51
|
McNichol BA, Rasmussen SB, Carvalho HM, Meysick KC, O'Brien AD. Two domains of cytotoxic necrotizing factor type 1 bind the cellular receptor, laminin receptor precursor protein. Infect Immun 2007; 75:5095-104. [PMID: 17709415 PMCID: PMC2168285 DOI: 10.1128/iai.00075-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cytotoxic necrotizing factor type 1 (CNF1) and CNF2 are highly homologous toxins that are produced by certain pathogenic strains of Escherichia coli. These 1,014-amino-acid toxins catalyze the deamidation of a specific glutamine residue in RhoA, Rac1, and Cdc42 and consist of a putative N-terminal binding domain, a transmembrane region, and a C-terminal catalytic domain. To define the regions of CNF1 that are responsible for binding of the toxin to its cellular receptor, the laminin receptor precursor protein (LRP), a series of CNF1 truncated toxins were characterized and assessed for toxin binding. In particular, three truncated toxins, DeltaN63, DeltaN545, and DeltaC469, retained conformational integrity and in vitro enzymatic activity and were immunologically reactive against a panel of anti-CNF1 monoclonal antibodies (MAbs). Based on a comparison of these truncated toxins with wild-type CNF1 and CNF2 in LRP and HEp-2 cell binding assays and in MAb and LRP competitive binding inhibition assays and based on the results of confocal microscopy, we concluded that CNF1 contains two major binding regions: one located within the N terminus, which contained amino acids 135 to 164, and one which resided in the C terminus and included amino acids 683 to 730. The data further indicate that CNF1 can bind to an additional receptor(s) on HEp-2 cells and that LRP can also serve as a cellular receptor for CNF2.
Collapse
Affiliation(s)
- Beth A McNichol
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | | | | | | | | |
Collapse
|
52
|
Lemonnier M, Landraud L, Lemichez E. Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology. FEMS Microbiol Rev 2007; 31:515-34. [PMID: 17680807 DOI: 10.1111/j.1574-6976.2007.00078.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Studies on the interactions of bacterial pathogens with their host have provided an invaluable source of information on the major functions of eukaryotic and prokaryotic cell biology. In addition, this expanding field of research, known as cellular microbiology, has revealed fascinating examples of trans-kingdom functional interplay. Bacterial factors actually exploit eukaryotic cell machineries using refined molecular strategies to promote invasion and proliferation within their host. Here, we review a family of bacterial toxins that modulate their activity in eukaryotic cells by activating Rho GTPases and exploiting the ubiquitin/proteasome machineries. This family, found in human and animal pathogenic Gram-negative bacteria, encompasses the cytotoxic necrotizing factors (CNFs) from Escherichia coli and Yersinia species as well as dermonecrotic toxins from Bordetella species. We survey the genetics, biochemistry, molecular and cellular biology of these bacterial factors from the standpoint of the CNF1 toxin, the paradigm of Rho GTPase-activating toxins produced by urinary tract infections causing pathogenic Escherichia coli. Because it reveals important connections between bacterial invasion and the host inflammatory response, the mode of action of CNF1 and its related Rho GTPase-targetting toxins addresses major issues of basic and medical research and constitutes a privileged experimental model for host-pathogen interaction.
Collapse
Affiliation(s)
- Marc Lemonnier
- INSERM U627, UNSA, Faculté de Médecine, 28 Avenue de Valombrose, 06107 Nice cedex 2, France.
| | | | | |
Collapse
|
53
|
Real JM, Munro P, Buisson-Touati C, Lemichez E, Boquet P, Landraud L. Specificity of immunomodulator secretion in urinary samples in response to infection by alpha-hemolysin and CNF1 bearing uropathogenic Escherichia coli. Cytokine 2007; 37:22-5. [PMID: 17382555 DOI: 10.1016/j.cyto.2007.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 12/22/2006] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Escherichia coli are the most common etiological agents of urinary tract infections (UTIs). Uropathogenic E. coli (UPECs) produce specific toxins including the cytotoxic necrotizing factor-1 (CNF1) and the alpha-hemolysin (alpha-Hly). CNF1 triggers, through Rho protein activation, a specific gene response of host cells, which results in the production for instance of interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1) and the macrophage inflammatory protein-3alpha (MIP-3alpha). The alpha hemolysin alpha-Hly also triggers the production of inflammatory mediators. Cnf1 is always associated with alpha-hly in a pathogenicity island conserved among UPECs. Using two complementary approaches we have investigated whether alpha-hly and cnf1 bearing UPECs are associated with a specific type of UTI both in term of pathology and host response. Here we report that UPECs bearing alpha-hly/cnf1 have a prevalence of 50% in UPECs isolated from hemorrhagic UTIs, as compared to 30% in the overall UPEC population. In addition, we observed that MCP-1, and IL-8 to a lower extent, is produced in urine at higher concentrations in UTIs caused by UPECs carrying alpha-hly/cnf1.
Collapse
Affiliation(s)
- Jean-Michel Real
- INSERM, U627, Faculté de Médecine, 28 Avenue de Valombrose, F-06107 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
54
|
Vykhovanets EV, Resnick MI, MacLennan GT, Gupta S. Experimental rodent models of prostatitis: limitations and potential. Prostate Cancer Prostatic Dis 2007; 10:15-29. [PMID: 17199136 DOI: 10.1038/sj.pcan.4500930] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prostatitis is a polyetiological inflammation of the prostate gland in men characterized by pelvic pain, irritative voiding symptoms, and sexual dysfunction. Histologically prostatitis is characterized by poly- and mononuclear cell infiltrates (neutrophils, lymphocytes, macrophages and plasma cells) in the stromal connective tissue around the acini or ducts. Prostatitis is an important worldwide health problem in men. The pathogenesis and diagnostic criteria for the condition are obscure, with the result that the development of management programs for this condition has been hindered. Animal model(s) might be useful in elucidating mechanisms involved in the molecular pathogenesis of chronic nonbacterial prostatitis and chronic pelvic pain syndrome. Given that prostatitis might have a multifactorial etiology, several animal models with unique features may prove helpful. This review examines a number of experimental rodent models of prostatitis and evaluates their advantages and limitations.
Collapse
Affiliation(s)
- E V Vykhovanets
- Department of Urology, Case Western Reserve University & University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
55
|
Davis JM, Carvalho HM, Rasmussen SB, O'Brien AD. Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis. Infect Immun 2006; 74:4401-8. [PMID: 16861625 PMCID: PMC1539604 DOI: 10.1128/iai.00637-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic necrotizing factor type 1 (CNF1), a toxin produced by many strains of uropathogenic Escherichia coli (UPEC), constitutively activates small GTPases of the Rho family by deamidating a single amino acid within these target proteins. Such activated GTPases not only stimulate actin polymerization within affected cells but also, as we previously reported, decrease membrane fluidity on mouse polymorphonuclear leukocytes (PMNs). In that same investigation we found that this diminished membrane movement impedes the clustering of the complement receptor CD11b/CD18 on PMNs and, in turn, decreases PMN phagocytic capacity and microbicidal activity on PMNs in direct contact with CNF1-expressing UPEC as well as on those in proximity to wild-type UPEC. The latter observation suggested to us that CNF1 is released from neighboring bacteria, although at the time of initiation of the study described here, no specific mechanism for export of CNF1 from UPEC had been described. Here we present evidence that CNF1 is released from the CNF1-expressing UPEC strain CP9 (serotype O4/H5/K54) in a complex with outer membrane vesicles (OMVs) and that these CNF1-bearing vesicles transfer biologically active CNF1 to PMNs and attenuate phagocyte function. Furthermore, we show that CNF1-bearing vesicles act in a dose-dependent fashion on PMNs to inhibit their chemotactic response to formyl-Met-Leu-Phe, while purified CNF1 does not. We conclude that OMVs provide a means for delivery of CNF1 from a UPEC strain to PMNs and thus negatively affect the efficacy of the acute inflammatory response to these organisms.
Collapse
Affiliation(s)
- Jon M Davis
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, B4052, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4799, USA
| | | | | | | |
Collapse
|
56
|
McNichol BA, Rasmussen SB, Meysick KC, O'Brien AD. A single amino acid substitution in the enzymatic domain of cytotoxic necrotizing factor type 1 of Escherichia coli alters the tissue culture phenotype to that of the dermonecrotic toxin of Bordetella spp. Mol Microbiol 2006; 60:939-50. [PMID: 16677305 DOI: 10.1111/j.1365-2958.2006.05157.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytotoxic necrotizing factor type 1 (CNF1) and dermonecrotic toxin (DNT) share homology within their catalytic domains and possess deamidase and transglutaminase activities. Although each toxin has a preferred enzymatic activity (i.e. deamidation for CNF1 and transglutamination for DNT) as well as target substrates, both modify a specific glutamine residue in RhoA, Rac1 and Cdc42, which renders these GTPases constitutively active. Here we show that despite their similar mechanisms of action CNF1 and DNT induced unique phenotypes on HEp-2 and Swiss 3T3 cells. CNF1 induced multinucleation of HEp-2 cells and was cytotoxic for Swiss 3T3 cells (with binucleation of the few surviving cells) while DNT showed no morphological effects on HEp-2 cells but did induce binucleation of Swiss 3T3 cells. To determine if the enzymatic domain of each toxin dictated the induced phenotype, we constructed enzymatically active chimeric toxins and mutant toxins that contained single amino acid substitutions within the catalytic site and tested these molecules in tissue culture and enzymatic assays. Moreover, both site-directed mutant toxins showed reduced time to maximum transglutamination of RhoA compared with the parent toxins. Nevertheless, the substitution of threonine for Lys(1310) in the DNT-based mutant, while affecting transglutamination efficiency of the toxin, did not abrogate that enzymatic activity.
Collapse
Affiliation(s)
- Beth A McNichol
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
57
|
Falzano L, Filippini P, Travaglione S, Miraglia AG, Fabbri A, Fiorentini C. Escherichia coli cytotoxic necrotizing factor 1 blocks cell cycle G2/M transition in uroepithelial cells. Infect Immun 2006; 74:3765-72. [PMID: 16790748 PMCID: PMC1489717 DOI: 10.1128/iai.01413-05] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/19/2005] [Accepted: 04/03/2006] [Indexed: 02/03/2023] Open
Abstract
Evidence is accumulating that a growing number of bacterial toxins act by modulating the eukaryotic cell cycle machinery. In this context, we provide evidence that a protein toxin named cytotoxic necrotizing factor 1 (CNF1) from uropathogenic Escherichia coli is able to block cell cycle G(2)/M transition in the uroepithelial cell line T24. CNF1 permanently activates the small GTP-binding proteins of the Rho family that, beside controlling the actin cytoskeleton organization, also play a pivotal role in a large number of other cellular processes, including cell cycle regulation. The results reported here show that CNF1 is able to induce the accumulation of cells in the G(2)/M phase by sequestering cyclin B1 in the cytoplasm and down-regulating its expression. The possible role played by the Rho GTPases in the toxin-induced cell cycle deregulation has been investigated and discussed. The activity of CNF1 on cell cycle progression can offer a novel view of E. coli pathogenicity.
Collapse
Affiliation(s)
- Loredana Falzano
- Department of Drug Research and Evaluation, Viale Regina Elena 299 00161, Rome, Italy
| | | | | | | | | | | |
Collapse
|
58
|
Bergh J, Marklund I, Thellenberg-Karlsson C, Grönberg H, Elgh F, Alexeyev OA. Detection of Escherichia coli 16S RNA and cytotoxic necrotizing factor 1 gene in benign prostate hyperplasia. Eur Urol 2006; 51:457-62; discussion 462-3. [PMID: 16904256 DOI: 10.1016/j.eururo.2006.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 06/07/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Inflammation and occasionally necrosis is observed in the prostate tissue from patients with benign prostate hyperplasia (BPH). The etiology of prostatic inflammation/necrosis is unknown, but bacteria may be involved. MATERIALS AND METHODS Retrospective analysis of archival prostate tissue samples collected during 1982-1997 was undertaken. Three hundred fifty-two specimens from patients with BPH obtained via transurethral resection of prostate (TURP) were studied for the presence of Escherichia coli 16S RNA and E. coli virulence factor genes: cytotoxic necrotizing factor (cnf1), alpha-hemolysin (hly), an autotransported protein (sat), and P fimbriae (papC). RESULTS E. coli 16S RNA was detected in 12 (3%) samples and cnf1 gene in six (1.5%) samples, with two samples being positive for both markers. hly, sat, papC genes were not detected. Of 6 cnf1-positive samples, severe inflammation and necrosis were present in four and three samples, respectively. Of eight E. coli-positive/cnf1-negative samples, five showed signs of severe inflammation and two showed severe necrosis. CONCLUSIONS A small proportion of patients with BPH undergoing TURP are positive for E. coli 16S RNA and cnf1 gene in the prostate tissue. Further studies are needed to show that particular E. coli genotypes are involved in the development of prostatic inflammation/necrosis in BPH.
Collapse
Affiliation(s)
- Johanna Bergh
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
59
|
Johnson JR, Russo TA. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol 2005; 295:383-404. [PMID: 16238015 DOI: 10.1016/j.ijmm.2005.07.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Molecular epidemiological analyses of extraintestinal pathogenic Escherichia coli (ExPEC), which are also called "uropathogenic E. coli" since they are the principle pathogens in urinary tract infection, involve structured observations of E. coli as they occur in the wild. Careful selection of subjects and use of appropriate methods for genotyping and statistical analysis are required for optimal results. Molecular epidemiological studies have helped to clarify the host-pathogen relationships, phylogenetic background, reservoirs, and transmission pathways of ExPEC, to assess potential vaccine candidates, and to delineate areas for further study. Ongoing discovery of new putative virulence factors (VFs), increasing awareness of the importance of VF expression and molecular variants of VFs, and growing appreciation of transmission as an important contributor to ExPEC infections provide abundant stimulus for future molecular epidemiological studies. Published by Elsevier GmbH.
Collapse
Affiliation(s)
- James R Johnson
- Mucosal and Vaccine Research Center, Infectious Diseases (111F), VA Medical Center, 1 Veterans Drive, Minneapolis, MN 55417, USA.
| | | |
Collapse
|
60
|
Elkahwaji JE, Ott CJ, Janda LM, Hopkins WJ. Mouse model for acute bacterial prostatitis in genetically distinct inbred strains. Urology 2005; 66:883-7. [PMID: 16230175 DOI: 10.1016/j.urology.2005.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 03/17/2005] [Accepted: 04/15/2005] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Prostatitis is a common urologic disease seen in adult men. As many as 50% of men will experience an episode of prostatitis in their lifetime, and 2% to 3% of men will have bacterial prostatitis. Because the pathogenic mechanisms of prostatitis remain unclear, we developed a reproducible mouse model of bacterial prostatitis in which to study the etiology and host factors associated with infection susceptibility. METHODS Male BALB/c, C3H/HeJ, C3H/HeOuJ, C57BL/6J, and (BALB/c x C3H/HeJ)F1 mice 13 weeks old were inoculated intraurethrally with 2 x 10(6) or 2 x 10(8) Escherichia coli. Control mice were inoculated with phosphate-buffered saline. The animals were killed at 5 days after inoculation to assess the intensities of the bladder and prostate infections. RESULTS Significant bladder or prostate infections were not present in the BALB/c, C57BL/6J, or (BALB/c x C3H/HeJ)F1 mice at either inoculum dose. In contrast, both C3H/HeJ and C3H/HeOuJ mice developed high bladder infections and severe, acute prostatitis at both doses. Control mice infected with phosphate-buffered saline had no bladder or prostate infections. The P values were less than 0.01 for the comparison of bladder and prostate colony-forming units between C3H/HeJ or C3H/HeOuJ and BALB/c, C57BL/6J, or F1 mice. CONCLUSIONS The strain-dependent differences in susceptibility indicate that genetic factors may play a major role in the etiology of bacterial prostatitis. Because F1 mice did not develop significant bladder and prostate infections, similar to the BALB/c parents, it appears that infection susceptibility is a recessive trait. The availability of this model will allow us to investigate the immunology, genetics, and histopathologic features of bacterial infection of the prostate.
Collapse
Affiliation(s)
- Johny E Elkahwaji
- Division of Urology, Department of Surgery, University of Wisconsin Medical School, Madison, Wisconsin, USA.
| | | | | | | |
Collapse
|
61
|
Johnson JR, Scheutz F, Ulleryd P, Kuskowski MA, O'Bryan TT, Sandberg T. Phylogenetic and pathotypic comparison of concurrent urine and rectal Escherichia coli isolates from men with febrile urinary tract infection. J Clin Microbiol 2005; 43:3895-900. [PMID: 16081928 PMCID: PMC1233927 DOI: 10.1128/jcm.43.8.3895-3900.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among men with febrile urinary tract infection (FUTI), whether the host's fecal flora is the source for the urine strain ("fecal-urethral" hypothesis), and whether pathogenesis is driven by prevalence versus special pathogenicity, are unknown. Accordingly, pretherapy urine isolates from 65 men with FUTI were compared with concurrent rectal isolates from the same hosts according to serotype, genomic profile, phylogenetic group, and virulence genotype. The host's multiple rectal colonies included only the urine clone in 25% of subjects, the urine clone plus additional clones in 22%, and only nonurine clones in 54%. Compared with the 67 unique rectal clones, the 65 urine isolates were significantly enriched for phylogenetic group B2, virulence-associated serotypes, and specific virulence genes and contained more virulence genes (median, 10 versus 6: P < 0.001). In multivariable models, phylogenetic group B2, hlyD (hemolysin), cnf1 (cytotoxic necrotizing factor), iroN (siderophore receptor), ompT (outer membrane protease), and malX (pathogenicity island marker) most strongly predicted urine source. These findings challenge the fecal-urethral and prevalence hypotheses for FUTI pathogenesis and instead strongly support the possibility of alternate infection routes in some men and the special pathogenicity hypothesis. They also identify specific bacterial traits as potential targets for anti-FUTI interventions.
Collapse
Affiliation(s)
- James R Johnson
- Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, 1 Veterans Drive, Minneapolis, MN 55417, USA.
| | | | | | | | | | | |
Collapse
|
62
|
Davis JM, Rasmussen SB, O'Brien AD. Cytotoxic necrotizing factor type 1 production by uropathogenic Escherichia coli modulates polymorphonuclear leukocyte function. Infect Immun 2005; 73:5301-10. [PMID: 16113245 PMCID: PMC1231104 DOI: 10.1128/iai.73.9.5301-5310.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 04/20/2005] [Accepted: 05/12/2005] [Indexed: 01/27/2023] Open
Abstract
Many strains of uropathogenic Escherichia coli (UPEC) produce cytotoxic necrotizing factor type 1 (CNF1), a toxin that constitutively activates the Rho GTPases RhoA, Rac1, and Cdc42. We previously showed that CNF1 contributes to the virulence of UPEC in a mouse model of ascending urinary tract infection and a rat model of acute prostatitis and that a striking feature of the histopathology of the mouse bladders and rat prostates infected with CNF1-positive strains is an elevation in levels of polymorphonuclear leukocytes (PMNs). We also found that CNF1 synthesis leads to prolonged survival of UPEC in association with human neutrophils. Here, we tested the hypothesis that CNF1 production by UPEC diminishes the antimicrobial capacity of mouse PMNs by affecting phagocyte function through targeting Rho family GTPases that are critical to phagocytosis and the generation of reactive oxygen species. We found that, as with human neutrophils, CNF1 synthesis provided a survival advantage to UPEC incubated with mouse PMNs. We also observed that CNF1-positive UPEC down-regulated phagocytosis, altered the distribution of the complement receptor CR3 (CD11b/CD18), enhanced the intracellular respiratory burst, and increased levels of Rac2 activation in PMNs. From these results, we conclude that modulation of PMN function by CNF1 facilitates UPEC survival during the acute inflammatory response.
Collapse
Affiliation(s)
- Jon M Davis
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, B4052, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | | | | |
Collapse
|
63
|
Abstract
Many bacterial cytotoxins act on eukaryotic cells by targeting the regulators that are involved in controlling the cytoskeleton or by directly modifying actin, with members of the Rho GTPase family being particularly important targets. The actin cytoskeleton, and especially the GTPase 'molecular switches' that are involved in its control, have crucial functions in innate and adaptive immunity, and have pivotal roles in the biology of infection. In this review, we briefly discuss the role of the actin cytoskeleton and the Rho GTPases in host-pathogen interactions, and review the mode of actions of bacterial protein toxins that target these components.
Collapse
Affiliation(s)
- Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität, Otto-Krayer-Haus, Albert-Strasse 25, D-79104 Freiburg, Germany.
| | | |
Collapse
|
64
|
Abstract
Since the discovery that Helicobacter pylori infection leads to gastric cancer, other chronic bacterial infections have been shown to cause cancer. The bacterial and host molecular mechanisms remain unclear. However, many bacteria that cause persistent infections produce toxins that specifically disrupt cellular signalling to perturb the regulation of cell growth or to induce inflammation. Other bacterial toxins directly damage DNA. Such toxins mimic carcinogens and tumour promoters and might represent a paradigm for bacterially induced carcinogenesis.
Collapse
Affiliation(s)
- Alistair J Lax
- Department of Microbiology, Dental Institute, King's College London, Floor 28 Guy's Tower, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
65
|
Cytotoxic Necrotizing Factors: Rho-Activating Toxins from Escherichia coli. EcoSal Plus 2004; 1. [PMID: 26443355 DOI: 10.1128/ecosalplus.8.7.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This article reviews the Escherichia coli toxins called cytotoxic necrotizing factors (CNFs), which cause activation of Rho GTPases. It describes their modes of action, structure-function relationships, and roles in disease. Rho GTPases, the targets of CNFs, belong to the Ras superfamily of low molecular mass GTPases and act as molecular switches in various signaling pathways. Low molecular mass GTPases of the Rho family are known as master regulators of the actin cytoskeleton. Moreover, they are involved in various signal transduction processes, from transcriptional activation, cell cycle progression, and cell transformation to apoptosis. CNFs are cytotoxic for a wide variety of cells, including 3T3 fibroblasts, Chinese hamster ovary cells, Vero cells, HeLa cells, and cell lines of neuronal origin. This implies that a commonly expressed receptor is responsible for the uptake of CNF1. Cultured mammalian cells treated with CNFs are characterized by dramatic changes in actin-containing structures, including stress fibers, lamellipodia, and filopodia. Most striking is the formation of multinucleation in these cells. Rho GTPases are increasingly recognized as essential factors in the development of cancer and metastasis. This fact has initiated a discussion as to whether activation of Rho proteins by CNFs might be involved in tumorigenesis. Moreover, CNF1 increases the expression of the cyclooxygenase 2 (Cox2) gene in fibroblasts. Increased expression of Cox2 is observed in some types of tumors, e.g., colon carcinoma. Lipid-mediators produced by the enzyme are suggested to be responsible for tumor progression.
Collapse
|
66
|
Palapattu GS, Sutcliffe S, Bastian PJ, Platz EA, De Marzo AM, Isaacs WB, Nelson WG. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 2004; 26:1170-81. [PMID: 15498784 DOI: 10.1093/carcin/bgh317] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer remains a significant health concern for men throughout the world. Recently, there has developed an expanding multidisciplinary body of literature suggesting a link between chronic inflammation and prostate cancer. In support of this hypothesis, population studies have found an increased relative risk of prostate cancer in men with a prior history of certain sexually transmitted infections or prostatitis. Furthermore, genetic epidemiological data have implicated germline variants of several genes associated with the immunological aspects of inflammation in modulating prostate cancer risk. The molecular pathogenesis of prostate cancer has been characterized by somatic alterations of genes involved in defenses against inflammatory damage and in tissue recovery. A novel putative prostate cancer precursor lesion, proliferative inflammatory atrophy, which shares some molecular traits with prostate intraepithelial neoplasia and prostate cancer, has been characterized. Here, we review the evidence associating chronic inflammation and prostate cancer and consider a number of animal models of prostate inflammation that should allow the elucidation of the mechanisms by which prostatic inflammation could lead to the initiation and progression of prostate cancer. These emerging insights into chronic inflammation in the etiology of prostate carcinogenesis hold the promise of spawning new diagnostic and therapeutic modalities for men with prostate cancer.
Collapse
Affiliation(s)
- Ganesh S Palapattu
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Hara N, Koike H, Ogino S, Okuizumi M, Kawaguchi M. Application of serum PSA to identify acute bacterial prostatitis in patients with fever of unknown origin or symptoms of acute pyelonephritis. Prostate 2004; 60:282-8. [PMID: 15264238 DOI: 10.1002/pros.20077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Exclusion of prostatitis in screening for prostate cancer (Cap) is a matter of concern in the prostate-specific antigen (PSA) era. Yet, the identification of acute bacterial prostatitis (ABP), intentionally utilizing PSA in patients with pyrexia has been scarcely reported. METHODS In total, 39 men, who presented at our department with a fever higher than 38.3 degrees C, were randomly selected. We investigated the fraction of patients who had serum PSA levels higher than 4.0 ng/ml and categorized them according to an initial diagnosis of pyelonephritis, ABP, other urogenital infections, and fever of unknown origin (FUO). RESULTS Six of nine cases initially diagnosed as pyelonephritis, presented with elevated PSA levels between 9.5 and 75.1 ng/ml. All six cases of clinically diagnosed prostatitis had PSA elevated between 4.1 and 13.6 ng/ml. In 8 of 18 FUO cases, PSA was elevated between 5.1 and 77.0 ng/ml. PSA levels significantly correlated with age (P < 0.005). All 20 patients with elevated PSA received antibiotics, and serum PSA was significantly reduced in all cases (P < 0.001) together with the alleviation of fever and normalization of CRP. CONCLUSIONS PSA is a prompt and steady diagnostic tool for identifying ABP that might be missed or misdiagnosed. We recommend the measurement of PSA in cases not only with urologic infection but also puzzling pyrexia.
Collapse
Affiliation(s)
- Noboru Hara
- Department of Urology, Labor Welfare Niigata Rousai Hospital, Touncho, Japan.
| | | | | | | | | |
Collapse
|
68
|
Abstract
The actin cytoskeleton of mammalian cells is involved in many processes that affect the growth and colonization of bacteria, such as migration of immune cells, phagocytosis by macrophages, secretion of cytokines, maintenance of epithelial barrier functions and others. With respect to these functions, it is not surprising that many bacterial protein toxins, which are important virulence factors and causative agents of human and/or animal diseases, target the actin cytoskeleton of the host. Some toxins target actin directly, such as the C2 toxin produced by Clostridium botulinum. Moreover, bacterial toxins target the cytoskeleton indirectly by modifying actin regulators such as the low-molecular-mass guanosine triphosphate (GTP)-binding proteins of the Rho family. Remarkably, toxins affect these GTPases in a bidirectional manner. Some toxins inhibit and some activate the GTPases. Here we review the Rho-activating toxins CNF1 and CNF2 (cytotoxic necrotizing factors) from Escherichia coli, the Yersinia CNF(Y) and the dermonecrotic toxin (DNT) from Bordetella species. We describe and compare their uptake into mammalian cells, mode of action, structure-function relationship, substrate specificity and role in diseases.
Collapse
Affiliation(s)
- C Hoffmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Albert-Str. 25, 79104, Freiburg, Germany
| | | |
Collapse
|
69
|
Falzano L, Quaranta MG, Travaglione S, Filippini P, Fabbri A, Viora M, Donelli G, Fiorentini C. Cytotoxic necrotizing factor 1 enhances reactive oxygen species-dependent transcription and secretion of proinflammatory cytokines in human uroepithelial cells. Infect Immun 2003; 71:4178-81. [PMID: 12819113 PMCID: PMC162030 DOI: 10.1128/iai.71.7.4178-4181.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Revised: 01/27/2003] [Accepted: 03/28/2003] [Indexed: 11/20/2022] Open
Abstract
Uropathogenic Escherichia coli strains frequently produce a Rho-activating protein toxin named cytotoxic necrotizing factor type 1 (CNF1). We herein report that CNF1 promotes transcription and release of tumor necrosis factor alpha, gamma interferon, interleukin-6 (IL-6), and IL-8 proinflammatory cytokines and increases the production of reactive oxygen species (ROS) in uroepithelial T24 cells. The antioxidant N-acetyl-L-cysteine counteracts these phenomena, a fact which suggests a role for ROS-mediated signaling in CNF1-induced proinflammatory cytokine production.
Collapse
Affiliation(s)
- Loredana Falzano
- Department of Ultrastructures, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Helicobacter pylori highlighted the potential for bacteria to cause cancer. It is becoming clear that chronic infection with other bacteria, notably Salmonella typhi, can also facilitate tumour development. Infections caused by several bacteria (e.g. Bartonella spp., Lawsonia intracellularis and Citrobacter rodentium) can induce cellular proliferation that can be reversed by antibiotic treatment. Other chronic bacterial infections have the effect of blocking apoptosis. However, the underlying cellular mechanisms are far from clear. Conversely, several bacterial toxins interfere with cellular signalling mechanisms in a way that is characteristic of tumour promoters. These include Pasteurella multocida toxin, which uniquely acts as a mitogen, and Escherichia coli cytotoxic necrotizing factor, which activates Rho family signalling. This leads to activation of COX2, which is involved in several stages of tumour development, including inhibition of apoptosis. Such toxins could provide valuable models for bacterial involvement in cancer, but more significantly they could play a direct role in cancer causation and progression.
Collapse
Affiliation(s)
- Alistair J Lax
- Dept of Oral Microbiology, King's College London, Guy's Hospital, London, UK.
| | | |
Collapse
|