51
|
Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Lusis AJ, Greenberg EP, Zabner J. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 2005; 253:29-37. [PMID: 16260097 DOI: 10.1016/j.femsle.2005.09.023] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/02/2005] [Accepted: 09/06/2005] [Indexed: 11/26/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa uses acyl-HSL quorum-sensing signals to regulate genes controlling virulence and biofilm formation. We found that paraoxonase 1 (PON1), a mammalian lactonase with an unknown natural substrate, hydrolyzed the P. aeruginosa acyl-HSL 3OC12-HSL. In in vitro assays, mouse serum-PON1 was required and sufficient to degrade 3OC12-HSL. Furthermore, PON2 and PON3 also degraded 3OC12-HSL effectively. Serum-PON1 prevented P. aeruginosa quorum-sensing and biofilm formation in vitro by inactivating the quorum-sensing signal. Although 3OC12-HSL production by P. aeruginosa was important for virulence in a mouse sepsis model, Pon1-knock-out mice were paradoxically protected. These mice showed increased levels of PON2 and PON3 mRNA in epithelial tissues suggesting a possible compensatory mechanism. Thus, paraoxonase interruption of bacterial communication represents a novel mechanism to modulate quorum-sensing by bacteria. The consequences for host immunity are yet to be determined.
Collapse
Affiliation(s)
- Egon A Ozer
- Department of Internal Medicine Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Travassos LH, Carneiro LAM, Girardin SE, Boneca IG, Lemos R, Bozza MT, Domingues RCP, Coyle AJ, Bertin J, Philpott DJ, Plotkowski MC. Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J Biol Chem 2005; 280:36714-8. [PMID: 16150702 DOI: 10.1074/jbc.m501649200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mammalian innate immune system recognizes pathogen-associated molecular patterns through pathogen recognition receptors. Nod1 has been described recently as a cytosolic receptor that detects specifically diaminopimelate-containing muropeptides from Gram-negative bacteria peptidoglycan. In the present study we investigated the potential role of Nod1 in the innate immune response against the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that Nod1 detects the P. aeruginosa peptidoglycan leading to NF-kappaB activation and that this activity is diminished in epithelial cells expressing a dominant-negative Nod1 construct or in mouse embryonic fibroblasts from Nod1 knock-out mice infected with P. aeruginosa. Finally, we demonstrate that the cytokine secretion kinetics and bacterial killing are altered in Nod1-deficient cells infected with P. aeruginosa in the early stages of infection.
Collapse
Affiliation(s)
- Leonardo H Travassos
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Cep. 21.941 590, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Thiel M, Chouker A, Ohta A, Jackson E, Caldwell C, Smith P, Lukashev D, Bittmann I, Sitkovsky MV. Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol 2005; 3:e174. [PMID: 15857155 PMCID: PMC1088279 DOI: 10.1371/journal.pbio.0030174] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 03/15/2005] [Indexed: 11/19/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) usually requires symptomatic supportive therapy by intubation and mechanical ventilation with the supplemental use of high oxygen concentrations. Although oxygen therapy represents a life-saving measure, the recent discovery of a critical tissue-protecting mechanism predicts that administration of oxygen to ARDS patients with uncontrolled pulmonary inflammation also may have dangerous side effects. Oxygenation may weaken the local tissue hypoxia-driven and adenosine A2A receptor (A2AR)-mediated anti-inflammatory mechanism and thereby further exacerbate lung injury. Here we report experiments with wild-type and adenosine A2AR-deficient mice that confirm the predicted effects of oxygen. These results also suggest the possibility of iatrogenic exacerbation of acute lung injury upon oxygen administration due to the oxygenation-associated elimination of A2AR-mediated lung tissue-protecting pathway. We show that this potential complication of clinically widely used oxygenation procedures could be completely prevented by intratracheal injection of a selective A2AR agonist to compensate for the oxygenation-related loss of the lung tissue-protecting endogenous adenosine. The identification of a major iatrogenic complication of oxygen therapy in conditions of acute lung inflammation attracts attention to the need for clinical and epidemiological studies of ARDS patients who require oxygen therapy. It is proposed that oxygen therapy in patients with ARDS and other causes of lung inflammation should be combined with anti-inflammatory measures, e.g., with inhalative application of A2AR agonists. The reported observations may also answer the long-standing question as to why the lungs are the most susceptible to inflammatory injury and why lung failure usually precedes multiple organ failure.
Collapse
Affiliation(s)
- Manfred Thiel
- 1Laboratory of Immunology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health, Bethesda, MarylandUnited States of America
- 2Clinic of AnaesthesiologyUniversity of MunichGermany
| | - Alexander Chouker
- 1Laboratory of Immunology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health, Bethesda, MarylandUnited States of America
- 2Clinic of AnaesthesiologyUniversity of MunichGermany
| | - Akio Ohta
- 1Laboratory of Immunology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health, Bethesda, MarylandUnited States of America
- 3New England Inflammation and Tissue Protection Institute, Northeastern UniversityBoston, MassachusettsUnited States of America
| | - Edward Jackson
- 4Pharmacology/Medicine Pittsburgh, University of Pittsburgh School of MedicinePennsylvaniaUnited States of America
| | - Charles Caldwell
- 1Laboratory of Immunology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health, Bethesda, MarylandUnited States of America
| | - Patrick Smith
- 1Laboratory of Immunology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health, Bethesda, MarylandUnited States of America
| | - Dmitry Lukashev
- 1Laboratory of Immunology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health, Bethesda, MarylandUnited States of America
- 3New England Inflammation and Tissue Protection Institute, Northeastern UniversityBoston, MassachusettsUnited States of America
| | - Iris Bittmann
- 5Pathology, Klinikum GrosshadernUniversity of MunichGermany
| | - Michail V Sitkovsky
- 1Laboratory of Immunology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health, Bethesda, MarylandUnited States of America
- 3New England Inflammation and Tissue Protection Institute, Northeastern UniversityBoston, MassachusettsUnited States of America
| |
Collapse
|
54
|
Hauber HP, Beyer IS, Meyer A, Pforte A. Decreased interleukin-18 expression in BAL cells and peripheral blood mononuclear cells in adult cystic fibrosis patients. J Cyst Fibros 2004; 3:129-31. [PMID: 15463896 DOI: 10.1016/j.jcf.2004.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Accepted: 03/03/2004] [Indexed: 11/24/2022]
Abstract
Lymphocytes from cystic fibrosis (CF) patients secrete less interferon-gamma (IFN-gamma) upon stimulation compared to controls. Expression of interleukin (IL)-18 as an IFN-gamma inducing factor and of IL-10 as an IL-18 inhibiting factor were determined in bronchoalveolar lavage (BAL) cells from CF patients (n=5) and from normal control subjects (n=9) as well as in peripheral blood mononuclear cells (PBMC) from patients (n=12) and from control subjects (n=9) with RT-PCR. IL-18 and IL-10 serum protein levels were measured using ELISA. BAL cells and PBMC of CF patients expressed significantly less IL-18 compared to controls (p<0.05). There was no significant difference for IL-10 in BAL cells. However, PBMC from patients expressed significantly more IL-10 mRNA (p<0.05). IL-18 serum protein levels were decreased in the patient group, whereas IL-10 serum concentrations were elevated. Stimulation with rhIL-10 reduced IL-18 expression in PBMC from CF patients. Decreased IL-18 expression in CF patients may contribute to decreased IFN-gamma production. IL-10 may contribute to inhibit IL-18 expression in PBMC in CF.
Collapse
Affiliation(s)
- Hans-Peter Hauber
- Department of Internal Medicine, University Hospital Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
55
|
Abstract
Infection begins when microorganisms overcome host barriers and multiply within host tissues. To contain the infection, the host mounts an inflammatory response that mobilizes defense systems and kills the invading microorganisms. A focal inflammatory response is usually sufficient to eradicate the organisms. However, when it fails to contain the infection, the organisms, their toxins, and numerous host mediators are released into the bloodstream, producing a systemic inflammatory response and organ failure. Microorganisms have coevolved with their hosts, thereby acquiring means of overcoming host defense mechanisms or even taking advantage of innate host responses. Many pathogens avoid recognition by the host or dampen host immune responses via sophisticated pathogen-host interactions. Some pathogens benefit from the inflammatory response. According to current hypotheses regarding the pathogenesis of sepsis, the host generates both an innate immune response identical for all pathogens and an adaptive pathogen-specific response. Determining whether the innate response benefits the pathogen or the host is essential for understanding host-pathogen interactions. In this review, we discuss how pathogens interfere with innate and adaptive immune responses to escape eradication by the host.
Collapse
Affiliation(s)
- Pierre Moine
- Department of Anesthesiology, University Hospital, University of Colorado Health Sciences Center, Denver, Colorado 80626, USA.
| | | |
Collapse
|
56
|
Wieland CW, Knapp S, Florquin S, de Vos AF, Takeda K, Akira S, Golenbock DT, Verbon A, van der Poll T. Non-mannose-capped lipoarabinomannan induces lung inflammation via toll-like receptor 2. Am J Respir Crit Care Med 2004; 170:1367-74. [PMID: 15447943 DOI: 10.1164/rccm.200404-525oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Non-mannose-capped lipoarabinomannan (AraLAM) is part of the cell membrane of atypical mycobacteria. To determine the capacity of AraLAM to induce lung inflammation in vivo and to determine the signaling receptors involved herein, wild-type (WT) mice, lipopolysaccharide binding protein knockout mice, CD14-deficient (CD14 KO) mice, Toll-like receptor (TLR) 4 mutant mice, or TLR2 KO mice were intranasally inoculated with purified AraLAM. AraLAM induced high lung levels of tumor necrosis factor, interleukin-1beta, interleukin-6, and cytokine-induced neutrophil chemoattractant (KC) and an influx of neutrophils into the pulmonary compartment of WT mice. Lipopolysaccharide binding protein knockout, CD14 KO, and TLR4 mutant mice displayed similar inflammatory responses as WT mice, whereas in TLR2 KO mice, AraLAM-induced lung inflammation was strongly diminished. In addition, TLR2 KO mice, but not CD14 KO or TLR4 mutant mice, displayed a delayed clearance of pulmonary infection with the atypical AraLAM expressing Mycobacterium smegmatis. These data indicate that TLR2 is the signaling receptor for purified AraLAM in the lung in vivo and that this receptor contributes to an effective clearance of M. smegmatis from the pulmonary compartment.
Collapse
Affiliation(s)
- Catharina W Wieland
- Laboratory of Experimental Internal Medicine, Department of Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
State of the art: why do the lungs of patients with cystic fibrosis become infected and why can't they clear the infection? Respir Res 2003; 4:8. [PMID: 14511398 PMCID: PMC203156 DOI: 10.1186/1465-9921-4-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 08/27/2003] [Indexed: 12/19/2022] Open
Abstract
Cystic Fibrosis (CF) lung disease, which is characterized by airway obstruction, chronic bacterial infection, and an excessive inflammatory response, is responsible for most of the morbidity and mortality. Early in life, CF patients become infected with a limited spectrum of bacteria, especially P. aeruginosa. New data now indicate that decreased depth of periciliary fluid and abnormal hydration of mucus, which impede mucociliary clearance, contribute to initial infection. Diminished production of the antibacterial molecule nitric oxide, increased bacterial binding sites (e.g., asialo GM-1) on CF airway epithelial cells, and adaptations made by the bacteria to the airway microenvironment, including the production of virulence factors and the ability to organize into a biofilm, contribute to susceptibility to initial bacterial infection. Once the patient is infected, an overzealous inflammatory response in the CF lung likely contributes to the host's inability to eradicate infection. In response to increased IL-8 and leukotriene B4 production, neutrophils infiltrate the lung where they release mediators, such as elastase, that further inhibit host defenses, cripple opsonophagocytosis, impair mucociliary clearance, and damage airway wall architecture. The combination of these events favors the persistence of bacteria in the airway. Until a cure is discovered, further investigations into therapies that relieve obstruction, control infection, and attenuate inflammation offer the best hope of limiting damage to host tissues and prolonging survival.
Collapse
|
58
|
Huang YT, Jeng CR, Cheng CH, Chueh LL, Liu JJ, Pang VF. Morphological and immunological evidence of a unique selective production and endoplasmic reticular accumulation of interleukin-1alpha in rat peritoneal macrophages induced by Pseudomonas aeruginosa exotoxin A. Cell Immunol 2003; 221:143-56. [PMID: 12747956 DOI: 10.1016/s0008-8749(03)00076-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The immunotoxicity of Pseudomonas aeruginosa exotoxin A (ETA) on macrophages was evaluated by incubating rat peritoneal macrophages (RPM) with 1-100 ng/ml ETA for 3-60 h. Although the overall changes in cell viability and DNA, RNA, and protein synthesis of the ETA-treated RPM (E-RPM) were reduced in a dose- and time-dependent manner, there was a transient but evident rebound in RNA and/or protein synthesis at 24-36 h post-incubation (HPI) at 1-50 ng/ml ETA. However, a more apparent enhancement appeared in RNA and protein synthesis at 36-48 HPI in 10 and 50 ng/ml E-RPM after normalized on the basis of viable cell. Most 50-100 ng/ml E-RPM underwent necrosis/apoptosis before 24 HPI. By 36 HPI, 41% of 10 ng/ml E-RPM remained viable but were full of cytoplasmic granules due to the accumulation of glycoprotein in segmentally dilated endoplasmic reticulum. Immunological staining of the granules revealed strong IL-1alpha but weak or no signals for IL-1beta, IL-1 receptor antagonist, IL-6, and TNF-alpha. A time-dependent increase in IL-1alpha but no IL-1beta was detected in cell lysate of 10 ng/ml E-RPM; however, neither IL-1alpha nor IL-1beta was detected in culture supernatant. Thus, besides cytopathic and functional effects, ETA could induce a unique selective production and endoplasmic reticular accumulation of IL-1alpha in RPM.
Collapse
Affiliation(s)
- Yen-Te Huang
- Graduate Institute of Veterinary Medicine, National Taiwan University, 106, ROC, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
59
|
Schmidtchen A, Holst E, Tapper H, Björck L. Elastase-producing Pseudomonas aeruginosa degrade plasma proteins and extracellular products of human skin and fibroblasts, and inhibit fibroblast growth. Microb Pathog 2003; 34:47-55. [PMID: 12620384 DOI: 10.1016/s0882-4010(02)00197-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leg ulcers of venous origin represent a disease affecting 0.1-0.2% of the population. It is known that almost all chronic ulcers are colonized by different bacteria, such as staphylococci, enterococci and Pseudomonas aeruginosa. We here report that P. aeruginosa, expressing the major metalloproteinase elastase, induces degradation of complement C3, various antiproteinases, kininogens, fibroblast proteins, and proteoglycans (PG) in vitro, thus mimicking proteolytic activity previously identified in chronic ulcer fluid in vivo. Elastase-producing P. aeruginosa isolates were shown to significantly degrade human wound fluid as well as human skin proteins ex vivo. Elastase-containing conditioned P. aeruginosa medium and purified elastase inhibited fibroblast cell growth. These effects, in conjunction with the finding that proteinase production was detected in wound fluid ex vivo, suggest that bacterial proteinases play a pathogenic role in chronic ulcers.
Collapse
Affiliation(s)
- Artur Schmidtchen
- Section for Dermatology, Department of Medical Microbiology, Dermatology and Infection, Biomedical Center B14, Lund University, Tornavägen 10, S-22184 Lund, Sweden.
| | | | | | | |
Collapse
|