of PhoP was shown to be autoregulated and responsive to Mg2+ levels. The polymyxin B and gentamicin killing tests indicated that pretreatment of low Mg2+ can protect the wild-type S. maltophilia from killing but not phoP mutant. Interestingly, we found phoP mutant had a decrease in expression of SmeZ, an efflux transporter protein for aminoglycosides in S. maltophilia. Moreover, phoP mutant showed increased permeability in the cell membrane relative to the wild-type. In summary, we demonstrated the two-component regulator PhoP of S. maltophilia is involved in antimicrobial susceptibilities and low Mg2+ serves as a signal for triggering the pathway. Both the alteration in membrane permeability and downregulation of SmeZ efflux transporter in the phoP mutant contributed to the increased drug susceptibilities of S. maltophilia, in particular for aminoglycosides. This is the first report to describe the role of the Mg2+-sensing PhoP signaling pathway of S. maltophilia in regulation of the SmeZ efflux transporter and in antimicrobial susceptibilities. This study suggests PhoPQ TCS may serve as a target for development of antimicrobial agents against multidrug-resistant S. maltophilia.
Collapse
Affiliation(s)
- Ming-Che Liu
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yi-Lin Tsai
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yi-Wei Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Hsing-Yu Chen
- Department of Clinical Pathology, Taipei City Hospital Renai Branch, Taipei, Taiwan, Republic of China
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Szu-Yu Lai
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Li-Chia Chen
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yi-Hwa Chou
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Wen-Yuan Lin
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shwu-Jen Liaw
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
88
|
Andersson D, Hughes D, Kubicek-Sutherland J. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 2016; 26:43-57. [DOI: 10.1016/j.drup.2016.04.002] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
89
|
Abstract
Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance.
Collapse
Affiliation(s)
- Victor I. Band
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA; E-Mail:
- Yerkes Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA
| | - David S. Weiss
- Yerkes Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-404-727-8214; Fax: +1-404-727-8199
| |
Collapse
|
90
|
Protective and pro-inflammatory roles of intestinal bacteria. ACTA ACUST UNITED AC 2016; 23:67-80. [PMID: 26947707 DOI: 10.1016/j.pathophys.2016.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 02/06/2023]
Abstract
The intestinal mucosal surface in all vertebrates is exposed to enormous numbers of microorganisms that include bacteria, archaea, fungi and viruses. Coexistence of the host with the gut microbiota represents an active and mutually beneficial relationship that helps to shape the mucosal and systemic immune systems of both mammals and teleosts (ray-finned fish). Due to the potential for enteric microorganisms to invade intestinal tissue and induce local and/or systemic inflammation, the mucosal immune system has developed a number of protective mechanisms that allow the host to mount an appropriate immune response to invading bacteria, while limiting bystander tissue injury associated with these immune responses. Failure to properly regulate mucosal immunity is thought to be responsible for the development of chronic intestinal inflammation. The objective of this review is to present our current understanding of the role that intestinal bacteria play in vertebrate health and disease. While our primary focus will be humans and mice, we also present the new and exciting comparative studies being performed in zebrafish to model host-microbe interactions.
Collapse
|
91
|
Mulley G, Beeton ML, Wilkinson P, Vlisidou I, Ockendon-Powell N, Hapeshi A, Tobias NJ, Nollmann FI, Bode HB, van den Elsen J, ffrench-Constant RH, Waterfield NR. From Insect to Man: Photorhabdus Sheds Light on the Emergence of Human Pathogenicity. PLoS One 2015; 10:e0144937. [PMID: 26681201 PMCID: PMC4683029 DOI: 10.1371/journal.pone.0144937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/25/2015] [Indexed: 12/27/2022] Open
Abstract
Photorhabdus are highly effective insect pathogenic bacteria that exist in a mutualistic relationship with Heterorhabditid nematodes. Unlike other members of the genus, Photorhabdus asymbiotica can also infect humans. Most Photorhabdus cannot replicate above 34°C, limiting their host-range to poikilothermic invertebrates. In contrast, P. asymbiotica must necessarily be able to replicate at 37°C or above. Many well-studied mammalian pathogens use the elevated temperature of their host as a signal to regulate the necessary changes in gene expression required for infection. Here we use RNA-seq, proteomics and phenotype microarrays to examine temperature dependent differences in transcription, translation and phenotype of P. asymbiotica at 28°C versus 37°C, relevant to the insect or human hosts respectively. Our findings reveal relatively few temperature dependant differences in gene expression. There is however a striking difference in metabolism at 37°C, with a significant reduction in the range of carbon and nitrogen sources that otherwise support respiration at 28°C. We propose that the key adaptation that enables P. asymbiotica to infect humans is to aggressively acquire amino acids, peptides and other nutrients from the human host, employing a so called “nutritional virulence” strategy. This would simultaneously cripple the host immune response while providing nutrients sufficient for reproduction. This might explain the severity of ulcerated lesions observed in clinical cases of Photorhabdosis. Furthermore, while P. asymbiotica can invade mammalian cells they must also resist immediate killing by humoral immunity components in serum. We observed an increase in the production of the insect Phenol-oxidase inhibitor Rhabduscin normally deployed to inhibit the melanisation immune cascade. Crucially we demonstrated this molecule also facilitates protection against killing by the alternative human complement pathway.
Collapse
Affiliation(s)
- Geraldine Mulley
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AJ, United Kingdom
| | - Michael L Beeton
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, Cardiff, CF5 2YB, United Kingdom
| | - Paul Wilkinson
- Life Sciences Building, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Isabella Vlisidou
- Life Sciences Building, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Nina Ockendon-Powell
- Primary Care Unit, Microbiology Department, Public Health England, Gloucester Royal Hospital, Great Western Road, Gloucester, GL1 3NN, United Kingdom
| | - Alexia Hapeshi
- Division of Biomedical Sciences, Warwick Medical School, Medical School Building, The University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Nick J Tobias
- Buchmann Center for Life Sciences (BMLS), Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438, Frankfurt, Germany
| | - Friederike I Nollmann
- Buchmann Center for Life Sciences (BMLS), Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438, Frankfurt, Germany
| | - Helge B Bode
- Buchmann Center for Life Sciences (BMLS), Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438, Frankfurt, Germany
| | - Jean van den Elsen
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | - Nicholas R Waterfield
- Division of Biomedical Sciences, Warwick Medical School, Medical School Building, The University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
92
|
Hu LZ, Zhang WP, Zhou MT, Han QQ, Gao XL, Zeng HL, Guo L. Analysis of Salmonella PhoP/PhoQ regulation by dimethyl-SRM-based quantitative proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:20-8. [PMID: 26472331 DOI: 10.1016/j.bbapap.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 02/01/2023]
Abstract
SRM (selected reaction monitoring), a tandem mass spectrometry-based method characterized by high repeatability and accuracy, is an effective tool for the quantification of predetermined proteins. In this study, we built a time-scheduled dimethyl-SRM method that can provide the precise relative quantification of 92 proteins in one run. By applying this method to the Salmonella PhoP/PhoQ two-component system, we found that the expression of selected PhoP/PhoQ-activated proteins in response to Mg(2+) concentrations could be divided into two distinct patterns. For the time-course SRM experiment, we found that the dynamics of the selected PhoP/PhoQ-activated proteins could be divided into three distinct patterns, providing a new clue regarding PhoP/PhoQ activation and regulation. Moreover, the results for iron homeostasis proteins in response to Mg(2+) concentrations revealed that the PhoP/PhoQ two-component system may serve as a repressor for iron uptake proteins. And ribosomal protein levels clearly showed a response to different Mg(2+) concentrations and to time.
Collapse
Affiliation(s)
- Li-Zhi Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei-Ping Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mao-Tian Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang-Qiang Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Li Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao-Long Zeng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
93
|
Loss of hypermucoviscosity and increased fitness cost in colistin-resistant Klebsiella pneumoniae sequence type 23 strains. Antimicrob Agents Chemother 2015; 59:6763-73. [PMID: 26282408 DOI: 10.1128/aac.00952-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/08/2015] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated the effects of colistin resistance on virulence and fitness in hypermucoviscous (HV) Klebsiella pneumoniae sequence type 23 (ST23) strains. Colistin-resistant mutants were developed from three colistin-susceptible HV K. pneumoniae ST23 strains. The lipid A structures of strains were analyzed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Changes in HV were investigated using the string test, and extracellular polysaccharide production was quantified. The expression levels of the phoQ, pmrD, pmrB, pbgP, magA, and p-rmpA2 genes, serum resistance, and biofilm-forming activity were determined. The fitness of colistin-resistant mutants compared to that of the parental strains was examined by determining the competitive index (CI). The colistin-resistant mutants exhibited reduced HV, which was accompanied by decreased formation of capsular polysaccharides (CPS) and reduced expression of genes (magA and p-rmpA2). While there was enhanced expression of pmrD and pbgP in all colistin-resistant derivatives, there were differences in the expression levels of phoQ and pmrB between strains. MALDI-TOF analysis detected the addition of aminoarabinose or palmitate to the lipid A moiety of lipopolysaccharide in the colistin-resistant derivatives. In addition, survival rates in the presence of normal human serum were decreased in the mutant strains, and CI values (0.01 to 0.19) indicated significant fitness defects in the colistin-resistant derivatives compared to the respective parental strains. In hypervirulent HV K. pneumoniae strains, the acquisition of colistin resistance was accompanied by reduced CPS production, impaired virulence, and a significant fitness cost.
Collapse
|
94
|
When Too Much ATP Is Bad for Protein Synthesis. J Mol Biol 2015; 427:2586-2594. [PMID: 26150063 DOI: 10.1016/j.jmb.2015.06.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 01/17/2023]
Abstract
Adenosine triphosphate (ATP) is the energy currency of living cells. Even though ATP powers virtually all energy-dependent activities, most cellular ATP is utilized in protein synthesis via tRNA aminoacylation and guanosine triphosphate regeneration. Magnesium (Mg(2+)), the most common divalent cation in living cells, plays crucial roles in protein synthesis by maintaining the structure of ribosomes, participating in the biochemistry of translation initiation and functioning as a counterion for ATP. A non-physiological increase in ATP levels hinders growth in cells experiencing Mg(2+) limitation because ATP is the most abundant nucleotide triphosphate in the cell, and Mg(2+) is also required for the stabilization of the cytoplasmic membrane and as a cofactor for essential enzymes. We propose that organisms cope with Mg(2+) limitation by decreasing ATP levels and ribosome production, thereby reallocating Mg(2+) to indispensable cellular processes.
Collapse
|
95
|
Pseudomonas aeruginosa high-level resistance to polymyxins and other antimicrobial peptides requires cprA, a gene that is disrupted in the PAO1 strain. Antimicrob Agents Chemother 2015; 59:5377-87. [PMID: 26100714 DOI: 10.1128/aac.00904-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022] Open
Abstract
The arn locus, found in many Gram-negative bacterial pathogens, mediates resistance to polymyxins and other cationic antimicrobial peptides through 4-amino-l-arabinose modification of the lipid A moiety of lipopolysaccharide. In Pseudomonas aeruginosa, several two-component regulatory systems (TCSs) control the arn locus, which is necessary but not sufficient for these resistance phenotypes. A previous transposon mutagenesis screen to identify additional polymyxin resistance genes that these systems regulate implicated an open reading frame designated PA1559 in the genome of the P. aeruginosa PAO1 strain. Resequencing of this chromosomal region and bioinformatics analysis for a variety of P. aeruginosa strains revealed that in the sequenced PAO1 strain, a guanine deletion at the end of PA1559 results in a frameshift and truncation of a full-length open reading frame that also encompasses PA1560 in non-PAO1 strains, such as P. aeruginosa PAK. Deletion analysis in the PAK strain showed that this full-length open reading frame, designated cprA, is necessary for polymyxin resistance conferred by activating mutations in the PhoPQ, PmrAB, and CprRS TCSs. The cprA gene was also required for PmrAB-mediated resistance to other cationic antimicrobial peptides in the PAK strain. Repair of the mutated cprA allele in the PAO1 strain restored polymyxin resistance conferred by an activating TCS mutation. The deletion of cprA did not affect the arn-mediated lipid A modification, indicating that the CprA protein is necessary for a different aspect of polymyxin resistance. This protein has a domain structure with a strong similarity to the extended short-chain dehydrogenase/reductase family that comprises isomerases, lyases, and oxidoreductases. These results suggest a new avenue through which to pursue targeted inhibition of polymyxin resistance.
Collapse
|
96
|
Abstract
Body surfaces are colonized by resident microbes that are remarkably resilient to recurrent immune responses. In the latest issue of Science, Cullen et al. (2015) report that, contrary to prevailing assumptions, bacteria of the colonizing microbiota are resistant to antimicrobial peptides, and identify a common mechanism of resistance.
Collapse
Affiliation(s)
- Charles L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA.
| | - Andreas J Bäumler
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
97
|
Zhao L, Yang M, Zhang M, Zhang S. Expression, purification, and in vitro comparative characterization of avian beta-defensin-2, -6, and -12. Avian Dis 2015; 58:541-9. [PMID: 25618998 DOI: 10.1637/10848-042014-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The mature peptides of avian β-defensin-2 (AvBD-2), AvBD-6, and AvBD-12 were expressed as 6xHis-tagged recombinant proteins using the Escherichia coli BL21(DE3)pLysS system. The yields of rAvBD-2, rAvBD-6, and rAvBD-12 were approximately 0.92 mg/L, 1.24 mg/L, and 1.52 mg/L, respectively, of bacterial culture. The antimicrobial activities of rAvBDs were characterized under different salt, nutrient, and pH conditions. At concentrations of 8 μg/ml, 16 μg/ml, and 32 μg/ml, rAvBDs inhibited the growth of Staphylococcus aureus, E. coli, and Salmonella enterica serovar Typhimurium. While no synergistic inhibitory activity was found, a significant antagonistic effect was detected between rAvBD-2 and rAvBD-12. Treatment of E. coli and Salmonella Typhimurium with rAvBDs diminished their natural resistance to bile salts. Under the nonreplicating low-nutrient condition, rAvBDs at a concentration of 16 μg/ml were able to kill E. coli and S. aureus within 30 min of contact. The antimicrobial activities of rAvBDs were enhanced by lowering salt concentration and pH from 7 to 6. The antimicrobial potency against S. aureus and E. coli could be characterized as rAvBD-6 > rAvBD-2 > rAvBD-12, which coincided with the net positive charges of these peptides. In conclusion, data from the current study warrant the investigation of the potential use of rAvBD-2, -6, and -12 as therapeutic and prophylactic antimicrobial agents against common bacterial pathogens.
Collapse
|
98
|
Vadyvaloo V, Viall AK, Jarrett CO, Hinz AK, Sturdevant DE, Joseph Hinnebusch B. Role of the PhoP-PhoQ gene regulatory system in adaptation of Yersinia pestis to environmental stress in the flea digestive tract. MICROBIOLOGY-SGM 2015; 161:1198-1210. [PMID: 25804213 PMCID: PMC4635514 DOI: 10.1099/mic.0.000082] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Yersinia pestis PhoPQ gene regulatory system is induced during infection of the flea digestive tract and is required to produce adherent biofilm in the foregut, which greatly enhances bacterial transmission during a flea bite. To understand the in vivo context of PhoPQ induction and to determine PhoP-regulated targets in the flea, we undertook whole-genome comparative transcriptional profiling of Y. pestis WT and ΔphoP strains isolated from infected fleas and from temperature-matched in vitro planktonic and flow-cell biofilm cultures. In the absence of PhoP regulation, the gene expression program indicated that the bacteria experienced diverse physiological stresses and were in a metabolically less active state. Multiple stress response genes, including several toxin–antitoxin loci and YhcN family genes responsible for increased acid tolerance, were upregulated in the phoP mutant during flea infection. The data implied that PhoPQ was induced by low pH in the flea gut, and that PhoP modulated physiological adaptation to acid and other stresses encountered during infection of the flea. This adaptive response, together with PhoP-dependent modification of the bacterial outer surface that includes repression of pH 6 antigen fimbriae, supports stable biofilm development in the flea foregut.
Collapse
Affiliation(s)
- Viveka Vadyvaloo
- 1Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA
| | - Austin K Viall
- 2Plague Section, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Clayton O Jarrett
- 2Plague Section, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Angela K Hinz
- 1Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA
| | - Daniel E Sturdevant
- 3Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - B Joseph Hinnebusch
- 2Plague Section, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| |
Collapse
|
99
|
Fischer U, Hertlein S, Grimm C. The structure of apo ArnA features an unexpected central binding pocket and provides an explanation for enzymatic cooperativity. ACTA ACUST UNITED AC 2015; 71:687-96. [PMID: 25760615 DOI: 10.1107/s1399004714026686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022]
Abstract
The bacterial protein ArnA is an essential enzyme in the pathway leading to the modification of lipid A with the pentose sugar 4-amino-4-deoxy-L-arabinose. This modification confers resistance to polymyxins, which are antibiotics that are used as a last resort to treat infections with multiple drug-resistant Gram-negative bacteria. ArnA contains two domains with distinct catalytic functions: a dehydrogenase domain and a transformylase domain. The protein forms homohexamers organized as a dimer of trimers. Here, the crystal structure of apo ArnA is presented and compared with its ATP- and UDP-glucuronic acid-bound counterparts. The comparison reveals major structural rearrangements in the dehydrogenase domain that lead to the formation of a previously unobserved binding pocket at the centre of each ArnA trimer in its apo state. In the crystal structure, this pocket is occupied by a DTT molecule. It is shown that formation of the pocket is linked to a cascade of structural rearrangements that emerge from the NAD(+)-binding site. Based on these findings, a small effector molecule is postulated that binds to the central pocket and modulates the catalytic properties of ArnA. Furthermore, the discovered conformational changes provide a mechanistic explanation for the strong cooperative effect recently reported for the ArnA dehydrogenase function.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simon Hertlein
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
100
|
Maria-Neto S, de Almeida KC, Macedo MLR, Franco OL. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3078-88. [PMID: 25724815 DOI: 10.1016/j.bbamem.2015.02.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 11/27/2022]
Abstract
Resistant bacterial infections are a major health problem in many parts of the world. The major commercial antibiotic classes often fail to combat common bacteria. Although antimicrobial peptides are able to control bacterial infections by interfering with microbial metabolism and physiological processes in several ways, a large number of cases of resistance to antibiotic peptide classes have also been reported. To gain a better understanding of the resistance process various technologies have been applied. Here we discuss multiple strategies by which bacteria could develop enhanced antimicrobial peptide resistance, focusing on sub-cellular regions from the surface to deep inside, evaluating bacterial membranes, cell walls and cytoplasmic metabolism. Moreover, some high-throughput methods for antimicrobial resistance detection and discrimination are also examined. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Simone Maria-Neto
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Cidade Universitária S/N - Caixa Postal 549, 79070-900, Campo Grande, MS, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Keyla Caroline de Almeida
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70790-160 Brasília, DF, Brazil
| | - Maria Ligia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Cidade Universitária S/N - Caixa Postal 549, 79070-900, Campo Grande, MS, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70790-160 Brasília, DF, Brazil; S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| |
Collapse
|