51
|
Molloy EM, Casjens SR, Cox CL, Maxson T, Ethridge NA, Margos G, Fingerle V, Mitchell DA. Identification of the minimal cytolytic unit for streptolysin S and an expansion of the toxin family. BMC Microbiol 2015. [PMID: 26204951 PMCID: PMC4513790 DOI: 10.1186/s12866-015-0464-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptolysin S (SLS) is a cytolytic virulence factor produced by the human pathogen Streptococcus pyogenes and other Streptococcus species. Related "SLS-like" toxins have been characterized in select strains of Clostridium and Listeria, with homologous clusters bioinformatically identified in a variety of other species. SLS is a member of the thiazole/oxazole-modified microcin (TOMM) family of natural products. The structure of SLS has yet to be deciphered and many questions remain regarding its structure-activity relationships. RESULTS In this work, we assessed the hemolytic activity of a series of C-terminally truncated SLS peptides expressed in SLS-deficient S. pyogenes. Our data indicate that while the N-terminal poly-heterocyclizable (NPH) region of SLS substantially contributes to its bioactivity, the variable C-terminal region of the toxin is largely dispensable. Through genome mining we identified additional SLS-like clusters in diverse Firmicutes, Spirochaetes and Actinobacteria. Among the Spirochaete clusters, naturally truncated SLS-like precursors were found in the genomes of three Lyme disease-causing Borrelia burgdorferi sensu lato (Bbsl) strains. Although unable to restore hemolysis in SLS-deficient S. pyogenes, a Bbsl SLS-like precursor peptide was converted to a cytolysin using purified SLS biosynthetic enzymes. A PCR-based screen demonstrated that SLS-like clusters are substantially more prevalent in Bbsl than inferred from publicly available genome sequences. CONCLUSIONS The mutagenesis data described herein indicate that the minimal cytolytic unit of SLS encompasses the NPH region of the core peptide. Interestingly, this region is found in all characterized TOMM cytolysins, as well as the novel putative TOMM cytolysins we discovered. We propose that this conserved region represents the defining feature of the SLS-like TOMM family. We demonstrate the cytolytic potential of a Bbsl SLS-like precursor peptide, which has a core region of similar length to the SLS minimal cytolytic unit, when modified with purified SLS biosynthetic enzymes. As such, we speculate that some Borrelia have the potential to produce a TOMM cytolysin, although the biological significance of this finding remains to be determined. In addition to providing new insight into the structure-activity relationships of SLS, this study greatly expands the cytolysin group of TOMMs.
Collapse
Affiliation(s)
- Evelyn M Molloy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City, UT, 84112, USA.
| | - Courtney L Cox
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Tucker Maxson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Nicole A Ethridge
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, National Reference Centre for Borrelia, Oberschleissheim, Germany.
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, National Reference Centre for Borrelia, Oberschleissheim, Germany.
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
52
|
Carpi G, Walter KS, Bent SJ, Hoen AG, Diuk-Wasser M, Caccone A. Whole genome capture of vector-borne pathogens from mixed DNA samples: a case study of Borrelia burgdorferi. BMC Genomics 2015; 16:434. [PMID: 26048573 PMCID: PMC4458057 DOI: 10.1186/s12864-015-1634-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/18/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Rapid and accurate retrieval of whole genome sequences of human pathogens from disease vectors or animal reservoirs will enable fine-resolution studies of pathogen epidemiological and evolutionary dynamics. However, next generation sequencing technologies have not yet been fully harnessed for the study of vector-borne and zoonotic pathogens, due to the difficulty of obtaining high-quality pathogen sequence data directly from field specimens with a high ratio of host to pathogen DNA. RESULTS We addressed this challenge by using custom probes for multiplexed hybrid capture to enrich for and sequence 30 Borrelia burgdorferi genomes from field samples of its arthropod vector. Hybrid capture enabled sequencing of nearly the complete genome (~99.5 %) of the Borrelia burgdorferi pathogen with 132-fold coverage, and identification of up to 12,291 single nucleotide polymorphisms per genome. CONCLUSIONS The proprosed culture-independent method enables efficient whole genome capture and sequencing of pathogens directly from arthropod vectors, thus making population genomic study of vector-borne and zoonotic infectious diseases economically feasible and scalable. Furthermore, given the similarities of invertebrate field specimens to other mixed DNA templates characterized by a high ratio of host to pathogen DNA, we discuss the potential applicabilty of hybrid capture for genomic study across diverse study systems.
Collapse
Affiliation(s)
- Giovanna Carpi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 06520, New Haven, CT, USA.
| | - Katharine S Walter
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 06520, New Haven, CT, USA.
| | - Stephen J Bent
- Robinson Research Institute, University of Adelaide, 5005, Adelaide, SA, Australia.
| | - Anne Gatewood Hoen
- The Geisel School of Medicine, Dartmouth College, 03755, Hanover, NH, USA.
| | - Maria Diuk-Wasser
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 06520, New Haven, CT, USA. .,Department of Ecology, Evolution and Environmental Biology, Columbia University, 10027, New York, NY, USA.
| | - Adalgisa Caccone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 06520, New Haven, CT, USA. .,Department of Ecology and Evolutionary Biology, Yale University, 06520, New Haven, CT, USA.
| |
Collapse
|
53
|
Schüler W, Bunikis I, Weber-Lehman J, Comstedt P, Kutschan-Bunikis S, Stanek G, Huber J, Meinke A, Bergström S, Lundberg U. Complete genome sequence of Borrelia afzelii K78 and comparative genome analysis. PLoS One 2015; 10:e0120548. [PMID: 25798594 PMCID: PMC4370689 DOI: 10.1371/journal.pone.0120548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/23/2015] [Indexed: 02/04/2023] Open
Abstract
The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp) and 13 plasmids (8 linear and 5 circular) together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes.
Collapse
Affiliation(s)
| | - Ignas Bunikis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | | | - Gerold Stanek
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | | | | | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
54
|
Abstract
We announce the genome sequence of Borrelia garinii strain SZ, isolated from Dermacentor ticks collected in northeastern China. B. garinii strain SZ carries numerous plasmids, both 10 circular and 9 linear plasmids. The 902,487-bp linear chromosome (28.2% GC content) contains 820 open reading frames, 33 tRNAs, and 4 complete rRNAs. The plasmid cp32-10 contains one clustered regularly interspaced short palindromic repeat (CRISPR) with four repeats.
Collapse
|
55
|
Di L, Pagan PE, Packer D, Martin CL, Akther S, Ramrattan G, Mongodin EF, Fraser CM, Schutzer SE, Luft BJ, Casjens SR, Qiu WG. BorreliaBase: a phylogeny-centered browser of Borrelia genomes. BMC Bioinformatics 2014; 15:233. [PMID: 24994456 PMCID: PMC4094996 DOI: 10.1186/1471-2105-15-233] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/26/2014] [Indexed: 11/29/2022] Open
Abstract
Background The bacterial genus Borrelia (phylum Spirochaetes) consists of two groups of pathogens represented respectively by B. burgdorferi, the agent of Lyme borreliosis, and B. hermsii, the agent of tick-borne relapsing fever. The number of publicly available Borrelia genomic sequences is growing rapidly with the discovery and sequencing of Borrelia strains worldwide. There is however a lack of dedicated online databases to facilitate comparative analyses of Borrelia genomes. Description We have developed BorreliaBase, an online database for comparative browsing of Borrelia genomes. The database is currently populated with sequences from 35 genomes of eight Lyme-borreliosis (LB) group Borrelia species and 7 Relapsing-fever (RF) group Borrelia species. Distinct from genome repositories and aggregator databases, BorreliaBase serves manually curated comparative-genomic data including genome-based phylogeny, genome synteny, and sequence alignments of orthologous genes and intergenic spacers. Conclusions With a genome phylogeny at its center, BorreliaBase allows online identification of hypervariable lipoprotein genes, potential regulatory elements, and recombination footprints by providing evolution-based expectations of sequence variability at each genomic locus. The phylo-centric design of BorreliaBase (http://borreliabase.org) is a novel model for interactive browsing and comparative analysis of bacterial genomes online.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wei-Gang Qiu
- Department of Biological Sciences, Hunter College, The City University of New York, 10065 New York, NY, USA.
| |
Collapse
|
56
|
Krupna-Gaylord MA, Liveris D, Love AC, Wormser GP, Schwartz I, Petzke MM. Induction of type I and type III interferons by Borrelia burgdorferi correlates with pathogenesis and requires linear plasmid 36. PLoS One 2014; 9:e100174. [PMID: 24945497 PMCID: PMC4063763 DOI: 10.1371/journal.pone.0100174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 05/23/2014] [Indexed: 12/28/2022] Open
Abstract
The capacity for Borrelia burgdorferi to cause disseminated infection in humans or mice is associated with the genotype of the infecting strain. The cytokine profiles elicited by B. burgdorferi clinical isolates of different genotype (ribosomal spacer type) groups were assessed in a human PBMC co-incubation model. RST1 isolates, which are more frequently associated with disseminated Lyme disease in humans and mice, induced significantly higher levels of IFN-α and IFN-λ1/IL29 relative to RST3 isolates, which are less frequently associated with disseminated infection. No differences in the protein concentrations of IFN-γ, IL-1β, IL-6, IL-8, IL-10 or TNF-α were observed between isolates of differing genotype. The ability of B. burgdorferi to induce type I and type III IFNs was completely dependent on the presence of linear plasmid (lp) 36. An lp36-deficient B. burgdorferi mutant adhered to, and was internalized by, PBMCs and specific dendritic cell (DC) subsets less efficiently than its isogenic B31 parent strain. The association defect with mDC1s and pDCs could be restored by complementation of the mutant with the complete lp36. The RST1 clinical isolates studied were found to contain a 2.5-kB region, located in the distal one-third of lp36, which was not present in any of the RST3 isolates tested. This divergent region of lp36 may encode one or more factors required for optimal spirochetal recognition and the production of type I and type III IFNs by human DCs, thus suggesting a potential role for DCs in the pathogenesis of B. burgdorferi infection.
Collapse
Affiliation(s)
- Michelle A. Krupna-Gaylord
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Dionysios Liveris
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Andrea C. Love
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Gary P. Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Mary M. Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
57
|
Cervantes JL, Hawley KL, Benjamin SJ, Weinerman B, Luu SM, Salazar JC. Phagosomal TLR signaling upon Borrelia burgdorferi infection. Front Cell Infect Microbiol 2014; 4:55. [PMID: 24904837 PMCID: PMC4033037 DOI: 10.3389/fcimb.2014.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022] Open
Abstract
Internalization and degradation of live Bb within phagosomal compartments of monocytes, macrophages and dendritic cells (DCs), allows for the release of lipoproteins, nucleic acids and other microbial products, triggering a broad and robust inflammatory response. Toll-like receptors (TLRs) are key players in the recognition of spirochetal ligands from whole viable organisms (i.e., vita-PAMPs). Herein we will review the role of endosomal TLRs in the response to the Lyme disease spirochete.
Collapse
Affiliation(s)
- Jorge L Cervantes
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA
| | - Kelly L Hawley
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA
| | - Sarah J Benjamin
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA
| | - Bennett Weinerman
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA
| | - Stephanie M Luu
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington, CT, USA
| | - Juan C Salazar
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA ; Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
58
|
Potentially conflicting selective forces that shape the vls antigenic variation system in Borrelia burgdorferi. INFECTION GENETICS AND EVOLUTION 2014; 27:559-65. [PMID: 24837669 DOI: 10.1016/j.meegid.2014.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/20/2022]
Abstract
Changing environmental conditions present an evolutionary challenge for all organisms. The environment of microbial pathogens, including the adaptive immune responses of the infected host, changes rapidly and is lethal to the pathogen lineages that cannot quickly adapt. The dynamic immune environment creates strong selective pressures favoring microbial pathogen lineages with antigenic variation systems that maximize the antigenic divergence among expressed antigenic variants. However, divergence among expressed antigens may be constrained by other molecular features such as the efficient expression of functional proteins. We computationally examined potential conflicting selection pressures on antigenic variation systems using the vls antigenic variation system in Borrelia burgdorferi as a model system. The vls system alters the sequence of the expressed antigen by recombining gene fragments from unexpressed but divergent 'cassettes' into the expression site, vlsE. The in silico analysis of natural and altered cassettes from seven lineages in the B. burgdorferi sensu lato species complex revealed that sites that are polymorphic among unexpressed cassettes, as well as the insertion/deletion mutations, are organized to maximize divergence among the expressed antigens within the constraints of translational ability and high translational efficiency. This study provides empirical evidence that conflicting selection pressures on antigenic variation systems can limit the potential antigenic divergence in order to maintain proper molecular function.
Collapse
|
59
|
Adeolu M, Gupta RS. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie Van Leeuwenhoek 2014; 105:1049-72. [PMID: 24744012 DOI: 10.1007/s10482-014-0164-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/25/2014] [Indexed: 11/26/2022]
Abstract
The genus Borrelia contains two groups of organisms: the causative agents of Lyme disease and their relatives and the causative agents of relapsing fever and their relatives. These two groups are morphologically indistinguishable and are difficult to distinguish biochemically. In this work, we have carried out detailed comparative genomic analyses on protein sequences from 38 Borrelia genomes to identify molecular markers in the forms of conserved signature inserts/deletions (CSIs) that are specifically found in the Borrelia homologues, and conserved signature proteins (CSPs) which are uniquely present in Borrelia species. Our analyses have identified 31 CSIs and 82 CSPs that are uniquely shared by all sequenced Borrelia species, providing molecular markers for this group of organisms. In addition, our work has identified 7 CSIs and 21 CSPs which are uniquely found in the Lyme disease Borrelia species and eight CSIs and four CSPs that are specific for members of the relapsing fever Borrelia group. Additionally, 38 other CSIs, in proteins which are uniquely found in Borrelia species, also distinguish these two groups of Borrelia. The identified CSIs and CSPs provide novel and highly specific molecular markers for identification and distinguishing between the Lyme disease Borrelia and the relapsing fever Borrelia species. We also report the results of average nucleotide identity (ANI) analysis on Borrelia genomes and phylogenetic analysis for these species based upon 16S rRNA sequences and concatenated sequences for 25 conserved proteins. These analyses also support the distinctness of the two Borrelia clades. On the basis of the identified molecular markers, the results from ANI and phylogenetic studies, and the distinct pathogenicity profiles and arthropod vectors used by different Borrelia spp. for their transmission, we are proposing a division of the genus Borrelia into two separate genera: an emended genus Borrelia, containing the causative agents of relapsing fever and a novel genus, Borreliella gen. nov., containing the causative agents of Lyme disease.
Collapse
Affiliation(s)
- Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | | |
Collapse
|
60
|
Comparative population genomics of the Borrelia burgdorferi species complex reveals high degree of genetic isolation among species and underscores benefits and constraints to studying intra-specific epidemiological processes. PLoS One 2014; 9:e94384. [PMID: 24721934 PMCID: PMC3993988 DOI: 10.1371/journal.pone.0094384] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/13/2014] [Indexed: 11/19/2022] Open
Abstract
Lyme borreliosis, one of the most frequently contracted zoonotic diseases in the Northern Hemisphere, is caused by bacteria belonging to different genetic groups within the Borrelia burgdorferi species complex, which are transmitted by ticks among various wildlife reservoirs, such as small mammals and birds. These features make the Borrelia burgdorferi species complex an attractive biological model that can be used to study the diversification and the epidemiology of endemic bacterial pathogens. We investigated the potential of population genomic approaches to study these processes. Sixty-three strains belonging to three species within the Borrelia burgdorferi complex were isolated from questing ticks in Alsace (France), a region where Lyme disease is highly endemic. We first aimed to characterize the degree of genetic isolation among the species sampled. Phylogenetic and coalescent-based analyses revealed clear delineations: there was a ∼50 fold difference between intra-specific and inter-specific recombination rates. We then investigated whether the population genomic data contained information of epidemiological relevance. In phylogenies inferred using most of the genome, conspecific strains did not cluster in clades. These results raise questions about the relevance of different strategies when investigating pathogen epidemiology. For instance, here, both classical analytic approaches and phylodynamic simulations suggested that population sizes and migration rates were higher in B. garinii populations, which are normally associated with birds, than in B. burgdorferi s.s. populations. The phylogenetic analyses of the infection-related ospC gene and its flanking region provided additional support for this finding. Traces of recombination among the B. burgdorferi s.s. lineages and lineages associated with small mammals were found, suggesting that they shared the same hosts. Altogether, these results provide baseline evidence that can be used to formulate hypotheses regarding the host range of B. burgdorferi lineages based on population genomic data.
Collapse
|
61
|
Evolutionary genomics of Borrelia burgdorferi sensu lato: findings, hypotheses, and the rise of hybrids. INFECTION GENETICS AND EVOLUTION 2014; 27:576-93. [PMID: 24704760 DOI: 10.1016/j.meegid.2014.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/14/2023]
Abstract
Borrelia burgdorferi sensu lato (B. burgdorferi s.l.), the group of bacterial species represented by Lyme disease pathogens, has one of the most complex and variable genomic architectures among prokaryotes. Showing frequent recombination within and limited gene flow among geographic populations, the B. burgdorferi s.l. genomes provide an excellent window into the processes of bacterial evolution at both within- and between-population levels. Comparative analyses of B. burgdorferi s.l. genomes revealed a highly dynamic plasmid composition but a conservative gene repertoire. Gene duplication and loss as well as sequence variations at loci encoding surface-localized lipoproteins (e.g., the PF54 genes) are strongly associated with adaptive differences between species. There are a great many conserved intergenic spacer sequences that are candidates for cis-regulatory elements and non-coding RNAs. Recombination among coexisting strains occurs at a rate approximately three times the mutation rate. The coexistence of a large number of genomic groups within local B. burgdorferi s.l. populations may be driven by immune-mediated diversifying selection targeting major antigen loci as well as by adaptation to multiple host species. Questions remain regarding the ecological causes (e.g., climate change, host movements, or new adaptations) of the ongoing range expansion of B. burgdorferi s.l. and on the genomic variations associated with its ecological and clinical variability. Anticipating an explosive growth of the number of B. burgdorferi s.l. genomes sampled from both within and among species, we propose genome-based methods to test adaptive mechanisms and to identify molecular bases of phenotypic variations. Genome sequencing is also necessary for monitoring a likely increase of genetic admixture of previously isolated species and populations in North America and elsewhere.
Collapse
|
62
|
Hodzic E, Imai D, Feng S, Barthold SW. Resurgence of persisting non-cultivable Borrelia burgdorferi following antibiotic treatment in mice. PLoS One 2014; 9:e86907. [PMID: 24466286 PMCID: PMC3900665 DOI: 10.1371/journal.pone.0086907] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/16/2013] [Indexed: 11/24/2022] Open
Abstract
The agent of Lyme borreliosis, Borrelia burgdorferi, evades host immunity and establishes persistent infections in its varied mammalian hosts. This persistent biology may pose challenges to effective antibiotic treatment. Experimental studies in dogs, mice, and non-human primates have found persistence of B. burgdorferi DNA following treatment with a variety of antibiotics, but persisting spirochetes are non-cultivable. Persistence of B. burgdorferi DNA has been documented in humans following treatment, but the significance remains unknown. The present study utilized a ceftriaxone treatment regimen in the C3H mouse model that resulted in persistence of non-cultivable B. burgdorferi in order to determine their long-term fate, and to examine their effects on the host. Results confirmed previous studies, in which B. burgdorferi could not be cultured from tissues, but low copy numbers of B. burgdorferi flaB DNA were detectable in tissues at 2, 4 and 8 months after completion of treatment, and the rate of PCR-positive tissues appeared to progressively decline over time. However, there was resurgence of spirochete flaB DNA in multiple tissues at 12 months, with flaB DNA copy levels nearly equivalent to those found in saline-treated mice. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, flaB DNA was acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues by immunofluorescence and immunohistochemistry, respectively. A number of host cytokines were up- or down-regulated in tissues of both saline- and antibiotic-treated mice in the absence of histopathology, indicating host response to the presence of non-cultivable, despite the lack of inflammation in tissues.
Collapse
Affiliation(s)
- Emir Hodzic
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (SWB); (EH)
| | - Denise Imai
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Sunlian Feng
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Stephen W. Barthold
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (SWB); (EH)
| |
Collapse
|
63
|
CsrA (BB0184) is not involved in activation of the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. Infect Immun 2014; 82:1511-22. [PMID: 24452681 DOI: 10.1128/iai.01555-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Borrelia burgdorferi encodes a homologue of the bacterial carbon storage regulator A (CsrA). Recently, it was reported that CsrA contributes to B. burgdorferi infectivity and is required for the activation of the central RpoN-RpoS regulatory pathway. However, many questions concerning the function of CsrA in B. burgdorferi gene regulation remain unanswered. In particular, there are conflicting reports concerning the molecular details of how CsrA may modulate rpoS expression and, thus, how CsrA may influence the RpoN-RpoS pathway in B. burgdorferi. To address these key discrepancies, we examined the role of CsrA in differential gene expression in the Lyme disease spirochete. Upon engineering an inducible csrA expression system in B. burgdorferi, controlled hyperexpression of CsrA in a merodiploid strain did not significantly alter the protein and transcript levels of bosR, rpoS, and RpoS-dependent genes (such as ospC and dbpA). In addition, we constructed isogenic csrA mutants in two widely used infectious B. burgdorferi strains. When expression of bosR, rpoS, ospC, and dbpA was compared between the csrA mutants and their wild-type counterparts, no detectable differences were observed. Finally, animal studies indicated that the csrA mutants remained infectious for and virulent in mice. Analyses of B. burgdorferi gene expression in mouse tissues showed comparable levels of rpoS transcripts by the csrA mutants and the parental strains. Taken together, these results constitute compelling evidence that CsrA is not involved in activation of the RpoN-RpoS pathway and is dispensable for mammalian infectious processes carried out by B. burgdorferi.
Collapse
|
64
|
Eshoo MW, Schutzer SE, Crowder CD, Carolan HE, Ecker DJ. Achieving molecular diagnostics for Lyme disease. Expert Rev Mol Diagn 2014; 13:875-83. [DOI: 10.1586/14737159.2013.850418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
65
|
Zheng J, Peng D, Ruan L, Sun M. Evolution and dynamics of megaplasmids with genome sizes larger than 100 kb in the Bacillus cereus group. BMC Evol Biol 2013; 13:262. [PMID: 24295128 PMCID: PMC4219350 DOI: 10.1186/1471-2148-13-262] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmids play a crucial role in the evolution of bacterial genomes by mediating horizontal gene transfer. However, the origin and evolution of most plasmids remains unclear, especially for megaplasmids. Strains of the Bacillus cereus group contain up to 13 plasmids with genome sizes ranging from 2 kb to 600 kb, and thus can be used to study plasmid dynamics and evolution. RESULTS This work studied the origin and evolution of 31 B. cereus group megaplasmids (>100 kb) focusing on the most conserved regions on plasmids, minireplicons. Sixty-five putative minireplicons were identified and classified to six types on the basis of proteins that are essential for replication. Twenty-nine of the 31 megaplasmids contained two or more minireplicons. Phylogenetic analysis of the protein sequences showed that different minireplicons on the same megaplasmid have different evolutionary histories. Therefore, we speculated that these megaplasmids are the results of fusion of smaller plasmids. All plasmids of a bacterial strain must be compatible. In megaplasmids of the B. cereus group, individual minireplicons of different megaplasmids in the same strain belong to different types or subtypes. Thus, the subtypes of each minireplicon they contain may determine the incompatibilities of megaplasmids. A broader analysis of all 1285 bacterial plasmids with putative known minireplicons whose complete genome sequences were available from GenBank revealed that 34% (443 plasmids) of the plasmids have two or more minireplicons. This indicates that plasmid fusion events are general among bacterial plasmids. CONCLUSIONS Megaplasmids of B. cereus group are fusion of smaller plasmids, and the fusion of plasmids likely occurs frequently in the B. cereus group and in other bacterial taxa. Plasmid fusion may be one of the major mechanisms for formation of novel megaplasmids in the evolution of bacteria.
Collapse
Affiliation(s)
- Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | |
Collapse
|
66
|
Graves CJ, Ros VID, Stevenson B, Sniegowski PD, Brisson D. Natural selection promotes antigenic evolvability. PLoS Pathog 2013; 9:e1003766. [PMID: 24244173 PMCID: PMC3828179 DOI: 10.1371/journal.ppat.1003766] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/30/2013] [Indexed: 01/16/2023] Open
Abstract
The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.
Collapse
Affiliation(s)
| | - Vera I. D. Ros
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian Stevenson
- University of Kentucky, Lexington, Kentucky, United States of America
| | - Paul D. Sniegowski
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dustin Brisson
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
67
|
Mongodin EF, Casjens SR, Bruno JF, Xu Y, Drabek EF, Riley DR, Cantarel BL, Pagan PE, Hernandez YA, Vargas LC, Dunn JJ, Schutzer SE, Fraser CM, Qiu WG, Luft BJ. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation. BMC Genomics 2013; 14:693. [PMID: 24112474 PMCID: PMC3833655 DOI: 10.1186/1471-2164-14-693] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/26/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. "bavariensis" (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. "finlandensis" (1). RESULTS Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. CONCLUSIONS Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues.
Collapse
Affiliation(s)
- Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Ellis TC, Jain S, Linowski AK, Rike K, Bestor A, Rosa PA, Halpern M, Kurhanewicz S, Jewett MW. In vivo expression technology identifies a novel virulence factor critical for Borrelia burgdorferi persistence in mice. PLoS Pathog 2013; 9:e1003567. [PMID: 24009501 PMCID: PMC3757035 DOI: 10.1371/journal.ppat.1003567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022] Open
Abstract
Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear plasmid (lp) 25 are non-infectious yet highly transformable. Mouse infection can be restored to these spirochetes by expression of the essential lp25-encoded pncA gene alone. Therefore, this IVET-based approach selects for in vivo-expressed promoters that drive expression of pncA resulting in the recovery of infectious spirochetes lacking lp25 following a three week infection in mice. Screening of approximately 15,000 clones in mice identified 289 unique in vivo-expressed DNA fragments from across all 22 replicons of the B. burgdorferi B31 genome. The in vivo-expressed candidate genes putatively encode proteins in various functional categories including antigenicity, metabolism, motility, nutrient transport and unknown functions. Candidate gene bbk46 on essential virulence plasmid lp36 was found to be highly induced in vivo and to be RpoS-independent. Immunocompetent mice inoculated with spirochetes lacking bbk46 seroconverted but no spirochetes were recovered from mouse tissues three weeks post inoculation. However, the bbk46 gene was not required for B. burgdorferi infection of immunodeficient mice. Therefore, through an initial IVET screen in B. burgdorferi we have identified a novel in vivo-induced virulence factor critical for the ability of the spirochete to evade the humoral immune response and persistently infect mice.
Collapse
Affiliation(s)
- Tisha Choudhury Ellis
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Sunny Jain
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Angelika K. Linowski
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Kelli Rike
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Aaron Bestor
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Patricia A. Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Micah Halpern
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Stephanie Kurhanewicz
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Mollie W. Jewett
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| |
Collapse
|
69
|
Hodzic E, Feng S, Barthold SW. Assessment of transcriptional activity of Borrelia burgdorferi and host cytokine genes during early and late infection in a mouse model. Vector Borne Zoonotic Dis 2013; 13:694-711. [PMID: 23930938 DOI: 10.1089/vbz.2012.1189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Differential gene expression by Borrelia burgdorferi spirochetes during mammalian infection facilitates their dissemination as well as immune evasion. Modulation of gene transcription in response to host immunity has been documented with the outer surface protein C, but the influence of transcription of other genes is largely unknown. A low-density array (LDA) was developed to study transcriptional activity of 43 B. burgdorferi genes and 19 host genes that may be involved in various host-agent interactions. Gene transcription in heart, joint, and muscle tissue was compared in immunocompetent C3H and immunodeficient C3H-scid mice during early (3 weeks) and late (2 months) B. burgdorferi infection. Among all tissue types, levels of relative transcription of over 80% of B. burgdorferi genes tested were one- to nine-fold less in C3H mice compared to C3H-scid mice. At the later time point, all genes were transcribed in C3H-scid mice, whereas transcription of 16 genes out of 43 tested was not detected in analyzed tissues of C3H mice. Our data suggest that during infection of immunocompetent mice, a majority of B. burgdorferi genes tested are downregulated in response to acquired host immunity. LDA revealed variable patterns of host gene expression in different tissues and at different intervals in infected mice. Higher levels of relative expression for IL-10 during both early and late infection were detected in heart base, and it was unchanged in the tibiotarsal joint. Comparative analysis of B. burgdorferi and host genes transcriptional activity revealed that increased flaB mRNA during early infection was followed by increases of CCL7, CCL8, interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in all assessed tissue types. LDA represents a valuable approach for sensitive and quantitative gene transcription profiling and for understanding Lyme borreliosis.
Collapse
Affiliation(s)
- Emir Hodzic
- 1 Center for Comparative Medicine, Schools of Veterinary Medicine and Medicine, University of California at Davis , Davis, California
| | | | | |
Collapse
|
70
|
EGN: a wizard for construction of gene and genome similarity networks. BMC Evol Biol 2013; 13:146. [PMID: 23841456 PMCID: PMC3727994 DOI: 10.1186/1471-2148-13-146] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/05/2013] [Indexed: 01/11/2023] Open
Abstract
Background Increasingly, similarity networks are being used for evolutionary analyses of molecular datasets. These networks are very useful, in particular for the analysis of gene sharing, lateral gene transfer and for the detection of distant homologs. Currently, such analyses require some computer programming skills due to the limited availability of user-friendly freely distributed software. Consequently, although appealing, the construction and analyses of these networks remain less familiar to biologists than do phylogenetic approaches. Results In order to ease the use of similarity networks in the community of evolutionary biologists, we introduce a software program, EGN, that runs under Linux or MacOSX. EGN automates the reconstruction of gene and genome networks from nucleic and proteic sequences. EGN also implements statistics describing genetic diversity in these samples, for various user-defined thresholds of similarities. In the interest of studying the complexity of evolutionary processes affecting microbial evolution, we applied EGN to a dataset of 571,044 proteic sequences from the three domains of life and from mobile elements. We observed that, in Borrelia, plasmids play a different role than in most other eubacteria. Rather than being genetic couriers involved in lateral gene transfer, Borrelia’s plasmids and their genes act as private genetic goods, that contribute to the creation of genetic diversity within their parasitic hosts. Conclusion EGN can be used for constructing, analyzing, and mining molecular datasets in evolutionary studies. The program can help increase our knowledge of the processes through which genes from distinct sources and/or from multiple genomes co-evolve in lineages of cellular organisms.
Collapse
|
71
|
Jutras BL, Chenail AM, Carroll DW, Miller MC, Zhu H, Bowman A, Stevenson B. Bpur, the Lyme disease spirochete's PUR domain protein: identification as a transcriptional modulator and characterization of nucleic acid interactions. J Biol Chem 2013; 288:26220-26234. [PMID: 23846702 PMCID: PMC3764826 DOI: 10.1074/jbc.m113.491357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The PUR domain is a nucleic acid-binding motif found in critical regulatory proteins of higher eukaryotes and in certain species of bacteria. During investigations into mechanisms by which the Lyme disease spirochete controls synthesis of its Erp surface proteins, it was discovered that the borrelial PUR domain protein, Bpur, binds with high affinity to double-stranded DNA adjacent to the erp transcriptional promoter. Bpur was found to enhance the effects of the erp repressor protein, BpaB. Bpur also bound single-stranded DNA and RNA, with relative affinities RNA > double-stranded DNA > single-stranded DNA. Rational site-directed mutagenesis of Bpur identified amino acid residues and domains critical for interactions with nucleic acids, and it revealed that the PUR domain has a distinct mechanism of interaction with each type of nucleic acid ligand. These data shed light on both gene regulation in the Lyme spirochete and functional mechanisms of the widely distributed PUR domain.
Collapse
Affiliation(s)
- Brandon L Jutras
- From the Department of Microbiology, Immunology, and Molecular Genetics and
| | - Alicia M Chenail
- From the Department of Microbiology, Immunology, and Molecular Genetics and
| | - Dustin W Carroll
- the Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - M Clarke Miller
- the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, and
| | - Haining Zhu
- the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Amy Bowman
- From the Department of Microbiology, Immunology, and Molecular Genetics and
| | - Brian Stevenson
- From the Department of Microbiology, Immunology, and Molecular Genetics and.
| |
Collapse
|
72
|
|
73
|
Brisson D, Zhou W, Jutras BL, Casjens S, Stevenson B. Distribution of cp32 prophages among Lyme disease-causing spirochetes and natural diversity of their lipoprotein-encoding erp loci. Appl Environ Microbiol 2013; 79:4115-28. [PMID: 23624478 PMCID: PMC3697573 DOI: 10.1128/aem.00817-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/25/2013] [Indexed: 12/19/2022] Open
Abstract
Lyme disease spirochetes possess complex genomes, consisting of a main chromosome and 20 or more smaller replicons. Among those small DNAs are the cp32 elements, a family of prophages that replicate as circular episomes. All complete cp32s contain an erp locus, which encodes surface-exposed proteins. Sequences were compared for all 193 erp alleles carried by 22 different strains of Lyme disease-causing spirochete to investigate their natural diversity and evolutionary histories. These included multiple isolates from a focus where Lyme disease is endemic in the northeastern United States and isolates from across North America and Europe. Bacteria were derived from diseased humans and from vector ticks and included members of 5 different Borrelia genospecies. All erp operon 5'-noncoding regions were found to be highly conserved, as were the initial 70 to 80 bp of all erp open reading frames, traits indicative of a common evolutionary origin. However, the majority of the protein-coding regions are highly diverse, due to numerous intra- and intergenic recombination events. Most erp alleles are chimeras derived from sequences of closely related and distantly related erp sequences and from unknown origins. Since known functions of Erp surface proteins involve interactions with various host tissue components, this diversity may reflect both their multiple functions and the abilities of Lyme disease-causing spirochetes to successfully infect a wide variety of vertebrate host species.
Collapse
Affiliation(s)
- Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Zhou
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brandon L. Jutras
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sherwood Casjens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah Medical School, Salt Lake City, Utah, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
74
|
Li X, Strle K, Wang P, Acosta DI, McHugh GA, Sikand N, Strle F, Steere AC. Tick-specific borrelial antigens appear to be upregulated in American but not European patients with Lyme arthritis, a late manifestation of Lyme borreliosis. J Infect Dis 2013; 208:934-41. [PMID: 23766526 DOI: 10.1093/infdis/jit269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Borrelia burgdorferi (Bb) sensu lato, the etiologic agent of Lyme borreliosis, adapts to distinct environments in the mammalian host and the tick vector by differential gene expression. As a result, infected mice are not exposed to and rarely make antibodies to the set of antigens that are preferentially expressed in the tick, including outer surface protein A (OspA), Borrelia iron and copper-binding protein A (BicA), and OspD. Surprisingly, however, antibodies to OspA and BicA have been noted in American patients with Lyme arthritis. Here, we examined serum samples from 210 American patients and 66 European patients with a range of early or late manifestations of Lyme borreliosis and found that only American patients with Lyme arthritis commonly had antibody responses to OspA, BicA, and OspD. This suggests that infection with American but not European Borrelia strains often leads to concerted upregulation or derepression of tick-specific spirochetal antigens in these patients.
Collapse
Affiliation(s)
- Xin Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, USA.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Borrelia species of relapsing fever (RF) and Lyme disease (LD) lineages have linear chromosomes and both linear and circular plasmids. Unique to RF species, and little characterized to date, are large linear plasmids of ∼160 kb, or ∼10% of the genome. By a combination of Sanger and next-generation methods, we determined the sequences of large linear plasmids of two New World species: Borrelia hermsii, to completion of its 174-kb length, and B. turicatae, partially to 114 kb of its 150 kb. These sequences were then compared to corresponding sequences of the Old World species B. duttonii and B. recurrentis and to plasmid sequences of LD Borrelia species. The large plasmids were largely colinear, except for their left ends, about 27 kb of which was inverted in New World species. Approximately 60% of the B. hermsii lp174 plasmid sequence was repetitive for 6 types of sequence, and half of its open reading frames encoded hypothetical proteins not discernibly similar to proteins in the database. The central ∼25 kb of all 4 linear plasmids was syntenic for orthologous genes for plasmid maintenance or partitioning in Borrelia species. Of all the sequenced linear and circular plasmids in Borrelia species, the large plasmid's putative partition/replication genes were most similar to those of the 54-kb linear plasmids of LD species. Further evidence for shared ancestry was the observation that two of the hypothetical proteins were predicted to be structurally similar to the LD species' CspA proteins, which are encoded on the 54-kb plasmids.
Collapse
|
76
|
Kariu T, Yang X, Marks CB, Zhang X, Pal U. Proteolysis of BB0323 results in two polypeptides that impact physiologic and infectious phenotypes in Borrelia burgdorferi. Mol Microbiol 2013; 88:510-22. [PMID: 23489252 DOI: 10.1111/mmi.12202] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2013] [Indexed: 01/12/2023]
Abstract
Borrelia burgdorferi gene product BB0323 is required for cell fission and pathogen persistence in vivo. Here, we show that BB0323, which is conserved among globally prevalent infectious strains, supports normal spirochaete growth and morphology even at early phases of cell division. We demonstrate that native BB0323 undergoes proteolytic processing at the C-terminus, at a site after the first 202 N-terminal amino acids. We further identified a periplasmic BB0323 binding protein in B. burgdorferi, annotated as BB0104, having serine protease activity responsible for the primary cleavage of BB0323 to produce discrete N- and C-terminal polypeptides. These two BB0323 polypeptides interact with each other, and either individually or as a complex, are associated with multiple functions in spirochaete biology and infectivity. While N-terminal BB0323 is adequate to support cell fission, the C-terminal LysM domain is dispensable for this process, despite its ability to bind B. burgdorferi peptidoglycan. However, the LysM domain or the precisely processed BB0323 product is essential for mammalian infection. As BB0323 is a membrane protein crucial for B. burgdorferi survival in vivo, exploring its function may suggest novel ways to interrupt infection while enhancing our understanding of the intricate spirochaete fission process.
Collapse
Affiliation(s)
- Toru Kariu
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
77
|
Suggested role for G4 DNA in recombinational switching at the antigenic variation locus of the Lyme disease spirochete. PLoS One 2013; 8:e57792. [PMID: 23469068 PMCID: PMC3585125 DOI: 10.1371/journal.pone.0057792] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022] Open
Abstract
Antigenic variation through targeted DNA rearrangements provides a powerful diversity generating mechanism that allows a variety of pathogens to stay one step ahead of acquired immunity in their hosts. The Lyme disease spirochete encodes such a system that is required for persistent infection. The vls locus, carried on a 29 kb linear plasmid (lp28-1) in the type strain B31, carries 15 silent cassettes from which information is unidirectionally transferred into the expression locus, vlsE. Recent studies have surprisingly shown that, with the exception of the RuvAB branch migrase, no other known recombination/repair proteins appear to play a role in the recombinational switching process. In the work presented here we show that G4 DNA can be formed by sequences within the B31 vlsE locus, prompting us to investigate the presence of potential G4-forming DNA throughout the vls locus of several Lyme spirochete strains and species. We found that runs of G, three nucleotides and longer occur at a very high density, with a greater than 100-fold strand-specific distribution in the vls locus of three B. burgdorferi strains as well as in B. afzelii and B. garinii, in spite of the bias for the use of A-T rich codons in Borrelia species. Our findings suggest the possibility that G4 DNA may be a mediator of recombinational switching at the vlsE locus in the Lyme spirochetes.
Collapse
|
78
|
|
79
|
Experimental infections of the reservoir species Peromyscus leucopus with diverse strains of Borrelia burgdorferi, a Lyme disease agent. mBio 2012; 3:e00434-12. [PMID: 23221801 PMCID: PMC3517863 DOI: 10.1128/mbio.00434-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rodent Peromyscus leucopus is a major natural reservoir for the Lyme disease agent Borrelia burgdorferi and a host for its vector Ixodes scapularis. At various locations in northeastern United States 10 to 15 B. burgdorferi strains coexist at different prevalences in tick populations. We asked whether representative strains of high or low prevalence differed in their infections of P. leucopus. After 5 weeks of experimental infection of groups with each of 6 isolates, distributions and burdens of bacteria in tissues were measured by quantitative PCR, and antibodies to B. burgdorferi were evaluated by immunoblotting and protein microarray. All groups of animals were infected in their joints, ears, tails, and hearts, but overall spirochete burdens were lower in animals infected with low-prevalence strains. Animals were similar regardless of the infecting isolate in their levels of antibodies to whole cells, FlaB, BmpA, and DbpB proteins, and the conserved N-terminal region of the serotype-defining OspC proteins. But there were strain-specific antibody responses to full-length OspC and to plasmid-encoded VlsE, BBK07, and BBK12 proteins. Sequencing of additional VlsE genes revealed substantial diversity within some pairs of strains but near-identical sequences within other pairs, which otherwise differed in their ospC alleles. The presence or absence of full-length bbk07 and bbk12 genes accounted for the differences in antibody responses. We propose that for B. burgdorferi, there is selection in reservoir species for (i) sequence diversity, as for OspC and VlsE, and (ii) the presence or absence of polymorphisms, as for BBK07 and BBK12. Humans are dead-end hosts for Borrelia agents of Lyme disease (LD), and, thus, irrelevant for the pathogens’ maintenance. Many reports of human cases and laboratory mouse infections exist, but less is known about infection and immunity in natural reservoirs, such as the rodent Peromyscus leucopus. We observed that high- and low-prevalence strains of Borrelia burgdorferi were capable of infecting P. leucopus but elicited different patterns of antibody responses. Antibody reactivities to the VlsE protein were as type-specific as previously characterized reactivities to serotype-defining OspC proteins. In addition, the low-prevalence strains lacked full-length genes for two proteins that (i) are encoded by a virulence-associated plasmid in some high-prevalence strains and (ii) LD patients and field-captured rodents commonly have antibodies to. Immune selection against these genes may have led to null phenotype lineages that can infect otherwise immune hosts but at the cost of reduced fitness and lower prevalence.
Collapse
|
80
|
Kraiczy P, Stevenson B. Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks Tick Borne Dis 2012; 4:26-34. [PMID: 23219363 DOI: 10.1016/j.ttbdis.2012.10.039] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/27/2022]
Abstract
Borrelia burgdorferi, the etiological agent of Lyme disease, exploits an array of strategies to establish infection and to overcome host innate and adaptive immune responses. One key borrelial immune escape mechanism involves the inactivation of host complement attack through acquisition of human immune regulators factor H (CFH), factor H-like protein 1 (FHL1), factor H-related protein 1 (CFHR1), CFHR2, and/or CFHR5. Binding of these host proteins is primarily mediated by bacterial surface-exposed proteins that have been collectively referred to as complement regulator-acquiring surface proteins, or CRASPs. Different strains of B. burgdorferi produce as many as 5 different CRASP molecules that comprise 3 distinct, genetically unrelated groups. Depending on bacterial genetic composition, different combinations of these proteins can be found on the borrelial outer surface. The 3 groups differ in their gene location, gene regulatory mechanisms, expression patterns during the tick-mammal infection cycle, protein sequence and structure as well as binding affinity for complement regulators and other serum proteins. These attributes influence the proteins' abilities to contribute to complement resistance of this emerging human pathogen. In this review, we focus on the current knowledge on structure, function, and gene regulation of these B. burgdorferi infection-associated proteins.
Collapse
Affiliation(s)
- Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, Frankfurt University Hospital, Paul-Ehrlich-Strasse 40, 6 Frankfurt, Germany.
| | | |
Collapse
|
81
|
Exploring gaps in our knowledge on Lyme borreliosis spirochaetes--updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis 2012; 4:11-25. [PMID: 23246041 DOI: 10.1016/j.ttbdis.2012.06.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/11/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
Abstract
The Lyme borreliosis complex is a heterogeneous group of tick-borne spirochaetes of the genus Borrelia (Spirochaetales: Spirochaetaceae) that are distributed all over the temperate zone of the northern hemisphere. Due to the usage of new methods for phylogenetic analysis, this group has expanded rapidly during the past 5 years. Along with this development, the number of Borrelia spp. regarded as pathogenic to humans also increased. Distribution areas as well as host and vector ranges of Lyme borreliosis agents turned out to be much wider than previously thought. Furthermore, there is evidence that ticks, reservoir hosts, and patients can be coinfected with multiple Borrelia spp. or other tick-borne pathogens, which indicates a need to establish new and well-defined diagnostic and therapeutic standards for Lyme borreliosis. This review gives a broad overview on the occurrence of Lyme borreliosis spirochaetes worldwide with particular emphasis on their vectors and vertebrate hosts as well as their pathogenic potential and resultant problems in diagnosis and treatment. Against the background that many issues regarding distribution, species identity, ecology, pathogenicity, and coinfections are still unsolved, the purpose of this article is to reveal directions for future research on the Lyme borreliosis complex.
Collapse
|
82
|
Chan K, Awan M, Barthold SW, Parveen N. Comparative molecular analyses of Borrelia burgdorferi sensu stricto strains B31 and N40D10/E9 and determination of their pathogenicity. BMC Microbiol 2012; 12:157. [PMID: 22846633 PMCID: PMC3511255 DOI: 10.1186/1471-2180-12-157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022] Open
Abstract
Background Lyme disease in the United States is caused primarily by B. burgdorferi sensu stricto while other species are also prevalent in Europe. Genetic techniques have identified several chromosomal and plasmid-borne regulatory and virulence factors involved in Lyme pathogenesis. B31 and N40 are two widely studied strains of B. burgdorferi, which belong to two different 16 S-23 S rRNA spacer types (RST) and outer surface protein C (OspC) allelic groups. However, the presence of several known virulence factors in N40 has not been investigated. This is the first comprehensive study that compared these two strains both in vitro and using the mouse model of infection. Results Phylogenetic analyses predict B31 to be more infectious. However, our studies here indicate that N40D10/E9 is more infectious than the B31 strain at lower doses of inoculation in the susceptible C3H mice. Based-upon a careful analyses of known adhesins of these strains, it is predicted that the absence of a known fibronectin-glycosaminoglycan binding adhesin, bbk32, in the N40 strain could at least partially be responsible for reduction in its binding to Vero cells in vitro. Nevertheless, this difference does not affect the infectivity of N40D10/E9 strain. The genes encoding known regulatory and virulence factors critical for pathogenesis were detected in both strains. Differences in the protein profiles of these B. burgdorferi strains in vitro suggest that the novel, differentially expressed molecules may affect infectivity of B. burgdorferi. Further exacerbation of these molecular differences in vivo could affect the pathogenesis of spirochete strains. Conclusion Based upon the studies here, it can be predicted that N40D10/E9 disseminated infection at lower doses may be enhanced by its lower binding to epithelial cells at the site of inoculation due to the absence of BBK32. We suggest that complete molecular analyses of virulence factors followed by their evaluation using the mouse infection model should form the basis of determining infectivity and pathogenicity of different strains rather than simple phylogenetic group analyses. This study further emphasizes a need to investigate multiple invasive strains of B. burgdorferi to fully appreciate the pathogenic mechanisms that contribute to Lyme disease manifestations.
Collapse
Affiliation(s)
- Kamfai Chan
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 225 Warren Street, Newark, NJ 07103-3535, USA
| | | | | | | |
Collapse
|
83
|
Two boundaries separate Borrelia burgdorferi populations in North America. Appl Environ Microbiol 2012; 78:6059-67. [PMID: 22729536 DOI: 10.1128/aem.00231-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding the spread of infectious diseases is crucial for implementing effective control measures. For this, it is important to obtain information on the contemporary population structure of a disease agent and to infer the evolutionary processes that may have shaped it. Here, we investigate on a continental scale the population structure of Borrelia burgdorferi, the causative agent of Lyme borreliosis (LB), a tick-borne disease, in North America. We test the hypothesis that the observed population structure is congruent with recent population expansions and that these were preceded by bottlenecks mostly likely caused by the near extirpation in the 1900s of hosts required for sustaining tick populations. Multilocus sequence typing and complementary population analytical tools were used to evaluate B. burgdorferi samples collected in the Northeastern, Upper Midwestern, and Far-Western United States and Canada. The spatial distribution of sequence types (STs) and inferred population boundaries suggest that the current populations are geographically separated. One major population boundary separated western B. burgdorferi populations transmitted by Ixodes pacificus in California from Eastern populations transmitted by I. scapularis; the other divided Midwestern and Northeastern populations. However, populations from all three regions were genetically closely related. Together, our findings suggest that although the contemporary populations of North American B. burgdorferi now comprise three geographically separated subpopulations with no or limited gene flow among them, they arose from a common ancestral population. A comparative analysis of the B. burgdorferi outer surface protein C (ospC) gene revealed novel linkages and provides additional insights into the genetic characteristics of strains.
Collapse
|
84
|
Casjens SR, Mongodin EF, Qiu WG, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One 2012; 7:e33280. [PMID: 22432010 PMCID: PMC3303823 DOI: 10.1371/journal.pone.0033280] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/06/2012] [Indexed: 11/21/2022] Open
Abstract
Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Whole-genome sequences of Borrelia bissettii, Borrelia valaisiana, and Borrelia spielmanii. J Bacteriol 2012; 194:545-6. [PMID: 22207749 DOI: 10.1128/jb.06263-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has been known for decades that human Lyme disease is caused by the three spirochete species Borrelia burgdorferi, Borrelia afzelii, and Borrelia garinii. Recently, Borrelia valaisiana, Borrelia spielmanii, and Borrelia bissettii have been associated with Lyme disease. We report the complete genome sequences of B. valaisiana VS116, B. spielmanii A14S, and B. bissettii DN127.
Collapse
|
86
|
Chaconas G. CSM murray award lecture - functional studies of the Lyme disease spirochete - from molecules to mice. Can J Microbiol 2012; 58:236-48. [PMID: 22339274 DOI: 10.1139/w11-143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lyme borreliosis, also known as Lyme disease, is now the most common vector transmitted disease in the northern hemisphere. It is caused by the spirochete Borrelia burgdorferi and related species. In addition to their clinical importance, these organisms are fascinating to study because of the wide variety of unusual features they possess. Ongoing work in the laboratory in several areas will be described. (1) The segmented genomes contain up to two dozen genetic elements, the majority of which are linear with covalently closed hairpin ends. These linear DNAs also display a very high degree of ongoing genetic rearrangement. Mechanisms for these processes will be described. (2) Persistent infection by Borrelia species requires antigenic variation through a complex DNA rearrangement process at the vlsE locus on the linear plasmid lp28-1. Novel features of this recombination process will be presented. (3) Evidence for a new global regulatory pathway of B. burgdorferi gene expression that is required for pathogenicity will be described. The DEAH box RNA helicase HrpA is involved in this pathway, which may be relevant in other bacteria. (4) The mechanism of B. burgdorferi to effectively disseminate throughout its host is being studied in real time by high resolution intravital imaging in live mice. Recent work will be presented.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry & Molecular Biology, and Department of Microbiology & Infectious Diseases, University of Calgary, Canada.
| |
Collapse
|
87
|
Detection of established virulence genes and plasmids to differentiate Borrelia burgdorferi strains. Infect Immun 2012; 80:1519-29. [PMID: 22290150 DOI: 10.1128/iai.06326-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi sensu stricto is the major causative agent of Lyme disease in the United States, while B. garinii and B. afzelii are more prevalent in Europe. The highly complex genome of B. burgdorferi is comprised of a linear chromosome and a large number of variably sized linear and circular plasmids. Many plasmids of this spirochete are unstable during its culture in vitro. Given that many of the B. burgdorferi virulence factors identified to date are plasmid encoded, spirochetal plasmid content determination is essential for genetic analysis of Lyme pathogenesis. Although PCR-based assays facilitate plasmid profiling of sequenced B. burgdorferi strains, a rapid genetic content determination strategy for nonsequenced strains has not yet been described. In this study, we combined pulsed-field gel electrophoresis (PFGE) and Southern hybridization for detection of genes encoding known virulence factors, ribosomal RNA gene spacer restriction fragment length polymorphism types (RSTs), ospC group determination, and sequencing of the variable dbpA and ospC genes. We show that two strains isolated from the same tick and both originally named N40 are in fact very distinct. Furthermore, we failed to detect bbk32, which encodes a fibronectin-binding adhesin, in one "N40" strain. Thus, two distinct strains that show different plasmid profiles, as determined by PFGE and PCR, were isolated from the same tick and vary in their ospC and dbpA sequences. However, both belong to group RST3B.
Collapse
|
88
|
Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates. J Bacteriol 2012; 193:6995-6. [PMID: 22123755 DOI: 10.1128/jb.05951-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, B. afzelii isolates ACA-1 and PKo and B. garinii isolates PBr and Far04.
Collapse
|
89
|
|
90
|
Pervasive recombination and sympatric genome diversification driven by frequency-dependent selection in Borrelia burgdorferi, the Lyme disease bacterium. Genetics 2011; 189:951-66. [PMID: 21890743 DOI: 10.1534/genetics.111.130773] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
How genomic diversity within bacterial populations originates and is maintained in the presence of frequent recombination is a central problem in understanding bacterial evolution. Natural populations of Borrelia burgdorferi, the bacterial agent of Lyme disease, consist of diverse genomic groups co-infecting single individual vertebrate hosts and tick vectors. To understand mechanisms of sympatric genome differentiation in B. burgdorferi, we sequenced and compared 23 genomes representing major genomic groups in North America and Europe. Linkage analysis of >13,500 single-nucleotide polymorphisms revealed pervasive horizontal DNA exchanges. Although three times more frequent than point mutation, recombination is localized and weakly affects genome-wide linkage disequilibrium. We show by computer simulations that, while enhancing population fitness, recombination constrains neutral and adaptive divergence among sympatric genomes through periodic selective sweeps. In contrast, simulations of frequency-dependent selection with recombination produced the observed pattern of a large number of sympatric genomic groups associated with major sequence variations at the selected locus. We conclude that negative frequency-dependent selection targeting a small number of surface-antigen loci (ospC in particular) sufficiently explains the maintenance of sympatric genome diversity in B. burgdorferi without adaptive divergence. We suggest that pervasive recombination makes it less likely for local B. burgdorferi genomic groups to achieve host specialization. B. burgdorferi genomic groups in the northeastern United States are thus best viewed as constituting a single bacterial species, whose generalist nature is a key to its rapid spread and human virulence.
Collapse
|
91
|
Margos G, Vollmer SA, Ogden NH, Fish D. Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. INFECTION GENETICS AND EVOLUTION 2011; 11:1545-63. [PMID: 21843658 DOI: 10.1016/j.meegid.2011.07.022] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/29/2011] [Accepted: 07/31/2011] [Indexed: 11/25/2022]
Abstract
In order to understand the population structure and dynamics of bacterial microorganisms, typing systems that accurately reflect the phylogenetic and evolutionary relationship of the agents are required. Over the past 15 years multilocus sequence typing schemes have replaced single locus approaches, giving novel insights into phylogenetic and evolutionary relationships of many bacterial species and facilitating taxonomy. Since 2004, several schemes using multiple loci have been developed to better understand the taxonomy, phylogeny and evolution of Lyme borreliosis spirochetes and in this paper we have reviewed and summarized the progress that has been made for this important group of vector-borne zoonotic bacteria.
Collapse
Affiliation(s)
- Gabriele Margos
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | |
Collapse
|
92
|
Rupprecht TA, Fingerle V. Neuroborreliosis: pathogenesis, symptoms, diagnosis and treatment. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.10.89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lyme disease is the most common human tick-borne disease in the northern hemisphere. This article describes the current knowledge of several aspects of Lyme neuroborreliosis. The epidemiology is reviewed first, with special respect to the difference between European and American disease. Then, the current knowledge about the pathogenesis of Lyme neuroborreliosis is presented, with emphasis on immune evasion strategies. Furthermore, the clinical picture of acute Lyme neuroborreliosis and the frequently discussed post-Lyme disease syndrome are critically discussed. The commonly used diagnostic strategies, as well as the relevance of the lymphocyte transformation test, CD57+/CD3- cell count and CXCL13, are presented. Finally, the therapeutic options are described to give a balanced overview of all aspects of this disease.
Collapse
Affiliation(s)
- Tobias A Rupprecht
- Abteilung für Neurologie, AmperKliniken AG Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia, LGL Oberschleißheim, Germany
| |
Collapse
|
93
|
Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. J Bacteriol 2011; 193:1489-90. [PMID: 21217002 DOI: 10.1128/jb.01521-10] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human Lyme disease is caused by a number of related Borrelia burgdorferi sensu lato species. We report here the complete genome sequence of Borrelia sp. isolate SV1 from Finland. This isolate is to date the closest known relative of B. burgdorferi sensu stricto, but it is sufficiently genetically distinct from that species that it and its close relatives warrant its candidacy for new-species status. We suggest that this isolate should be named "Borrelia finlandensis."
Collapse
|
94
|
BB0844, an RpoS-regulated protein, is dispensable for Borrelia burgdorferi infectivity and maintenance in the mouse-tick infectious cycle. Infect Immun 2010; 79:1208-17. [PMID: 21173312 DOI: 10.1128/iai.01156-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genome of Borrelia burgdorferi, the causative agent of Lyme disease, is comprised of a large linear chromosome and numerous smaller linear and circular plasmids. B. burgdorferi exhibits substantial genomic variation, and previous studies revealed genotype-specific variation at the right chromosomal telomere. A correlation has also been established between genotype and invasiveness. The correlation between chromosome length and genotype and between genotype and invasiveness suggested that a gene(s) at the right chromosome telomere may be required for virulence. Of particular interest was bb0844, an RpoS-regulated gene at the right telomere, the expression of which is induced when the spirochete undergoes adaptation to the mammalian host. The structure of the right chromosomal telomere was examined in 53 B. burgdorferi clinical isolates of various genotypes. Four distinct patterns were observed for bb0844: (i) chromosomal localization, (ii) plasmid localization, (iii) presence on both chromosome and plasmid, and (iv) complete absence. These patterns correlated with the B. burgdorferi genotype. On the basis of available sequence data, we propose a mechanism for the genomic rearrangements that accounts for the variability in bb0844 genomic localization. To further explore the role of BB0844 in the spirochete life cycle, a bb0844 deletion mutant was constructed by allelic exchange, and the viability of wild-type and bb0844 deletion mutants was examined in an experimental mouse-tick infection model. The bb0844 mutant was fully infectious in C3H/HeJ mice by either needle inoculation or tick transmission with B. burgdorferi-infected Ixodes scapularis larvae. Naïve larval ticks acquired both wild-type and mutant spirochetes with equal efficiency from B. burgdorferi-infected mice. The results demonstrate that BB0844 is not required for spirochete viability, pathogenicity, or maintenance in the tick vector or the mammalian host. At present, a defined role for BB0844 in B. burgdorferi cannot be ascertained.
Collapse
|
95
|
High-throughput plasmid content analysis of Borrelia burgdorferi B31 by using Luminex multiplex technology. Appl Environ Microbiol 2010; 77:1483-92. [PMID: 21169439 DOI: 10.1128/aem.01877-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in North America, is an invasive pathogen that causes persistent multiorgan manifestations in humans and other mammals. Genetic studies of this bacterium are complicated by the presence of multiple plasmid replicons, many of which are readily lost during in vitro culture. The analysis of B. burgdorferi plasmid content by plasmid-specific PCR and agarose gel electrophoresis or other existing techniques is informative, but these techniques are cumbersome and challenging to perform in a high-throughput manner. In this study, a PCR-based Luminex assay was developed for determination of the plasmid content of the strain B. burgdorferi B31. This multiplex, high-throughput method allows simultaneous detection of the plasmid contents of many B. burgdorferi strains in a 96-well format. The procedure was used to evaluate the occurrence of plasmid loss in 44 low-passage B. burgdorferi B31 clones and in a library of over 4,000 signature-tagged mutagenesis (STM) transposon mutant clones. This analysis indicated that only 40% of the clones contained all plasmids, with (in order of decreasing frequency) lp5, lp56, lp28-1, lp25, cp9, lp28-4, lp28-2, and lp21 being the most commonly missing plasmids. These results further emphasize the need for careful plasmid analysis in Lyme disease Borrelia studies. Adaptations of this approach may also be useful in the evaluation of plasmid content and chromosomal gene variations in additional Lyme disease Borrelia strains and other organisms with variable genomes and in the correlation of these genetic differences with pathogenesis and other biological properties.
Collapse
|