51
|
Abstract
The evolutionary separated Gram-negative Chlamydiales show a biphasic life cycle and replicate exclusively within eukaryotic host cells. Members of the genus Chlamydia are responsible for many acute and chronic diseases in humans, and Chlamydia-related bacteria are emerging pathogens. We revisit past efforts to detect cell wall material in Chlamydia and Chlamydia-related bacteria in the context of recent breakthroughs in elucidating the underlying cellular and molecular mechanisms of the chlamydial cell wall biosynthesis. In this review, we also discuss the role of cell wall biosynthesis in chlamydial FtsZ-independent cell division and immune modulation. In the past, penicillin susceptibility of an invisible wall was referred to as the "chlamydial anomaly." In light of new mechanistic insights, chlamydiae may now emerge as model systems to understand how a minimal and modified cell wall biosynthetic machine supports bacterial cell division and how cell wall-targeting beta-lactam antibiotics can also act bacteriostatically rather than bactericidal. On the heels of these discussions, we also delve into the effects of other cell wall antibiotics in individual chlamydial lineages.
Collapse
|
52
|
Antibiotic susceptibility of marine Planctomycetes. Antonie van Leeuwenhoek 2019; 112:1273-1280. [DOI: 10.1007/s10482-019-01259-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
53
|
Characterization of the Widely Distributed Novel ECF42 Group of Extracytoplasmic Function σ Factors in Streptomyces venezuelae. J Bacteriol 2018; 200:JB.00437-18. [PMID: 30126941 DOI: 10.1128/jb.00437-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
Extracytoplasmic function σ factors (ECFs) represent the third most abundant fundamental principle of bacterial signal transduction, outranked only by one- and two-component systems. A recent census of ECFs revealed a large number of novel groups whose functions and regulatory mechanisms have not yet been elucidated. Here, we report the characterization of members of the novel group ECF42. ECF42 is a highly abundant and widely distributed ECF group that is present in 11 phyla but is predominantly found in Actinobacteria Analysis of the genomic context conservation did not identify a putative anti-σ factor. Instead, ECF42 genes are cotranscribed with genes encoding a conserved DGPF protein. We have experimentally verified the target promoter of these ECFs (TGTCGA in the -35 region and CGA/TC in the -10 region), which was found upstream of the ECF42-encoding operons in Streptomyces venezuelae, suggesting that ECF42s are positively autoregulated. RNA sequencing (RNA-seq) was performed to define the regulons of the three ECF42 proteins in S. venezuelae, which identified mostly genes encoding DGPF proteins. In contrast to typical ECFs, ECF42 proteins harbor a long C-terminal extension, which is crucial for their activity. Our work provides the first analysis of the function and regulatory mechanism of this novel ECF group that contains a regulatory C-terminal extension.IMPORTANCE In contrast to the one- and two-component signal transduction systems in bacteria, the importance and diversity of ECFs have only recently been recognized in the course of comprehensive phylogenetic and comparative genomics studies. Thus, most of the ECFs still have not been experimentally characterized regarding their physiological functions and regulation mechanisms so far. The physiological roles, target promoter, and target regulons of a novel group of ECFs, ECF42, in S. venezuelae have been investigated in this work. More importantly, members of this group are characterized by a C-terminal extension, which has been verified to harbor a regulatory role in ECF42s. Hence, our work provides an important source for further research on such C-terminal extension containing ECFs.
Collapse
|
54
|
Zou Z, Qin H, Brenner AE, Raghavan R, Millar JA, Gu Q, Xie Z, Kreth J, Merritt J. LytTR Regulatory Systems: A potential new class of prokaryotic sensory system. PLoS Genet 2018; 14:e1007709. [PMID: 30296267 PMCID: PMC6193735 DOI: 10.1371/journal.pgen.1007709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/18/2018] [Accepted: 09/23/2018] [Indexed: 01/28/2023] Open
Abstract
The most commonly studied prokaryotic sensory signal transduction systems include the one-component systems, phosphosignaling systems, extracytoplasmic function (ECF) sigma factor systems, and the various types of second messenger systems. Recently, we described the regulatory role of two separate sensory systems in Streptococcus mutans that jointly control bacteriocin gene expression, natural competence development, as well as a cell death pathway, yet they do not function via any of the currently recognized signal transduction paradigms. These systems, which we refer to as LytTR Regulatory Systems (LRS), minimally consist of two proteins, a transcription regulator from the LytTR Family and a transmembrane protein inhibitor of this transcription regulator. Here, we provide evidence suggesting that LRS are a unique uncharacterized class of prokaryotic sensory system. LRS exist in a basal inactive state. However, when LRS membrane inhibitor proteins are inactivated, an autoregulatory positive feedback loop is triggered due to LRS regulator protein interactions with direct repeat sequences located just upstream of the -35 sequences of LRS operon promoters. Uncharacterized LRS operons are widely encoded by a vast array of Gram positive and Gram negative bacteria as well as some archaea. These operons also contain unique direct repeat sequences immediately upstream of their operon promoters indicating that positive feedback autoregulation is a globally conserved feature of LRS. Despite the surprisingly widespread occurrence of LRS operons, the only characterized examples are those of S. mutans. Therefore, the current study provides a useful roadmap to investigate LRS function in the numerous other LRS-encoding organisms.
Collapse
Affiliation(s)
- Zhengzhong Zou
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Hua Qin
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Amanda E. Brenner
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Rahul Raghavan
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Jess A. Millar
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Qiang Gu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
55
|
Bretl DJ, Ladd KM, Atkinson SN, Müller S, Kirby JR. Suppressor mutations reveal an NtrC-like response regulator, NmpR, for modulation of Type-IV Pili-dependent motility in Myxococcus xanthus. PLoS Genet 2018; 14:e1007714. [PMID: 30346960 PMCID: PMC6211767 DOI: 10.1371/journal.pgen.1007714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/01/2018] [Accepted: 09/26/2018] [Indexed: 12/03/2022] Open
Abstract
Two-component signaling systems (TCS) regulate bacterial responses to environmental signals through the process of protein phosphorylation. Specifically, sensor histidine kinases (SK) recognize signals and propagate the response via phosphorylation of a cognate response regulator (RR) that functions to initiate transcription of specific genes. Signaling within a single TCS is remarkably specific and cross-talk between TCS is limited. However, regulation of the flow of information through complex signaling networks that include closely related TCS remains largely unknown. Additionally, many bacteria utilize multi-component signaling networks which provide additional genetic and biochemical interactions that must be regulated for signaling fidelity, input and output specificity, and phosphorylation kinetics. Here we describe the characterization of an NtrC-like RR that participates in regulation of Type-IV pilus-dependent motility of Myxococcus xanthus and is thus named NmpR, NtrC Modulator of Pili Regulator. A complex multi-component signaling system including NmpR was revealed by suppressor mutations that restored motility to cells lacking PilR, an evolutionarily conserved RR required for expression of pilA encoding the major Type-IV pilus monomer found in many bacterial species. The system contains at least four signaling proteins: a SK with a protoglobin sensor domain (NmpU), a hybrid SK (NmpS), a phospho-sink protein (NmpT), and an NtrC-like RR (NmpR). We demonstrate that ΔpilR bypass suppressor mutations affect regulation of the NmpRSTU multi-component system, such that NmpR activation is capable of restoring expression of pilA in the absence of PilR. Our findings indicate that pilus gene expression in M. xanthus is regulated by an extended network of TCS which interact to refine control of pilus function.
Collapse
Affiliation(s)
- Daniel J. Bretl
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Kayla M. Ladd
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Samantha N. Atkinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Department of Bioinformatics, University of Iowa, Iowa City, Iowa, United States of America
| | - Susanne Müller
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - John R. Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
56
|
Wiegand S, Jogler M, Jogler C. On the maverick Planctomycetes. FEMS Microbiol Rev 2018; 42:739-760. [DOI: 10.1093/femsre/fuy029] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Mareike Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| |
Collapse
|
57
|
Storesund JE, Lanzèn A, García-Moyano A, Reysenbach AL, Øvreås L. Diversity patterns and isolation of Planctomycetes associated with metalliferous deposits from hydrothermal vent fields along the Valu Fa Ridge (SW Pacific). Antonie van Leeuwenhoek 2018; 111:841-858. [PMID: 29423768 DOI: 10.1007/s10482-018-1026-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
The microbial diversity associated with diffuse venting deep-sea hydrothermal deposits is tightly coupled to the geochemistry of the hydrothermal fluids. Previous 16S rRNA gene amplicon sequencing (metabarcoding) of marine iron-hydroxide deposits along the Arctic Mid Ocean Ridge, revealed the presence of diverse bacterial communities associated with these deposits (Storesund and Øvreås in Antonie van Leeuwenhoek 104:569-584, 2013). One of the most abundant and diverse phyla detected was the enigmatic Planctomycetes. Here we report on the comparative analyses of the diversity and distribution patterns of Planctomycetes associated with metalliferous deposits from two diffuse-flow hydrothermal vent fields (Mariner and Vai Lili) from the Valu Fa Ridge in the Southwestern Pacific. Metabarcoding of 16S rRNA genes showed that the major prokaryotic phyla were Proteobacteria (51-73% of all 16S rRNA gene reads), Epsilonbacteraeota (0.5-19%), Bacteriodetes (5-17%), Planctomycetes (0.4-11%), Candidatus Latescibacteria (0-5%) and Marine Benthic Group E (Hydrothermarchaeota) (0-5%). The two different sampling sites differed considerably in overall community composition. The abundance of Planctomycetes also varied substantially between the samples and the sites, with the majority of the sequences affiliated with uncultivated members of the classes Planctomycetacia and Phycisphaerae, and other deep branching lineages. Seven different strains affiliated with the order Planctomycetales were isolated, mostly from the Vai Lili samples, where also the highest Planctomycetales diversity was seen. Most of the isolates were affiliated with the genera Gimesia, Rhodopirellula and Blastopirellula. One isolate was only distantly related to known cultured, but uncharacterized species within the Pir4 group. This study shows that the deep-sea Planctomycetes represent a very heterogeneous group with a high phylogenetic diversity and a substantial potential for novel organism discovery in these deep ocean environments.
Collapse
Affiliation(s)
- Julia Endresen Storesund
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53B, Postboks 7803, 5006, Bergen, Norway
| | - Anders Lanzèn
- AZTI, Marine Research Division, Herrera Kaia, Portualdea s/n, 20110, Pasaia, Spain.,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Antonio García-Moyano
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53B, Postboks 7803, 5006, Bergen, Norway
| | | | - Lise Øvreås
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53B, Postboks 7803, 5006, Bergen, Norway.
| |
Collapse
|
58
|
van Teeseling MCF, Benz R, de Almeida NM, Jetten MSM, Mesman RJ, van Niftrik L. Characterization of the first planctomycetal outer membrane protein identifies a channel in the outer membrane of the anammox bacterium Kuenenia stuttgartiensis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:767-776. [PMID: 29288627 DOI: 10.1016/j.bbamem.2017.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/30/2017] [Accepted: 12/25/2017] [Indexed: 01/27/2023]
Abstract
Planctomycetes are a bacterial phylum known for their complex intracellular compartmentalization. While most Planctomycetes have two compartments, the anaerobic ammonium oxidizing (anammox) bacteria contain three membrane-enclosed compartments. In contrast to a long-standing consensus, recent insights suggested the outermost Planctomycete membrane to be similar to a Gram-negative outer membrane (OM). One characteristic component that differentiates OMs from cytoplasmic membranes (CMs) is the presence of outer membrane proteins (OMPs) featuring a β-barrel structure that facilitates passage of molecules through the OM. Although proteomic and genomic evidence suggested the presence of OMPs in several Planctomycetes, no experimental verification existed of the pore-forming function and localization of these proteins in the outermost membrane of these exceptional microorganisms. Here, we show via lipid bilayer assays that at least two typical OMP-like channel-forming proteins are present in membrane preparations of the anammox bacterium Kuenenia stuttgartiensis. One of these channel-forming proteins, the highly abundant putative OMP Kustd1878, was purified to homogeneity. Analysis of the channel characteristics via lipid bilayer assays showed that Kustd1878 forms a moderately cation-selective channel with a high current noise and an average single-channel conductance of about 170-190pS in 1M KCl. Antibodies were raised against the purified protein and immunogold localization indicated Kustd1878 to be present in the outermost membrane. Therefore, this work clearly demonstrates the presence of OMPs in anammox Planctomycetes and thus firmly adds to the emerging view that Planctomycetes have a Gram-negative cell envelope.
Collapse
Affiliation(s)
- Muriel C F van Teeseling
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Naomi M de Almeida
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Rob J Mesman
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
59
|
Goutam K, Gupta AK, Gopal B. The fused SnoaL_2 domain in the Mycobacterium tuberculosis sigma factor σJ modulates promoter recognition. Nucleic Acids Res 2017; 45:9760-9772. [PMID: 28934483 PMCID: PMC5766207 DOI: 10.1093/nar/gkx609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
Extra-cytoplasmic function (ECF) σ-factors are widespread in bacteria, linking environmental stimuli with changes in gene expression. These transcription factors span several phylogenetically distinct groups and are remarkably diverse in their activation and regulatory mechanisms. Here, we describe the structural and biochemical features of a Mycobacterium tuberculosis ECF factor σJ that suggests that the SnoaL_2 domain at the C-terminus can modulate the activity of this initiation factor in the absence of a cognate regulatory anti-σ factor. M. tuberculosis σJ can bind promoter DNA in vitro; this interaction is substantially impaired by the removal of the SnoaL_2 domain. This finding is consistent with assays to evaluate σJ-mediated gene expression. Structural similarity of the SnoaL_2 domain with epoxide hydrolases also suggests a novel functional role for this domain. The conserved sequence features between M. tuberculosis σJ and other members of the ECF41 family of σ-factors suggest that the regulatory mechanism involving the C-terminal SnoaL_2 domain is likely to be retained in this family of proteins. These studies suggest that the ECF41 family of σ-factors incorporate features of both-the σ70 family and bacterial one-component systems thereby providing a direct mechanism to implement environment-mediated transcription changes.
Collapse
Affiliation(s)
- Kapil Goutam
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Arvind K Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Balasubramanian Gopal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
60
|
Rivas-Marín E, Devos DP. The Paradigms They Are a-Changin': past, present and future of PVC bacteria research. Antonie van Leeuwenhoek 2017; 111:785-799. [PMID: 29058138 PMCID: PMC5945725 DOI: 10.1007/s10482-017-0962-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 11/22/2022]
Abstract
These are exciting times for PVC researchers! The PVC superphylum is composed of the bacterial phyla Planctomycetes, Verrucomicrobia, Chlamydiae (those three founders giving it its name), Lentisphaerae and Kirimatiellaeota as well as some uncultured candidate phyla, such as the Candidatus Omnitrophica (previously known as OP3). Despite early debates, most of the disagreements that surround this group of bacteria have been recently resolved. In this article, we review the history of the study of PVC bacteria, with a particular focus on the misinterpretations that emerged early in the field and their resolution. We begin with a historical perspective that describes the relevant facts of PVC research from the early times when they were not yet termed PVC. Those were controversial times and we refer to them as the “discovery age” of the field. We continue by describing new discoveries due to novel techniques and data that combined with the reinterpretations of old ones have contributed to solve most of the discordances and we refer to these times as the “illumination age” of PVC research. We follow by arguing that we are just entering the “golden age” of PVC research and that the future of this growing community is looking bright. We finish by suggesting a few of the directions that PVC researches might take in the future.
Collapse
Affiliation(s)
- Elena Rivas-Marín
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, University Pablo de Olavide, Carretera Utrera, km 1, 41013, Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, University Pablo de Olavide, Carretera Utrera, km 1, 41013, Seville, Spain.
| |
Collapse
|
61
|
Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, Villa TG. Considerations on bacterial nucleoids. Appl Microbiol Biotechnol 2017; 101:5591-5602. [PMID: 28664324 DOI: 10.1007/s00253-017-8381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Abstract
The classic genome organization of the bacterial chromosome is normally envisaged with all its genetic markers linked, thus forming a closed genetic circle of duplex stranded DNA (dsDNA) and several proteins in what it is called as "the bacterial nucleoid." This structure may be more or less corrugated depending on the physiological state of the bacterium (i.e., resting state or active growth) and is not surrounded by a double membrane as in eukayotic cells. The universality of the closed circle model in bacteria is however slowly changing, as new data emerge in different bacterial groups such as in Planctomycetes and related microorganisms, species of Borrelia, Streptomyces, Agrobacterium, or Phytoplasma. In these and possibly other microorganisms, the existence of complex formations of intracellular membranes or linear chromosomes is typical; all of these situations contributing to weakening the current cellular organization paradigm, i.e., prokaryotic vs eukaryotic cells.
Collapse
Affiliation(s)
- Lucía Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - José Luis R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Angeles Sánchez-Pérez
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tomás G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
62
|
Sineva E, Savkina M, Ades SE. Themes and variations in gene regulation by extracytoplasmic function (ECF) sigma factors. Curr Opin Microbiol 2017; 36:128-137. [PMID: 28575802 DOI: 10.1016/j.mib.2017.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/15/2017] [Accepted: 05/13/2017] [Indexed: 01/08/2023]
Abstract
The ECF sigma family was identified 23 years ago as a distinct group of σ70-like factors. ECF sigma factors have since emerged as a major form of bacterial signal transduction that can be grouped into over 50 phylogenetically distinct subfamilies. Advances in our understanding of these sigma factors and the signaling pathways governing their activity have elucidated conserved features as well as aspects that have evolved over time. All ECF sigma factors are predicted to share a common streamlined domain structure and mode of promoter interaction. The activity of most ECF sigma factors is controlled by an anti-sigma factor. The nature of the anti-sigma factor and the activating signaling pathways appear to be conserved within ECF families, while considerable diversity exists between different families.
Collapse
Affiliation(s)
- Elena Sineva
- Department of Biochemistry and Molecular Biology, 408 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maria Savkina
- Department of Biochemistry and Molecular Biology, 408 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah E Ades
- Department of Biochemistry and Molecular Biology, 408 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
63
|
Guo M, Yang R, Huang C, Liao Q, Fan G, Sun C, Lee SMY. Evolutionary gradient of predicted nuclear localization signals (NLS)-bearing proteins in genomes of family Planctomycetaceae. BMC Microbiol 2017; 17:86. [PMID: 28376722 PMCID: PMC5381049 DOI: 10.1186/s12866-017-0981-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear envelope is considered a key classification marker that distinguishes prokaryotes from eukaryotes. However, this marker does not apply to the family Planctomycetaceae, which has intracellular spaces divided by lipidic intracytoplasmic membranes (ICMs). Nuclear localization signal (NLS), a short stretch of amino acid sequence, destines to transport proteins from cytoplasm into nucleus, and is also associated with the development of nuclear envelope. We attempted to investigate the NLS motifs in Planctomycetaceae genomes to demonstrate the potential molecular transition in the development of intracellular membrane system. RESULTS In this study, we identified NLS-like motifs that have the same amino acid compositions as experimentally identified NLSs in genomes of 11 representative species of family Planctomycetaceae. A total of 15 NLS types and 170 NLS-bearing proteins were detected in the 11 strains. To determine the molecular transformation, we compared NLS-bearing protein abundances in the 11 representative Planctomycetaceae genomes with them in genomes of 16 taxonomically varied microorganisms: nine bacteria, two archaea and five fungi. In the 27 strains, 29 NLS types and 1101 NLS-bearing proteins were identified, principal component analysis showed a significant transitional gradient from bacteria to Planctomycetaceae to fungi on their NLS-bearing protein abundance profiles. Then, we clustered the 993 non-redundant NLS-bearing proteins into 181 families and annotated their involved metabolic pathways. Afterwards, we aligned the ten types of NLS motifs from the 13 families containing NLS-bearing proteins among bacteria, Planctomycetaceae or fungi, considering their diversity, length and origin. A transition towards increased complexity from non-planctomycete bacteria to Planctomycetaceae to archaea and fungi was detected based on the complexity of the 10 types of NLS-like motifs in the 13 NLS-bearing proteins families. CONCLUSION The results of this study reveal that Planctomycetaceae separates slightly from the members of non-planctomycete bacteria but still has substantial differences from fungi, based on the NLS-like motifs and NLS-bearing protein analysis.
Collapse
Affiliation(s)
- Min Guo
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chen Huang
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qiwen Liao
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guangyi Fan
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chenghang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
64
|
Ivanova AA, Naumoff DG, Miroshnikov KK, Liesack W, Dedysh SN. Comparative Genomics of Four Isosphaeraceae Planctomycetes: A Common Pool of Plasmids and Glycoside Hydrolase Genes Shared by Paludisphaera borealis PX4 T, Isosphaera pallida IS1B T, Singulisphaera acidiphila DSM 18658 T, and Strain SH-PL62. Front Microbiol 2017; 8:412. [PMID: 28360896 PMCID: PMC5352709 DOI: 10.3389/fmicb.2017.00412] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/27/2017] [Indexed: 11/22/2022] Open
Abstract
The family Isosphaeraceae accommodates stalk-free planctomycetes with spherical cells, which can be assembled in short chains, long filaments, or aggregates. These bacteria inhabit a wide variety of terrestrial environments, among those the recently described Paludisphaera borealis PX4T that was isolated from acidic boreal wetlands. Here, we analyzed its finished genome in comparison to those of three other members of the Isosphaeraceae: Isosphaera pallida IS1BT, Singulisphaera acidiphila DSM 18658T, and the uncharacterized planctomycete strain SH-PL62. The complete genome of P. borealis PX4T consists of a 7.5 Mb chromosome and two plasmids, 112 and 43 kb in size. Annotation of the genome sequence revealed 5802 potential protein-coding genes of which 2775 could be functionally assigned. The genes encoding metabolic pathways common for chemo-organotrophic bacteria, such as glycolysis, citrate cycle, pentose-phosphate pathway, and oxidative phosphorylation were identified. Several genes involved in the synthesis of peptidoglycan as well as N-methylated ornithine lipids were present in the genome of P. borealis PX4T. A total of 26 giant genes with a size >5 kb were detected. The genome encodes a wide repertoire of carbohydrate-active enzymes (CAZymes) including 44 glycoside hydrolases (GH) and 83 glycosyltransferases (GT) affiliated with 21 and 13 CAZy families, respectively. The most-represented families are GH5, GH13, GH57, GT2, GT4, and GT83. The experimentally determined carbohydrate utilization pattern agrees well with the genome-predicted capabilities. The CAZyme repertoire in P. borealis PX4T is highly similar to that in the uncharacterized planctomycete SH-PL62 and S. acidiphila DSM 18658T, but different to that in the thermophile I. pallida IS1BT. The latter strain has a strongly reduced CAZyme content. In P. borealis PX4T, many of its CAZyme genes are organized in clusters. Contrary to most other members of the order Planctomycetales, all four analyzed Isosphaeraceae planctomycetes have plasmids in numbers varying from one to four. The plasmids from P. borealis PX4T display synteny to plasmids from other family members, providing evidence for their common evolutionary origin.
Collapse
Affiliation(s)
- Anastasia A. Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences,Moscow, Russia
| | - Daniil G. Naumoff
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences,Moscow, Russia
| | - Kirill K. Miroshnikov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences,Moscow, Russia
| | - Werner Liesack
- Max-Planck-Institute for Terrestrial Microbiology,Marburg, Germany
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences,Moscow, Russia
| |
Collapse
|
65
|
Rast P, Glöckner I, Boedeker C, Jeske O, Wiegand S, Reinhardt R, Schumann P, Rohde M, Spring S, Glöckner FO, Jogler C, Jogler M. Three Novel Species with Peptidoglycan Cell Walls form the New Genus Lacunisphaera gen. nov. in the Family Opitutaceae of the Verrucomicrobial Subdivision 4. Front Microbiol 2017; 8:202. [PMID: 28243229 PMCID: PMC5303756 DOI: 10.3389/fmicb.2017.00202] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/27/2017] [Indexed: 11/13/2022] Open
Abstract
The cell wall of free-living bacteria consists of peptidoglycan (PG) and is critical for maintenance of shape as dissolved solutes cause osmotic pressure and challenge cell integrity. Surprisingly, the subdivision 4 of the phylum Verrucomicrobia appears to be exceptional in this respect. Organisms of this subdivision are described to be devoid of muramic or diaminopimelic acid (DAP), usually found as components of PG in bacterial cell walls. Here we describe three novel bacterial strains from a freshwater lake, IG15T, IG16bT, and IG31T, belonging to a new genus in the subdivision 4 of Verrucomicrobia which we found to possess PG as part of their cell walls. Biochemical analysis revealed the presence of DAP not only in these novel strains, but also in Opitutus terrae PB90-1T, the closest described relative of strains IG15T, IG16bT, and IG31T. Furthermore, we found that nearly all genes necessary for peptidoglycan synthesis are present in genomes of subdivision 4 members, as well as in the complete genome sequence of strain IG16bT. In addition, we isolated and visualized PG-sacculi for strain IG16bT. Thus, our results challenge the concept of peptidoglycan-less free-living bacteria. Our polyphasic taxonomy approach places the novel strains in a new genus within the family Opitutaceae, for which the name Lacunisphaera gen. nov. is proposed. Strain designations for IG15T, IG16bT and IG31T are Lacunisphaera parvula sp. nov. (=DSM 26814 = LMG 29468), L. limnophila sp. nov. (=DSM 26815 = LMG 29469) and L. anatis sp. nov. (=DSM 103142 = LMG 29578) respectively, with L. limnophila IG16bT being the type species of the genus.
Collapse
Affiliation(s)
- Patrick Rast
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Ines Glöckner
- Institute for Pharmacology, Toxicology and Clinical Pharmacy, University of Technology Braunschweig, Germany
| | - Christian Boedeker
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Olga Jeske
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Sandra Wiegand
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Richard Reinhardt
- Max Planck Genome Center, Max Planck Institute for Plant Breeding Research Köln, Germany
| | - Peter Schumann
- Department of Central Services, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Stefan Spring
- Department Microorganisms, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| | - Frank O Glöckner
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Christian Jogler
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHBraunschweig, Germany; Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud UniversityNijmegen, Netherlands
| | - Mareike Jogler
- Microbial Cell Biology and Genetics, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH Braunschweig, Germany
| |
Collapse
|
66
|
Kohn T, Heuer A, Jogler M, Vollmers J, Boedeker C, Bunk B, Rast P, Borchert D, Glöckner I, Freese HM, Klenk HP, Overmann J, Kaster AK, Rohde M, Wiegand S, Jogler C. Fuerstia marisgermanicae gen. nov., sp. nov., an Unusual Member of the Phylum Planctomycetes from the German Wadden Sea. Front Microbiol 2016; 7:2079. [PMID: 28066393 PMCID: PMC5177795 DOI: 10.3389/fmicb.2016.02079] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/08/2016] [Indexed: 11/23/2022] Open
Abstract
Members of the phylum Planctomycetes are ubiquitous bacteria that dwell in aquatic and terrestrial habitats. While planctomycetal species are important players in the global carbon and nitrogen cycle, this phylum is still undersampled and only few genome sequences are available. Here we describe strain NH11T, a novel planctomycete obtained from a crustacean shell (Wadden Sea, Germany). The phylogenetically closest related cultivated species is Gimesia maris, sharing only 87% 16S rRNA sequence identity. Previous isolation attempts have mostly yielded members of the genus Rhodopirellula from water of the German North Sea. On the other hand, only one axenic culture of the genus Pirellula was obtained from a crustacean thus far. However, the 16S rRNA gene sequence of strain NH11T shares only 80% sequence identity with the closest relative of both genera, Rhodopirellula and Pirellula. Thus, strain NH11T is unique in terms of origin and phylogeny. While the pear to ovoid shaped cells of strain NH11T are typical planctomycetal, light-, and electron microscopic observations point toward an unusual variation of cell division through budding: during the division process daughter- and mother cells are connected by an unseen thin tubular-like structure. Furthermore, the periplasmic space of strain NH11T was unusually enlarged and differed from previously known planctomycetes. The complete genome of strain NH11T, with almost 9 Mb in size, is among the largest planctomycetal genomes sequenced thus far, but harbors only 6645 protein-coding genes. The acquisition of genomic components by horizontal gene transfer is indicated by the presence of numerous putative genomic islands. Strikingly, 45 “giant genes” were found within the genome of NH11T. Subsequent analysis of all available planctomycetal genomes revealed that Planctomycetes as such are especially rich in “giant genes”. Furthermore, Multilocus Sequence Analysis (MLSA) tree reconstruction support the phylogenetic distance of strain NH11T from other cultivated Planctomycetes of the same phylogenetic cluster. Thus, based on our findings, we propose to classify strain NH11T as Fuerstia marisgermanicae gen. nov., sp. nov., with the type strain NH11T, within the phylum Planctomycetes.
Collapse
Affiliation(s)
- Timo Kohn
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Anja Heuer
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Mareike Jogler
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - John Vollmers
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Christian Boedeker
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Patrick Rast
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Daniela Borchert
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Ines Glöckner
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Heike M Freese
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | | | - Jörg Overmann
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Anne-Kristin Kaster
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz Centre for Infectious Disease Braunschweig, Germany
| | - Sandra Wiegand
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Christian Jogler
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| |
Collapse
|
67
|
Rivas-Marín E, Canosa I, Devos DP. Evolutionary Cell Biology of Division Mode in the Bacterial Planctomycetes- Verrucomicrobia- Chlamydiae Superphylum. Front Microbiol 2016; 7:1964. [PMID: 28018303 PMCID: PMC5147048 DOI: 10.3389/fmicb.2016.01964] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 11/30/2022] Open
Abstract
Bacteria from the Planctomycetes, Verrucomicrobia, and Chlamydiae (PVC) superphylum are exceptions to the otherwise dominant mode of division by binary fission, which is based on the interaction between the FtsZ protein and the peptidoglycan (PG) biosynthesis machinery. Some PVC bacteria are deprived of the FtsZ protein and were also thought to lack PG. How these bacteria divide is still one of the major mysteries of microbiology. The presence of PG has recently been revealed in Planctomycetes and Chlamydiae, and proteins related to PG synthesis have been shown to be implicated in the division process in Chlamydiae, providing important insights into PVC mechanisms of division. Here, we review the historical lack of observation of PG in PVC bacteria, its recent detection in two phyla and its involvement in chlamydial cell division. Based on the detection of PG-related proteins in PVC proteomes, we consider the possible evolution of the diverse division mechanisms in these bacteria. We conclude by summarizing what is known and what remains to be understood about the evolutionary cell biology of PVC division modes.
Collapse
Affiliation(s)
- Elena Rivas-Marín
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide Seville, Spain
| | - Inés Canosa
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide Seville, Spain
| |
Collapse
|
68
|
Jeske O, Surup F, Ketteniß M, Rast P, Förster B, Jogler M, Wink J, Jogler C. Developing Techniques for the Utilization of Planctomycetes As Producers of Bioactive Molecules. Front Microbiol 2016; 7:1242. [PMID: 27594849 PMCID: PMC4990742 DOI: 10.3389/fmicb.2016.01242] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/26/2016] [Indexed: 01/21/2023] Open
Abstract
Planctomycetes are conspicuous, ubiquitous, environmentally important bacteria. They can attach to various surfaces in aquatic habitats and form biofilms. Their unique FtsZ-independent budding cell division mechanism is associated with slow growth and doubling times from 6 h up to 1 month. Despite this putative disadvantage in the struggle to colonize surfaces, Planctomycetes are frequently associated with aquatic phototrophic organisms such as diatoms, cyanobacteria or kelp, whereby Planctomycetes can account for up to 50% of the biofilm-forming bacterial population. Consequently, Planctomycetes were postulated to play an important role in carbon utilization, for example as scavengers after phototrophic blooms. However, given their observed slow growth, such findings are surprising since other faster- growing heterotrophs tend to colonize similar ecological niches. Accordingly, Planctomycetes were suspected to produce antibiotics for habitat protection in response to the attachment on phototrophs. Recently, we demonstrated their genomic potential to produce non-ribosomal peptides, polyketides, bacteriocins, and terpenoids that might have antibiotic activities. In this study, we describe the development of a pipeline that consists of tools and procedures to cultivate Planctomycetes for the production of antimicrobial compounds in a chemically defined medium and a procedure to chemically mimic their interaction with other organisms such as for example cyanobacteria. We evaluated and adjusted screening assays to enable the hunt for planctomycetal antibiotics. As proof of principle, we demonstrate antimicrobial activities of planctomycetal extracts from Planctopirus limnophila DSM 3776, Rhodopirellula baltica DSM 10527, and the recently isolated strain Pan216. By combining UV/Vis and high resolution mass spectrometry data from high-performance liquid chromatography fractionations with growth inhibition of indicator strains, we were able to assign the antibiotic activity to candidate peaks related to planctomycetal antimicrobial compounds. The MS analysis points toward the production of novel bioactive molecules with novel structures. Consequently, we developed a large scale cultivation procedure to allow future structural elucidation of such compounds. Our findings might have implications for the discovery of novel antibiotics as Planctomycetes represent a yet untapped resource that could be developed by employing the tools and methods described in this study.
Collapse
Affiliation(s)
- Olga Jeske
- Department of Microbial Cell Biology and Genetics, Leibniz Institute DSMZ, Braunschweig Germany
| | - Frank Surup
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, BraunschweigGermany; German Centre for Infection Research Association, Partner Site Hannover-Braunschweig, BraunschweigGermany
| | - Marcel Ketteniß
- Department of Microbial Cell Biology and Genetics, Leibniz Institute DSMZ, Braunschweig Germany
| | - Patrick Rast
- Department of Microbial Cell Biology and Genetics, Leibniz Institute DSMZ, Braunschweig Germany
| | - Birthe Förster
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, BraunschweigGermany; German Centre for Infection Research Association, Partner Site Hannover-Braunschweig, BraunschweigGermany
| | - Mareike Jogler
- Department of Microbial Cell Biology and Genetics, Leibniz Institute DSMZ, Braunschweig Germany
| | - Joachim Wink
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig Germany
| | - Christian Jogler
- Department of Microbial Cell Biology and Genetics, Leibniz Institute DSMZ, Braunschweig Germany
| |
Collapse
|
69
|
Graça AP, Calisto R, Lage OM. Planctomycetes as Novel Source of Bioactive Molecules. Front Microbiol 2016; 7:1241. [PMID: 27570520 PMCID: PMC4982196 DOI: 10.3389/fmicb.2016.01241] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/26/2016] [Indexed: 11/13/2022] Open
Abstract
Marine environments are a fruitful source of bioactive compounds some of which are the newest leading drugs in medicinal therapeutics. Of particular importance are organisms like sponges and macroalgae and their associated microbiome. Planctomycetes, abundant in macroalgae biofilms, are promising producers of bioactive compounds since they share characteristics, like large genomes and complex life cycles, with the most bioactive bacteria, the Actinobacteria. Furthermore, genome mining revealed the presence of secondary metabolite pathway genes or clusters in 13 analyzed Planctomycetes genomes. In order to assess the antimicrobial production of a large and diverse collection of Planctomycetes isolated from macroalgae from the Portuguese coast, molecular, and bioactivity assays were performed in 40 bacteria from several taxa. Two genes commonly associated with the production of bioactive compounds, nonribosomal peptide synthetases (NRPS), and polyketide synthases (PKS) genes were screened. Molecular analysis revealed that 95% of the planctomycetes potentially have one or both secondary bioactive genes; 85% amplified with PKS-I primers and 55% with NRPS primers. Some of the amplified genes were confirmed to be involved in secondary metabolite pathways. Using bioinformatic tools their biosynthetic pathways were predicted. The secondary metabolite genomic potential of strains LF1, UC8, and FC18 was assessed using in silico analysis of their genomes. Aqueous and organic extracts of the Planctomycetes were evaluated for their antimicrobial activity against an environmental Escherichia coli, E. coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, and a clinical isolate of Candida albicans. The screening assays showed a high number of planctomycetes with bioactive extracts revealing antifungal (43%) and antibacterial (54%) activity against C. albicans and B. subtilis, respectively. Bioactivity was observed in strains from Rhodopirellula lusitana, R. rubra, R. baltica, Roseimaritima ulvae, and Planctomyces brasiliensis. This study confirms the bioactive capacity of Planctomycetes to produce antimicrobial compounds and encourages further studies envisaging molecule isolation and characterization for the possible discovery of new drugs.
Collapse
Affiliation(s)
- Ana P Graça
- Departamento de Biologia, Faculdade de Ciências, Universidade do PortoPorto, Portugal; CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental-Universidade do PortoPorto, Portugal
| | - Rita Calisto
- Departamento de Biologia, Faculdade de Ciências, Universidade do PortoPorto, Portugal; CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental-Universidade do PortoPorto, Portugal
| | - Olga M Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do PortoPorto, Portugal; CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental-Universidade do PortoPorto, Portugal
| |
Collapse
|
70
|
Abstract
The Planctomycetes genus Gemmata is represented by both uncultured organisms and cultured Gemmata obscuriglobus and 'Gemmata massiliana' organisms. Their plasmidless 9.2 Mb genomes encode a complex cell plan, cell signaling capacities, antibiotic and trace metal resistance and multidrug resistance efflux pumps. As they lack iron metabolism pathways, they are fastidious. Gemmata spp. are mainly found in aquatic and soil environments but have also been found in hospital water networks in close proximity to patients, in animals, on human skin, the gut microbiota and in the blood of aplastic leukemic patients. Due to their panoply of attack and defense mechanisms and their recently demonstrated association with humans, the potential of Gemmata organisms to behave as opportunistic pathogens should be more widely recognized.
Collapse
Affiliation(s)
- Rita Aghnatios
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. Faculté de Médecine, Marseille 13005, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. Faculté de Médecine, Marseille 13005, France
| |
Collapse
|
71
|
Kim JW, Brawley SH, Prochnik S, Chovatia M, Grimwood J, Jenkins J, LaButti K, Mavromatis K, Nolan M, Zane M, Schmutz J, Stiller JW, Grossman AR. Genome Analysis of Planctomycetes Inhabiting Blades of the Red Alga Porphyra umbilicalis. PLoS One 2016; 11:e0151883. [PMID: 27015628 PMCID: PMC4807772 DOI: 10.1371/journal.pone.0151883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/04/2016] [Indexed: 12/28/2022] Open
Abstract
Porphyra is a macrophytic red alga of the Bangiales that is important ecologically and economically. We describe the genomes of three bacteria in the phylum Planctomycetes (designated P1, P2 and P3) that were isolated from blades of Porphyra umbilicalis (P.um.1). These three Operational Taxonomic Units (OTUs) belong to distinct genera; P2 belongs to the genus Rhodopirellula, while P1 and P3 represent undescribed genera within the Planctomycetes. Comparative analyses of the P1, P2 and P3 genomes show large expansions of distinct gene families, which can be widespread throughout the Planctomycetes (e.g., protein kinases, sensors/response regulators) and may relate to specific habitat (e.g., sulfatase gene expansions in marine Planctomycetes) or phylogenetic position. Notably, there are major differences among the Planctomycetes in the numbers and sub-functional diversity of enzymes (e.g., sulfatases, glycoside hydrolases, polysaccharide lyases) that allow these bacteria to access a range of sulfated polysaccharides in macroalgal cell walls. These differences suggest that the microbes have varied capacities for feeding on fixed carbon in the cell walls of P.um.1 and other macrophytic algae, although the activities among the various bacteria might be functionally complementary in situ. Additionally, phylogenetic analyses indicate augmentation of gene functions through expansions arising from gene duplications and horizontal gene transfers; examples include genes involved in cell wall degradation (e.g., κ-carrageenase, alginate lyase, fucosidase) and stress responses (e.g., efflux pump, amino acid transporter). Finally P1 and P2 contain various genes encoding selenoproteins, many of which are enzymes that ameliorate the impact of environmental stresses that occur in the intertidal habitat.
Collapse
Affiliation(s)
- Jay W. Kim
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| | - Susan H. Brawley
- School of Marine Sciences, University of Maine, Orono, Maine, United States of America
| | - Simon Prochnik
- Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Mansi Chovatia
- Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jane Grimwood
- Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Jerry Jenkins
- Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Kurt LaButti
- Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Konstantinos Mavromatis
- Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Matt Nolan
- Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Matthew Zane
- Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jeremy Schmutz
- Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - John W. Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Arthur R. Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| |
Collapse
|
72
|
Marcos-Torres FJ, Pérez J, Gómez-Santos N, Moraleda-Muñoz A, Muñoz-Dorado J. In depth analysis of the mechanism of action of metal-dependent sigma factors: characterization of CorE2 from Myxococcus xanthus. Nucleic Acids Res 2016; 44:5571-84. [PMID: 26951374 PMCID: PMC4937300 DOI: 10.1093/nar/gkw150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/29/2016] [Indexed: 11/13/2022] Open
Abstract
Extracytoplasmic function sigma factors represent the third pillar of signal-transduction mechanisms in bacteria. The variety of stimuli they recognize and mechanisms of action they use have allowed their classification into more than 50 groups. We have characterized CorE2 from Myxococcus xanthus, which belongs to group ECF44 and upregulates the expression of two genes when it is activated by cadmium and zinc. Sigma factors of this group contain a Cys-rich domain (CRD) at the C terminus which is essential for detecting metals. Point mutations at the six Cys residues of the CRD have revealed the contribution of each residue to CorE2 activity. Some of them are essential, while others are either dispensable or their mutations only slightly affect the activity of the protein. However, importantly, mutation of Cys174 completely shifts the specificity of CorE2 from cadmium to copper, indicating that the Cys arrangement of the CRD determines the metal specificity. Moreover, the conserved CxC motif located between the σ2 domain and the σ4.2 region has also been found to be essential for activity. The results presented here contribute to our understanding of the mechanism of action of metal-dependent sigma factors and help to define new common features of the members of this group of regulators.
Collapse
Affiliation(s)
- Francisco Javier Marcos-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071 Granada, Spain
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071 Granada, Spain
| | - Nuria Gómez-Santos
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071 Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071 Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071 Granada, Spain
| |
Collapse
|
73
|
(Actino)Bacterial “intelligence”: using comparative genomics to unravel the information processing capacities of microbes. Curr Genet 2016; 62:487-98. [DOI: 10.1007/s00294-016-0569-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 01/24/2023]
|
74
|
Aghnatios R, Cayrou C, Garibal M, Robert C, Azza S, Raoult D, Drancourt M. Draft genome of Gemmata massiliana sp. nov, a water-borne Planctomycetes species exhibiting two variants. Stand Genomic Sci 2015; 10:120. [PMID: 26649148 PMCID: PMC4672568 DOI: 10.1186/s40793-015-0103-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/17/2015] [Indexed: 12/03/2022] Open
Abstract
Gemmata massiliana is a new Planctomycetes bacterium isolated from a hospital water network in France, using a new culture medium. It is an aerobic microorganism with optimal growth at pH 8, at 30 °C and salinity ≤ 1.25 % NaCl. G. massiliana is resistant to β-lactam antibiotics, due to lack of peptidoglycan in its cell wall.G. massiliana shares a 97 % 16S rRNA gene sequence similarity with the nearest species, Gemmata obscuriglobus; and 99 % similarity with unnamed soil isolates. Its 9,249,437-bp genome consists in one chromosome and no detectable plasmid and has a 64.07 % G + C content, 32.94 % of genes encoding for hypothetical proteins. The genome contains an incomplete 19.6-kb phage sequence, 26 CRISPRs, 3 CAS and 15 clusters of secondary metabolites. G. massiliana genome increases knowledge of a poorly known world of bacteria.
Collapse
Affiliation(s)
- Rita Aghnatios
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, Inserm 1095, Faculté de médecine, 27 Boulevard jean Moulin, 13385 Marseille, cedex 05, France
| | - Caroline Cayrou
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, Inserm 1095, Faculté de médecine, 27 Boulevard jean Moulin, 13385 Marseille, cedex 05, France
| | - Marc Garibal
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, Inserm 1095, Faculté de médecine, 27 Boulevard jean Moulin, 13385 Marseille, cedex 05, France
| | - Catherine Robert
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, Inserm 1095, Faculté de médecine, 27 Boulevard jean Moulin, 13385 Marseille, cedex 05, France
| | - Said Azza
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, Inserm 1095, Faculté de médecine, 27 Boulevard jean Moulin, 13385 Marseille, cedex 05, France
| | - Didier Raoult
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, Inserm 1095, Faculté de médecine, 27 Boulevard jean Moulin, 13385 Marseille, cedex 05, France
| | - Michel Drancourt
- Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, Inserm 1095, Faculté de médecine, 27 Boulevard jean Moulin, 13385 Marseille, cedex 05, France
| |
Collapse
|
75
|
Paget MS. Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution. Biomolecules 2015; 5:1245-65. [PMID: 26131973 PMCID: PMC4598750 DOI: 10.3390/biom5031245] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/20/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022] Open
Abstract
Sigma factors are multi-domain subunits of bacterial RNA polymerase (RNAP) that play critical roles in transcription initiation, including the recognition and opening of promoters as well as the initial steps in RNA synthesis. This review focuses on the structure and function of the major sigma-70 class that includes the housekeeping sigma factor (Group 1) that directs the bulk of transcription during active growth, and structurally-related alternative sigma factors (Groups 2-4) that control a wide variety of adaptive responses such as morphological development and the management of stress. A recurring theme in sigma factor control is their sequestration by anti-sigma factors that occlude their RNAP-binding determinants. Sigma factors are then released through a wide variety of mechanisms, often involving branched signal transduction pathways that allow the integration of distinct signals. Three major strategies for sigma release are discussed: regulated proteolysis, partner-switching, and direct sensing by the anti-sigma factor.
Collapse
Affiliation(s)
- Mark S Paget
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
76
|
Kamneva OK, Poudel S, Ward NL. Proteins Related to the Type I Secretion System Are Associated with Secondary SecA_DEAD Domain Proteins in Some Species of Planctomycetes, Verrucomicrobia, Proteobacteria, Nitrospirae and Chlorobi. PLoS One 2015; 10:e0129066. [PMID: 26030905 PMCID: PMC4452313 DOI: 10.1371/journal.pone.0129066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 05/04/2015] [Indexed: 01/09/2023] Open
Abstract
A number of bacteria belonging to the PVC (Planctomycetes-Verrucomicrobia-Chlamydiae) super-phylum contain unusual ribosome-bearing intracellular membranes. The evolutionary origins and functions of these membranes are unknown. Some proteins putatively associated with the presence of intracellular membranes in PVC bacteria contain signal peptides. Signal peptides mark proteins for translocation across the cytoplasmic membrane in prokaryotes, and the membrane of the endoplasmic reticulum in eukaryotes, by highly conserved Sec machinery. This suggests that proteins might be targeted to intracellular membranes in PVC bacteria via the Sec pathway. Here, we show that canonical signal peptides are significantly over-represented in proteins preferentially present in PVC bacteria possessing intracellular membranes, indicating involvement of Sec translocase in their cellular targeting. We also characterized Sec proteins using comparative genomics approaches, focusing on the PVC super-phylum. While we were unable to detect unique changes in Sec proteins conserved among membrane-bearing PVC species, we identified (1) SecA ATPase domain re-arrangements in some Planctomycetes, and (2) secondary SecA_DEAD domain proteins in the genomes of some Planctomycetes, Verrucomicrobia, Proteobacteria, Nitrospirae and Chlorobi. This is the first report of potentially duplicated SecA in Gram-negative bacteria. The phylogenetic distribution of secondary SecA_DEAD domain proteins suggests that the presence of these proteins is not related to the occurrence of PVC endomembranes. Further genomic analysis showed that secondary SecA_DEAD domain proteins are located within genomic neighborhoods that also encode three proteins possessing domains specific for the Type I secretion system.
Collapse
Affiliation(s)
- Olga K. Kamneva
- Department of Biology, Stanford University, Stanford, CA, 94305–5020, United States of America
| | - Saroj Poudel
- Computer Science Department, Montana State University, Bozeman, MT, 59717, United States of America
| | - Naomi L. Ward
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, United States of America
- Department of Botany, University of Wyoming, Laramie, WY, 82071, United States of America
- Program in Ecology, University of Wyoming, Laramie, WY, 82071, United States of America
| |
Collapse
|
77
|
Environmental Sensing in Actinobacteria: a Comprehensive Survey on the Signaling Capacity of This Phylum. J Bacteriol 2015; 197:2517-35. [PMID: 25986905 DOI: 10.1128/jb.00176-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Signal transduction is an essential process that allows bacteria to sense their complex and ever-changing environment and adapt accordingly. Three distinct major types of signal-transducing proteins (STPs) can be distinguished: one-component systems (1CSs), two-component systems (2CSs), and extracytoplasmic-function σ factors (ECFs). Since Actinobacteria are particularly rich in STPs, we comprehensively investigated the abundance and diversity of STPs encoded in 119 actinobacterial genomes, based on the data stored in the Microbial Signal Transduction (MiST) database. Overall, we observed an approximately linear correlation between the genome size and the total number of encoded STPs. About half of all membrane-anchored 1CSs are protein kinases. For both 1CSs and 2CSs, a detailed analysis of the domain architectures identified novel proteins that are found only in actinobacterial genomes. Many actinobacterial genomes are particularly enriched for ECFs. As a result of this study, almost 500 previously unclassified ECFs could be classified into 18 new ECF groups. This comprehensive survey demonstrates that actinobacterial genomes encode previously unknown STPs, which may represent new mechanisms of signal transduction and regulation. This information not only expands our knowledge of the diversity of bacterial signal transduction but also provides clear and testable hypotheses about their mechanisms, which can serve as starting points for experimental studies. IMPORTANCE In the wake of the genomic era, with its enormous increase in the amount of available sequence information, the challenge has now shifted toward making sense and use of this treasure chest. Such analyses are a prerequisite to provide meaningful information that can help guide subsequent experimental efforts, such as mechanistic studies on novel signaling strategies. This work provides a comprehensive analysis of signal transduction proteins from 119 actinobacterial genomes. We identify, classify, and describe numerous novel and conserved signaling devices. Hence, our work serves as an important resource for any researcher interested in signal transduction of this important bacterial phylum, which contains organisms of ecological, biotechnological, and medical relevance.
Collapse
|
78
|
van Teeseling MCF, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, VanNieuwenhze MS, Kartal B, van Niftrik L. Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun 2015; 6:6878. [PMID: 25962786 PMCID: PMC4432595 DOI: 10.1038/ncomms7878] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
Abstract
Planctomycetes are intriguing microorganisms that apparently lack peptidoglycan, a structure that controls the shape and integrity of almost all bacterial cells. Therefore, the planctomycetal cell envelope is considered exceptional and their cell plan uniquely compartmentalized. Anaerobic ammonium-oxidizing (anammox) Planctomycetes play a key role in the global nitrogen cycle by releasing fixed nitrogen back to the atmosphere as N2. Here using a complementary array of state-of-the-art techniques including continuous culturing, cryo-transmission electron microscopy, peptidoglycan-specific probes and muropeptide analysis, we show that the anammox bacterium Kuenenia stuttgartiensis contains peptidoglycan. On the basis of the thickness, composition and location of peptidoglycan in K. stuttgartiensis, we propose to redefine Planctomycetes as Gram-negative bacteria. Our results demonstrate that Planctomycetes are not an exception to the universal presence of peptidoglycan in bacteria. Planctomycetes are unusual bacteria with complex intracellular compartments and an apparent lack of peptidoglycan in their cell walls. Here, van Teeseling et al. show that the cell wall of an anammox planctomycete does contain peptidoglycan, and propose to redefine planctomycetes as Gram-negative bacteria.
Collapse
Affiliation(s)
- Muriel C F van Teeseling
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Rob J Mesman
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Erkin Kuru
- Interdisciplinary Biochemistry Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Akbar Espaillat
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå SE-90187, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå SE-90187, Sweden
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | - Boran Kartal
- 1] Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands [2] Department of Biochemistry and Microbiology, Laboratory of Microbiology, Gent University, Gent 9000, Belgium
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
79
|
Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C, Jogler M, Bollschweiler D, Rohde M, Mayer C, Engelhardt H, Spring S, Jogler C. Planctomycetes do possess a peptidoglycan cell wall. Nat Commun 2015; 6:7116. [PMID: 25964217 PMCID: PMC4432640 DOI: 10.1038/ncomms8116] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/07/2015] [Indexed: 11/28/2022] Open
Abstract
Most bacteria contain a peptidoglycan (PG) cell wall, which is critical for
maintenance of shape and important for cell division. In contrast, Planctomycetes
have been proposed to produce a proteinaceous cell wall devoid of PG. The apparent
absence of PG has been used as an argument for the putative planctomycetal ancestry
of all bacterial lineages. Here we show, employing multiple bioinformatic methods,
that planctomycetal genomes encode proteins required for PG synthesis. Furthermore,
we biochemically demonstrate the presence of the sugar and the peptide components of
PG in Planctomycetes. In addition, light and electron microscopic experiments reveal
planctomycetal PG sacculi that are susceptible to lysozyme treatment. Finally,
cryo-electron tomography demonstrates that Planctomycetes possess a typical PG cell
wall and that their cellular architecture is thus more similar to that of other
Gram-negative bacteria. Our findings shed new light on the cellular architecture and
cell division of the maverick Planctomycetes. Planctomycetes appear to differ from all other bacteria in their
cellular organization and their apparent lack of a peptidoglycan (PG) cell wall. Here
Jeske et al. show that Planctomycetes do possess a typical PG cell wall and that
their cellular architecture resembles that of Gram-negative bacteria.
Collapse
Affiliation(s)
- Olga Jeske
- Independent Junior Research Group Microbial Cell Biology and Genetics, Leibniz Institute-DSMZ, Inhoffenstraße 7b, Braunschweig 38124, Germany
| | - Margarete Schüler
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Peter Schumann
- Department of Microbiology, Leibniz Institute-DSMZ, Inhoffenstraße 7b, Braunschweig 38124, Germany
| | - Alexander Schneider
- Department of Microbiology and Biotechnology, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Christian Boedeker
- Independent Junior Research Group Microbial Cell Biology and Genetics, Leibniz Institute-DSMZ, Inhoffenstraße 7b, Braunschweig 38124, Germany
| | - Mareike Jogler
- Independent Junior Research Group Microbial Cell Biology and Genetics, Leibniz Institute-DSMZ, Inhoffenstraße 7b, Braunschweig 38124, Germany
| | - Daniel Bollschweiler
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Manfred Rohde
- Research Group Molecular Mechanisms of Streptococci, Helmholtz Center for Infection Research GmbH, Inhoffenstraße 7, Braunschweig 38124, Germany
| | - Christoph Mayer
- Department of Microbiology and Biotechnology, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Harald Engelhardt
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Stefan Spring
- Department of Microbiology, Leibniz Institute-DSMZ, Inhoffenstraße 7b, Braunschweig 38124, Germany
| | - Christian Jogler
- Independent Junior Research Group Microbial Cell Biology and Genetics, Leibniz Institute-DSMZ, Inhoffenstraße 7b, Braunschweig 38124, Germany
| |
Collapse
|
80
|
|
81
|
Dworkin J. The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans. Annu Rev Microbiol 2014; 68:137-54. [PMID: 24847956 DOI: 10.1146/annurev-micro-091213-112844] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptidoglycan serves as a key structure of the bacterial cell by determining cell shape and providing resistance to internal turgor pressure. However, in addition to these essential and well-studied functions, bacterial signaling by peptidoglycan fragments, or muropeptides, has been demonstrated by recent work. Actively growing bacteria release muropeptides as a consequence of cell wall remodeling during elongation and division. Therefore, the presence of muropeptide synthesis is indicative of growth-promoting conditions and may serve as a broadly conserved signal for nongrowing cells to reinitiate growth. In addition, muropeptides serve as signals between bacteria and eukaryotic organisms during both pathogenic and symbiotic interactions. The increasingly appreciated role of the microbiota in metazoan organisms suggests that muropeptide signaling likely has important implications for homeostatic mammalian physiology.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032;
| |
Collapse
|
82
|
Guo M, Zhou Q, Zhou Y, Yang L, Liu T, Yang J, Chen Y, Su L, Xu J, Chen J, Liu F, Chen J, Dai W, Ni P, Fang C, Yang R. Genomic evolution of 11 type strains within family Planctomycetaceae. PLoS One 2014; 9:e86752. [PMID: 24489782 PMCID: PMC3906078 DOI: 10.1371/journal.pone.0086752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
The species in family Planctomycetaceae are ideal groups for investigating the origin of eukaryotes. Their cells are divided by a lipidic intracytoplasmic membrane and they share a number of eukaryote-like molecular characteristics. However, their genomic structures, potential abilities, and evolutionary status are still unknown. In this study, we searched for common protein families and a core genome/pan genome based on 11 sequenced species in family Planctomycetaceae. Then, we constructed phylogenetic tree based on their 832 common protein families. We also annotated the 11 genomes using the Clusters of Orthologous Groups database. Moreover, we predicted and reconstructed their core/pan metabolic pathways using the KEGG (Kyoto Encyclopedia of Genes and Genomes) orthology system. Subsequently, we identified genomic islands (GIs) and structural variations (SVs) among the five complete genomes and we specifically investigated the integration of two Planctomycetaceae plasmids in all 11 genomes. The results indicate that Planctomycetaceae species share diverse genomic variations and unique genomic characteristics, as well as have huge potential for human applications.
Collapse
Affiliation(s)
- Min Guo
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Yizhuang Zhou
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Jinlong Yang
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Longxiang Su
- Medical College, Nankai University, Tianjin, China
| | - Jin Xu
- BGI-Shenzhen, Shenzhen, China
| | - Jing Chen
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | - Chengxiang Fang
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Ruifu Yang
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Bioenergy, BGI-Shenzhen, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
83
|
Paparoditis P, Vastermark A, Le AJ, Fuerst JA, Saier MH. Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:193-215. [PMID: 23969110 PMCID: PMC3905805 DOI: 10.1016/j.bbamem.2013.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 02/04/2023]
Abstract
Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Database (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a high degree of confidence, and these fell into several different classes. R. baltica encodes in its genome channels (12%), secondary carriers (33%), and primary active transport proteins (41%) in addition to classes represented in smaller numbers. Relative to most non-marine bacteria, R. baltica possesses a larger number of sodium-dependent symporters but fewer proton-dependent symporters, and it has dimethylsulfoxide (DMSO) and trimethyl-amine-oxide (TMAO) reductases, consistent with its Na(+)-rich marine environment. R. baltica also possesses a Na(+)-translocating NADH:quinone dehydrogenase (Na(+)-NDH), a Na(+) efflux decarboxylase, two Na(+)-exporting ABC pumps, two Na(+)-translocating F-type ATPases, two Na(+):H(+) antiporters and two K(+):H(+) antiporters. Flagellar motility probably depends on the sodium electrochemical gradient. Surprisingly, R. baltica also has a complete set of H(+)-translocating electron transport complexes similar to those present in α-proteobacteria and eukaryotic mitochondria. The transport proteins identified proved to be typical of the bacterial domain with little or no indication of the presence of eukaryotic-type transporters. However, novel functionally uncharacterized multispanning membrane proteins were identified, some of which are found only in Rhodopirellula species, but others of which are widely distributed in bacteria. The analyses lead to predictions regarding the physiology, ecology and evolution of R. baltica.
Collapse
Affiliation(s)
- Philipp Paparoditis
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Ake Vastermark
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Andrew J. Le
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - John A. Fuerst
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
84
|
PVC bacteria: variation of, but not exception to, the Gram-negative cell plan. Trends Microbiol 2014; 22:14-20. [DOI: 10.1016/j.tim.2013.10.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/17/2022]
|
85
|
Devos DP. Re-interpretation of the evidence for the PVC cell plan supports a Gram-negative origin. Antonie van Leeuwenhoek 2013; 105:271-4. [DOI: 10.1007/s10482-013-0087-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/22/2013] [Indexed: 11/30/2022]
|
86
|
Devos DP, Jogler C, Fuerst JA. The 1st EMBO workshop on PVC bacteria-Planctomycetes-Verrucomicrobia-Chlamydiae superphylum: exceptions to the bacterial definition? Antonie van Leeuwenhoek 2013; 104:443-9. [PMID: 24052364 DOI: 10.1007/s10482-013-0026-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
Abstract
The PVC superphylum is a phylogenetically supported collection of various related bacterial phyla that comprise unusual characteristics and traits. The 'PVC' abbreviation derives from Planctomycetes, Verrucomicrobia and Chlamydiae as members of this superphylum, while additional bacterial phyla are related. There has recently been increasing and exciting interest in the cell biology, physiology and ecology of members of this superphylum, including evolutionary implications of the complex cell organization of some species. It is timely that international researchers in the PVC superphylum field met to discuss these developments. The first meeting entirely dedicated to those bacteria, the EMBO workshop "PVC superphylum: Exceptions to the bacterial definition" was held at the Heidelberg University to catalyze the formation of a vital scientific community supporting PVC-bacterial research. More than 45 investigators from more than 20 countries (PIs, senior scientists and students) attended the meeting and produced a great starting point for future collaborative research. This Special Issue will focus on the EMBO-PVC meeting. This Perspective briefly summarizes the history of PVC-research, focusing on the key findings and provides a brief summary of the meeting with a focus on the major questions that arose during discussion and that might influence the research in the years to come.
Collapse
Affiliation(s)
- Damien P Devos
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany,
| | | | | |
Collapse
|
87
|
Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 2013; 37:634-63. [DOI: 10.1111/1574-6976.12028] [Citation(s) in RCA: 1074] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/22/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022] Open
|
88
|
From genome mining to phenotypic microarrays: Planctomycetes as source for novel bioactive molecules. Antonie van Leeuwenhoek 2013; 104:551-67. [PMID: 23982431 DOI: 10.1007/s10482-013-0007-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/14/2013] [Indexed: 01/19/2023]
Abstract
Most members of the phylum Planctomycetes share many unusual traits that are unique for bacteria, since they divide independent of FtsZ through asymmetric budding, possess a complex life cycle and comprise a compartmentalized cell plan. Besides their complex cell biological features Planctomycetes are environmentally important and play major roles in global matter fluxes. Such features have been successfully employed in biotechnological applications such as the anaerobic oxidation of ammonium in wastewater treatment plants or the utilization of enzymes for biotechnological processes. However, little is known about planctomycetal secondary metabolites. This is surprising as Planctomycetes have several key features in common with known producers of small bioactive molecules such as Streptomycetes or Myxobacteria: a complex life style and large genome sizes. Planctomycetal genomes with an average size of 6.9 MB appear as tempting targets for drug discovery approaches. To enable the hunt for bioactive molecules from Planctomycetes, we performed a comprehensive genome mining approach employing the antiSMASH secondary metabolite identification pipeline and found 102 candidate genes or clusters within the analyzed 13 genomes. However, as most genes and operons related to secondary metabolite production are exclusively expressed under certain environmental conditions, we optimized Phenotype MicroArray protocols for Rhodopirellula baltica and Planctomyces limnophilus to allow high throughput screening of putative stimulating carbon sources. Our results point towards a previously postulated relationship of Planctomycetes with algae or plants, which secrete compounds that might serve as trigger to stimulate the secondary metabolite production in Planctomycetes. Thus, this study provides the necessary starting point to explore planctomycetal small molecules for drug development.
Collapse
|
89
|
Izumi H, Sagulenko E, Webb RI, Fuerst JA. Isolation and diversity of planctomycetes from the sponge Niphates sp., seawater, and sediment of Moreton Bay, Australia. Antonie van Leeuwenhoek 2013; 104:533-46. [DOI: 10.1007/s10482-013-0003-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
|
90
|
Fuerst JA. The PVC superphylum: exceptions to the bacterial definition? Antonie van Leeuwenhoek 2013; 104:451-66. [PMID: 23912444 DOI: 10.1007/s10482-013-9986-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/22/2013] [Indexed: 11/30/2022]
Abstract
The PVC superphylum is a grouping of distinct phyla of the domain bacteria proposed initially on the basis of 16S rRNA gene sequence analysis. It consists of a core of phyla Planctomycetes, Verrucomicrobia and Chlamydiae, but several other phyla have been considered to be members, including phylum Lentisphaerae and several other phyla consisting only of yet-to-be cultured members. The genomics-based links between Planctomycetes, Verrucomicrobia and Chlamydiae have been recently strengthened, but there appear to be other features which may confirm the relationship at least of Planctomycetes, Verrucomicrobia and Lentisphaerae. Remarkably these include the unique planctomycetal compartmentalized cell plan differing from the cell organization typical for bacteria. Such a shared cell plan suggests that the common ancestor of the PVC superphylum members may also have been compartmentalized, suggesting this is an evolutionarily homologous feature at least within the superphylum. Both the PVC endomembranes and the eukaryote-homologous membrane-coating MC proteins linked to endocytosis ability in Gemmata obscuriglobus and shared by PVC members suggest such homology may extend beyond the bacteria to the Eukarya. If so, either our definition of bacteria may have to change or PVC members admitted to be exceptions. The cases for and against considering the PVC superphylum members as exceptions to the bacteria are discussed, and arguments for them as exceptions presented. Recent critical analysis has favoured convergence and analogy for explaining eukaryote-like features in planctomycetes and other PVC organisms. The case is made for constructing hypotheses leaving the possibility of homology and evolutionary links to eukaryote features open. As the case of discovery of endocytosis-like protein uptake in planctomycetes has suggested, this may prove a strong basis for the immediate future of experimental research programs in the PVC scientific community.
Collapse
Affiliation(s)
- John A Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia,
| |
Collapse
|
91
|
Mascher T. Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors. Curr Opin Microbiol 2013; 16:148-55. [DOI: 10.1016/j.mib.2013.02.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/30/2013] [Accepted: 02/03/2013] [Indexed: 11/16/2022]
|
92
|
Berleman J, Auer M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ Microbiol 2012; 15:347-54. [PMID: 23227894 DOI: 10.1111/1462-2920.12048] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 11/29/2022]
Abstract
An increasing number of Gram-negative bacteria have been observed to secrete outer membrane vesicles (OMVs). Many mysteries remain with respect to OMV formation, the regulation of OMV content and mode of targeting and fusion. Bacterial OMVs appear to serve a variety of purposes in intra- and interspecies microbial extracellular activities. OMVs have been shown to mediate cell-to-cell exchange of DNA, protein and small signalling molecules. The impact of such material exchanges on microbial communities and pathogenic processes, including the delivery of toxins at high concentration through OMVs, is discussed. This rather recent aspect of microbial ecology is likely to remain an important area of research as an in-depth understanding of OMVs may allow new approaches for combating bacterial infections and provide new routes for selective drug delivery.
Collapse
Affiliation(s)
- James Berleman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|