51
|
The c-di-GMP Phosphodiesterase PipA (PA0285) Regulates Autoaggregation and Pf4 Bacteriophage Production in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2022; 88:e0003922. [PMID: 35638845 DOI: 10.1128/aem.00039-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In Pseudomonas aeruginosa PAO1, 41 genes encode proteins predicted to be involved in the production or degradation of c-di-GMP, a ubiquitous secondary messenger that regulates a variety of physiological behaviors closely related to biofilm and aggregate formation. Despite extensive effort, the entire picture of this important signaling network is still unclear, with one-third of these proteins remaining uncharacterized. Here, we show that the deletion of pipA, which produces a protein containing two PAS domains upstream of a GGDEF-EAL tandem, significantly increased the intracellular c-di-GMP level and promoted the formation of aggregates both on surfaces and in planktonic cultures. However, this regulatory effect was not contributed by either of the two classic pathways modulating biofilm formation, exopolysaccharide (EPS) overproduction or motility inhibition. Transcriptome sequencing (RNA-Seq) data revealed that the expression levels of 361 genes were significantly altered in a ΔpipA mutant strain compared to the wild type (WT), indicating the critical role of PipA in PAO1. The most remarkably downregulated genes were located on the Pf4 bacteriophage gene cluster, which corresponded to a 2-log reduction in the Pf4 phage production in the ΔpipA mutant. The sizes of aggregates in ΔpipA cultures were affected by exogenously added Pf4 phage in a concentration-dependent manner, suggesting the quantity of phage plays a part in regulating the formation of aggregates. Further analysis demonstrated that PipA is highly conserved across 83 P. aeruginosa strains. Our work therefore for the first time showed that a c-di-GMP phosphodiesterase can regulate bacteriophage production and provided new insights into the relationship between bacteriophage and bacterial aggregation. IMPORTANCE The c-di-GMP signaling pathways in P. aeruginosa are highly organized and well coordinated, with different diguanylate cyclases and phosphodiesterases playing distinct roles in a complex network. Understanding the function of each enzyme and the underlying regulatory mechanisms not only is crucial for revealing how bacteria decide the transition between motile and sessile lifestyles, but also greatly facilitates the development of new antibiofilm strategies. This work identified bacteriophage production as a novel phenotypic output controlled transcriptionally by a phosphodiesterase, PipA. Further analysis suggested that the quantity of phage may be important in regulating autoaggregation, as either a lack of phage or overproduction was associated with higher levels of aggregation. Our study therefore extended the scope of c-di-GMP-controlled phenotypes and discovered a potential signaling circuit that can be target for biofilm treatment.
Collapse
|
52
|
Zeng Z, Lin S, Li Q, Wang W, Wang Y, Xiao T, Guo Y. Molecular Basis of Wrinkled Variants Isolated From Pseudoalteromonas lipolytica Biofilms. Front Microbiol 2022; 13:797197. [PMID: 35295294 PMCID: PMC8919034 DOI: 10.3389/fmicb.2022.797197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Many Pseudoalteromonas species are dominant biofilm-forming Gammaproteobacteria in the ocean. The formation of Pseudoalteromonas biofilms is often accompanied by the occurrence of variants with different colony morphologies that may exhibit increased marine antifouling or anticorrosion activities. However, the genetic basis of the occurrence of these variants remains largely unexplored. In this study, we identified that wrinkled variants of P. lipolytica mainly arose due to mutations in the AT00_08765, a wspF-like gene, that are associated with decreased swimming motility and increased cellulose production. Moreover, we found that the spontaneous mutation in flhA, encoding a flagellar biosynthesis protein, also caused a wrinkled colony morphology that is associated with cellulose overproduction, indicating that flhA plays a dual role in controlling flagellar assembly and polysaccharide production in P. lipolytica. Investigation of wrinkled variants harboring spontaneous mutation in dgcB, encoding a GGDEF domain protein, also demonstrated dgcB plays an important role in regulating cellulose production and swimming motility. In addition, by screening the suppressor of the AT00_08765 variant strain, we also identified that the spontaneous mutation in cheR and bcsC directly abolished the wrinkled phenotype of the AT00_08765 variant strain, suggesting that the chemosensory signaling transduction and cellulose production are crucial for the determination of the wrinkled phenotype in P. lipolytica. Taken together, this study provides insights into the genetic variation within biofilms of P. lipolytica.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Yuexue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yuexue Guo,
| |
Collapse
|
53
|
Lee CK, Schmidt WC, Webster SS, Chen JW, O'Toole GA, Wong GCL. Broadcasting of amplitude- and frequency-modulated c-di-GMP signals facilitates cooperative surface commitment in bacterial lineages. Proc Natl Acad Sci U S A 2022; 119:e2112226119. [PMID: 35064082 PMCID: PMC8795499 DOI: 10.1073/pnas.2112226119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Work on surface sensing in bacterial biofilms has focused on how cells transduce sensory input into cyclic diguanylate (c-di-GMP) signaling, low and high levels of which generally correlate with high-motility planktonic cells and low-motility biofilm cells, respectively. Using Granger causal inference methods, however, we find that single-cell c-di-GMP increases are not sufficient to imply surface commitment. Tracking entire lineages of cells from the progenitor cell onward reveals that c-di-GMP levels can exhibit increases but also undergo oscillations that can propagate across 10 to 20 generations, thereby encoding more complex instructions for community behavior. Principal component and factor analysis of lineage c-di-GMP data shows that surface commitment behavior correlates with three statistically independent composite features, which roughly correspond to mean c-di-GMP levels, c-di-GMP oscillation period, and surface motility. Surface commitment in young biofilms does not correlate to c-di-GMP increases alone but also to the emergence of high-frequency and small-amplitude modulation of elevated c-di-GMP signal along a lineage of cells. Using this framework, we dissect how increasing or decreasing signal transduction from wild-type levels, by varying the interaction strength between PilO, a component of a principal surface sensing appendage system, and SadC, a key hub diguanylate cyclase that synthesizes c-di-GMP, impacts frequency and amplitude modulation of c-di-GMP signals and cooperative surface commitment.
Collapse
Affiliation(s)
- Calvin K Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - William C Schmidt
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Shanice S Webster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jonathan W Chen
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
54
|
Park S, Sauer K. Controlling Biofilm Development Through Cyclic di-GMP Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:69-94. [PMID: 36258069 PMCID: PMC9891824 DOI: 10.1007/978-3-031-08491-1_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date summary of c-di-GMP pathways connected to biofilm formation by the opportunistic pathogen P. aeruginosa. Emphasis will be on the timing of c-di-GMP production over the course of biofilm formation, to highlight non-uniform and hierarchical increases in c-di-GMP levels, as well as biofilm growth conditions that do not conform with our current model of c-di-GMP.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
- Binghamton Biofilm Research Center (BBRC), Binghamton University, Binghamton, NY, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
- Binghamton Biofilm Research Center (BBRC), Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
55
|
Beneficial biofilms: A mini-review of strategies to enhance biofilm formation for biotechnological applications. Appl Environ Microbiol 2021; 88:e0199421. [PMID: 34851721 DOI: 10.1128/aem.01994-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity of bacteria to form biofilms is an important trait for their survival and persistence. Biofilms occur naturally in soil and aquatic environments, are associated with animals ranging from insects to humans and are also found in built environments. They are typically encountered as a challenge in healthcare, food industry, and water supply ecosystems. In contrast, they are known to play a key role in the industrial production of commercially valuable products, environmental remediation processes, and in microbe-catalysed electrochemical systems for energy and resource recovery from wastewater. While there are many recent articles on biofilm control and removal, review articles on promoting biofilm growth for biotechnological applications are unavailable. Biofilm formation is a tightly regulated response to perturbations in the external environment. The multi-stage process, mediated by an assortment of proteins and signaling systems, involves the attachment of bacterial cells to a surface followed by their aggregation in a matrix of extracellular polymeric substances. Biofilms can be promoted by altering the external environment in a controlled manner, supplying molecules that trigger the aggregation of cells and engineering genes associated with biofilm development. This mini-review synthesizes findings from studies that have described such strategies and highlights areas needing research attention.
Collapse
|
56
|
Park S, Sauer K. SagS and its unorthodox contributions to Pseudomonas aeruginosa biofilm development. Biofilm 2021; 3:100059. [PMID: 34729470 PMCID: PMC8543379 DOI: 10.1016/j.bioflm.2021.100059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
The Pseudomonas aeruginosa orphan sensor SagS (PA2824) was initially reported as one of three orphan sensor kinases capable of activating HptB, a component of the HptB signaling pathway that intersects with the Gac/Rsm signaling pathway and fine-tunes P. aeruginosa motility and pathogenesis. Since then, this orphan sensor has been reported to be involved in other, unorthodox signaling pathways serving additional functions. The present review is aimed at summarizing the various functions of SagS, with an emphasis on its toggle or dual switch functions, and highlighting the role of SagS as a hub at which the various signaling pathways intersect, to regulate the transition from the planktonic to the sessile mode of growth, as well as the transition of surface-associated cells to a drug tolerant state.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
57
|
The two-component system FleS/FleR represses H1-T6SS via c-di-GMP signaling in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 88:e0165521. [PMID: 34731046 DOI: 10.1128/aem.01655-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type VI secretion system (T6SS) is an important translocation apparatus that is widely employed by Gram-negative bacteria to deliver toxic effectors into eukaryotic and prokaryotic target cells, causing host damage and providing competitive advantages in polymicrobial environments. The genome of P. aeruginosa harbors three T6SS clusters (H1-T6SS, H2-T6SS, H3-T6SS). Activities of these systems are tightly regulated by a complicated signaling network which remains largely elusive. In this study, we focused on a previously characterized two-component system FleS/FleR and performed comparative transcriptome analysis between the PAO1 wild-type strain and its isogenic ΔfleR mutant, which revealed the important role of FleS/FleR in regulating multiple physiological pathways including T6SS. Gene expression and bacterial killing assays showed that the expression and activity of H1-T6SS are repressed in the wild-type strain owing to the high intracellular c-di-GMP content. Further explorations demonstrated that c-di-GMP relies on the transcription factor FleQ to repress H1-T6SS and its synthesis is controlled by a global regulator AmrZ which is induced by the active FleS/FleR. Interestingly, FleS/FleR regulates H1-T6SS in PAO1 is independent of RetS which is known to regulate H1-T6SS by controlling the central post-transcriptional factor RsmA. Together, our results identified a novel regulator of H1-T6SS and provided detailed mechanisms of this signaling pathway in PAO1. IMPORTANCE P. aeruginosa is an opportunistic human pathogen distributed widely in the environment. The genome of this pathogen contains three T6SS clusters which contribute significantly to its virulence. Understanding the complex regulatory network that controls the activity of T6SS is essential for the development of effective therapeutic treatments for P. aeruginosa infections. In this study, transcriptome analysis led to the identification of a novel regulator FleS/FleR which inversely regulates H1-T6SS and H2-T6SS in P. aeruginosa PAO1. We further revealed a detailed FleS/FleR-mediated regulatory pathway of H1-T6SS in PAO1 which involves two additional transcriptional regulators AmrZ and FleQ and the second messenger c-di-GMP, providing important implications to develop novel anti-infective strategies and antimicrobial drugs.
Collapse
|
58
|
The Diguanylate Cyclase YfiN of Pseudomonas aeruginosa Regulates Biofilm Maintenance in Response to Peroxide. J Bacteriol 2021; 204:e0039621. [PMID: 34694901 DOI: 10.1128/jb.00396-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa forms surface-attached communities that persist in the face of antimicrobial agents and environmental perturbation. Published work has found extracellular polysaccharide (EPS) production, regulation of motility and induction of stress response pathways as contributing to biofilm tolerance during such insults. However, little is known regarding the mechanism(s) whereby biofilm maintenance is regulated when exposed to such environmental challenges. Here, we provide evidence that the diguanylate cyclase YfiN is important for the regulation of biofilm maintenance when exposed to peroxide. We find that, compared to the wild type (WT), static biofilms of the ΔyfiN mutant exhibit a maintenance defect, which can be further exacerbated by exposure to peroxide (H2O2); this defect can be rescued through genetic complementation. Additionally, we found that the ΔyfiN mutant biofilms produce less c-di-GMP than WT, and that H2O2 treatment enhanced motility of surface-associated bacteria and increased cell death for the ΔyfiN mutant grown as a biofilm compared to WT biofilms. These data provide evidence that YfiN is required for biofilm maintenance by P. aeruginosa, via c-di-GMP signaling, to limit motility and protect viability in response to peroxide stress. These findings add to the growing recognition that biofilm maintenance by P. aeruginosa is an actively regulated process that is controlled, at least in part, by the wide array of c-di-GMP metabolizing enzymes found in this microbe. Importance We build on previous findings that suggest that P. aeruginosa utilizes c-di-GMP metabolizing enzymes to actively maintain a mature biofilm. Here, we explore how the diguanylate cyclase YfiN contributes to the regulation of biofilm maintenance during peroxide exposure. We find that mature P. aeruginosa biofilms require YfiN to synthesize c-di-GMP, regulate motility and to insure viability during peroxide stress. These findings provide further evidence that the modulation of c-di-GMP in response to environmental signals is an important mechanism by which biofilms are maintained.
Collapse
|
59
|
Differential Surface Competition and Biofilm Invasion Strategies of Pseudomonas aeruginosa PA14 and PAO1. J Bacteriol 2021; 203:e0026521. [PMID: 34516283 DOI: 10.1128/jb.00265-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa strains PA14 and PAO1 are among the two best-characterized model organisms used to study the mechanisms of biofilm formation while also representing two distinct lineages of P. aeruginosa. Previous work has shown that PA14 and PAO1 use different strategies for surface colonization; they also have different extracellular matrix composition and different propensities to disperse from biofilms back into the planktonic phase surrounding them. We expand on this work here by exploring the consequences of these different biofilm production strategies during direct competition. Using differentially labeled strains and microfluidic culture methods, we show that PAO1 can outcompete PA14 in direct competition during early colonization and subsequent biofilm growth, that they can do so in constant and perturbed environments, and that this advantage is specific to biofilm growth and requires production of the Psl polysaccharide. In contrast, P. aeruginosa PA14 is better able to invade preformed biofilms and is more inclined to remain surface-associated under starvation conditions. These data together suggest that while P. aeruginosa PAO1 and PA14 are both able to effectively colonize surfaces, they do so in different ways that are advantageous under different environmental settings. IMPORTANCE Recent studies indicate that P. aeruginosa PAO1 and PA14 use distinct strategies to initiate biofilm formation. We investigated whether their respective colonization and matrix secretion strategies impact their ability to compete under different biofilm-forming regimes. Our work shows that these different strategies do indeed impact how these strains fair in direct competition: PAO1 dominates during colonization of a naive surface, while PA14 is more effective in colonizing a preformed biofilm. These data suggest that even for very similar microbes there can be distinct strategies to successfully colonize and persist on surfaces during the biofilm life cycle.
Collapse
|
60
|
Karash S, Nordell R, Ozer EA, Yahr TL. Genome Sequences of Two Pseudomonas aeruginosa Isolates with Defects in Type III Secretion System Gene Expression from a Chronic Ankle Wound Infection. Microbiol Spectr 2021; 9:e0034021. [PMID: 34259549 PMCID: PMC8552725 DOI: 10.1128/spectrum.00340-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
Effector proteins translocated into host cells by the Pseudomonas aeruginosa type III secretion system (T3SS) are critical for phagocytic avoidance and systemic spread of the microorganism. The T3SS genes are present in virtually all P. aeruginosa strains. When examined in environmental isolates and clinical specimens, expression of the T3SS genes is the rule. Isolates from the airways of cystic fibrosis (CF) patients are one exception, and these isolates usually carry mutations that disable T3SS gene expression. In this study, we describe two P. aeruginosa isolates, one pigmented brown and one green, from a keratitis-ichthyosis-deafness (KID) syndrome patient with a chronic cutaneous ankle wound. Similar to most isolates from CF, both of the KID isolates were defective for T3SS gene expression. Providing the primary activator of T3SS transcription (exsA) in trans restored T3SS function. Since the exsA sequences were identical to that of a reference strain with active T3SS gene expression, we examined the cAMP-Vfr system, a critical regulator of T3SS gene expression. Vfr is a cAMP-dependent transcription factor that activates exsA expression. Whereas T3SS activity was corrected in the brown isolate by restoring cAMP synthesis, the same was not observed for the green isolate. These findings suggest that distinct mechanisms resulted in loss of T3SS gene expression in the KID isolates. The mutations responsible for the T3SS defects were not clearly evident by comparison of the whole-genome sequences to a reference strain. Our findings suggest that loss of T3SS gene expression may be a trait common to both CF and non-CF chronic infections. IMPORTANCE A common feature of microorganisms that cause chronic infections is a stealthy lifestyle that promotes immune avoidance and host tolerance. During chronic colonization of cystic fibrosis (CF) patients, Pseudomonas aeruginosa acquires numerous adaptations that include reduced expression of some factors, such as motility, O antigen, and the T3SS, and increased expression of other traits, such as biofilm formation. In this study, we report loss of T3SS gene expression in non-CF chronic isolates. This finding suggests that loss of the T3SS may be a common and important trait that contributes to persistence and may open avenues to explore the significance further using non-CF chronic infection models.
Collapse
Affiliation(s)
- Sardar Karash
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Robert Nordell
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Egon A. Ozer
- Department of Medicine, Northwestern Fienberg School of Medicine, Chicago, Illinois, USA
| | - Timothy L. Yahr
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
61
|
Xuan TF, Wang ZQ, Liu J, Yu HT, Lin QW, Chen WM, Lin J. Design and Synthesis of Novel c-di-GMP G-Quadruplex Inducers as Bacterial Biofilm Inhibitors. J Med Chem 2021; 64:11074-11089. [PMID: 34323486 DOI: 10.1021/acs.jmedchem.1c00465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The formation of biofilms by clinical pathogens typically leads to chronic and recurring antibiotic-resistant infections. High cellular levels of cyclic diguanylate (c-di-GMP), a ubiquitous secondary messenger of bacteria, have been proven to be associated with a sessile biofilm lifestyle of pathogens. A promising antibiofilm strategy involving the induction of c-di-GMP to form dysfunctional G-quadruplexes, thereby blocking the c-di-GMP-mediated biofilm regulatory pathway, was proposed in this study. In this new strategy, a series of novel c-di-GMP G-quadruplex inducers were designed and synthesized for development of therapeutic biofilm inhibitors. Compound 5h exhibited favorable c-di-GMP G-quadruplex-inducing activity and 62.18 ± 6.76% biofilm inhibitory activity at 1.25 μM without any DNA intercalation effect. Moreover, the favorable performance of 5h in interfering with c-di-GMP-related biological functions, including bacterial motility and bacterial extracellular polysaccharide secretion, combined with the reporter strain and transcriptome analysis results confirmed the c-di-GMP signaling-related action mechanism of 5h.
Collapse
Affiliation(s)
- Teng-Fei Xuan
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zi-Qiang Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Hai-Tao Yu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Qian-Wen Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
62
|
Zhou T, Huang J, Liu Z, Xu Z, Zhang LH. Molecular Mechanisms Underlying the Regulation of Biofilm Formation and Swimming Motility by FleS/FleR in Pseudomonas aeruginosa. Front Microbiol 2021; 12:707711. [PMID: 34367113 PMCID: PMC8335546 DOI: 10.3389/fmicb.2021.707711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa, a major cause of nosocomial infection, can survive under diverse environmental conditions. Its great adaptive ability is dependent on its multiple signaling systems such as the two-component system (TCS). A TCS FleS/FleR has been previously identified to positively regulate a variety of virulence-related traits in P. aeruginosa PAO1 including motility and biofilm formation which are involved in the acute and chronic infections, respectively. However, the molecular mechanisms underlying these regulations are still unclear. In this study, we first analyzed the regulatory roles of each domains in FleS/FleR and characterized key residues in the FleS-HisKA, FleR-REC and FleR-AAA domains that are essential for the signaling. Next, we revealed that FleS/FleR regulates biofilm formation in a c-di-GMP and FleQ dependent manner. Lastly, we demonstrated that FleR can regulate flagellum biosynthesis independently without FleS, which explains the discrepant regulation of swimming motility by FleS and FleR.
Collapse
Affiliation(s)
- Tian Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Jiahui Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Zhiqing Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Zeling Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
63
|
Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int J Mol Sci 2021; 22:ijms22147521. [PMID: 34299141 PMCID: PMC8306008 DOI: 10.3390/ijms22147521] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a complex and dynamic nanomachine that propels bacteria through liquids. It consists of a basal body, a hook, and a long filament. The flagellar filament is composed of thousands of copies of the protein flagellin (FliC) arranged helically and ending with a filament cap composed of an oligomer of the protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases are even completely absent. Flagellar assembly is a complex and energetically costly process triggered by environmental stimuli and, accordingly, highly regulated on transcriptional, translational and post-translational levels. Apart from its role in locomotion, the filament is critically important in several other aspects of bacterial survival, reproduction and pathogenicity, such as adhesion to surfaces, secretion of virulence factors and formation of biofilms. Additionally, due to its ability to provoke potent immune responses, flagellins have a role as adjuvants in vaccine development. In this review, we summarize the latest knowledge on the structure of flagellins, capping proteins and filaments, as well as their regulation and role during the colonization and infection of the host.
Collapse
|
64
|
Andersen JB, Hultqvist LD, Jansen CU, Jakobsen TH, Nilsson M, Rybtke M, Uhd J, Fritz BG, Seifert R, Berthelsen J, Nielsen TE, Qvortrup K, Givskov M, Tolker-Nielsen T. Identification of small molecules that interfere with c-di-GMP signaling and induce dispersal of Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes 2021; 7:59. [PMID: 34244523 PMCID: PMC8271024 DOI: 10.1038/s41522-021-00225-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Microbial biofilms are involved in a number of infections that cannot be cured, as microbes in biofilms resist host immune defenses and antibiotic therapies. With no strict biofilm-antibiotic in the current pipelines, there is an unmet need for drug candidates that enable the current antibiotics to eradicate bacteria in biofilms. We used high-throughput screening to identify chemical compounds that reduce the intracellular c-di-GMP content in Pseudomonas aeruginosa. This led to the identification of a small molecule that efficiently depletes P. aeruginosa for c-di-GMP, inhibits biofilm formation, and disperses established biofilm. A combination of our lead compound with standard of care antibiotics showed improved eradication of an implant-associated infection established in mice. Genetic analyses provided evidence that the anti-biofilm compound stimulates the activity of the c-di-GMP phosphodiesterase BifA in P. aeruginosa. Our work constitutes a proof of concept for c-di-GMP phosphodiesterase-activating drugs administered in combination with antibiotics as a viable treatment strategy for otherwise recalcitrant infections.
Collapse
Affiliation(s)
- Jens Bo Andersen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Dahl Hultqvist
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tim Holm Jakobsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Nilsson
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Uhd
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Blaine Gabriel Fritz
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roland Seifert
- Institute of Pharmacology and Research Core Unit Metabolomics, Hannover Medical School Carl-Neuberg-Straße 1, Hannover, Germany
| | - Jens Berthelsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Eiland Nielsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Michael Givskov
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
65
|
Cologgi DL, Otwell AE, Speers AM, Rotondo JA, Reguera G. Genetic analysis of electroactive biofilms. Int Microbiol 2021; 24:631-648. [PMID: 33907940 DOI: 10.1007/s10123-021-00176-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Geobacter biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and c-cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (>20 μm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of Geobacter sulfurreducens PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms. The molecular dissection of biofilm formation demonstrated that cells undergo a regulated developmental program to first colonize the surface to saturation and then synthesize an electroactive matrix to support optimal cell growth within structured communities. Transitioning from a monolayer to a multilayered, mature biofilm required the expression of conductive pili, consistent with the essential role of these extracellular protein appendages as electronic conduits across all layers of the biofilms. The genetic screening also identified cell envelope processes, regulatory pathways, and electron transport components not previously linked to biofilm formation. These genes provide much-needed understanding of the cellular reprogramming needed to build electroactive biofilms. Importantly, they serve as predictive markers of the physiology and reductive capacity of Geobacter biofilms during the bioremediation of toxic metals and radionuclides and current harvesting in bioelectrochemical systems.
Collapse
Affiliation(s)
- Dena L Cologgi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne E Otwell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.,Present address: Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Allison M Speers
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - John A Rotondo
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
66
|
Induction of Native c-di-GMP Phosphodiesterases Leads to Dispersal of Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother 2021; 65:AAC.02431-20. [PMID: 33495218 DOI: 10.1128/aac.02431-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/15/2021] [Indexed: 01/07/2023] Open
Abstract
A decade of research has shown that the molecule c-di-GMP functions as a central second messenger in many bacteria. A high level of c-di-GMP is associated with biofilm formation, whereas a low level of c-di-GMP is associated with a planktonic single-cell bacterial lifestyle. c-di-GMP is formed by diguanylate cyclases and is degraded by specific phosphodiesterases. We previously presented evidence that the ectopic expression of the Escherichia coli phosphodiesterase YhjH in Pseudomonas aeruginosa results in biofilm dispersal. More recently, however, evidence has been presented that the induction of native c-di-GMP phosphodiesterases does not lead to a dispersal of P. aeruginosa biofilms. The latter result may discourage attempts to use c-di-GMP signaling as a target for the development of antibiofilm drugs. However, here, we demonstrate that the induction of the P. aeruginosa c-di-GMP phosphodiesterases PA2133 and BifA indeed results in the dispersal of P. aeruginosa biofilms in both a microtiter tray biofilm assay and a flow cell biofilm system.
Collapse
|
67
|
Riviezzi B, García-Laviña CX, Morel MA, Castro-Sowinski S. Facing the communication between soybean plants and microorganisms (Bradyrhizobium and Delftia) by quantitative shotgun proteomics. Symbiosis 2021. [DOI: 10.1007/s13199-021-00758-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
68
|
Pseudomonas aeruginosa Uses c-di-GMP Phosphodiesterases RmcA and MorA To Regulate Biofilm Maintenance. mBio 2021; 12:mBio.03384-20. [PMID: 33531388 PMCID: PMC7858071 DOI: 10.1128/mbio.03384-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent advances in our understanding of c-di-GMP signaling have provided key insights into the regulation of biofilms. Despite an improved understanding of how biofilms initially form, the processes that facilitate the long-term maintenance of these multicellular communities remain opaque. While the early stages of biofilm formation have been well characterized, less is known about the requirements for Pseudomonas aeruginosa to maintain a mature biofilm. We utilized a P. aeruginosa-phage interaction to identify rmcA and morA, two genes which encode bis-(3′,5′)-cyclic dimeric GMP (c-di-GMP)-degrading phosphodiesterases (PDEs) and are important for the regulation of biofilm maintenance. Deletion of these genes initially results in an elevated biofilm phenotype characterized by increased production of c-di-GMP, Pel polysaccharide, and/or biofilm biomass. In contrast to the wild-type strain, these mutants were unable to maintain the biofilm when exposed to carbon-limited conditions. The susceptibility to nutrient limitation, as well as subsequent loss of biofilm viability of these mutants, was phenotypically reproduced with a stringent response mutant (ΔrelA ΔspoT), indicating that the ΔrmcA and ΔmorA mutants may be unable to appropriately respond to nutrient limitation. Genetic and biochemical data indicate that RmcA and MorA physically interact with the Pel biosynthesis machinery, supporting a model whereby unregulated Pel biosynthesis contributes to the death of the ΔrmcA and ΔmorA mutant strains in an established biofilm under nutrient limitation. These findings provide evidence that c-di-GMP-mediated regulation is required for mature biofilms of P. aeruginosa to effectively respond to changing availability of nutrients. Furthermore, the PDEs involved in biofilm maintenance are distinct from those required for establishing a biofilm, suggesting that a wide variety of c-di-GMP metabolizing enzymes in organisms such as P. aeruginosa allows for discrete control over the formation, maintenance or dispersion of biofilms.
Collapse
|
69
|
Seder N, Abu Bakar MH, Abu Rayyan WS. Transcriptome Analysis of Pseudomonas aeruginosa Biofilm Following the Exposure to Malaysian Stingless Bee Honey. Adv Appl Bioinform Chem 2021; 14:1-11. [PMID: 33488102 PMCID: PMC7814656 DOI: 10.2147/aabc.s292143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Malaysian stingless bee honey (Trigona) has been aroused as a potential antimicrobial compound with antibiofilm activity. The capability of the gram-negative bacillus P. aeruginosa to sustain a fatal infection is encoded in the bacterium genome. Methods In the current study, a transcriptome investigation was performed to explore the mechanism underlying the biofilm dispersal of P. aeruginosa after the exposure to Trigona honey. Results Microarray analysis of the Pseudomonas biofilm treated by 20% Trigona honey has revealed a down-regulation of 3478 genes among the 6085 screened genes. Specifically, around 13.5% of the down-regulated genes were biofilm-associated genes. The mapping of the biofilm-associated pathways has shown an ultimate decrease in the expression levels of the D-GMP signaling pathway and diguanylate cyclases (DGCs) genes responsible for c-di-GMP formation. Conclusion We predominantly report the lowering of c-di-GMP through the down-regulation of DGC genes as the main mechanism of biofilm inhibition by Trigona honey.
Collapse
Affiliation(s)
- Nesrin Seder
- Faculty of Health Sciences, University Sultan Zain Al Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | - Mohd Hilmi Abu Bakar
- Faculty of Health Sciences, University Sultan Zain Al Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | - Walid Salem Abu Rayyan
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy, University of Petra, Amman, Jordan
| |
Collapse
|
70
|
The effect of Staphylococcus aureus on the antibiotic resistance and pathogenicity of Pseudomonas aeruginosa based on crc gene as a metabolism regulator: An in vitro wound model study. INFECTION GENETICS AND EVOLUTION 2020; 85:104509. [PMID: 32835876 DOI: 10.1016/j.meegid.2020.104509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/25/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The cooperation of Pseudomonas aeruginosa and Staphylococcus aureus in various infections results in increased pathogenicity and antibiotic resistance. However, the mechanism controlling such a phenomenon is still unclear. In this study, the effects of S. aureus on the metabolism, antibiotic resistance, and pathogenicity of P. aeruginosa were investigated. MATERIAL AND METHODS The biofilm and the planktonic states of growth of P. aeruginosa and S. aureus were investigated using the co-culture method in the L929 cell line. Then, the antibiotic resistance and virulence factors production of the recovered colonies of P. aeruginosa were examined by phenotypic methods. Quantitative Real-Time PCR was used to determine the expression level of crc, lasI/R, and rhlI/R genes. Two way ANOVA test and student's t-test were used to analyze the effect of S.aureus on metabolism, virulence, and resistance of P.aeruginosa. RESULTS P. aeruginosa strains in a single-species planktonic culture on the L929 cell line indicated higher CFU counts than the biofilm. Conversely, in the biofilm state of co-culture, the CFU counts increased in comparison to the planktonic condition. Also, the expression level of crc increased two fold in the PA-1 and PA-2 strains compared to the single-species cultures on the L929 cell line. However, the PA-3 strain indicated a sharp decrease in the expression of crc (3 fold decrease). Besides, a 3-4 fold increase in susceptibility to amikacin was observed as the expression level of crc declined. The QS-regulated factors were diminished as rhlR and lasI were downregulated in both states of growth. CONCLUSION In polymicrobial wound infection, Staphylococcus aureus plays a vital role in the metabolic changes of Pseudomonas aeruginosa. However, the levels of antibiotic susceptibility and pathogenicity of Pseudomonas aeruginosa also changed due to metabolism.
Collapse
|
71
|
Abstract
During chronic lung infections, Pseudomonas aeruginosa grows in highly antibiotic-tolerant communities called biofilms that are difficult for the host to clear. We have developed models for studying P. aeruginosa biofilm dispersal in environments that replicate key features of the airway. We found that mechanisms of biofilm dispersal in these models may employ alternative or additional signaling mechanisms, highlighting the importance of the growth environment in dispersal events. We have adapted the models to accommodate apical fluid flow, bacterial clinical isolates, antibiotics, and primary human airway epithelial cells, all of which are relevant to understanding bacterial behaviors in the context of human disease. We also examined dispersal agents in combination with commonly used antipseudomonal antibiotics and saw improved clearance when nitrite was combined with the antibiotic aztreonam. Pseudomonas aeruginosa grows in highly antibiotic-tolerant biofilms during chronic airway infections. Dispersal of bacteria from biofilms may restore antibiotic susceptibility or improve host clearance. We describe models to study biofilm dispersal in the nutritionally complex environment of the human airway. P. aeruginosa was cocultured in the apical surface of airway epithelial cells (AECs) in a perfusion chamber. Dispersal, triggered by sodium nitrite, a nitric oxide (NO) donor, was tracked by live cell microscopy. Next, a static model was developed in which biofilms were grown on polarized AECs without flow. We observed that NO-triggered biofilm dispersal was an energy-dependent process. From the existing literature, NO-mediated biofilm dispersal is regulated by DipA, NbdA, RbdA, and MucR. Interestingly, altered signaling pathways appear to be used in this model, as deletion of these genes failed to block NO-induced biofilm dispersal. Similar results were observed using biofilms grown in an abiotic model on glass with iron-supplemented cell culture medium. In cystic fibrosis, airway mucus contributes to the growth environment, and a wide range of bacterial phenotypes are observed; therefore, we tested biofilm dispersal in a panel of late cystic fibrosis clinical isolates cocultured in the mucus overlying primary human AECs. Finally, we examined dispersal in combination with the clinically used antibiotics ciprofloxacin, aztreonam and tobramycin. In summary, we have validated models to study biofilm dispersal in environments that recapitulate key features of the airway and identified combinations of currently used antibiotics that may enhance the therapeutic effect of biofilm dispersal. IMPORTANCE During chronic lung infections, Pseudomonas aeruginosa grows in highly antibiotic-tolerant communities called biofilms that are difficult for the host to clear. We have developed models for studying P. aeruginosa biofilm dispersal in environments that replicate key features of the airway. We found that mechanisms of biofilm dispersal in these models may employ alternative or additional signaling mechanisms, highlighting the importance of the growth environment in dispersal events. We have adapted the models to accommodate apical fluid flow, bacterial clinical isolates, antibiotics, and primary human airway epithelial cells, all of which are relevant to understanding bacterial behaviors in the context of human disease. We also examined dispersal agents in combination with commonly used antipseudomonal antibiotics and saw improved clearance when nitrite was combined with the antibiotic aztreonam.
Collapse
|
72
|
Landry KS, Morey JM, Bharat B, Haney NM, Panesar SS. Biofilms-Impacts on Human Health and Its Relevance to Space Travel. Microorganisms 2020; 8:microorganisms8070998. [PMID: 32635371 PMCID: PMC7409192 DOI: 10.3390/microorganisms8070998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
As the world looks towards the stars, the impacts of endogenous and exogenous microorganisms on human health during long-duration space flight are subjects of increased interest within the space community. The presence and continued growth of bacterial biofilms about spacecraft has been documented for decades; however, the impact on crew health is in its infancy. The impacts of biofilms are well known in the medical, agricultural, commercial, and industrial spaces. It less known that biofilms are undermining many facets of space travel and that their effects need to be understood and addressed for future space missions. Biofilms can damage space crew health and spoil limited food supply. Yet, at the same time, they can benefit plant systems for food growth, nutrient development, and other biological systems that are being explored for use in space travel. Various biofilm removal techniques have been studied to mitigate the hazards posed by biofilm persistence during space travel. Because the presence of biofilms can advance or hinder humanity’s space exploration efforts, an understanding of their impacts over the duration of space flights is of paramount importance.
Collapse
Affiliation(s)
- Kyle S Landry
- Liberty Biosecurity, Expeditionary and Special Programs Division, Worcester, MA 01605, USA;
- Correspondence:
| | - Jose M Morey
- Liberty Biosecurity, Expeditionary and Special Programs Division, Worcester, MA 01605, USA;
| | - Bharat Bharat
- Department of Psychology, University of South Florida, St. Petersburg, FL 33620, USA;
| | - Nora M Haney
- Department of Urology, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Sandip S Panesar
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
73
|
Banzhaf M, Resendis-Antonio O, Zepeda-Mendoza ML. Uncovering the Dynamic Mechanisms of the Pseudomonas Aeruginosa Quorum Sensing and Virulence Networks Using Boolean Modelling. IEEE Trans Nanobioscience 2020; 19:394-402. [DOI: 10.1109/tnb.2020.2977820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
74
|
Light-Mediated Decreases in Cyclic di-GMP Levels Inhibit Structure Formation in Pseudomonas aeruginosa Biofilms. J Bacteriol 2020; 202:JB.00117-20. [PMID: 32366589 DOI: 10.1128/jb.00117-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Light is known to trigger regulatory responses in diverse organisms, including slime molds, animals, plants, and phototrophic bacteria. However, light-dependent processes in nonphototrophic bacteria, and those of pathogens in particular, have received comparatively little research attention. In this study, we examined the impact of light on multicellular development in Pseudomonas aeruginosa, a leading cause of biofilm-based bacterial infections. We grew P. aeruginosa strain PA14 in a colony morphology assay and found that growth under prolonged exposure to low-intensity blue light inhibited biofilm matrix production and thereby the formation of vertical biofilm structures (i.e., "wrinkles"). Light-dependent inhibition of biofilm wrinkling was correlated with low levels of cyclic di-GMP (c-di-GMP), consistent with the role of this signal in stimulating matrix production. A screen of enzymes with the potential to catalyze c-di-GMP synthesis or degradation identified c-di-GMP phosphodiesterases that contribute to light-dependent inhibition of biofilm wrinkling. One of these, RmcA, was previously characterized by our group for its role in mediating the effect of redox-active P. aeruginosa metabolites called phenazines on biofilm wrinkle formation. Our results suggest that an RmcA sensory domain that is predicted to bind a flavin cofactor is involved in light-dependent inhibition of wrinkling. Together, these findings indicate that P. aeruginosa integrates information about light exposure and redox state in its regulation of biofilm development.IMPORTANCE Light exposure tunes circadian rhythms, which modulate the immune response and affect susceptibility to infection in plants and animals. Though molecular responses to light are defined for model plant and animal hosts, analogous pathways that function in bacterial pathogens are understudied. We examined the response to light exposure in biofilms (matrix-encased multicellular assemblages) of the nonphotosynthetic bacterium Pseudomonas aeruginosa We found that light at intensities that are not harmful to human cells inhibited biofilm maturation via effects on cellular signals. Because biofilm formation is a critical factor in many types of P. aeruginosa infections, including burn wound infections that may be exposed to light, these effects could be relevant for pathogenicity.
Collapse
|
75
|
Harrison JJ, Almblad H, Irie Y, Wolter DJ, Eggleston HC, Randall TE, Kitzman JO, Stackhouse B, Emerson JC, Mcnamara S, Larsen TJ, Shendure J, Hoffman LR, Wozniak DJ, Parsek MR. Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections. PLoS Genet 2020; 16:e1008848. [PMID: 32530919 PMCID: PMC7314104 DOI: 10.1371/journal.pgen.1008848] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/24/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa colonizes the airways of cystic fibrosis (CF) patients, causing infections that can last for decades. During the course of these infections, P. aeruginosa undergoes a number of genetic adaptations. One such adaptation is the loss of swimming motility functions. Another involves the formation of the rugose small colony variant (RSCV) phenotype, which is characterized by overproduction of the exopolysaccharides Pel and Psl. Here, we provide evidence that the two adaptations are linked. Using random transposon mutagenesis, we discovered that flagellar mutations are linked to the RSCV phenotype. We found that flagellar mutants overexpressed Pel and Psl in a surface-contact dependent manner. Genetic analyses revealed that flagellar mutants were selected for at high frequencies in biofilms, and that Pel and Psl expression provided the primary fitness benefit in this environment. Suppressor mutagenesis of flagellar RSCVs indicated that Psl overexpression required the mot genes, suggesting that the flagellum stator proteins function in a surface-dependent regulatory pathway for exopolysaccharide biosynthesis. Finally, we identified flagellar mutant RSCVs among CF isolates. The CF environment has long been known to select for flagellar mutants, with the classic interpretation being that the fitness benefit gained relates to an impairment of the host immune system to target a bacterium lacking a flagellum. Our new findings lead us to propose that exopolysaccharide production is a key gain-of-function phenotype that offers a new way to interpret the fitness benefits of these mutations. Microbiologists have known for decades that Pseudomonas aeruginosa mutates during chronic respiratory infection of cystic fibrosis (CF) patients. One of the most reported functions lost during these infections is flagellar motility. A long-standing interpretation of this observation is that the flagellum is disadvantageous for the bacterium in the CF environment. We report the surprising finding that mutation of a wide range of flagellar genes results in the overproduction of the biofilm matrix polysaccharides Psl and Pel. We propose, therefore, that flagellar mutations represent a gain-of-function that would help the bacterium to form biofilms and persist in the CF airways.
Collapse
Affiliation(s)
- Joe J Harrison
- Department of Biological Sciences, University of Calgary, University Drive NW, Calgary, AB, Canada
| | - Henrik Almblad
- Department of Biological Sciences, University of Calgary, University Drive NW, Calgary, AB, Canada
| | - Yasuhiko Irie
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Daniel J Wolter
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America.,Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Heather C Eggleston
- Department of Microbial Infection and Immunity, Department of Microbiology, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Trevor E Randall
- Department of Biological Sciences, University of Calgary, University Drive NW, Calgary, AB, Canada
| | - Jacob O Kitzman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Bethany Stackhouse
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Julia C Emerson
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - Sharon Mcnamara
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - Tyler J Larsen
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Lucas R Hoffman
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America.,Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, Department of Microbiology, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
76
|
Feng Q, Ahator SD, Zhou T, Liu Z, Lin Q, Liu Y, Huang J, Zhou J, Zhang LH. Regulation of Exopolysaccharide Production by ProE, a Cyclic-Di-GMP Phosphodiesterase in Pseudomonas aeruginosa PAO1. Front Microbiol 2020; 11:1226. [PMID: 32582123 PMCID: PMC7290235 DOI: 10.3389/fmicb.2020.01226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/14/2020] [Indexed: 11/13/2022] Open
Abstract
The ubiquitous second messenger c-di-GMP is involved in regulation of multiple biological functions including the important extracellular matrix exopolysaccharides (EPS). But how c-di-GMP metabolic proteins influence EPS and their enzymatic properties are not fully understood. Here we showed that deletion of proE, which encodes a protein with GGDEF-EAL hybrid domains, significantly increased the transcriptional expression of the genes encoding EPS production in Pseudomonas aeruginosa PAO1 and changed the bacterial colony morphology. Our data showed that ProE is a very active phosphodiesterase (PDE), with a high enzyme activity in degradation of c-di-GMP. Interestingly, the optimal activity of ProE was found in the presence of Co2+, unlike other PDEs that commonly rely on Mg2+ or Mn2+ for best performance. Furthermore, we identified three widely conserved novel residues that are critical for the function of ProE through site-directed mutagenesis. Subsequent study showed that ProE, together with other three key PDEs, i.e., RbdA, BifA, and DipA regulate the EPS production in P. aeruginosa PAO1. Moreover, by using the GFP-fusion approach, we observed that these four EPS associated-PDEs showed a polar localization pattern in general. Taken together, our data unveil the molecular mechanisms of ProE in regulation of EPS production, and provide a new insight on its enzymatic properties in degradation of c-di-GMP.
Collapse
Affiliation(s)
- Qishun Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Tian Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhiqing Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qiqi Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
77
|
Yu XQ, Yan X, Zhang MY, Zhang LQ, He YX. Flavonoids repress the production of antifungal 2,4-DAPG but potentially facilitate root colonization of the rhizobacterium Pseudomonas fluorescens. Environ Microbiol 2020; 22:5073-5089. [PMID: 32363709 DOI: 10.1111/1462-2920.15052] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/28/2020] [Indexed: 11/25/2022]
Abstract
In the well-known legume-rhizobia symbiosis, flavonoids released by legume roots induce expression of the Nod factors and trigger early plant responses involved in root nodulation. However, it remains largely unknown how the plant-derived flavonoids influence the physiology of non-symbiotic beneficial rhizobacteria. In this work, we demonstrated that the flavonoids apigenin and/or phloretin enhanced the swarming motility and production of cellulose and curli in Pseudomonas fluorescens 2P24, both traits of which are essential for root colonization. Using a label-free quantitative proteomics approach, we showed that apigenin and phloretin significantly reduced the biosynthesis of the antifungal metabolite 2,4-DAPG and further identified a novel flavonoid-sensing TetR regulator PhlH, which was shown to modulate 2,4-DAPG production by regulating the expression of 2,4-DAPG hydrolase PhlG. Although having similar structures, apigenin and phloretin could also influence different physiological characteristics of P. fluorescens 2P24, with apigenin decreasing the biofilm formation and phloretin inducing expression of proteins involved in the denitrification and arginine fermentation processes. Taken together, our results suggest that plant-derived flavonoids could be sensed by the TetR regulator PhlH in P. fluorescens 2P24 and acts as important signalling molecules that strengthen mutually beneficial interactions between plants and non-symbiotic beneficial rhizobacteria.
Collapse
Affiliation(s)
- Xiao-Quan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Meng-Yuan Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
78
|
Ma GL, Chandra H, Liang ZX. Taming the flagellar motor of pseudomonads with a nucleotide messenger. Environ Microbiol 2020; 22:2496-2513. [PMID: 32329141 DOI: 10.1111/1462-2920.15036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/11/2023]
Abstract
Pseudomonads rely on the flagellar motor to rotate a polar flagellum for swimming and swarming, and to sense surfaces for initiating the motile-to-sessile transition to adopt a surface-dwelling lifestyle. Deciphering the function and regulation of the flagellar motor is of paramount importance for understanding the behaviours of environmental and pathogenic pseudomonads. Recent studies disclosed the preeminent role played by the messenger c-di-GMP in controlling the real-time performance of the flagellar motor in pseudomonads. The studies revealed that c-di-GMP controls the dynamic exchange of flagellar stator units to regulate motor torque/speed and modulates the frequency of flagellar motor switching via the chemosensory signalling pathways. Apart from being a rotary motor, the flagellar motor is emerging as a mechanosensor that transduces surface-induced mechanical signals into an increase of cellular c-di-GMP concentration to initiate the cellular programs required for long-term colonization. Collectively, the studies generate long-awaited mechanistic insights into how c-di-GMP regulates bacterial motility and the motile-to-sessile transition. The new findings also raise the fundamental questions of how cellular c-di-GMP concentrations are dynamically coupled to flagellar output and the proton-motive force, and how c-di-GMP signalling is coordinated spatiotemporally to fine-tune flagellar response and the behaviour of pseudomonads in solutions and on surfaces.
Collapse
Affiliation(s)
- Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| | - Hartono Chandra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore
| |
Collapse
|
79
|
Cai YM, Hutchin A, Craddock J, Walsh MA, Webb JS, Tews I. Differential impact on motility and biofilm dispersal of closely related phosphodiesterases in Pseudomonas aeruginosa. Sci Rep 2020; 10:6232. [PMID: 32277108 PMCID: PMC7148300 DOI: 10.1038/s41598-020-63008-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
In Pseudomonas aeruginosa, the transition between planktonic and biofilm lifestyles is modulated by the intracellular secondary messenger cyclic dimeric-GMP (c-di-GMP) in response to environmental conditions. Here, we used gene deletions to investigate how the environmental stimulus nitric oxide (NO) is linked to biofilm dispersal, focusing on biofilm dispersal phenotype from proteins containing putative c-di-GMP turnover and Per-Arnt-Sim (PAS) sensory domains. We document opposed physiological roles for the genes ΔrbdA and Δpa2072 that encode proteins with identical domain structure: while ΔrbdA showed elevated c-di-GMP levels, restricted motility and promoted biofilm formation, c-di-GMP levels were decreased in Δpa2072, and biofilm formation was inhibited, compared to wild type. A second pair of genes, ΔfimX and ΔdipA, were selected on the basis of predicted impaired c-di-GMP turnover function: ΔfimX showed increased, ΔdipA decreased NO induced biofilm dispersal, and the genes effected different types of motility, with reduced twitching for ΔfimX and reduced swimming for ΔdipA. For all four deletion mutants we find that NO-induced biomass reduction correlates with increased NO-driven swarming, underlining a significant role for this motility in biofilm dispersal. Hence P. aeruginosa is able to differentiate c-di-GMP output using structurally highly related proteins that can contain degenerate c-di-GMP turnover domains.
Collapse
Affiliation(s)
- Yu-Ming Cai
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew Hutchin
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.,Structure and Function of Biological Membranes Lab, Université Libre de Bruxelles, Boulevard du Triomphe, 1050, Bruxelles, Belgium
| | - Jack Craddock
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.,Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Jeremy S Webb
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ivo Tews
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK. .,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
80
|
Dávila-Aviña J, Gil-Solís C, Merino-Mascorro J, García S, Heredia N. Phenolics with Bactericidal Activity Alter Motility and Biofilm Formation in Enterotoxigenic, Enteropathogenic, and Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2020; 17:568-575. [PMID: 32043899 DOI: 10.1089/fpd.2019.2766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Most Escherichia coli strains are innocuous to human beings; however, some strains can cause diarrhea and are grouped into pathotypes. Since current trends promote the use of natural-origin compounds to control bacteria, in this study, the effects of the phenolic compounds (PCs) tannic acid (TA), gallic acid (GA), methyl gallate (MG), and epigallocatechin gallate (EG) on the growth, swarming motility, biofilm formation, and expression of selected virulence genes of three E. coli pathotypes (enteropathogenic Escherichia coli [EPEC], enterohemorrhagic Escherichia coli [EHEC], and enterotoxigenic Escherichia coli [ETEC]) were evaluated. Minimum bactericidal concentrations (MBCs) were determined by using microtiter plates, and the effects of sublethal PC concentrations on swarming motility were evaluated on Luria-Bertani agar. Biofilm formation was assessed in microtiter plates via crystal violet staining, and the expression levels of genes involved in biofilm formation (flhC, fliA, fliC, and csgA) and swarming motility (csgD and cyaA) were evaluated via quantitative PCR. All PC were bactericidal with minimal bactericidal concentrations ranging from 0.07 to 2.1 mg/mL. At concentrations lower than the MBC, PCs decreased swarming motility (14.8-100%). GA reduced biofilm formation in all of the tested strains; however, TA, MG, and EG induced biofilm formation in some strains at specific concentrations. TA induced the overexpression of csgA, csgD, and cyaA, whereas the other PCs did not have any effects or reduced their expression levels. The PCs tested in this study showed potential to control E. coli strains belonging to the EHEC, ETEC, and EPEC pathotypes by affecting their growth, swarming motility, and virulence gene expression; however, proper concentrations must be used to avoid the induction of undesirable virulence factor genes.
Collapse
Affiliation(s)
- Jorge Dávila-Aviña
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Carolina Gil-Solís
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Jose Merino-Mascorro
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Santos García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Norma Heredia
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
81
|
Nie H, Xiao Y, He J, Liu H, Nie L, Chen W, Huang Q. Phenotypic-genotypic analysis of GGDEF/EAL/HD-GYP domain-encoding genes in Pseudomonas putida. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:38-48. [PMID: 31691501 DOI: 10.1111/1758-2229.12808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Cyclic diguanylate (c-di-GMP) is a broadly conserved bacterial signalling molecule that modulates diverse cellular processes, such as biofilm formation, colony morphology and swimming motility. The intracellular level of c-di-GMP is controlled by diguanylate cyclases (DGCs) with GGDEF domain and phosphodiesterases (PDEs) with either EAL or HD-GYP domain. Pseudomonas putida KT2440 has a large group of genes on its genome encoding proteins with GGDEF/EAL/HD-GYP domains. However, phenotypic-genotypic correlation and c-di-GMP metabolism of these genes were largely unknown. Herein, by systematically constructing deletion mutants/overexpression strains of the 42 predicted c-di-GMP metabolism-related genes and analysing the phenotypes, we preliminarily revealed the role of each gene in biofilm formation, colony morphology and swimming motility. Subsequent results from protein sequence alignments and cellular c-di-GMP assessment indicated that 25 out of the 42 genes were likely to encode DGCs, nine genes were predicted to encode PDEs, four genes encoded bifunctional enzymes and the other four genes encoded enzymatically inactive proteins. This study offers a basic understanding of the roles of these 42 genes and can serve as a toolkit for investigators to further elucidate the functions of these GGDEF and EAL/HD-GYP domain-containing proteins.
Collapse
Affiliation(s)
- Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinzhi He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
82
|
Sun Y, Liu Y, Liu X, Dang X, Dong X, Xie Z. Azorhizobium caulinodans c-di-GMP phosphodiesterase Chp1 involved in motility, EPS production, and nodulation of the host plant. Appl Microbiol Biotechnol 2020; 104:2715-2729. [PMID: 32002604 DOI: 10.1007/s00253-020-10404-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Establishment of the rhizobia-legume symbiosis is usually accompanied by hydrogen peroxide (H2O2) production by the legume host at the site of infection, a process detrimental to rhizobia. In Azorhizobium caulinodans ORS571, deletion of chp1, a gene encoding c-di-GMP phosphodiesterase, led to increased resistance against H2O2 and to elevated nodulation efficiency on its legume host Sesbania rostrata. Three domains were identified in the Chp1: a PAS domain, a degenerate GGDEF domain, and an EAL domain. An in vitro enzymatic activity assay showed that the degenerate GGDEF domain of Chp1 did not have diguanylate cyclase activity. The phosphodiesterase activity of Chp1 was attributed to its EAL domain which could hydrolyse c-di-GMP into pGpG. The PAS domain functioned as a regulatory domain by sensing oxygen. Deletion of Chp1 resulted in increased intracellular c-di-GMP level, decreased motility, increased aggregation, and increased EPS (extracellular polysaccharide) production. H2O2-sensitivity assay showed that increased EPS production could provide ORS571 with resistance against H2O2. Thus, the elevated nodulation efficiency of the ∆chp1 mutant could be correlated with a protective role of EPS in the nodulation process. These data suggest that c-di-GMP may modulate the A. caulinodans-S. rostrata nodulation process by regulating the production of EPS which could protect rhizobia against H2O2.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, People's Republic of China
| | - Yanan Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaolin Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoxiao Dang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoyan Dong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Zhihong Xie
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China.
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China.
| |
Collapse
|
83
|
Untethering and Degradation of the Polysaccharide Matrix Are Essential Steps in the Dispersion Response of Pseudomonas aeruginosa Biofilms. J Bacteriol 2020; 202:JB.00575-19. [PMID: 31712279 DOI: 10.1128/jb.00575-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Biofilms are multicellular aggregates of bacteria that are encased in an extracellular matrix. The biofilm matrix of Pseudomonas aeruginosa PAO1 is composed of eDNA, proteins, and the polysaccharides Pel and Psl. This matrix is thought to be degraded during dispersion to liberate cells from the biofilms, with dispersion being apparent not only by single cells escaping from the biofilm but also leaving behind eroded or hollowed-out biofilm. However, little is known of the factors involved in matrix degradation. Here, we focused on the glycoside hydrolases PelA and PslG. We demonstrate that induction of pelA but not pslG expression resulted in dispersion. As Psl is tethered to the matrix adhesin CdrA, we furthermore explored the role of CdrA in dispersion. cdrA mutant biofilms were hyperdispersive, while lapG mutant biofilms were impaired in dispersion in response to glutamate and nitric oxide, indicating the presence of the surface-associated matrix protein CdrA impedes the dispersion response. In turn, insertional inactivation of cdrA enabled pslG-induced dispersion. Lowering of the intracellular c-di-GMP level via induction of PA2133 encoding a phosphodiesterase was not sufficient to induce dispersion by wild-type strains and strains overexpressing pslG, indicating that pslG-induced dispersion is independent of c-di-GMP modulation and, likely, LapG.IMPORTANCE Pseudomonas aeruginosa forms multicellular aggregates or biofilms encased in a matrix. We show for the first time here that dispersion by P. aeruginosa requires the endogenous expression of pelA and pslG, leading to the degradation of both Pel and Psl polysaccharides, with PslG-induced dispersion being CdrA dependent. The findings suggested that endogenously induced Psl degradation is a sequential process, initiated by untethering of CdrA-bound Psl or CdrA-dependent cell interactions to enable Psl degradation and ultimately, dispersion. Untethering likely involves CdrA release in a manner independent of c-di-GMP modulation and thus LapG. Our findings not only provide insight into matrix degrading factors contributing to dispersion but also identify key steps in the degradation of structural components of the P. aeruginosa biofilm matrix.
Collapse
|
84
|
Pallegar P, Peña-Castillo L, Langille E, Gomelsky M, Lang AS. Cyclic di-GMP-Mediated Regulation of Gene Transfer and Motility in Rhodobacter capsulatus. J Bacteriol 2020; 202:e00554-19. [PMID: 31659012 PMCID: PMC6941535 DOI: 10.1128/jb.00554-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/19/2019] [Indexed: 02/08/2023] Open
Abstract
Gene transfer agents (GTAs) are bacteriophage-like particles produced by several bacterial and archaeal lineages that contain small pieces of the producing cells' genomes that can be transferred to other cells in a process similar to transduction. One well-studied GTA is RcGTA, produced by the alphaproteobacterium Rhodobacter capsulatus RcGTA gene expression is regulated by several cellular regulatory systems, including the CckA-ChpT-CtrA phosphorelay. The transcription of multiple other regulator-encoding genes is affected by the response regulator CtrA, including genes encoding putative enzymes involved in the synthesis and hydrolysis of the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP). To investigate whether c-di-GMP signaling plays a role in RcGTA production, we disrupted the CtrA-affected genes potentially involved in this process. We found that disruption of four of these genes affected RcGTA gene expression and production. We performed site-directed mutagenesis of key catalytic residues in the GGDEF and EAL domains responsible for diguanylate cyclase (DGC) and c-di-GMP phosphodiesterase (PDE) activities and analyzed the functions of the wild-type and mutant proteins. We also measured RcGTA production in R. capsulatus strains where intracellular levels of c-di-GMP were altered by the expression of either a heterologous DGC or a heterologous PDE. This adds c-di-GMP signaling to the collection of cellular regulatory systems controlling gene transfer in this bacterium. Furthermore, the heterologous gene expression and the four gene disruptions had similar effects on R. capsulatus flagellar motility as found for gene transfer, and we conclude that c-di-GMP inhibits both RcGTA production and flagellar motility in R. capsulatusIMPORTANCE Gene transfer agents (GTAs) are virus-like particles that move cellular DNA between cells. In the alphaproteobacterium Rhodobacter capsulatus, GTA production is affected by the activities of multiple cellular regulatory systems, to which we have now added signaling via the second messenger dinucleotide molecule bis-(3'-5')-cyclic dimeric GMP (c-di-GMP). Similar to the CtrA phosphorelay, c-di-GMP also affects R. capsulatus flagellar motility in addition to GTA production, with lower levels of intracellular c-di-GMP favoring increased flagellar motility and gene transfer. These findings further illustrate the interconnection of GTA production with global systems of regulation in R. capsulatus, providing additional support for the notion that the production of GTAs has been maintained in this and related bacteria because it provides a benefit to the producing organisms.
Collapse
Affiliation(s)
- Purvikalyan Pallegar
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Evan Langille
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
85
|
Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, Crocker AW, Lewis KA, Georghiou G, Nguyen HN, Hamid MN, Davis L, Dogan T, Atalay V, Rifaioglu AS, Dalkıran A, Cetin Atalay R, Zhang C, Hurto RL, Freddolino PL, Zhang Y, Bhat P, Supek F, Fernández JM, Gemovic B, Perovic VR, Davidović RS, Sumonja N, Veljkovic N, Asgari E, Mofrad MRK, Profiti G, Savojardo C, Martelli PL, Casadio R, Boecker F, Schoof H, Kahanda I, Thurlby N, McHardy AC, Renaux A, Saidi R, Gough J, Freitas AA, Antczak M, Fabris F, Wass MN, Hou J, Cheng J, Wang Z, Romero AE, Paccanaro A, Yang H, Goldberg T, Zhao C, Holm L, Törönen P, Medlar AJ, Zosa E, Borukhov I, Novikov I, Wilkins A, Lichtarge O, Chi PH, Tseng WC, Linial M, Rose PW, Dessimoz C, Vidulin V, Dzeroski S, Sillitoe I, Das S, Lees JG, Jones DT, Wan C, Cozzetto D, Fa R, Torres M, Warwick Vesztrocy A, Rodriguez JM, Tress ML, Frasca M, Notaro M, Grossi G, Petrini A, Re M, Valentini G, Mesiti M, Roche DB, Reeb J, Ritchie DW, Aridhi S, Alborzi SZ, Devignes MD, Koo DCE, Bonneau R, Gligorijević V, Barot M, Fang H, Toppo S, Lavezzo E, et alZhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, Crocker AW, Lewis KA, Georghiou G, Nguyen HN, Hamid MN, Davis L, Dogan T, Atalay V, Rifaioglu AS, Dalkıran A, Cetin Atalay R, Zhang C, Hurto RL, Freddolino PL, Zhang Y, Bhat P, Supek F, Fernández JM, Gemovic B, Perovic VR, Davidović RS, Sumonja N, Veljkovic N, Asgari E, Mofrad MRK, Profiti G, Savojardo C, Martelli PL, Casadio R, Boecker F, Schoof H, Kahanda I, Thurlby N, McHardy AC, Renaux A, Saidi R, Gough J, Freitas AA, Antczak M, Fabris F, Wass MN, Hou J, Cheng J, Wang Z, Romero AE, Paccanaro A, Yang H, Goldberg T, Zhao C, Holm L, Törönen P, Medlar AJ, Zosa E, Borukhov I, Novikov I, Wilkins A, Lichtarge O, Chi PH, Tseng WC, Linial M, Rose PW, Dessimoz C, Vidulin V, Dzeroski S, Sillitoe I, Das S, Lees JG, Jones DT, Wan C, Cozzetto D, Fa R, Torres M, Warwick Vesztrocy A, Rodriguez JM, Tress ML, Frasca M, Notaro M, Grossi G, Petrini A, Re M, Valentini G, Mesiti M, Roche DB, Reeb J, Ritchie DW, Aridhi S, Alborzi SZ, Devignes MD, Koo DCE, Bonneau R, Gligorijević V, Barot M, Fang H, Toppo S, Lavezzo E, Falda M, Berselli M, Tosatto SCE, Carraro M, Piovesan D, Ur Rehman H, Mao Q, Zhang S, Vucetic S, Black GS, Jo D, Suh E, Dayton JB, Larsen DJ, Omdahl AR, McGuffin LJ, Brackenridge DA, Babbitt PC, Yunes JM, Fontana P, Zhang F, Zhu S, You R, Zhang Z, Dai S, Yao S, Tian W, Cao R, Chandler C, Amezola M, Johnson D, Chang JM, Liao WH, Liu YW, Pascarelli S, Frank Y, Hoehndorf R, Kulmanov M, Boudellioua I, Politano G, Di Carlo S, Benso A, Hakala K, Ginter F, Mehryary F, Kaewphan S, Björne J, Moen H, Tolvanen MEE, Salakoski T, Kihara D, Jain A, Šmuc T, Altenhoff A, Ben-Hur A, Rost B, Brenner SE, Orengo CA, Jeffery CJ, Bosco G, Hogan DA, Martin MJ, O'Donovan C, Mooney SD, Greene CS, Radivojac P, Friedberg I. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biol 2019; 20:244. [PMID: 31744546 PMCID: PMC6864930 DOI: 10.1186/s13059-019-1835-8] [Show More Authors] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. RESULTS Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory. CONCLUSION We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.
Collapse
Affiliation(s)
- Naihui Zhou
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA.,Program in Bioinformatics and Computational Biology, Ames, IA, USA
| | - Yuxiang Jiang
- Indiana University Bloomington, Bloomington, Indiana, USA
| | - Timothy R Bergquist
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | - Alexandra J Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Balint Z Kacsoh
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Molecular and Systems Biology, Hanover, NH, USA
| | - Alex W Crocker
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kimberley A Lewis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - George Georghiou
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Huy N Nguyen
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA.,Program in Computer Science, Ames, IA, USA
| | - Md Nafiz Hamid
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA.,Program in Bioinformatics and Computational Biology, Ames, IA, USA
| | - Larry Davis
- Program in Bioinformatics and Computational Biology, Ames, IA, USA
| | - Tunca Dogan
- Department of Computer Engineering, Hacettepe University, Ankara, Turkey.,European Molecular Biolo gy Labora tory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Volkan Atalay
- Department of Computer Engineering, Middle East Technical University (METU), Ankara, Turkey
| | - Ahmet S Rifaioglu
- Department of Computer Engineering, Middle East Technical University (METU), Ankara, Turkey.,Department of Computer Engineering, Iskenderun Technical University, Hatay, Turkey
| | - Alperen Dalkıran
- Department of Computer Engineering, Middle East Technical University (METU), Ankara, Turkey
| | - Rengul Cetin Atalay
- CanSyL, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca L Hurto
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Peter L Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - José M Fernández
- INB Coordination Unit, Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, Spain.,(former) INB GN2, Structural and Computational Biology Programme, Spanish National Cancer Research Centre, Barcelona, Catalonia, Spain
| | - Branislava Gemovic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Vladimir R Perovic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Radoslav S Davidović
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Neven Sumonja
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Nevena Veljkovic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Ehsaneddin Asgari
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering, University of California Berkeley, Berkeley, CA, USA.,Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Berkeley, CA, USA
| | | | - Giuseppe Profiti
- Bologna Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,National Research Council, IBIOM, Bologna, Italy
| | - Castrense Savojardo
- Bologna Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Pier Luigi Martelli
- Bologna Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rita Casadio
- Bologna Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Florian Boecker
- University of Bonn: INRES Crop Bioinformatics, Bonn, North Rhine-Westphalia, Germany
| | - Heiko Schoof
- INRES Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Indika Kahanda
- Gianforte School of Computing, Montana State University, Bozeman, Montana, USA
| | - Natalie Thurlby
- University of Bristol, Computer Science, Bristol, Bristol, United Kingdom
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Brunswick, Germany.,RESIST, DFG Cluster of Excellence 2155, Brunswick, Germany
| | - Alexandre Renaux
- Interuniversity Institute of Bioinformatics in Brussels, Université libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium.,Machine Learning Group, Université libre de Bruxelles, Brussels, Belgium.,Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rabie Saidi
- European Molecular Biolo gy Labora tory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Julian Gough
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Alex A Freitas
- University of Kent, School of Computing, Canterbury, United Kingdom
| | - Magdalena Antczak
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Fabio Fabris
- University of Kent, School of Computing, Canterbury, United Kingdom
| | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Jie Hou
- University of Missouri, Computer Science, Columbia, Missouri, USA.,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Zheng Wang
- University of Miami, Coral Gables, Florida, USA
| | - Alfonso E Romero
- Centre for Systems and Synthetic Biology, Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - Alberto Paccanaro
- Centre for Systems and Synthetic Biology, Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - Haixuan Yang
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Galway, Ireland.,Technical University of Munich, Garching, Germany
| | - Tatyana Goldberg
- Department of Informatics, Bioinformatics & Computational Biology-i12, Technische Universitat Munchen, Munich, Germany
| | - Chenguang Zhao
- Faculty for Informatics, Garching, Germany.,Department for Bioinformatics and Computational Biology, Garching, Germany.,School of Computing Sciences and Computer Engineering, Hattiesburg, Mississippi, USA
| | - Liisa Holm
- Institute of Biotechnology, Helsinki Institute of Life Sciences, University of Helsinki, Finland, Helsinki, Finland
| | - Petri Törönen
- Institute of Biotechnology, Helsinki Institute of Life Sciences, University of Helsinki, Finland, Helsinki, Finland
| | - Alan J Medlar
- Institute of Biotechnology, Helsinki Institute of Life Sciences, University of Helsinki, Finland, Helsinki, Finland
| | - Elaine Zosa
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Ilya Novikov
- Baylor College of Medicine, Department of Biochemistry and Molecular Biology, Houston, TX, USA
| | - Angela Wilkins
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
| | - Olivier Lichtarge
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
| | - Po-Han Chi
- National TsingHua University, Hsinchu, Taiwan
| | - Wei-Cheng Tseng
- Department of Electrical Engineering in National Tsing Hua University, Hsinchu City, Taiwan
| | - Michal Linial
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter W Rose
- University of California San Diego, San Diego Supercomputer Center, La Jolla, California, USA
| | - Christophe Dessimoz
- Department of Computational Biology and Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Genetics, Evolution & Environment, and Department of Computer Science, University College London, London, UK.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vedrana Vidulin
- Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Saso Dzeroski
- Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ian Sillitoe
- Research Department of Structural and Molecular Biology, University College London, London, England
| | - Sayoni Das
- Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Jonathan Gill Lees
- Research Department of Structural and Molecular Biology, University College London, London, United Kingdom.,Department of Health and Life Sciences, Oxford Brookes University, London, UK
| | - David T Jones
- The Francis Crick Institute, Biomedical Data Science Laboratory, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Cen Wan
- Department of Computer Science, University College London, London, United Kingdom.,The Francis Crick Institute, Biomedical Data Science Laboratory, London, United Kingdom
| | - Domenico Cozzetto
- Department of Computer Science, University College London, London, United Kingdom.,The Francis Crick Institute, Biomedical Data Science Laboratory, London, United Kingdom
| | - Rui Fa
- Department of Computer Science, University College London, London, United Kingdom.,The Francis Crick Institute, Biomedical Data Science Laboratory, London, United Kingdom
| | - Mateo Torres
- Centre for Systems and Synthetic Biology, Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - Alex Warwick Vesztrocy
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, United Kingdom.,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Michael L Tress
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marco Frasca
- Università degli Studi di Milano - Computer Science Department - AnacletoLab, Milan, Milan, Italy
| | - Marco Notaro
- Università degli Studi di Milano - Computer Science Department - AnacletoLab, Milan, Milan, Italy
| | - Giuliano Grossi
- Università degli Studi di Milano - Computer Science Department - AnacletoLab, Milan, Milan, Italy
| | - Alessandro Petrini
- Università degli Studi di Milano - Computer Science Department - AnacletoLab, Milan, Milan, Italy
| | - Matteo Re
- Università degli Studi di Milano - Computer Science Department - AnacletoLab, Milan, Milan, Italy
| | - Giorgio Valentini
- Università degli Studi di Milano - Computer Science Department - AnacletoLab, Milan, Milan, Italy
| | - Marco Mesiti
- Università degli Studi di Milano - Computer Science Department - AnacletoLab, Milan, Milan, Italy.,Institut de Biologie Computationnelle, LIRMM, CNRS-UMR 5506, Universite de Montpellier, Montpellier, France
| | - Daniel B Roche
- Department of Informatics, Bioinformatics and Computational Biology-i12, Technische Universitat Munchen, Munich, Germany
| | - Jonas Reeb
- Department of Informatics, Bioinformatics and Computational Biology-i12, Technische Universitat Munchen, Munich, Germany
| | - David W Ritchie
- University of Lorraine, CNRS, Inria, LORIA, Nancy, 54000, France
| | - Sabeur Aridhi
- University of Lorraine, CNRS, Inria, LORIA, Nancy, 54000, France
| | | | - Marie-Dominique Devignes
- University of Lorraine, CNRS, Inria, LORIA, Nancy, 54000, France.,University of Lorraine, Nancy, Lorraine, France.,Inria, Nancy, France
| | | | - Richard Bonneau
- NYU Center for Data Science, New York, 10010, NY, USA.,Flatiron Institute, CCB, New York, 10010, NY, USA
| | - Vladimir Gligorijević
- Center for Computational Biology (CCB), Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Meet Barot
- Center for Data Science, New York University, New York, 10011, NY, USA
| | - Hai Fang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marco Falda
- Department of Biology, University of Padova, Padova, Italy
| | - Michele Berselli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvio C E Tosatto
- CNR Institute of Neuroscience, Padova, Italy.,Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Marco Carraro
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Hafeez Ur Rehman
- Department of Computer Science, National University of Computer and Emerging Sciences, Peshawar, Khyber Pakhtoonkhwa, Pakistan
| | - Qizhong Mao
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA.,University of California, Riverside, Philadelphia, PA, USA
| | - Shanshan Zhang
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Slobodan Vucetic
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Gage S Black
- Department of Biology, Brigham Young University, Provo, UT, USA.,Bioinformatics Research Group, Provo, UT, USA
| | - Dane Jo
- Department of Biology, Brigham Young University, Provo, UT, USA.,Bioinformatics Research Group, Provo, UT, USA
| | - Erica Suh
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Jonathan B Dayton
- Department of Biology, Brigham Young University, Provo, UT, USA.,Bioinformatics Research Group, Provo, UT, USA
| | - Dallas J Larsen
- Department of Biology, Brigham Young University, Provo, UT, USA.,Bioinformatics Research Group, Provo, UT, USA
| | - Ashton R Omdahl
- Department of Biology, Brigham Young University, Provo, UT, USA.,Bioinformatics Research Group, Provo, UT, USA
| | - Liam J McGuffin
- School of Biological Sciences, University of Reading, Reading, England, United Kingdom
| | | | - Patricia C Babbitt
- Department of Pharmaceutical Chemistry, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 94158, CA, USA
| | - Jeffrey M Yunes
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California, San Francisco, 94158, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 94158, CA, USA
| | - Paolo Fontana
- Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, Shanghai, China.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, Shanghai, China
| | - Shanfeng Zhu
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain-Inspired Intelligence and Shanghai Institute of Artificial Intelligence Algorithms, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Ronghui You
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain-Inspired Intelligence and Shanghai Institute of Artificial Intelligence Algorithms, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Zihan Zhang
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Suyang Dai
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Shuwei Yao
- School of Computer Science and Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain-Inspired Intelligence and Shanghai Institute of Artificial Intelligence Algorithms, Fudan University, Shanghai, China
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, Shanghai, China.,Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, USA
| | - Caleb Chandler
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, USA
| | - Miguel Amezola
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, USA
| | - Devon Johnson
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, USA
| | - Jia-Ming Chang
- Department of Computer Science, National Chengchi University, Taipei, Taiwan
| | - Wen-Hung Liao
- Department of Computer Science, National Chengchi University, Taipei, Taiwan
| | - Yi-Wei Liu
- Department of Computer Science, National Chengchi University, Taipei, Taiwan
| | | | | | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Jeddah, Saudi Arabia
| | - Maxat Kulmanov
- Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Jeddah, Saudi Arabia
| | - Imane Boudellioua
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Computer, Electrical and Mathematical Sciences Engineering Division (CEMSE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gianfranco Politano
- Control and Computer Engineering Department, Politecnico di Torino, Torino, TO, Italy
| | - Stefano Di Carlo
- Control and Computer Engineering Department, Politecnico di Torino, Torino, TO, Italy
| | - Alfredo Benso
- Control and Computer Engineering Department, Politecnico di Torino, Torino, TO, Italy
| | - Kai Hakala
- Department of Future Technologies, Turku NLP Group, University of Turku, Turku, Finland.,University of Turku Graduate School (UTUGS), Turku, Finland
| | - Filip Ginter
- Department of Future Technologies, Turku NLP Group, University of Turku, Turku, Finland.,University of Turku, Turku, Finland
| | - Farrokh Mehryary
- Department of Future Technologies, Turku NLP Group, University of Turku, Turku, Finland.,University of Turku Graduate School (UTUGS), Turku, Finland
| | - Suwisa Kaewphan
- Department of Future Technologies, Turku NLP Group, University of Turku, Turku, Finland.,University of Turku Graduate School (UTUGS), Turku, Finland.,Turku Centre for Computer Science (TUCS), Turku, Finland
| | - Jari Björne
- Department of Future Technologies, Faculty of Science and Engineering, University of Turku, Turku, FI-20014, Finland.,Turku Centre for Computer Science (TUCS), Agora, Vesilinnantie 3, Turku, FI-20500, Finland
| | | | | | - Tapio Salakoski
- Department of Future Technologies, Faculty of Science and Engineering, University of Turku, Turku, FI-20014, Finland.,Turku Centre for Computer Science (TUCS), Agora, Vesilinnantie 3, Turku, FI-20500, Finland
| | - Daisuke Kihara
- Department of Biological Sciences, Department of Computer Science, Purdue University, 47907, IN, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, 45229, OH, USA
| | - Aashish Jain
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Tomislav Šmuc
- Division of Electronics, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Adrian Altenhoff
- Department of Computer Science, ETH Zurich, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Burkhard Rost
- Department of Informatics, Bioinformatics & Computational Biology-i12, Technische Universitat Munchen, Munich, Germany.,Institute for Food and Plant Sciences WZW, Technische Universität München, Freising, Germany
| | | | - Christine A Orengo
- Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Constance J Jeffery
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Maria J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Claire O'Donovan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA.
| | - Iddo Friedberg
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
86
|
Xiao Y, Liu H, He M, Nie L, Nie H, Chen W, Huang Q. A crosstalk between c-di-GMP and cAMP in regulating transcription of GcsA, a diguanylate cyclase involved in swimming motility in Pseudomonas putida. Environ Microbiol 2019; 22:142-157. [PMID: 31631503 DOI: 10.1111/1462-2920.14832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase (DGC) and degraded by phosphodiesterase (PDE). Pseudomonas putida has dozens of DGC/PDE-encoding genes in its genome, but the phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterize function and transcriptional regulation of a P. putida c-di-GMP-metabolizing enzyme, GcsA. GcsA consists of two per-ARNT-sim (PAS) domains, followed by a canonical conserved central sequence pattern (GGDEF) domain and a truncated EAL domain. In vitro analysis confirmed the DGC activity of GcsA. The phenotypic observation revealed that GcsA inhibited swimming motility in an FlgZ-dependent manner. In terms of transcriptional regulation, gcsA was found to be cooperatively regulated by c-di-GMP and cAMP via their effectors, FleQ and Crp respectively. The transcription of gcsA was promoted by c-di-GMP and inhibited by cAMP. In vitro binding analysis revealed that FleQ indirectly regulated the transcription of gcsA, while Crp directly regulated the transcription of gcsA by binding to its promoter. Besides, an inverse relationship between the cellular c-di-GMP and cAMP levels in P. putida was confirmed. These findings provide basic knowledge regarding the function and transcriptional regulation of GcsA and demonstrate a crosstalk between c-di-GMP and cAMP in the regulation of the expression of GcsA in P. putida.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
87
|
Noirot-Gros MF, Forrester S, Malato G, Larsen PE, Noirot P. CRISPR interference to interrogate genes that control biofilm formation in Pseudomonas fluorescens. Sci Rep 2019; 9:15954. [PMID: 31685917 PMCID: PMC6828691 DOI: 10.1038/s41598-019-52400-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial biofilm formation involves signaling and regulatory pathways that control the transition from motile to sessile lifestyle, production of extracellular polymeric matrix, and maturation of the biofilm 3D structure. Biofilms are extensively studied because of their importance in biomedical, ecological and industrial settings. Gene inactivation is a powerful approach for functional studies but it is often labor intensive, limiting systematic gene surveys to the most tractable bacterial hosts. Here, we adapted the CRISPR interference (CRISPRi) system for use in diverse strain isolates of P. fluorescens, SBW25, WH6 and Pf0-1. We found that CRISPRi is applicable to study complex phenotypes such as cell morphology, motility and biofilm formation over extended periods of time. In SBW25, CRISPRi-mediated silencing of genes encoding the GacA/S two-component system and regulatory proteins associated with the cylic di-GMP signaling messenger produced swarming and biofilm phenotypes similar to those obtained after gene inactivation. Combined with detailed confocal microscopy of biofilms, our study also revealed novel phenotypes associated with extracellular matrix biosynthesis as well as the potent inhibition of SBW25 biofilm formation mediated by the PFLU1114 operon. We conclude that CRISPRi is a reliable and scalable approach to investigate gene networks in the diverse P. fluorescens group.
Collapse
Affiliation(s)
| | - Sara Forrester
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States
| | - Grace Malato
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States
| | - Peter E Larsen
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States.,Department of Bioengineering, University of Illinois Chicago, Chicago, IL60607, United States
| | - Philippe Noirot
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States
| |
Collapse
|
88
|
Diguanylate Cyclases and Phosphodiesterases Required for Basal-Level c-di-GMP in Pseudomonas aeruginosa as Revealed by Systematic Phylogenetic and Transcriptomic Analyses. Appl Environ Microbiol 2019; 85:AEM.01194-19. [PMID: 31444209 DOI: 10.1128/aem.01194-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
Cyclic diguanosine monophosphate (c-di-GMP) is an important second messenger involved in bacterial switching from motile to sessile lifestyles. In the opportunistic pathogen Pseudomonas aeruginosa, at least 40 genes are predicted to encode proteins for the making and breaking of this signal molecule. However, there is still paucity of information concerning the systemic expression pattern of these genes and the functions of uncharacterized genes. In this study, we analyzed the phylogenetic distribution of genes from P. aeruginosa that were predicted to have a GGDEF domain and found five genes (PA5487, PA0285, PA0290, PA4367, and PA5017) with highly conserved distribution across 52 public complete pseudomonad genomes. PA5487 was further characterized as a typical diguanylate cyclase (DGC) and was named dgcH A systemic analysis of the gene expression data revealed that the expression of dgcH is highly invariable and that dgcH probably functions as a conserved gene to maintain the basal level of c-di-GMP, as reinforced by gene expression analyses. The other four conserved genes also had an expression pattern similar to that of dgcH The functional analysis suggested that PA0290 encoded a DGC, while the others functioned as phosphodiesterases (PDEs). Our data revealed that there are five DGC and PDE genes that maintain the basal level of c-di-GMP in P. aeruginosa IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that can cause infections in animals, humans, and plants. The formation of biofilms by P. aeruginosa is the central mode of action to persist in hosts and evade immune and antibiotic attacks. Cyclic-di-GMP (c-di-GMP) is an important second messenger involved in the regulation of biofilm formation. In P. aeruginosa PAO1 strain, there are around 40 genes that encode enzymes for making and breaking this dinucleotide. A major missing piece of information in this field is the phylogeny and expression profile of those genes. Here, we took a systemic approach to investigate this mystery. We found that among 40 c-di-GMP metabolizing genes, 5 have well-conserved phylogenetic distribution and invariable expression profiles, suggesting that there are enzymes required for the basal level of c-di-GMP in P. aeruginosa This study thus provides putative therapeutic targets against P. aeruginosa infections.
Collapse
|
89
|
Pseudomonas aeruginosa Requires the DNA-Specific Endonuclease EndA To Degrade Extracellular Genomic DNA To Disperse from the Biofilm. J Bacteriol 2019; 201:JB.00059-19. [PMID: 30988033 DOI: 10.1128/jb.00059-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 01/16/2023] Open
Abstract
The dispersion of biofilms is an active process resulting in the release of planktonic cells from the biofilm structure. While much is known about the process of dispersion cue perception and the subsequent modulation of the c-di-GMP pool, little is known about subsequent events resulting in the release of cells from the biofilm. Given that dispersion coincides with void formation and an overall erosion of the biofilm structure, we asked whether dispersion involves degradation of the biofilm matrix. Here, we focused on extracellular genomic DNA (eDNA) due to its almost universal presence in the matrix of biofilm-forming species. We identified two probable nucleases, endA and eddB, and eddA encoding a phosphatase that were significantly increased in transcript abundance in dispersed cells. However, only inactivation of endA but not eddA or eddB impaired dispersion by Pseudomonas aeruginosa biofilms in response to glutamate and nitric oxide (NO). Heterologously produced EndA was found to be secreted and active in degrading genomic DNA. While endA inactivation had little effect on biofilm formation and the presence of eDNA in biofilms, eDNA degradation upon induction of dispersion was impaired. In contrast, induction of endA expression coincided with eDNA degradation and resulted in biofilm dispersion. Thus, released cells demonstrated a hyperattaching phenotype but remained as resistant to tobramycin as biofilm cells from which they egress, indicating EndA-dispersed cells adopted some but not all of the phenotypes associated with dispersed cells. Our findings indicate for the first time a role of DNase EndA in dispersion and suggest weakening of the biofilm matrix is a requisite for biofilm dispersion.IMPORTANCE The finding that exposure to DNase I impairs biofilm formation or leads to the dispersal of early stage biofilms has led to the realization of extracellular genomic DNA (eDNA) as a structural component of the biofilm matrix. However, little is known about the contribution of intrinsic DNases to the weakening of the biofilm matrix and dispersion of established biofilms. Here, we demonstrate for the first time that nucleases are induced in dispersed Pseudomonas aeruginosa cells and are essential to the dispersion response and that degradation of matrix eDNA by endogenously produced/secreted EndA is required for P. aeruginosa biofilm dispersion. Our findings suggest that dispersing cells mediate their active release from the biofilm matrix via the induction of nucleases.
Collapse
|
90
|
Ethanol Decreases Pseudomonas aeruginosa Flagellar Motility through the Regulation of Flagellar Stators. J Bacteriol 2019; 201:JB.00285-19. [PMID: 31109994 DOI: 10.1128/jb.00285-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa frequently encounters microbes that produce ethanol. Low concentrations of ethanol reduced P. aeruginosa swim zone area by up to 45% in soft agar. The reduction of swimming by ethanol required the flagellar motor proteins MotAB and two PilZ domain proteins (FlgZ and PilZ). PilY1 and the type 4 pilus alignment complex (comprising PilMNOP) were previously implicated in MotAB regulation in surface-associated cells and were required for ethanol-dependent motility repression. As FlgZ requires the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) to represses motility, we screened mutants lacking genes involved in c-di-GMP metabolism and found that mutants lacking diguanylate cyclases SadC and GcbA were less responsive to ethanol. The double mutant was resistant to its effects. As published previously, ethanol also represses swarming motility, and the same genes required for ethanol effects on swimming motility were required for its regulation of swarming. Microscopic analysis of single cells in soft agar revealed that ethanol effects on swim zone area correlated with ethanol effects on the portion of cells that paused or stopped during the time interval analyzed. Ethanol increased c-di-GMP in planktonic wild-type cells but not in ΔmotAB or ΔsadC ΔgcbA mutants, suggesting c-di-GMP plays a role in the response to ethanol in planktonic cells. We propose that ethanol produced by other microbes induces a regulated decrease in P. aeruginosa motility, thereby promoting P. aeruginosa colocalization with ethanol-producing microbes. Furthermore, some of the same factors involved in the response to surface contact are involved in the response to ethanol.IMPORTANCE Ethanol is an important biologically active molecule produced by many bacteria and fungi. It has also been identified as a potential marker for disease state in cystic fibrosis. In line with previous data showing that ethanol promotes biofilm formation by Pseudomonas aeruginosa, here we report that ethanol reduces swimming motility using some of the same proteins involved in surface sensing. We propose that these data may provide insight into how microbes, via their metabolic byproducts, can influence P. aeruginosa colocalization in the context of infection and in other polymicrobial settings.
Collapse
|
91
|
Flagellar Stators Stimulate c-di-GMP Production by Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00741-18. [PMID: 30642992 DOI: 10.1128/jb.00741-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/07/2019] [Indexed: 01/29/2023] Open
Abstract
Flagellar motility is critical for surface attachment and biofilm formation in many bacteria. A key regulator of flagellar motility in Pseudomonas aeruginosa and other microbes is cyclic diguanylate (c-di-GMP). High levels of this second messenger repress motility and stimulate biofilm formation. c-di-GMP levels regulate motility in P. aeruginosa in part by influencing the localization of its two flagellar stator sets, MotAB and MotCD. Here, we show that while c-di-GMP can influence stator localization, stators can in turn impact c-di-GMP levels. We demonstrate that the swarming motility-driving stator MotC physically interacts with the transmembrane region of the diguanylate cyclase SadC. Furthermore, we demonstrate that this interaction is capable of stimulating SadC activity. We propose a model by which the MotCD stator set interacts with SadC to stimulate c-di-GMP production under conditions not permissive to motility. This regulation implies a positive-feedback loop in which c-di-GMP signaling events cause MotCD stators to disengage from the motor; then disengaged stators stimulate c-di-GMP production to reinforce a biofilm mode of growth. Our studies help to define the bidirectional interactions between c-di-GMP and the flagellar machinery.IMPORTANCE The ability of bacterial cells to control motility during early steps in biofilm formation is critical for the transition to a nonmotile, biofilm lifestyle. Recent studies have clearly demonstrated the ability of c-di-GMP to control motility via a number of mechanisms, including through controlling transcription of motility-related genes and modulating motor function. Here, we provide evidence that motor components can in turn impact c-di-GMP levels. We propose that communication between motor components and the c-di-GMP synthesis machinery allows the cell to have a robust and sensitive switching mechanism to control motility during early events in biofilm formation.
Collapse
|
92
|
Hou L, Debru A, Chen Q, Bao Q, Li K. AmrZ Regulates Swarming Motility Through Cyclic di-GMP-Dependent Motility Inhibition and Controlling Pel Polysaccharide Production in Pseudomonas aeruginosa PA14. Front Microbiol 2019; 10:1847. [PMID: 31474950 PMCID: PMC6707383 DOI: 10.3389/fmicb.2019.01847] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Swarming is a surface-associated motile behavior that plays an important role in the rapid spread, colonization, and subsequent establishment of bacterial communities. In Pseudomonas aeruginosa, swarming is dependent upon a functional flagella and aided by the production of biosurfactants. AmrZ, a conserved transcription factor across pseudomonads, has been shown to be a global regulator of multiple genes important for virulence and ecological fitness. In this study, we expand this concept of global control to swarming motility by showing that deletion of amrZ results in a severe defect in swarming, while multicopy expression of this gene stimulates swarming of P. aeruginosa. Mechanistic studies showed that the swarming defect of an amrZ mutant does not involve changes of biosurfactant production but is associated with flagellar malfunction. The ∆amrZ mutant exhibits increased levels of the second messenger cyclic di-GMP (c-di-GMP) compared to the wild-type strain, under swarming conditions. We found that the diguanylate cyclase GcbA was the main contributor to the increased accumulation of c-di-GMP observed in the ∆amrZ mutant and was a strong inhibitor of flagellar-dependent motility. Our results revealed that the GcbA-dependent inhibition of motility required the presence of two c-di-GMP receptors containing a PilZ domain: FlgZ and PA14_56180. Furthermore, the ∆amrZ mutant exhibits enhanced production of Pel polysaccharide. Epistasis analysis revealed that GcbA and the Pel polysaccharide act independently to limit swarming in ΔamrZ. Our results support a role for AmrZ in controlling swarming motility, yet another social behavior besides biofilm formation that is crucial for the ability of P. aeruginosa to colonize a variety of surfaces. The central role of AmrZ in controlling these behaviors makes it a good target for the development of treatments directed to combat P. aeruginosa infections.
Collapse
Affiliation(s)
- Lingli Hou
- Department of Microbiology and Immunology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Scientific Research Center of Wenzhou Medical University, Wenzhou, China
| | - Alexander Debru
- Department of Microbiology and Immunology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianqian Chen
- Department of Microbiology and Immunology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- Department of Microbiology and Immunology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Department of Microbiology and Immunology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
93
|
Dingemans J, Al-Feghali RE, Sondermann H, Sauer K. Signal Sensing and Transduction Are Conserved between the Periplasmic Sensory Domains of BifA and SagS. mSphere 2019; 4:e00442-19. [PMID: 31366711 PMCID: PMC6669338 DOI: 10.1128/msphere.00442-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/19/2019] [Indexed: 12/01/2022] Open
Abstract
The hybrid sensor kinase SagS of Pseudomonas aeruginosa plays a key role in the transition from the planktonic to the biofilm mode of growth. Recently, we have shown that distinct sets of residues in its periplasmic HmsP sensory domain are involved in the regulation of biofilm formation or antibiotic tolerance. Interestingly, the HmsP domain of the phosphodiesterase BifA shows great predicted structural similarity to that of SagS, despite moderate sequence conservation and only a number of residues involved in SagS signaling being conserved between both proteins. Based on this observation, we hypothesized that BifA and SagS may use similar mechanisms to sense and transduce signals perceived at their periplasmic HmsP domains and, therefore, may be interchangeable. To test this hypothesis, we constructed SagS hybrids in which the HmsP domain of SagS was replaced by that of BifA (and vice versa) or by the DISMED2 sensory domain of NicD. The SagS-BifA hybrid restored attachment and biofilm formation by the ΔbifA mutant. Likewise, while the NicD-SagS hybrid was nonfunctional, the BifA-SagS hybrid partially restored pathways leading to biofilm formation and antibiotic tolerance in a ΔsagS mutant background. Furthermore, alanine substitution of key residues previously associated with the biofilm formation and antibiotic tolerance pathways of SagS impaired signal transduction by the BifA-SagS hybrid in a similar way to SagS. In conclusion, our data indicate that the nature of the sensory domain is important for proper functionality of the cytoplasmic effector domains and that signal sensing and transduction are likely conserved in SagS and BifA.IMPORTANCE Biofilms have been associated with more than 60% of all recalcitrant and chronic infections and can render bacterial cells up to a thousand times more resistant to antibiotics than planktonic cells. Although it is known that the transition from the planktonic to the biofilm mode of growth involves two-component regulatory systems, increased c-di-GMP levels, and quorum sensing systems among others, the exact signaling events that lead to biofilm formation remain unknown. In the opportunistic pathogen Pseudomonas aeruginosa, the hybrid sensor kinase SagS regulates biofilm formation and antibiotic tolerance through two independent pathways via distinct residues in its periplasmic sensory domain. Interestingly, the sensory domains of SagS and BifA show great predicted structural similarity despite moderate sequence conservation. Here we show that the sensory domains of BifA and SagS are functionally interchangeable and that they use a similar mechanism of signal sensing and transduction, which broadens our understanding of how bacteria perceive and transduce signals when transitioning to the biofilm mode of growth.
Collapse
Affiliation(s)
- Jozef Dingemans
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Rebecca E Al-Feghali
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Holger Sondermann
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
94
|
Xin L, Zeng Y, Sheng S, Chea RA, Liu Q, Li HY, Yang L, Xu L, Chiam KH, Liang ZX. Regulation of flagellar motor switching by c-di-GMP phosphodiesterases in Pseudomonas aeruginosa. J Biol Chem 2019; 294:13789-13799. [PMID: 31350333 DOI: 10.1074/jbc.ra119.009009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
The second messenger cyclic diguanylate (c-di-GMP) plays a prominent role in regulating flagellum-dependent motility in the single-flagellated pathogenic bacterium Pseudomonas aeruginosa The c-di-GMP-mediated signaling pathways and mechanisms that control flagellar output remain to be fully unveiled. Studying surface-tethered and free-swimming P. aeruginosa PAO1 cells, we found that the overexpression of an exogenous diguanylate cyclase (DGC) raises the global cellular c-di-GMP concentration and thereby inhibits flagellar motor switching and decreases motor speed, reducing swimming speed and reversal frequency, respectively. We noted that the inhibiting effect of c-di-GMP on flagellar motor switching, but not motor speed, is exerted through the c-di-GMP-binding adaptor protein MapZ and associated chemotactic pathways. Among the 22 putative c-di-GMP phosphodiesterases, we found that three of them (DipA, NbdA, and RbdA) can significantly inhibit flagellar motor switching and swimming directional reversal in a MapZ-dependent manner. These results disclose a network of c-di-GMP-signaling proteins that regulate chemotactic responses and flagellar motor switching in P. aeruginosa and establish MapZ as a key signaling hub that integrates inputs from different c-di-GMP-signaling pathways to control flagellar output and bacterial motility. We rationalized these experimental findings by invoking a model that postulates the regulation of flagellar motor switching by subcellular c-di-GMP pools.
Collapse
Affiliation(s)
- Lingyi Xin
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Yukai Zeng
- Bioinformatics Institute (A*STAR), S138671, Singapore
| | - Shuo Sheng
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Rachel Andrea Chea
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Qiong Liu
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Hoi Yeung Li
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, S637551, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Linghui Xu
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | | | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore .,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
95
|
Little RH, Woodcock SD, Campilongo R, Fung RKY, Heal R, Humphries L, Pacheco-Moreno A, Paulusch S, Stigliano E, Vikeli E, Ward D, Malone JG. Differential Regulation of Genes for Cyclic-di-GMP Metabolism Orchestrates Adaptive Changes During Rhizosphere Colonization by Pseudomonas fluorescens. Front Microbiol 2019; 10:1089. [PMID: 31156596 PMCID: PMC6531821 DOI: 10.3389/fmicb.2019.01089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/30/2019] [Indexed: 12/02/2022] Open
Abstract
Bacteria belonging to the Pseudomonas genus are highly successful colonizers of the plant rhizosphere. The ability of different Pseudomonas species to live either commensal lifestyles or to act as agents of plant-growth promotion or disease is reflected in a large, highly flexible accessory genome. Nevertheless, adaptation to the plant environment involves a commonality of phenotypic outputs such as changes to motility, coupled with synthesis of nutrient uptake systems, stress-response molecules and adherence factors including exopolysaccharides. Cyclic-di-GMP (cdG) is a highly important second messenger involved in the integration of environmental signals with appropriate adaptive responses and is known to play a central role in mediating effective rhizosphere colonization. In this study, we examined the transcription of multiple, reportedly plant-upregulated cdG metabolism genes during colonization of the wheat rhizosphere by the plant-growth-promoting strain P. fluorescens SBW25. While transcription of the tested genes generally increased in the rhizosphere environment, we additionally observed a tightly orchestrated response to environmental cues, with a distinct transcriptional pattern seen for each gene throughout the colonization process. Extensive phenotypical analysis of deletion and overexpression strains was then conducted and used to propose cellular functions for individual cdG signaling genes. Finally, in-depth genetic analysis of an important rhizosphere colonization regulator revealed a link between cdG control of growth, motility and stress response, and the carbon sources available in the rhizosphere.
Collapse
Affiliation(s)
- Richard H Little
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Stuart D Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Rosaria Campilongo
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Rowena K Y Fung
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Robert Heal
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Libby Humphries
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alba Pacheco-Moreno
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Egidio Stigliano
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Eleni Vikeli
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Danny Ward
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
96
|
Pleiotropic Effects of c-di-GMP Content in Pseudomonas syringae. Appl Environ Microbiol 2019; 85:AEM.00152-19. [PMID: 30850427 PMCID: PMC6498148 DOI: 10.1128/aem.00152-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
The present work comprehensively analyzed the transcriptome and phenotypes that were regulated by c-di-GMP in P. syringae. Given that the majority of diguanylate cyclases and phosphodiesterases have not been characterized in P. syringae, this work provided a very useful database for the future study on regulatory mechanism (especially its relationship with T3SS) of c-di-GMP in P. syringae. In particular, we identified three promoters that were sensitive to elevated c-di-GMP levels and inserted them into luciferase-based reporters that effectively respond to intracellular levels of c-di-GMP in P. syringae, which could be used as an economic and efficient way to measure relative c-di-GMP levels in vivo in the future. Although the ubiquitous bacterial secondary messenger cyclic diguanylate (c-di-GMP) has important cellular functions in a wide range of bacteria, its function in the model plant pathogen Pseudomonas syringae remains largely elusive. To this end, we overexpressed Escherichia coli diguanylate cyclase (YedQ) and phosphodiesterase (YhjH) in P. syringae, resulting in high and low in vivo levels of c-di-GMP, respectively. Via genome-wide RNA sequencing of these two strains, we found that c-di-GMP regulates (i) fliN, fliE, and flhA, which are associated with flagellar assembly; (ii) alg8 and alg44, which are related to the exopolysaccharide biosynthesis pathway; (iii) pvdE, pvdP, and pvsA, which are associated with the siderophore biosynthesis pathway; and (iv) sodA, which encodes a superoxide dismutase. In particular, we identified three promoters that are sensitive to elevated levels of c-di-GMP and inserted them into luciferase-based reporters that respond effectively to the c-di-GMP levels in P. syringae; these promoters could be useful in the measurement of in vivo levels of c-di-GMP in real time. Further phenotypic assays validated the RNA sequencing (RNA-seq) results and confirmed the effect on c-di-GMP-associated pathways, such as repressing the type III secretion system (T3SS) and motility while inducing biofilm production, siderophore production, and oxidative stress resistance. Taken together, these results demonstrate that c-di-GMP regulates the virulence and stress response in P. syringae, which suggests that tuning its level could be a new strategy to protect plants from attacks by this pathogen. IMPORTANCE The present work comprehensively analyzed the transcriptome and phenotypes that were regulated by c-di-GMP in P. syringae. Given that the majority of diguanylate cyclases and phosphodiesterases have not been characterized in P. syringae, this work provided a very useful database for the future study on regulatory mechanism (especially its relationship with T3SS) of c-di-GMP in P. syringae. In particular, we identified three promoters that were sensitive to elevated c-di-GMP levels and inserted them into luciferase-based reporters that effectively respond to intracellular levels of c-di-GMP in P. syringae, which could be used as an economic and efficient way to measure relative c-di-GMP levels in vivo in the future.
Collapse
|
97
|
Anaerobiosis influences virulence properties of Pseudomonas aeruginosa cystic fibrosis isolates and the interaction with Staphylococcus aureus. Sci Rep 2019; 9:6748. [PMID: 31043640 PMCID: PMC6494883 DOI: 10.1038/s41598-019-42952-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
The airways of individuals with cystic fibrosis (CF) are abundantly colonised by Staphylococcus aureus and Pseudomonas aeruginosa. Co-infecting hypoxic regions of static mucus within CF airways, together with decreases in pulmonary function, mucus plugging and oxygen consumption by host neutrophils gives rise to regions of anoxia. This study determined the impact of anaerobiosis upon S. aureus-P. aeruginosa interactions in planktonic co-culture and mixed species biofilms in vitro. Whilst anoxia reduced the ability for P. aeruginosa CF isolates to dominate over S. aureus, this occurred in an isolate dependent manner. Investigations into the underlying mechanisms suggest that the anti-staphylococcal compound facilitating P. aeruginosa dominance under normoxia and anoxia is greater than 3 kDa in size and is heat-stable. Not all interspecies interactions studied were antagonistic, as S. aureus exoproducts were shown to restore and enhance P. aeruginosa motility under normoxia and anoxia in an isolate dependent manner. Collectively, this study suggests changes in oxygen availability within regions of the CF lung is likely to influence interspecies interactions and in turn, potentially influence disease progression.
Collapse
|
98
|
Kollaran AM, Joge S, Kotian HS, Badal D, Prakash D, Mishra A, Varma M, Singh V. Context-Specific Requirement of Forty-Four Two-Component Loci in Pseudomonas aeruginosa Swarming. iScience 2019; 13:305-317. [PMID: 30877999 PMCID: PMC6423354 DOI: 10.1016/j.isci.2019.02.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/18/2018] [Accepted: 02/26/2019] [Indexed: 11/30/2022] Open
Abstract
Swarming in Pseudomonas aeruginosa is a coordinated movement of bacteria over semisolid surfaces (0.5%-0.7% agar). On soft agar, P. aeruginosa exhibits a dendritic swarm pattern, with multiple levels of branching. However, the swarm patterns typically vary depending upon the experimental design. In the present study, we show that the pattern characteristics of P. aeruginosa swarm are highly environment dependent. We define several quantifiable, macroscale features of the swarm to study the plasticity of the swarm, observed across different nutrient formulations. Furthermore, through a targeted screen of 113 two-component system (TCS) loci of the P. aeruginosa strain PA14, we show that forty-four TCS genes regulate swarming in PA14 in a contextual fashion. However, only four TCS genes-fleR, fleS, gacS, and PA14_59770-were found essential for swarming. Notably, many swarming-defective TCS mutants were found highly efficient in biofilm formation, indicating opposing roles for many TCS loci.
Collapse
Affiliation(s)
- Ameen M Kollaran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Shubham Joge
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Harshitha S Kotian
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Divakar Badal
- Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Deep Prakash
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ayushi Mishra
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Manoj Varma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India; Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India; Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
99
|
Wang Y, Zhang SP, Zhang MY, Kempher ML, Guo DD, Han JT, Tao X, Wu Y, Zhang LQ, He YX. The antitoxin MqsA homologue in Pseudomonas fluorescens 2P24 has a rewired regulatory circuit through evolution. Environ Microbiol 2019; 21:1740-1756. [PMID: 30680880 DOI: 10.1111/1462-2920.14538] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 01/22/2019] [Indexed: 12/01/2022]
Abstract
The mqsRA operon encodes a toxin-antitoxin pair that was characterized to participate in biofilm and persister cell formation in Escherichia coli. Notably, the antitoxin MqsA possesses a C-terminal DNA-binding domain that recognizes the [5'-AACCT(N)2-4 AGGTT-3'] motif and acts as a transcriptional regulator controlling multiple genes including the general stress response regulator RpoS. However, it is unknown how the transcriptional circuits of MqsA homologues have changed in bacteria over evolutionary time. Here, we found mqsA in Pseudomonas fluorescens (PfmqsA) is acquired through horizontal gene transfer and binds to a slightly different motif [5'-TACCCT(N)3 AGGGTA-3'], which exists upstream of the PfmqsRA operon. Interestingly, an adjacent GntR-type transcriptional regulator, which was termed AgtR, is under negative control of PfMqsA. It was further demonstrated that PfMqsA reduces production of biofilm components through AgtR, which directly regulates the pga and fap operons involved in the synthesis of extracellular polymeric substances. Moreover, through quantitative proteomics analysis, we showed AgtR is a highly pleiotropic regulator that influences up to 252 genes related to diverse processes including chemotaxis, oxidative phosphorylation and carbon and nitrogen metabolism. Taken together, our findings suggest the rewired regulatory circuit of PfMqsA influences diverse physiological aspects of P. fluorescens 2P24 via the newly characterized AgtR.
Collapse
Affiliation(s)
- Yong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Si-Ping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Meng-Yuan Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Ding-Ding Guo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jian-Ting Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xuanyu Tao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Yi Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
100
|
Almblad H, Rybtke M, Hendiani S, Andersen JB, Givskov M, Tolker-Nielsen T. High levels of cAMP inhibit Pseudomonas aeruginosa biofilm formation through reduction of the c-di-GMP content. MICROBIOLOGY-SGM 2019; 165:324-333. [PMID: 30663958 DOI: 10.1099/mic.0.000772] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human pathogen Pseudomonas aeruginosa can cause both acute infections and chronic biofilm-based infections. Expression of acute virulence factors is positively regulated by cAMP, whereas biofilm formation is positively regulated by c-di-GMP. We provide evidence that increased levels of cAMP, caused by either a lack of degradation or increased production, inhibit P. aeruginosa biofilm formation. cAMP-mediated inhibition of P. aeruginosa biofilm formation required Vfr, and involved a reduction of the level of c-di-GMP, as well as reduced production of biofilm matrix components. A mutant screen and characterization of defined knockout mutants suggested that a subset of c-di-GMP-degrading phosphodiesterases is involved in cAMP-Vfr-mediated biofilm inhibition in P. aeruginosa.
Collapse
Affiliation(s)
- Henrik Almblad
- 1Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,‡Present address: Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Morten Rybtke
- 1Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Saghar Hendiani
- 2Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Jens Bo Andersen
- 1Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Givskov
- 1Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,3Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Tim Tolker-Nielsen
- 1Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|