51
|
Brumbley SM, Petrasovits LA, Murphy RM, Nagel RJ, Candy JM, Hermann SR. Establishment of a functional genomics platform for Leifsonia xyli subsp. xyli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:175-183. [PMID: 14964531 DOI: 10.1094/mpmi.2004.17.2.175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Leifsonia xyli subsp. xyli, the causal agent of ratoon stunting disease in sugarcane, is a xylem-limited, nutritionally fastidious, slow growing, gram-positive coryneform bacterium. Because of the difficulties in growing this bacterium in pure culture, little is known about the molecular mechanisms of pathogenesis. Currently, the genome sequence of L. xyli subsp. xyli is being completed by the Agronomical and Environmental Genomes group from the Organization for Nucleotide Sequencing and Analysis in Brazil. To complement this work, we produced 712 Lxx::Tn4431 transposon mutants and sequenced flanking regions from 383 of these, using a rapid polymerase chain reaction-based approach. Tn4431 insertions appeared to be widespread throughout the L. xyli subsp. xyli genome; however, there were regions that had significantly higher concentrations of insertions. The Tn4431 mutant library was screened for individuals unable to colonize sugarcane, and one noncolonizing mutant was found. The mutant contained a transposon insertion disrupting two open reading frames (ORF), one of which had homology to an integral membrane protein from Mycobacterium leprae. Sequencing of the surrounding regions revealed two operons, pro and cyd, both of which are believed to play roles in disease. Complementation studies were carried out using the noncolonizing Lxx::Tn4431 mutant. The noncolonizing mutant was transformed with a cosmid containing 40 kbp of wild-type sequence, which included the two ORF disrupted in the mutant, and several transformants were subsequently able to colonize sugarcane. However, analysis of each of these transformants, before and after colonization, suggests that they have all undergone various recombinant events, obscuring the roles of these ORF in L. xyli subsp. xyli pathogenesis.
Collapse
Affiliation(s)
- Stevens M Brumbley
- BSES Limited, David North Plant Research Centre, 50 Meiers Rd, Indooroopilly, Queensland, 4068, Australia.
| | | | | | | | | | | |
Collapse
|
52
|
Beales N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review. Compr Rev Food Sci Food Saf 2004; 3:1-20. [DOI: 10.1111/j.1541-4337.2004.tb00057.x] [Citation(s) in RCA: 459] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Stokes NR, Murray HD, Subramaniam C, Gourse RL, Louis P, Bartlett W, Miller S, Booth IR. A role for mechanosensitive channels in survival of stationary phase: regulation of channel expression by RpoS. Proc Natl Acad Sci U S A 2003; 100:15959-64. [PMID: 14671322 PMCID: PMC307675 DOI: 10.1073/pnas.2536607100] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Indexed: 11/18/2022] Open
Abstract
The mechanosensitive (MS) channels MscS and MscL are essential for the survival of hypoosmotic shock by Escherichia coli cells. We demonstrate that MscS and MscL are induced by osmotic stress and by entry into stationary phase. Reduced levels of MS proteins and reduced expression of mscL- and mscS-LacZ fusions in an rpoS mutant strain suggested that the RNA polymerase holoenzyme containing sigmaS is responsible, at least in part, for regulating production of MS channel proteins. Consistent with the model that the effect of sigmaS is direct, the MscS and MscL promoters both use RNA polymerase containing sigmaS in vitro. Conversely, clpP or rssB mutations, which cause enhanced levels of sigmaS, show increased MS channel protein synthesis. RpoS null mutants are sensitive to hypoosmotic shock upon entry into stationary phase. These data suggest that MscS and MscL are components of the RpoS regulon and play an important role in ensuring structural integrity in stationary phase bacteria.
Collapse
Affiliation(s)
- Neil R Stokes
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Romeo Y, Obis D, Bouvier J, Guillot A, Fourçans A, Bouvier I, Gutierrez C, Mistou MY. Osmoregulation in Lactococcus lactis: BusR, a transcriptional repressor of the glycine betaine uptake system BusA. Mol Microbiol 2003; 47:1135-47. [PMID: 12581365 DOI: 10.1046/j.1365-2958.2003.03362.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The busA (opuA) locus of Lactococcus lactis encodes a glycine betaine uptake system. Transcription of busA is osmotically inducible and its induction after an osmotic stress is reduced in the presence of glycine betaine. Using a genetic screen in CLG802, an Escherichia coli strain carrying a lacZ transcriptional fusion expressed under the control of the busA promoter, we isolated a genomic fragment from the L. lactis subsp. cremoris strain MG1363, which represses transcription from busAp. The cloned locus responsible for this repression was identified as a gene present upstream from the busA operon, encoding a putative DNA binding protein. This gene was named busR. Electrophoretic mobility shift and footprinting experiments showed that BusR is able to bind a site that overlaps the busA promoter. Overexpression of busR in L. lactis reduced expression of busA. Its disruption led to increased and essentially constitutive transcription of busA at low osmolarity. Therefore, BusR is a major actor of the osmotic regulation of busA in L. lactis.
Collapse
Affiliation(s)
- Yves Romeo
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100 CNRS-Université Toulouse III 118, route de Narbonne 31062 Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Boscari A, Mandon K, Dupont L, Poggi MC, Le Rudulier D. BetS is a major glycine betaine/proline betaine transporter required for early osmotic adjustment in Sinorhizobium meliloti. J Bacteriol 2002; 184:2654-63. [PMID: 11976294 PMCID: PMC135037 DOI: 10.1128/jb.184.10.2654-2663.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2001] [Accepted: 02/12/2002] [Indexed: 11/20/2022] Open
Abstract
Hybridization to a PCR product derived from conserved betaine choline carnitine transporter (BCCT) sequences led to the identification of a 3.4-kb Sinorhizobium meliloti DNA segment encoding a protein (BetS) that displays significant sequence identities to the choline transporter BetT of Escherichia coli (34%) and to the glycine betaine transporter OpuD of Bacillus subtilis (30%). Although the BetS protein shows a common structure with BCCT systems, it possesses an unusually long hydrophilic C-terminal extension (169 amino acids). After heterologous expression of betS in E. coli mutant strain MKH13, which lacks choline, glycine betaine, and proline transport systems, both glycine betaine and proline betaine uptake were restored, but only in cells grown at high osmolarity or subjected to a sudden osmotic upshock. Competition experiments demonstrated that choline, ectoine, carnitine, and proline were not effective competitors for BetS-mediated betaine transport. Kinetic analysis revealed that BetS has a high affinity for betaines, with K(m)s of 16 +/- 2 microM and 56 +/- 6 microM for glycine betaine and proline betaine, respectively, in cells grown in minimal medium with 0.3 M NaCl. BetS activity appears to be Na(+) driven. In an S. meliloti betS mutant, glycine betaine and proline betaine uptake was reduced by about 60%, suggesting that BetS represents a major component of the overall betaine uptake activities in response to salt stress. beta-Galactosidase activities of a betS-lacZ strain grown in various conditions showed that betS is constitutively expressed. Osmotic upshock experiments performed with wild-type and betS mutant cells, treated or not with chloramphenicol, indicated that BetS-mediated betaine uptake is the consequence of immediate activation of existing proteins by high osmolarity, most likely through posttranslational activation. Growth experiments underscored the crucial role of BetS as an emerging system involved in the rapid acquisition of betaines by S. meliloti subjected to osmotic upshock.
Collapse
Affiliation(s)
- Alexandre Boscari
- Laboratoire de Biologie Végétale et Microbiologie, CNRS FRE 2294, Faculté des Sciences, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cédex, France
| | | | | | | | | |
Collapse
|
56
|
Abstract
The control of water activity has been used as a means of preserving foods for thousands of years. This preservation strategy presents food-borne microorganisms with serious problems, many of which relate to the management of water flow. Although the specific details of how each organism deals with these problems are different, several common themes have emerged. Bacteria induce specific responses. both physiological and genetic, to respond to either the loss or the gain of water, triggered by changes in the osmolarity of the environment. Many of the key systems have now been identified and the mechanisms of their regulation are beginning to be understood. Here we review recent developments in the field of bacterial osmoregulation with emphasis on key food-borne genera.
Collapse
Affiliation(s)
- Conor P O'Byrne
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Scotland, UK
| | | |
Collapse
|
57
|
Sleator RD, Hill C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 2002; 26:49-71. [PMID: 12007642 DOI: 10.1111/j.1574-6976.2002.tb00598.x] [Citation(s) in RCA: 504] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two general strategies exist for the growth and survival of prokaryotes in environments of elevated osmolarity. The 'salt in cytoplasm' approach, which requires extensive structural modifications, is restricted mainly to members of the Halobacteriaceae. All other species have convergently evolved to cope with environments of elevated osmolarity by the accumulation of a restricted range of low molecular mass molecules, termed compatible solutes owing to their compatibility with cellular processes at high internal concentrations. Herein we review the molecular mechanisms governing the accumulation of these compounds, both in Gram-positive and Gram-negative bacteria, focusing specifically on the regulation of their transport/synthesis systems and the ability of these systems to sense and respond to changes in the osmolarity of the extracellular environment. Finally, we examine the current knowledge on the role of these osmostress responsive systems in contributing to the virulence potential of a number of pathogenic bacteria.
Collapse
Affiliation(s)
- Roy D Sleator
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | |
Collapse
|
58
|
McLaggan D, Jones MA, Gouesbet G, Levina N, Lindey S, Epstein W, Booth IR. Analysis of the kefA2 mutation suggests that KefA is a cation-specific channel involved in osmotic adaptation in Escherichia coli. Mol Microbiol 2002; 43:521-36. [PMID: 11985727 DOI: 10.1046/j.1365-2958.2002.02764.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mechanosensitive channels play an essential role in the regulation of turgor pressure in bacteria. In Escherichia coli, there are multiple mechanosensitive channels that have been characterized genetically: MscL, YggB and KefA. In this report, we describe the cloning of the kefA gene, the organization of the KefA protein and the phenotype of a missense mutation, kefA, which affects the KefA mechanosensitive channel. The altered function of the channel is manifest through increased sensitivity to K+ during growth at low osmolarity and complete inhibition of growth in media containing high K+ concentrations (0.6 M) in the presence of betaine or proline. Growth in high Na+ medium (0.6 M NaCl plus 20 mM K+) is normal. Analysis of the cytoplasmic pools shows that the mutant cannot regulate the K+ content of the cytoplasm when grown in high K+ medium. However, regulation of pools of amino acids is essentially normal and the mutant can accumulate high pools of proline during growth inhibition. The mutant shows increased sensitivity to acid hypo-osmotic shock (transition from neutral to acid pH combined with a reduction in osmolarity). The data are consistent with abnormal regulation of KefA in the presence of high K+ concentrations and either betaine or proline.
Collapse
Affiliation(s)
- Debra McLaggan
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, UK
| | | | | | | | | | | | | |
Collapse
|
59
|
Ueda A, Shi W, Sanmiya K, Shono M, Takabe T. Functional analysis of salt-inducible proline transporter of barley roots. PLANT & CELL PHYSIOLOGY 2001; 42:1282-9. [PMID: 11726714 DOI: 10.1093/pcp/pce166] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We cloned a cDNA encoding Hordeum vulgare Proline Transporter (HvProT) from salt-stressed barley roots by differential display. HvProT was 2,161 bp long and had an open reading frame encoding 450 amino acids. The deduced amino acid sequence of HvProT was similar to those of proline transporter proteins of rice (65.7%), Arabidopsis (57.7%) and tomato (42.0%). Northern blot analysis showed that the transcript level of HvProT was induced in roots at 30 min after 200 mM NaCl treatment and its peak was observed at 3 h. However, the transcript level was very low in leaves and did not increase by salt stress. The expression level of Delta(1)-pyrroline-5-carboxylate synthetase (P5CS), encoding a key enzyme of proline synthesis, was induced later than HvProT by salt stress. A transport assay using a yeast with mutation in proline uptake revealed that HvProT was a transporter with high affinity for L-proline (K(m) = 25 microM). HvProT was found to be a unique transporter with high affinity for L-proline. Since its transport activity was dependent on the pH gradient, HvProT was suggested to be a H(+)/amino acid symporter. In situ hybridization analysis showed that the HvProT mRNA was strongly expressed in root cap cells under salt stress. HvProT might play an important role in the transport of proline to root tip region urgently upon salt stress.
Collapse
Affiliation(s)
- A Ueda
- Bioscience Center, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | | | | | | | | |
Collapse
|
60
|
Touzé T, Gouesbet G, Boiangiu C, Jebbar M, Bonnassie S, Blanco C. Glycine betaine loses its osmoprotective activity in a bspA strain of Erwinia chrysanthemi. Mol Microbiol 2001; 42:87-99. [PMID: 11679069 DOI: 10.1046/j.1365-2958.2001.02591.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Erwinia chrysanthemi insertion mutants were isolated that grew poorly specifically in the presence of glycine betaine (GB) or its analogues in high-salt media. Transposon insertions were found to affect the bspA gene, which forms an operon including the psd locus coding for phosphatidylserine decarboxylase. Initial GB uptake is not affected by the bspA mutation. However, in high-salt medium, its initial accumulation is followed by a reduced glucose uptake and a release of GB but not a loss of viability. BspA is homologous to the widespread MscS channel, YggB, but does not seem to constitute a mechanosensitive channel. We suggest that BspA is a protein sensing both intracellular GB and the extracellular salt content of the medium, the hypothesis being built on the observation that BspA is necessary to maintain the GB pool during osmoadaptation in high-salt media containing this osmoprotectant.
Collapse
Affiliation(s)
- T Touzé
- Osmorégulation chez les bactéries, CNRS UMR 6026, Université de Rennes I, Campus de Beaulieu, Av. du Général Leclerc, 35042 Rennes, France
| | | | | | | | | | | |
Collapse
|
61
|
Boncompagni E, Dupont L, Mignot T, Osteräs M, Lambert A, Poggi MC, Le Rudulier D. Characterization of a Snorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake. J Bacteriol 2000; 182:3717-25. [PMID: 10850986 PMCID: PMC94542 DOI: 10.1128/jb.182.13.3717-3725.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1999] [Accepted: 04/04/2000] [Indexed: 11/20/2022] Open
Abstract
The symbiotic soil bacterium Sinorhizobium meliloti uses the compatible solutes glycine betaine and proline betaine for both protection against osmotic stress and, at low osmolarities, as an energy source. A PCR strategy based on conserved domains in components of the glycine betaine uptake systems from Escherichia coli (ProU) and Bacillus subtilis (OpuA and OpuC) allowed us to identify a highly homologous ATP-binding cassette (ABC) binding protein-dependent transporter in S. meliloti. This system was encoded by three genes (hutXWV) of an operon which also contained a fourth gene (hutH2) encoding a putative histidase, which is an enzyme involved in the first step of histidine catabolism. Site-directed mutagenesis of the gene encoding the periplasmic binding protein (hutX) and of the gene encoding the cytoplasmic ATPase (hutV) was done to study the substrate specificity of this transporter and its contribution in betaine uptake. These mutants showed a 50% reduction in high-affinity uptake of histidine, proline, and proline betaine and about a 30% reduction in low-affinity glycine betaine transport. When histidine was used as a nitrogen source, a 30% inhibition of growth was observed in hut mutants (hutX and hutH2). Expression analysis of the hut operon determined using a hutX-lacZ fusion revealed induction by histidine, but not by salt stress, suggesting this uptake system has a catabolic role rather than being involved in osmoprotection. To our knowledge, Hut is the first characterized histidine ABC transporter also involved in proline and betaine uptake.
Collapse
Affiliation(s)
- E Boncompagni
- Laboratoire de Biologie Végétale et Microbiologie, CNRS ESA 6169, Faculté des Sciences Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex, France
| | | | | | | | | | | | | |
Collapse
|
62
|
Jordi BJ, Higgins CF. The downstream regulatory element of the proU operon of Salmonella typhimurium inhibits open complex formation by RNA polymerase at a distance. J Biol Chem 2000; 275:12123-8. [PMID: 10766847 DOI: 10.1074/jbc.275.16.12123] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular concentration of K(+)-glutamate, chromatin-associated proteins, and a downstream regulatory element (DRE) overlapping with the coding sequence, have been implicated in the regulation of the proU operon of Salmonella typhimurium. The basal expression of the proU operon is low, but it is rapidly induced when the bacteria are grown in media of high osmolarity (e.g. 0.3 M NaCl). It has previously been suggested that increased intracellular concentrations of K(+)-glutamate activate the proU promoter in response to increased extracellular osmolarity. We show here that the activation of the proU promoter by K(+)-glutamate in vitro is nonspecific, and the in vivo regulation cannot simply be mimicked in vitro. In vivo specificity requires both the chromatin-associated protein H-NS and the DRE; they are both needed to maintain repression of proU expression at low osmolarity. How H-NS and the DRE repress the proU promoter in vivo has so far been unclear. We show that, in vivo, the DRE acts at a distance to inhibit open complex formation at the proU promoter.
Collapse
Affiliation(s)
- B J Jordi
- Department of Bacteriology, Institute of Infectious Diseases and Immunology, Faculty of Veterinary Sciences, Yalelaan 1, 3508 TD Utrecht, The Netherlands.
| | | |
Collapse
|
63
|
Obis D, Guillot A, Gripon JC, Renault P, Bolotin A, Mistou MY. Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol 1999; 181:6238-46. [PMID: 10515910 PMCID: PMC103755 DOI: 10.1128/jb.181.20.6238-6246.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic accumulation of exogenous betaine stimulates the growth of Lactococcus lactis cultivated under hyperosmotic conditions. We report that L. lactis possesses a single betaine transport system that belongs to the ATP-binding cassette (ABC) superfamily of transporters. Through transposon mutagenesis, a mutant deficient in betaine transport was isolated. We identified two genes, busAA and busAB, grouped in an operon, busA (betaine uptake system). The transcription of busA is strongly regulated by the external osmolality of the medium. The busAA gene codes for the ATP-binding protein. busAB encodes a 573-residue polypeptide which presents two striking features: (i) a fusion between the regions encoding the transmembrane domain (TMD) and the substrate-binding domain (SBD) and (ii) a swapping of the SBD subdomains when compared to the Bacillus subtilis betaine-binding protein, OpuAC. BusA of L. lactis displays a high affinity towards betaine (K(m) = 1.7 microM) and is an osmosensor whose activity is tightly regulated by external osmolality, leading the betaine uptake capacity of L. lactis to be under dual control at the biochemical and genetic levels. A protein presenting the characteristics predicted for BusAB was detected in the membrane fraction of L. lactis. The fusion between the TMD and the SBD is the first example of a new organization within prokaryotic ABC transporters.
Collapse
Affiliation(s)
- D Obis
- Unité de Biochimie et Structure des Protéines, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | |
Collapse
|
64
|
Cosquer A, Pichereau V, Pocard JA, Minet J, Cormier M, Bernard T. Nanomolar levels of dimethylsulfoniopropionate, dimethylsulfonioacetate, and glycine betaine are sufficient to confer osmoprotection to Escherichia coli. Appl Environ Microbiol 1999; 65:3304-11. [PMID: 10427011 PMCID: PMC91496 DOI: 10.1128/aem.65.8.3304-3311.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We combined the use of low inoculation titers (300 +/- 100 CFU/ml) and enumeration of culturable cells to measure the osmoprotective potentialities of dimethylsulfoniopropionate (DMSP), dimethylsulfonioacetate (DMSA), and glycine betaine (GB) for salt-stressed cultures of Escherichia coli. Dilute bacterial cultures were grown with osmoprotectant concentrations that encompassed the nanomolar levels of GB and DMSP found in nature and the millimolar levels of osmoprotectants used in standard laboratory osmoprotection bioassays. Nanomolar concentrations of DMSA, DMSP, and GB were sufficient to enhance the salinity tolerance of E. coli cells expressing only the ProU high-affinity general osmoporter. In contrast, nanomolar levels of osmoprotectants were ineffective with a mutant strain (GM50) that expressed only the low-affinity ProP osmoporter. Transport studies showed that DMSA and DMSP, like GB, were taken up via both ProU and ProP. Moreover, ProU displayed higher affinities for the three osmoprotectants than ProP displayed, and ProP, like ProU, displayed much higher affinities for GB and DMSA than for DMSP. Interestingly, ProP did not operate at substrate concentrations of 200 nM or less, whereas ProU operated at concentrations ranging from 1 nM to millimolar levels. Consequently, proU(+) strains of E. coli, but not the proP(+) strain GM50, could also scavenge nanomolar levels of GB, DMSA, and DMSP from oligotrophic seawater. The physiological and ecological implications of these observations are discussed.
Collapse
Affiliation(s)
- A Cosquer
- Laboratoire de Microbiologie Pharmaceutique, Université de Rennes 1, 35043 Rennes, France
| | | | | | | | | | | |
Collapse
|
65
|
Sleator RD, Gahan CG, Abee T, Hill C. Identification and disruption of BetL, a secondary glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28. Appl Environ Microbiol 1999; 65:2078-83. [PMID: 10224004 PMCID: PMC91301 DOI: 10.1128/aem.65.5.2078-2083.1999] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trimethylammonium compound glycine betaine (N,N, N-trimethylglycine) can be accumulated to high intracellular concentrations, conferring enhanced osmo- and cryotolerance upon Listeria monocytogenes. We report the identification of betL, a gene encoding a glycine betaine uptake system in L. monocytogenes, isolated by functional complementation of the betaine uptake mutant Escherichia coli MKH13. The betL gene is preceded by a consensus sigmaB-dependent promoter and is predicted to encode a 55-kDa protein (507 amino acid residues) with 12 transmembrane regions. BetL exhibits significant sequence homologies to other glycine betaine transporters, including OpuD from Bacillus subtilis (57% identity) and BetP from Corynebacterium glutamicum (41% identity). These high-affinity secondary transporters form a subset of the trimethylammonium transporter family specific for glycine betaine, whose substrates possess a fully methylated quaternary ammonium group. The observed Km value of 7.9 microM for glycine betaine uptake after heterologous expression of betL in E. coli MKH13 is consistent with values obtained for L. monocytogenes in other studies. In addition, a betL knockout mutant which is significantly affected in its ability to accumulate glycine betaine in the presence or absence of NaCl has been constructed in L. monocytogenes. This mutant is also unable to withstand concentrations of salt as high as can the BetL+ parent, signifying the role of the transporter in Listeria osmotolerance.
Collapse
Affiliation(s)
- R D Sleator
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
66
|
Peter H, Weil B, Burkovski A, Krämer R, Morbach S. Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP. J Bacteriol 1998; 180:6005-12. [PMID: 9811661 PMCID: PMC107677 DOI: 10.1128/jb.180.22.6005-6012.1998] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/1998] [Accepted: 09/14/1998] [Indexed: 11/20/2022] Open
Abstract
Gram-positive soil bacterium Corynebacterium glutamicum uses the compatible solutes glycine betaine, proline, and ectoine for protection against hyperosmotic shock. Osmoregulated glycine betaine carrier BetP and proline permease PutP have been previously characterized; we have identified and characterized two additional osmoregulated secondary transporters for compatible solutes in C. glutamicum, namely, the proline/ectoine carrier, ProP, and the ectoine/glycine betaine/proline carrier, EctP. A DeltabetP DeltaputP DeltaproP DeltaectP mutant was unable to respond to hyperosmotic stress, indicating that no additional uptake system for these compatible solutes is present. Osmoregulated ProP consists of 504 residues and preferred proline (Km, 48 microM) to ectoine (Km, 132 microM). The proP gene could not be expressed from its own promoter in C. glutamicum; however, expression was observed in Escherichia coli. ProP belongs to the major facilitator superfamily, whereas EctP, together with the betaine carrier, BetP, is a member of a newly established subfamily of the sodium/solute symporter superfamily. The constitutively expressed ectP codes for a 615-residue transporter. EctP preferred ectoine (Km, 63 microM) to betaine (Km, 333 microM) and proline (Km, 1,200 microM). Its activity was regulated by the external osmolality. The related betaine transporter, BetP, could be activated directly by altering the membrane state with local anesthetics, but this was not the case for EctP. Furthermore, the onset of osmotic activation was virtually instantaneous for BetP, whereas it took about 10 s for EctP.
Collapse
Affiliation(s)
- H Peter
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
67
|
Nagata, Adachi, Sano. Intracellular changes in ions and organic solutes in halotolerant brevibacterium sp. Strain JCM 6894 after exposure to hyperosmotic shock. Appl Environ Microbiol 1998; 64:3641-7. [PMID: 9758779 PMCID: PMC106486 DOI: 10.1128/aem.64.10.3641-3647.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/1998] [Accepted: 07/23/1998] [Indexed: 11/20/2022] Open
Abstract
In the present study we aimed to observe the intracellular responses when there was a hyperosmotic shock with a large shift in ionic strength in nutrient-rich and nutrient-poor external environments in order to clarify the availability of substrates. To do this, we used the halotolerant organism Brevibacterium sp. strain JCM 6894, which is able to grow in the presence of a wide range of salt concentrations. Hyperosmotic shock was induced by transferring cells in the late exponential phase of growth in a complex medium containing 0.5 M NaCl into either old or fresh culture medium containing 2 M NaCl. Changes in the growth rate, in the pH of the medium, and in the internal cation or organic solute concentrations in the cytosol after an upshock were analyzed as a function of incubation time. The cells exhibited very different responses to upshocks in fresh culture medium and in old culture medium; in fresh culture medium, growth was stimulated and the medium became more acidic, whereas the old culture medium repressed growth and the medium became more alkaline. The intracellular free Na+ concentrations remained low (80 nmol mg of protein-1) after an upshock in fresh culture medium, although they quickly increased twofold in the old culture medium. In contrast, K+ ions immediately accumulated in the cells in fresh culture medium, whereas K+ ions were taken up quite slowly in old culture medium. Furthermore, the cells placed in fresh culture medium transiently accumulated alanine and glutamine in response to the upshock, but the cells placed in old culture medium did not. Growth of the Brevibacterium strain at higher levels of salinity was supported by ectoine synthesis but was not observed after the shift to high-osmolarity conditions in the old culture. In the fresh culture, however, ectoine was vigorously synthesized in cells for more than 5 h after the upshock; the concentration of ectoine in cells was more than 3,500 nmol mg of protein-1 at 10 h, which corresponded to a ninefold increase compared to the concentration before the shock. These findings are consistent with the results of an analysis of the extracellular medium composition before and after the upshock.
Collapse
Affiliation(s)
- Nagata
- Research Institute for Marine Cargo Transportation, Kobe University of Mercantile Marine, Fukae, Higashinada-ku, Kobe 658-0022, Japan
| | | | | |
Collapse
|
68
|
Peter H, Burkovski A, Krämer R. Osmo-sensing by N- and C-terminal extensions of the glycine betaine uptake system BetP of Corynebacterium glutamicum. J Biol Chem 1998; 273:2567-74. [PMID: 9446558 DOI: 10.1074/jbc.273.5.2567] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The major uptake carrier for the compatible solute glycine betaine in Corynebacterium glutamicum is the secondary transport system BetP. It is effectively regulated by the external osmolality both on the level of expression and of activity. BetP carries highly charged domains both at the N and at the C terminus. We investigated the role of these extensions in the regulatory response to hyperosmotic stress. Mutants of the betP gene coding for proteins with truncated N- and C-terminal extensions were expressed in the C. glutamicum betP deletion strain DHP1 and were functionally characterized with respect to regulation of activity. The optimum of activation at 1.3 osmol/kg in wild type was shifted in the recombinant strains to about 2.6 osmol/kg in mutants with deletions in the N-terminal part. Deletions in the C-terminal domain resulted in a complete loss of regulation. The altered response to changes in osmolality led to severe consequences in the cellular adaption to hyperosmotic stress. Whereas in the wild type, the steady state level of glycine betaine accumulation is maintained by activity regulation of the BetP system itself, in the mutant with BetP proteins carrying truncations in the C-terminal domain, the observed steady state betaine accumulation was found to be due to a kinetic balance of unregulated glycine betaine uptake by the modifed BetP and efflux via the mechanosensitive efflux channel for compatible solutes at the same time.
Collapse
Affiliation(s)
- H Peter
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | |
Collapse
|
69
|
Gilles R. "Compensatory" organic osmolytes in high osmolarity and dehydration stresses: history and perspectives. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 117:279-90. [PMID: 9172384 DOI: 10.1016/s0300-9629(96)00265-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As stated in the conclusion, "life is a thing of macromolecular cohesion in salty water." This brief historical overview shows that "compensatory" organic osmolytes take an essential place in this cohesion. It reviews the major steps of the study of these compounds over more than 100 years, from the early beginnings of 1885 until now, showing some of its fascinating developments and ending on the idea that the most fascinating is still to come. This study can be taken as an example of the richness of the comparative approach.
Collapse
Affiliation(s)
- R Gilles
- Laboratory of Animal Physiology, University of Liège, Belgium
| |
Collapse
|
70
|
Ko BC, Ruepp B, Bohren KM, Gabbay KH, Chung SS. Identification and characterization of multiple osmotic response sequences in the human aldose reductase gene. J Biol Chem 1997; 272:16431-7. [PMID: 9195951 DOI: 10.1074/jbc.272.26.16431] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aldose reductase (AR) has been implicated in osmoregulation in the kidney because it reduces glucose to sorbitol, which can serve as an osmolite. Under hyperosmotic stress, transcription of this gene is induced to increase the enzyme level. This mode of osmotic regulation of AR gene expression has been observed in a number of nonrenal cells as well, suggesting that this is a common response to hyperosmotic stress. We have identified a 132-base pair sequence approximately 1 kilobase pairs upstream of the transcription start site of the AR gene that enhances the transcription activity of the AR promoter as well as that of the SV40 promoter when the cells are under hyperosmotic stress. Within this 132-base pair sequence, there are three sequences that resemble TonE, the tonicity response element of the canine betaine transporter gene, and the osmotic response element of the rabbit AR gene, suggesting that the mechanism of osmotic regulation of gene expression in these animals is similar. However, our data indicate that cooperative interaction among the three TonE-like sequences in the human AR may be necessary for their enhancer function.
Collapse
Affiliation(s)
- B C Ko
- Institute of Molecular Biology, The University of Hong Kong, 3/F, 8 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
71
|
Proctor LM, Lai R, Gunsalus RP. The methanogenic archaeon Methanosarcina thermophila TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. Appl Environ Microbiol 1997; 63:2252-7. [PMID: 9172344 PMCID: PMC168517 DOI: 10.1128/aem.63.6.2252-2257.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Methanogenic Archaea are found in a wide range of environments and use several strategies to adjust to changes in extracellular solute concentrations. One methanogenic archaeon, Methanosarcina thermophila TM-1, can adapt to various osmotic conditions by synthesis of alpha-glutamate and a newly discovered compatible solute, Ne-acetyl-beta-lysine, or by accumulation of glycine betaine (betaine) and potassium ions from the environment. Since betaine transport has not been characterized for any of the methanogenic Archaea, we examined the uptake of this solute by M. thermophila TM-1. When cells were grown in mineral salts media containing from 0.1 to 0.8 M NaC1, M. thermophila accumulated betaine in concentrations up to 140 times those of a concentration gradient within 10 min of exposure to the solute. The betaine uptake system consisted of a single, high-affinity transporter with an apparent K3 of 10 microM and an apparent maximum transport velocity of 1.15 nmol/min/mg of protein. The transporter appeared to be specific for betaine, since potential substrates, including glycine, sarcosine, dimethyl glycine, choline, and proline, did not significantly inhibit betaine uptake. M. thermophila TM-1 cells can also regulate the capacity for betaine accumulation, since the rate of betaine transport was reduced in cells pregrown in a high-osmolarity medium when 500 microM betaine was present. Betaine transport appears to be H+ and/or Na+ driven, since betaine transport was inhibited by several types of protonophores and sodium ionophores.
Collapse
Affiliation(s)
- L M Proctor
- Department of Microbiology and Molecular Genetics, University of California at Los Angeles 90095-1489, USA
| | | | | |
Collapse
|
72
|
Jordi BJ, Fielder AE, Burns CM, Hinton JC, Dover N, Ussery DW, Higgins CF. DNA binding is not sufficient for H-NS-mediated repression of proU expression. J Biol Chem 1997; 272:12083-90. [PMID: 9115277 DOI: 10.1074/jbc.272.18.12083] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
H-NS is a major component of bacterial chromatin and influences the expression of many genes. H-NS has been shown to exhibit a binding preference for certain AT-rich curved DNA elements in vitro. In this study we have addressed the factors that determine the specificity of H-NS action in vitro and in vivo. In bandshift studies, H-NS showed a slight binding preference for all curved sequences tested whether GC-based or AT-based; the specific architecture of the curve also influenced H-NS binding. In filter retention assays little difference in affinity could be detected for any sequence tested, including the downstream regulatory element (DRE) a downstream curved DNA element required for H-NS to repress transcription of the Salmonella typhimurium proU operon in vivo. A Kd of 1-2 microM was estimated for binding of H-NS to each of these sequences. In vivo, the distance between the proU promoter and the DRE, their relative orientations on the face of the DNA helix, and translation of the DRE had no major effect on proU regulation. None of the synthetic curved sequences tested could functionally replace the DRE in vivo. These data show that differential binding to curved DNA cannot account for the specificity of H-NS action in vivo. Furthermore, binding of H-NS to DNA per se is insufficient to repress the proU promoter. Thus, the DRE does not simply act as an H-NS binding site but must have a more specific role in mediating H-NS regulation of proU transcription.
Collapse
Affiliation(s)
- B J Jordi
- Nuffield Department of Clinical Biochemistry, and Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
73
|
Cánovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ. Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway. J Bacteriol 1996; 178:7221-6. [PMID: 8955405 PMCID: PMC178636 DOI: 10.1128/jb.178.24.7221-7226.1996] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The osmoregulatory pathways of the moderately halophilic bacterium Halomonas elongata DSM 3043 have been investigated. This strain grew optimally at 1.5 to 2 M NaCl in M63 glucose-defined medium. It required at least 0.5 M NaCl for growth, which is a higher concentration than that exhibited by the H. elongata type strain ATCC 33173. Externally provided betaine, choline, or choline-O-sulfate (but not proline, ectoine, or proline betaine) enhanced the growth of H. elongata on 3 M NaCl-glucose-M63 plates, demonstrating the utilization of these compounds as osmoprotectants. Moreover, betaine and choline stimulated the growth of H. elongata DSM 3043 over the entire range of salinity, although betaine was more effective than choline at salinities below and above the optimum. We found that H. elongata DSM 3043 has at least one high-affinity transport system for betaine (K(m) = 3.06 microM and Vmax = 9.96 nmol of betaine min(-1) mg of protein(-1)). Competition assays demonstrated that proline betaine and ectoine, but not proline, choline, or choline-O-sulfate, are also transported by the betaine permease. Finally, thin-layer chromatography and 13C-nuclear magnetic resonance analysis showed that exogenous choline was taken up and transformed to betaine by H. elongata, demonstrating the existence of a choline-glycine betaine pathway in this moderately halophilic bacterium.
Collapse
Affiliation(s)
- D Cánovas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Spain
| | | | | | | | | |
Collapse
|
74
|
Peddie BA, Chambers ST, Lever M. Is the ability of urinary tract pathogens to accumulate glycine betaine a factor in the virulence of pathogenic strains? THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1996; 128:417-22. [PMID: 8833891 DOI: 10.1016/s0022-2143(96)80014-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The regulation of intracellular concentrations of organic solutes, including glycine betaine, is an important adaptive response to osmotic stress for Escherichia coli. The clinical significance of glycine betaine to uropathogens is not clear. Clinical isolates of E. coli, Klebsiella pneumoniae, Enterobacter species, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus aureus, S. saprophyticus, and Enterococcus faecalis accumulated glycine betaine from hyperosmotic media. The addition of glycine betaine to hyperosmotic minimal medium accelerated the growth rates of all species tested except P. mirabilis. However, when clinical strains of E. coli were transferred from urine with low osmolality to hyperosmotic urine, there was no slowing of the growth rate. There was no difference in growth rates of E. coli isolates from acute pyelonephritis, cystitis, and asymptomatic bacteriuria nor from fecal isolates. The ability to accumulate osmolytes, although it may be a factor in the adaptation to hypertonic environments, was not related to virulence.
Collapse
Affiliation(s)
- B A Peddie
- Department of Nephrology, Christchurch Hospital, New Zealand
| | | | | |
Collapse
|
75
|
Haardt M, Bremer E. Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli. J Bacteriol 1996; 178:5370-81. [PMID: 8808924 PMCID: PMC178353 DOI: 10.1128/jb.178.18.5370-5381.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Escherichia coli ProU system is a member of the ATP-binding cassette (ABC) superfamily of transporters. ProU consists of three components (ProV, ProW, and ProX) and functions as a high-affinity, binding protein-dependent transport system for the osmoprotectants glycine betaine and proline betaine. The ProW protein is the integral inner membrane component of the ProU system. Its hydropathy profile predicts seven transmembrane spans and a hydrophilic amino terminus of approximately 100 residues, and it suggests the presence of an amphiphilic alpha-helix (L-61 to F-97) in close proximity to the first strongly hydrophobic segment of ProW. We have studied the membrane topology of the ProW protein by the phoA and lacZ gene fusion approach. A collection of 10 different proW-phoA fusions with alkaline phosphatase activity and 8 different proW-lacZ fusions with beta-galactosidase activity were isolated in vivo after TnphoAB and TnlacZ mutagenesis of a plasmid-encoded proW gene. The recovery of both enzymatically active ProW-PhoA and ProW-LacZ hybrid proteins indicates that segments of ProW are exposed on both sides of the cytoplasmic membrane. To compare the enzymatic activities of each of the indicator proteins joined at a particular site in ProW, we switched the phoA and lacZ reporter genes in vitro in each of the originally in vivo-isolated gene fusions. A mirror-like pattern in the enzyme activity of the resulting new ProW-PhoA and ProW-LacZ hybrid proteins emerged, thus providing positive signals for the location of both periplasmic and cytoplasmic domains in ProW. The protease kallikrein digests the amino-terminal tail of a ProW-LacZ hybrid protein in spheroplasts, suggesting that the amino terminus of ProW is located on the periplasmic side of the cytoplasmic membrane. From these data, a two-dimensional model for ProW was constructed; this model consists of seven transmembrane alpha-helices and an unusual amino-terminal tail of approximately 100 amino acid residues that protrudes into the periplasmic space.
Collapse
Affiliation(s)
- M Haardt
- Department of Biology, University of Konstanz, Germany
| | | |
Collapse
|
76
|
Peter H, Burkovski A, Krämer R. Isolation, characterization, and expression of the Corynebacterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine. J Bacteriol 1996; 178:5229-34. [PMID: 8752342 PMCID: PMC178321 DOI: 10.1128/jb.178.17.5229-5234.1996] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Corynebacterium glutamicum accumulates glycine betaine under conditions of high osmolarity. Previous work revealed the existence of a high-affinity glycine betaine permease which is osmotically regulated. In the present study, the corresponding gene was cloned. The betP gene, encoding the glycine betaine uptake carrier, was isolated by heterologous complementation of mutant strain Escherichia coli MKH13. From sequence analysis it is predicted to encode a protein of 595 amino acids. This protein shares 36% identity with the choline transport system BetT and 28% identity with the carnitine transport system CaiT of E. coli, as well as 38% identity with a protein with an unknown function from Haemophilus influenzae. Analysis of hydropathy indicated a common structure for all four transport proteins. After heterologous expression of betP in E. coli MKH13, the measured Km values for glycine betaine and the cotransported Na+ were similar to those found in C. glutamicum, whereas the modulation of activity by osmotic gradients was shifted to lower osmotic values.
Collapse
Affiliation(s)
- H Peter
- Institut für Biotechnologie 1, Forschungszentrum Julich GmbH, Federal Republic of Germany
| | | | | |
Collapse
|
77
|
Gowrishankar J, Manna D. How is osmotic regulation of transcription of the Escherichia coli proU operon achieved? A review and a model. Genetica 1996; 97:363-78. [PMID: 9081863 DOI: 10.1007/bf00055322] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The proU operon in enterobacteria encodes a binding-protein-dependent transporter for the active uptake of glycine betaine and L-proline, and serves an adaptive role during growth of cells in hyperosmolar environments. Transcription of proU is induced 400-fold under these conditions, but the underlying signal transduction mechanisms are incompletely understood. Increased DNA supercoiling and activation by potassium glutamate have each been proposed in alternative models as mediators of proU osmoresponsivity. We review here the available experimental data on proU regulation, and in particular the roles for DNA supercoiling, potassium glutamate, histone-like proteins of the bacterial nucleoid, and alternative sigma factors of RNA polymerase in such regulation. We also propose a new unifying model, in which the pronounced osmotic regulation of proU expression is achieved through the additive effects of at least three separate mechanisms, each comprised of a cis element [two promoters P1 and P2, and negative-regulatory-element (NRE) downstream of both promoters] and distinct trans-acting factors that interact with it: stationary-phase sigma factor RpoS with P1, nucleoid proteins HU and IHF with P2, and nucleoid protein H-NS with the NRE. In this model, potassium glutamate may activate proU expression through each of the three mechanisms whereas DNA supercoiling has a very limited role, if any, in the osmotic induction of proU transcription. We also suggest that proU may be a virulence gene in the pathogenic enterobacteria.
Collapse
Affiliation(s)
- J Gowrishankar
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
78
|
Wise A, Brems R, Ramakrishnan V, Villarejo M. Sequences in the -35 region of Escherichia coli rpoS-dependent genes promote transcription by E sigma S. J Bacteriol 1996; 178:2785-93. [PMID: 8631665 PMCID: PMC178012 DOI: 10.1128/jb.178.10.2785-2793.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
sigma S is an alternate sigma factor which functions with RNA polymerase to activate transcription of genes that are involved in a number of stress responses, including stationary-phase survival and osmoprotection. The similarity of the sigma S protein to sigma D (Escherichia coli's major sigma factor) in the regions thought to recognize and bind promoter sequences suggests that sigma S- and sigma D-associated RNA polymerases recognize promoter DNA in a similar manner. However, no promoter recognition sequence for sigma S holoenzyme (E sigma S) has been identified. An apparent conservation of cytosine nucleotides was noted in the -35 region of several sigma S-dependent promoters. Site-directed mutagenesis and reporter gene fusions were used to investigate the importance of the -35 cytosine nucleotides for sigma S-dependent transcription. Substitution of cytosine nucleotides for thymidine at the -35 site of the sigma D-dependent proU promoter effectively abolished transcription by E sigma D but allowed E sigma S to direct transcription from the mutant promoter. Inclusion of the sigma D consensus -10 hexamer strengthened transcription by E sigma S, demonstrating that both E sigma D and E sigma S can recognize the same -10 sequences. Conversely, replacement of -35 site cytosine nucleotides with thymidine in the sigma S-dependent osmY promoter reduced transcription by E sigma S and increased transcription by E sigma D. Our data suggest that DNA sequences in the -35 region function as part of a discriminator mechanism to shift transcription between E sigma D and E sigma S.
Collapse
Affiliation(s)
- A Wise
- Section of Microbiology, University of California, Davis 95616, USA.
| | | | | | | |
Collapse
|
79
|
Muffler A, Traulsen DD, Lange R, Hengge-Aronis R. Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli. J Bacteriol 1996; 178:1607-13. [PMID: 8626288 PMCID: PMC177845 DOI: 10.1128/jb.178.6.1607-1613.1996] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The sigma(s) subunit of RNA polymerase (encoded by the rpoS gene) is a master regulator in a complex regulatory network that governs the expression of many stationary-phase-induced and osmotically regulated genes in Escherichia coli. rpoS expression is itself osmotically regulated by a mechanism that operates at the posttranscriptional level. Cells growing at high osmolarity already exhibit increased levels of sigma(s) during the exponential phase of growth. Osmotic induction of rpoS can be triggered by addition of NaCl or sucrose and is alleviated by glycine betaine. Stimulation of rpoS translation and a change in the half-life of sigma(s) from 3 to 50 min both contribute to osmotic induction. Experiments with lacZ fusions inserted at different positions within the rpoS gene indicate that an element required for sigma(s) degradation is encoded between nucleotides 379 and 742 of the rpoS coding sequence.
Collapse
Affiliation(s)
- A Muffler
- Department of Biology, University of Konstanz, Germany
| | | | | | | |
Collapse
|
80
|
Lamark T, Røkenes TP, McDougall J, Strøm AR. The complex bet promoters of Escherichia coli: regulation by oxygen (ArcA), choline (BetI), and osmotic stress. J Bacteriol 1996; 178:1655-62. [PMID: 8626294 PMCID: PMC177851 DOI: 10.1128/jb.178.6.1655-1662.1996] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The bet regulon allows Escherichia coli to synthesize the osmoprotectant glycine betaine from choline. It comprises a regulatory gene, betI, and three structural genes: betT (choline porter), betA (choline dehydrogenase), and betB (betaine aldehyde dehydrogenase). The bet genes are regulated by oxygen, choline, and osmotic stress. Primer extension analysis identified two partially overlapping promoters which were responsible for the divergent expression of the betT and betIBA transcripts. The transcripts were initiated 61 bp apart. Regulation of the promoters was investigated by using cat (chloramphenicol acetyltransferase) and lacZ (beta-galactosidase) operon fusions. Mutation of betI on plasmid F'2 revealed that BetI is a repressor which regulates both promoters simultaneously in response to the inducer choline. Both promoters remained inducible by osmotic stress in a betI mutant background. On the basis of experiments with hns and hns rpoS mutants, we conclude that osmoregulation of the bet promoters was hns independent. The bet promoters were repressed by ArcA under anaerobic growth conditions. An 89-bp promoter fragment, as well as all larger fragments tested, which included both transcriptional start points, displayed osmotic induction and BetI-dependent choline regulation when linked with a cat reporter gene on plasmid pKK232-8. Flanking DNA, presumably on the betT side of the promoter region, appeared to be needed for ArcA-dependent regulation of both promoters.
Collapse
Affiliation(s)
- T Lamark
- The Norwegian College of Fishery Science, University of Tromsø, Norway
| | | | | | | |
Collapse
|
81
|
Stumpe S, Schlösser A, Schleyer M, Bakker E. Chapter 21 K+ circulation across the prokaryotic cell membrane: K+-uptake systems. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
82
|
Lin Y, Hansen JN. Characterization of a chimeric proU operon in a subtilin-producing mutant of Bacillus subtilis 168. J Bacteriol 1995; 177:6874-80. [PMID: 7592481 PMCID: PMC177556 DOI: 10.1128/jb.177.23.6874-6880.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ability to respond to osmotic stress by osmoregulation is common to virtually all living cells. Gram-negative bacteria such as Escherichia coli and Salmonella typhimurium can achieve osmotolerance by import of osmoprotectants such as proline and glycine betaine by an import system encoded in an operon called proU with genes for proteins ProV, ProW, and ProX. In this report, we describe the discovery of a proU-type locus in the gram-positive bacterium Bacillus subtilis. It contains four open reading frames (ProV, ProW, ProX, and ProZ) with homology to the gram-negative ProU proteins, with the B. subtilis ProV, ProW, and ProX proteins having sequence homologies of 35, 29, and 17%, respectively, to the E. coli proteins. The B. subtilis ProZ protein is similar to the ProW protein but is smaller and, accordingly, may fulfill a novel role in osmoprotection. The B. subtilis proU locus was discovered while exploring the chromosomal sequence upstream from the spa operon in B. subtilis LH45, which is a subtilin-producing mutant of B. subtilis 168. B. subtilis LH45 had been previously constructed by transformation of strain 168 with linear DNA from B. subtilis ATCC 6633 (W. Liu and J. N. Hansen, J. Bacteriol. 173:7387-7390, 1991). Hybridization experiments showed that LH45 resulted from recombination in a region of homology in the proV gene, so that the proU locus in LH45 is a chimera between strains 168 and 6633. Despite being a chimera, this proU locus was fully functional in its ability to confer osmotolerance when glycine betaine was available in the medium. Conversely, a mutant (LH45 deltaproU) in which most of the proU locus had been deleted grew poorly at high osmolarity in the presence of glycine betaine. We conclude that the proU-like locus in B. subtilis LH45 is a gram-positive counterpart of the proU locus in gram-negative bacteria and probably evolved prior to the evolutionary split of prokaryotes into gram-positive and gram-negative forms.
Collapse
Affiliation(s)
- Y Lin
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, USA
| | | |
Collapse
|
83
|
Gutierrez C, Abee T, Booth IR. Physiology of the osmotic stress response in microorganisms. Int J Food Microbiol 1995; 28:233-44. [PMID: 8750669 DOI: 10.1016/0168-1605(95)00059-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C Gutierrez
- Laboratoire de Microbiologie et Genetique Moleculaire du CNRS, Toulouse, France.
| | | | | |
Collapse
|
84
|
Farwick M, Siewe RM, Krämer R. Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum. J Bacteriol 1995; 177:4690-5. [PMID: 7642496 PMCID: PMC177234 DOI: 10.1128/jb.177.16.4690-4695.1995] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Osmoregulatory uptake of glycine betaine in whole cells of Corynebacterium glutamicum ATCC 13032 (wild type) was studied. The cells actively take up glycine betaine when they are osmotically shocked. The total accumulation and uptake rate were dependent on the osmotic strength of the medium. Kinetic analysis revealed a high-affinity transport system (Km, 8.6 +/- 0.4 microM) with high maximum velocity (110 nmol.min-1.mg [dry weight]-1). Glycine betaine functioned as a compatible solute when added to the medium and allowed growth at an otherwise inhibitory osmotic strength of 1.5 M NaCl. Proline and ectoine could also be used as osmoprotectants. Glycine betaine is neither synthesized nor metabolized by C. glutamicum. The glycine betaine transport system is constitutively expressed at a basal level of activity. It can be induced up to eightfold by osmotic stress and is strongly regulated at the level of activity. The transport system is highly specific and has its pH optimum in the slightly alkaline range at about pH 8. The uptake of the zwitterionic glycine betaine is mediated by a secondary symport system coupled to cotransport of at least two Na+ ions. It is thus driven both by the membrane potential and the Na+ gradient. An extremely high accumulation (internal/external) ratio of up to 4 x 10(6) was measured, which represents the highest accumulation ratio observed for any transport system.
Collapse
Affiliation(s)
- M Farwick
- Institut für Biotechnologie 1, Forschungszentrum Jülich, GmbH, Federal Republic of Germany
| | | | | |
Collapse
|
85
|
Ding Q, Kusano S, Villarejo M, Ishihama A. Promoter selectivity control of Escherichia coli RNA polymerase by ionic strength: differential recognition of osmoregulated promoters by E sigma D and E sigma S holoenzymes. Mol Microbiol 1995; 16:649-56. [PMID: 7476160 DOI: 10.1111/j.1365-2958.1995.tb02427.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transcription in vitro of two osmoregulated promoters, for the Escherichia coli osmB and osmY genes, was analysed using two species of RNA polymerase holoenzyme reconstituted from purified core enzyme and either sigma D (sigma 70, the major sigma in exponentially growing cells) or sigma S (sigma 38, the principal sigma at stationary growth phase). Under conditions of low ionic strength, the osmB and osmY promoters were transcribed by both E sigma D and E sigma S. Addition of up to 400 mM potassium glutamate (K glutamate), mimicking the intracellular ionic conditions under hyperosmotic stress, specifically enhanced transcription at these promoters by E sigma S but inhibited that by E sigma D. At similar high concentrations of potassium chloride (KCl), however, initiation at both these promoters was virtually undetectable. These data suggest that the RNA polymerase, E sigma S, itself can sense osmotic stress by responding to changes in intracellular K glutamate concentrations and altering its promoter selectivity in order to recognize certain osmoregulated promoters.
Collapse
Affiliation(s)
- Q Ding
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | | | |
Collapse
|
86
|
Gutierrez C, Gordia S, Bonnassie S. Characterization of the osmotically inducible gene osmE of Escherichia coli K-12. Mol Microbiol 1995; 16:553-63. [PMID: 7565114 DOI: 10.1111/j.1365-2958.1995.tb02418.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
osmE, an osmotically inducible gene of Escherichia coli, was physically mapped on the bacterial chromosome, cloned and sequenced. osmE appeared to encode a 12,021 Da protein of unknown function, with a lipoprotein-type signal sequence at the amino-terminus. The osmE reading frame was confirmed by sequencing the junction of an osmE-phoA gene fusion. osmE was demonstrated to be transcribed as a single cistron. A phi [osmEp-lac] operon fusion was constructed, and analysis of its expression demonstrated that osmE osmotic regulation probably occurs at the transcriptional level. The osmE promoter was identified by both S1 nuclease and primer extension mapping of the 5' end of the osmE mRNA, by deletion analysis and by identification of a point mutation reducing its activity. Sequence information sufficient for expression and osmotic regulation is present on a DNA fragment extending from positions -37 to +52 with respect to the osmE transcription start. Uninduced expression of the osmE-lac fusion was increased in the presence of mutations in the hns and himA genes. The osmE promoter overlaps a promoter for a gene transcribed in the opposite direction, efg. Transcription from the efg promoter is only weakly affected by osmotic pressure and is independent of the presence of an intact OsmE protein.
Collapse
Affiliation(s)
- C Gutierrez
- Laboratoire de Microbiologie et Génétique Moléculaire, UPR 9007 du CNRS, Toulouse, France
| | | | | |
Collapse
|
87
|
Haardt M, Kempf B, Faatz E, Bremer E. The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of Escherichia coli K-12. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:783-6. [PMID: 7898450 DOI: 10.1007/bf00290728] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 microM for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 microM). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.
Collapse
Affiliation(s)
- M Haardt
- University of Konstanz, Department of Biology, Federal Republic of Germany
| | | | | | | |
Collapse
|
88
|
Natarajan K, Kishore L, Babu CR. Characteristics of NaCl stress associated proteins ofRhizobium under varying cultural conditions. J Basic Microbiol 1995. [DOI: 10.1002/jobm.3620350608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
89
|
|
90
|
Gutierrez JA, Csonka LN. Isolation and characterization of adenylate kinase (adk) mutations in Salmonella typhimurium which block the ability of glycine betaine to function as an osmoprotectant. J Bacteriol 1995; 177:390-400. [PMID: 7814329 PMCID: PMC176603 DOI: 10.1128/jb.177.2.390-400.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mutants of Salmonella typhimurium that were not protected by glycine betaine (GB) but could still use proline as an osmoprotectant in media of high osmolality were isolated. The mutations responsible for this phenotype proved to be alleles of the adenylate kinase (adk) gene, as shown by genetic mapping, sequencing of the cloned mutant alleles, complementation with the Escherichia coli adk gene, and assay of Adk enzyme activity in crude extracts. One of the mutations was in the untranslated leader of the adk mRNA, a second was in the putative Shine-Dalgarno sequence, and a third was in the coding region of the gene. The loss of osmoprotection by GB was shown to be due to the fact that the accumulation of this solute actually resulted in a severe inhibition of growth in the adk mutants. The addition of GB in the presence of 0.5 M NaCl resulted in a rapid decline in the ATP pool and a dramatic increase in the AMP pool in the mutants. Proline, which is not toxic to the adk mutants, did not have any significant effects on the cellular levels of ATP and AMP. The mutants exhibited two different phenotypes with respect to the utilization of other osmoprotectants: they were also inhibited by propiothiobetaine, L-carnitine, and gamma-butyrobetaine, but they were stimulated normally in media of high osmolality by proline, choline-O-sulfate, and stachydrine.
Collapse
Affiliation(s)
- J A Gutierrez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392
| | | |
Collapse
|
91
|
Meury J, Bahloul A, Kohiyama M. Importance of the replication origin sequestration in cell division of Escherichia coli. Biochimie 1995; 77:875-9. [PMID: 8824767 DOI: 10.1016/0300-9084(95)90006-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The DNA adenine methyltransferase of Escherichia coli methylates adenines at GATC sequences. The mutant deficient in this methylase has no apparent deficiency in the cell division process in spite of the absence of both synchrony in initiations of chromosomal DNA replication and sequestration of replication origin (oriC) at hemimethylated state. However, the dam mutant cannot resume cell division after hyperosmotic shock differing from the wild-type strain. This inhibition is not provoked by induction of the cell division inhibitor, SfiA protein. Although the FtsZ protein is present in the dam mutant in a reduced amount compared to wild-type, the quantitative difference of this protein is not the main reason of division arrest provoked by hyperosmotic shock. This observation supports the idea of oriC-membrane interaction playing a role both in chromosome partitioning and cell division as predicted by replicon theory.
Collapse
Affiliation(s)
- J Meury
- Biochimie Génétique, Université Paris, France
| | | | | |
Collapse
|
92
|
Mellies J, Wise A, Villarejo M. Two different Escherichia coli proP promoters respond to osmotic and growth phase signals. J Bacteriol 1995; 177:144-51. [PMID: 8002611 PMCID: PMC176566 DOI: 10.1128/jb.177.1.144-151.1995] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
proP of Escherichia coli encodes an active transport system for proline and glycine betaine which is activated by both hyperosmolarity and amino acid-limited growth. proP DNA sequences far upstream from the translational start site are strongly homologous to the promoter of proU, an operon that specifies another osmoregulated glycine betaine transport system. Mutation and deletion analysis of proP and primer extension experiments established that this promoter, P1, was responsible for proP's strong expression in minimal medium and its response to osmotic signals. When cells were grown in complex medium, expression from a proP-lacZ fusion was induced three- to fourfold as growth slowed and cells entered stationary phase. Stationary-phase induction was dependent on rpoS, which encodes a stationary-phase sigma factor. Deletion of 158 bp of the untranslated leader sequence between P1 and the proP structural gene abolished rpoS-dependent stationary-phase regulation. Transcription initiation detected by primer extension within this region was absent in an rpoS mutant. proP is therefore a member of the growing class of sigma S-dependent genes which respond to both stationary-phase and hyperosmolarity signals.
Collapse
Affiliation(s)
- J Mellies
- Section of Microbiology, University of California, Davis 95616
| | | | | |
Collapse
|
93
|
Effects of Osmotic Shock on Uptake and Release of Carbohydrates and Amino Acids by E. coli Resting Cells in Seawater and Buffers. Syst Appl Microbiol 1994. [DOI: 10.1016/s0723-2020(11)80046-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
94
|
Meury J. Immediate and transient inhibition of the respiration of Escherichia coli under hyperosmotic shock. FEMS Microbiol Lett 1994; 121:281-6. [PMID: 7926682 DOI: 10.1111/j.1574-6968.1994.tb07113.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The respiration of Escherichia coli is severely inhibited, during hyperosmotic stress period, as a consequence of plasmolysis; deplasmolysis allows the cell to recover respiration. A mutant lacking all K+ transport systems can neither deplasmolyze nor recover respiration unless betaine is present in the medium. Betaine, in these conditions, increases both cytoplasmic volume and respiration; this suggests a control of respiration by cytoplasmic volume.
Collapse
Affiliation(s)
- J Meury
- Biochimie Génétique, Institut Jacques Monod, Paris, France
| |
Collapse
|
95
|
Patchett RA, Kelly AF, Kroll RG. Transport of glycine-betaine by Listeria monocytogenes. Arch Microbiol 1994; 162:205-10. [PMID: 7979875 DOI: 10.1007/bf00314476] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Uptake of [14C]glycine-betaine by Listeria monocytogenes was stimulated by NaCl with optimal stimulation at 0.4-0.5 M. The glycine-betaine transport system had a Km of 22 microM and a Vmax of 11.7 nmol-1 min-1 mg-1 protein when grown in the absence of NaCl. When grown in the presence of 0.8 M NaCl the Vmax increased to 27.0 nmol-1 min-1 mg-1 protein in 0.8 M NaCl. At NaCl concentrations above 0.5 M the uptake rate of glycine-betaine was reduced. Measurement of intracellular K+ concentrations and fluorescent dye quenching indicated that higher NaCl concentrations also led to a decrease in the electrochemical potential difference across the cytoplasmic membrane. Uptake of glycine was also observed, but this was not stimulated by NaCl.
Collapse
Affiliation(s)
- R A Patchett
- Institute of Food Research, Reading, United Kingdom
| | | | | |
Collapse
|
96
|
Mellies J, Brems R, Villarejo M. The Escherichia coli proU promoter element and its contribution to osmotically signaled transcription activation. J Bacteriol 1994; 176:3638-45. [PMID: 8206842 PMCID: PMC205553 DOI: 10.1128/jb.176.12.3638-3645.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The proU operon of Escherichia coli encodes a high-affinity glycine betaine transport system which is osmotically inducible and enables the organism to recover from the deleterious effects of hyperosmotic shock. Regulation occurs at the transcriptional level. KMnO4 footprinting showed that the preponderance of transcription initiated at a single primary promoter region and that proU transcription activation did not occur differentially at alternate promoters in response to various levels of salt shock. Mutational analysis confirmed the location of the primary promoter and identified an extended -10 region required for promoter activity. Specific nucleotides within the spacer, between position -10 and position -35, were important for maximal expression, but every mutant which retained transcriptional activity remained responsive to osmotic signals. A chromosomal 90-bp minimal promoter fragment fused to lacZ was not significantly osmotically inducible. However, transcription from this fragment was resistant to inhibition by salt shock. A mutation in osmZ, which encodes the DNA-binding protein H-NS, derepressed wild-type proU expression by sevenfold but did not alter expression from the minimal promoter. The current data support a model in which the role of the proU promoter is to function efficiently at high ionic strength while other cis-acting elements receive and respond to the osmotic signal.
Collapse
Affiliation(s)
- J Mellies
- Section of Microbiology, University of California, Davis 95616
| | | | | |
Collapse
|
97
|
Lucht JM, Bremer E. Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. FEMS Microbiol Rev 1994; 14:3-20. [PMID: 8011357 DOI: 10.1111/j.1574-6976.1994.tb00067.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A sudden increase in the osmolarity of the environment is highly detrimental to the growth and survival of Escherichia coli and Salmonella typhimurium since it triggers a rapid efflux of water from the cell, resulting in a decreased turgor. Changes in the external osmolarity must therefore be sensed by the microorganisms and this information must be converted into an adaptation process that aims at the restoration of turgor. The physiological reaction of the cell to the changing environmental condition is a highly coordinated process. Loss of turgor triggers a rapid influx of K+ ions into the cell via specific transporters and the concomitant synthesis of counterions, such as glutamate. The increased intracellular concentration of K(+)-glutamate allows the adaptation of the cell to environments of moderately high osmolarities. At high osmolarity, K(+)-glutamate is insufficient to ensure cell growth, and the bacteria therefore replace the accumulated K+ ions with compounds that are less deleterious for the cell's physiology. These compatible solutes include polyoles such as trehalose, amino acids such as proline, and methyl-amines such as glycine betaine. One of the most important compatible solutes for bacteria is glycine betaine. This potent osmoprotectant is widespread in nature, and its intracellular accumulation is achieved through uptake from the environment or synthesis from its precursor choline. In this overview, we discuss the properties of the high-affinity glycine betaine transport system ProU and the osmotic regulation of its structural genes.
Collapse
Affiliation(s)
- J M Lucht
- University of Konstanz, Department of Biology, FRG
| | | |
Collapse
|
98
|
Lucht J, Dersch P, Kempf B, Bremer E. Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37411-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
99
|
Booth IR, Pourkomailian B, McLaggan D, Koo SP. Mechanisms controlling compatible solute accumulation: A consideration of the genetics and physiology of bacterial osmoregulation. J FOOD ENG 1994. [DOI: 10.1016/0260-8774(94)90041-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
100
|
McLaggan D, Naprstek J, Buurman E, Epstein W. Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42113-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|