51
|
Sigrell JA, Cameron AD, Jones TA, Mowbray SL. Purification, characterization, and crystallization of Escherichia coli ribokinase. Protein Sci 1997; 6:2474-6. [PMID: 9385653 PMCID: PMC2143589 DOI: 10.1002/pro.5560061124] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ribokinase phosphorylates ribose to form ribose-5-phosphate in the presence of ATP and magnesium. The phosphorylated sugar can enter the pentose phosphate pathway or be used for the synthesis of nucleotides, histidine, and tryptophan. Ribokinase belongs to the PfkB family of carbohydrate kinases, for which no three-dimensional structure is currently known. We describe an improved purification protocol for Escherichia coli ribokinase and give evidence from light-scattering and gel filtration studies that the protein forms a dimer in solution. Several types of crystals are also described that have been obtained of apo ribokinase, ribokinase in the presence of ATP, and in a ternary complex with an ATP-analogue and ribose. The latter crystals give the best X-ray diffraction. A complete data set has been collected at the synchrotron source in Hamburg, to 2.6 A resolution using a frozen crystal. The crystals belong to space group P6(1)22 or P6(5)22 with cell parameters a = b = 95 A and c = 155 A.
Collapse
Affiliation(s)
- J A Sigrell
- Department of Molecular Biology, Uppsala University, Sweden
| | | | | | | |
Collapse
|
52
|
Estévez AM, Martínez-Costa OH, Sánchez V, Aragón JJ. Cloning, sequencing and developmental expression of phosphofructokinase from Dictyostelium discoideum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:442-51. [PMID: 9030771 DOI: 10.1111/j.1432-1033.1997.0442a.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phosphofructokinase (PFK) from Dictyostelium discoideum is a non-allosteric enzyme that lacks any of the characteristic regulatory mechanisms of PFK from other cells. We have determined the DNA sequence and analyzed the amino acid sequence of D. discoideum PFK, as an initial step toward understanding the peculiar properties of this enzyme. Three overlapping fragments, two of cDNA and one of genomic DNA, were isolated, which together could encode the complete sequence of D. discoideum PFK. The constructed full-length cDNA coded for a protein of 834 amino acids, with a calculated molecular mass of 92.4 kDa, which was similar to other eukaryotic and prokaryotic PFK. Alignments of the amino acid sequence with other isozymes revealed that many of the amino acid residues assigned to binding sites of substrates and allosteric effectors are conserved in this enzyme, but changes were also found that may contribute to the absence of allosteric mechanisms. A phylogenetic tree for the eukaryotic PFK family was constructed and showed that the N-terminal domain clustered with those of yeast subunits, whereas the C-terminal domain was more related to PFK from metazoa. Southern blotting indicated that D. discoideum PFK is encoded by a single gene. The enzyme is present throughout the life cycle of D. discoideum, with a gradual decrease of its expression during development.
Collapse
Affiliation(s)
- A M Estévez
- Departamento de Bioquímica de la UAM, Facultad de Medicina de la Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
53
|
Yang Y, Zhao G, Winkler ME. Identification of the pdxK gene that encodes pyridoxine (vitamin B6) kinase in Escherichia coli K-12. FEMS Microbiol Lett 1996; 141:89-95. [PMID: 8764513 DOI: 10.1111/j.1574-6968.1996.tb08368.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We isolated a miniTn10(Cmr) insertion mutant lacking pyridoxine (PN) kinase and cloned the structural gene, designated pdxK, by complementation. P1 transduction and PCR mapping and DNA sequence analysis showed that pdxK was adjacent to the crr sugar transport gene (53.95 min). Growth properties of pdxK::miniTn10 mutants supported the hypotheses that PN kinase, which also phosphorylates pyridoxal (PL) and pyridoxamine (PM) in vitro, functions solely in the B6-vitamer salvage pathway and that E. coli contains an additional PL kinase. The amino acid sequence of PdxK has signature motifs of the PfkB superfamily of carbohydrate kinases, which includes phosphofructokinases and ribokinases, and suggests that three unidentified ORFs of Salmonella typhimurium, Haemophilus influenzae, and Saccharomyces cerevisiae correspond to PN/PL/PM kinases.
Collapse
Affiliation(s)
- Y Yang
- Department of Microbiology and Molecular Genetics, University of Texas Houston Medical School 77030-1501, USA
| | | | | |
Collapse
|
54
|
Fennington GJ, Hughes TA. The fructokinase from Rhizobium leguminosarum biovar trifolii belongs to group I fructokinase enzymes and is encoded separately from other carbohydrate metabolism enzymes. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 2):321-330. [PMID: 8932706 DOI: 10.1099/13500872-142-2-321] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Rhizobium leguminosarum bv. trifolii BAL fructokinase (frk) gene was isolated on a 2 center dot 4 kb BamHI fragment from the cosmid pLA72 by complementation analysis of the Tn5-induced frk mutant BAL79, and confirmed by hybridization analysis. The nucleotide sequence of the frk gene was found to contain an open reading frame consisting of 978 bp encoding 326 amino acids, which was then compared to known fructokinase sequences. The fructokinase gene was not contained in an operon and is encoded separately from other enzymes of carbohydrate metabolism. Its product is therefore assigned to the group I fructokinases. A putative promoter (TTGACA-N16-GTTGAT), ribosome-binding site and termination sequence were identified. The Frk protein contained several motifs conserved in other known fructokinase sequences, including an ATP-binding and a substrate-binding motif. The hydropathy plot derived from the frk gene sequence data revealed the fructokinase as a hydrophilic protein. The fructokinase protein was purified to electrophoretic homogeneity by a three-step method using chromatofocusing, affinity chromatography and gel filtration. Its purity was confirmed by SDS-PAGE and it was visualized as a single band by silver staining. The N-terminal amino acid sequence of the purified fructokinase confirmed the proposed open reading frame of the frk gene. The purified fructokinase had a molecular mass of 36 center dot 5 kDa, pl of 4 center dot 65, pH activity range of 6 center dot 0-9 center dot 0 (maximum activity at pH 8 center dot 0) and a Mg2+ requirement. It had a Km of 0 center dot 31 mM and a Vmax of 31 mumol fructose 6-phosphate (mg protein)-1 min-1 with fructose as substrate. The R. leguminosarum bv. trifolii BAL fructokinase was biochemically and molecularly similar to other bacterial fructokinases.
Collapse
Affiliation(s)
- George J Fennington
- Department of Microbiology, Clemson University, Clemson, South Carolina 29634-1909, USA
| | - Thomas A Hughes
- Department of Microbiology, Clemson University, Clemson, South Carolina 29634-1909, USA
| |
Collapse
|
55
|
Rozario C, Smith MW, Müller M. Primary sequence of a putative pyrophosphate-linked phosphofructokinase gene of Giardia lamblia. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1260:218-22. [PMID: 7841200 DOI: 10.1016/0167-4781(94)00217-q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Based on sequence information from a cosmid library, we obtained a genomic clone that encodes a putative inorganic pyrophosphate (PPi)-linked phosphofructokinase of Giardia lamblia. The open reading frame specified a protein of 59.8 kDa homologous to PPi- and ATP-linked phosphofructokinases. The greatest similarity (over 50% positional identity) was noted to the beta-subunits of both the Solanum tuberosum (potato) and Ricinus communis (castor bean) PPi-phosphofructokinases.
Collapse
Affiliation(s)
- C Rozario
- Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
56
|
[20] Computational Analyses Aiding Identification and Characterization of Proteins, Genes, and Operons. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1067-2389(06)80023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
57
|
Chattopadhyay S, Mukherjee A, Ghosh S. Molecular cloning and sequencing of an operon, carRS of Azospirillum brasilense, that codes for a novel two-component regulatory system: demonstration of a positive regulatory role of carR for global control of carbohydrate catabolism. J Bacteriol 1994; 176:7484-90. [PMID: 8002571 PMCID: PMC197204 DOI: 10.1128/jb.176.24.7484-7490.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A pleiotropic carbohydrate mutant, CR17, of Azospirillum brasilense RG (wild type) that assimilates C4 dicarboxylates (succinate and malate) but not carbohydrate (fructose, arabinose, galactose, glycerol, and gluconate) as C sources for growth was used to identify the car (carbohydrate regulation) locus by complementation analysis. The 2.8-kb genomic fragment that complemented the Car- defect of CR17 and overlapped the fru operon (S. Chattopadhyay, A. Mukherjee, and S. Ghosh, J. Bacteriol. 175:3240-3243, 1993) has now been completely sequenced. The sequence contains an operon, carRS, coding for two proteins, CARR and CARS, having 236 and 352 amino acid residues, respectively. The 3'-flanking region of the carRS operon showed sequence homology with the 5' terminus of the fruB gene of a related bacterium, Rhodobacter capsulatus. A complementation study with carRS deletion clones showed that only the carR+ gene was required to complement the Car- defect of CR17, signifying that the carbohydrate pleiotropy was due to a lesion within this gene. Although the 2.8-kb DNA containing the carRS operon when introduced by conjugation into CR17 also complemented the Car- defect, the complemented transconjugant was unable to utilize succinate as a C source. The reason for this is not clear. A sequence analysis of the two protein products strongly suggests that the protein pair may constitute a novel two-component regulatory system for global expression of carbohydrate catabolic pathways in A. brasilense.
Collapse
|
58
|
Abstract
Lactose utilization is the primary function of lactic acid bacteria used in industrial dairy fermentations. The mechanism by which lactose is transported determines largely the pathway for the hydrolysis of the internalized disaccharide and the fate of the glucose and galactose moieties. Biochemical and genetic studies have indicated that lactose can be transported via phosphotransferase systems, transport systems dependent on ATP binding cassette proteins, or secondary transport systems including proton symport and lactose-galactose antiport systems. The genetic determinants for the group translocation and secondary transport systems have been identified in lactic acid bacteria and are reviewed here. In many cases the lactose genes are organized into operons or operon-like structures with a modular organization, in which the genes encoding lactose transport are tightly linked to those for lactose hydrolysis. In addition, in some cases the genes involved in the galactose metabolism are linked to or co-transcribed with the lactose genes, suggesting a common evolutionary pathway. The lactose genes show characteristic configurations and very high sequence identity in some phylogenetically distant lactic acid bacteria such as Leuconostoc and Lactobacillus or Lactococcus and Lactobacillus. The significance of these results for the adaptation of lactic acid bacteria to the industrial milk environment in which lactose is the sole energy source is discussed.
Collapse
Affiliation(s)
- W M de Vos
- Department of Biophysical Chemistry, NIZO, Ede, The Netherlands
| | | |
Collapse
|
59
|
Hugouvieux-Cotte-Pattat N, Nasser W, Robert-Baudouy J. Molecular characterization of the Erwinia chrysanthemi kdgK gene involved in pectin degradation. J Bacteriol 1994; 176:2386-92. [PMID: 8157608 PMCID: PMC205363 DOI: 10.1128/jb.176.8.2386-2392.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The pathways of pectin and galacturonate catabolism in Erwinia chrysanthemi converge to form a common intermediate, 2-keto-3-deoxygluconate (KDG), which is phosphorylated by KDG kinase encoded by the kdgK gene. We cloned the kdgK gene of E. chrysanthemi 3937 by complementing an Escherichia coli kdgK mutation, using an RP4-derivative plasmid. One of the kdgK R-prime plasmids harbored a DNA insert of about 80 kb and carried the uxuA and uxuB genes involved in glucuronate catabolism and the celY gene coding for an E. chrysanthemi cellulase. The kdgK and celY genes were precisely located on this plasmid, and their respective transcriptional directions were determined. The nucleotide sequence of the kdgK region indicated that the kdgK reading frame is 981 bases long, corresponding to a protein of 329 amino acids with a molecular mass of 36,377 Da. Analysis of the deduced primary amino acid sequence showed that this enzyme is a new member of the PfkB family of carbohydrate kinases. Expression of kdgK is controlled by a negative regulatory gene, kdgR, which represses all the steps of pectin degradation. Near the putative promoter of the kdgK gene, we identified a putative KdgR-binding site and demonstrated that the KdgR protein specifically binds in vitro to this DNA region. The KdgR-KDG couple directly mediates the phenomenon of repression or induction. The KDG kinase, by limiting the intracellular inducer concentration, appears to be a key enzyme in induction of the whole catabolic pathway.
Collapse
Affiliation(s)
- N Hugouvieux-Cotte-Pattat
- Laboratoire de Généteique Moléculaire des Microorganismes, CNRS URA-1486, INSA de Lyon, Villeurbanne, France
| | | | | |
Collapse
|
60
|
Saier MH. Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 1994; 58:71-93. [PMID: 8177172 PMCID: PMC372954 DOI: 10.1128/mr.58.1.71-93.1994] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three-dimensional structures have been elucidated for very few integral membrane proteins. Computer methods can be used as guides for estimation of solute transport protein structure, function, biogenesis, and evolution. In this paper the application of currently available computer programs to over a dozen distinct families of transport proteins is reviewed. The reliability of sequence-based topological and localization analyses and the importance of sequence and residue conservation to structure and function are evaluated. Evidence concerning the nature and frequency of occurrence of domain shuffling, splicing, fusion, deletion, and duplication during evolution of specific transport protein families is also evaluated. Channel proteins are proposed to be functionally related to carriers. It is argued that energy coupling to transport was a late occurrence, superimposed on preexisting mechanisms of solute facilitation. It is shown that several transport protein families have evolved independently of each other, employing different routes, at different times in evolutionary history, to give topologically similar transmembrane protein complexes. The possible significance of this apparent topological convergence is discussed.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| |
Collapse
|
61
|
Auzat I, Le Bras G, Branny P, De La Torre F, Theunissen B, Garel JR. The role of Glu187 in the regulation of phosphofructokinase by phosphoenolpyruvate. J Mol Biol 1994; 235:68-72. [PMID: 7904653 DOI: 10.1016/s0022-2836(05)80014-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In bacterial phosphofructokinases, either a glutamic or an aspartic residue is present at position 187, and the mechanism of inhibition by phosphoenolpyruvate seems to be correlated to the nature of residue 187. Upon binding phosphoenolpyruvate, only the enzymes with a Glu187 would undergo a major allosteric conformational change from an active into an inactive state, whereas the enzymes with an Asp187 would only show a simple upward shift in their pH-profile of activity. The phosphofructokinase from Spiroplasma citri, which has an Asp187, has been purified and its properties follow this pattern. The behaviour of mutants of the enzyme from Escherichia coli in which Glu187 is replaced by either aspartate or leucine confirms the importance of residue 187. The major allosteric transition of E. coli phosphofructokinase is abolished by the substitution Glu187-->Asp, suggesting that a glutamate at position 187 is necessary (but not sufficient) for the protein to undergo the change from the active into the inactive state induced by phosphenolpyruvate. In addition, the presence of an acidic residue, aspartate or glutamate, at position 187 is required (but not sufficient) for the binding of ADP (or GDP). This requirement of a negative charge for ADP binding could explain the striking conservation of an aspartate residue at position 187 in all the eukaryotic phosphofructokinases.
Collapse
Affiliation(s)
- I Auzat
- Laboratoire d'Enzymologie du CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
62
|
Lapointe R, Frenette M, Vadeboncoeur C. Altered expression of several genes in IIIManL-defective mutants of Streptococcus salivarius demonstrated by two-dimensional gel electrophoresis of cytoplasmic proteins. Res Microbiol 1993; 144:305-16. [PMID: 8248624 DOI: 10.1016/0923-2508(93)90015-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mannose, glucose and fructose are transported in Streptococcus salivarius by a phosphoenolpyruvate:mannose phosphotransferase system (PTS) which consists of a membrane-bound Enzyme II (EII) and two forms of IIIMan having molecular weights of 38,900 (IIIManH) and 35,200 (IIIManL), respectively. We have previously reported the isolation of spontaneous mutants lacking IIIManL and showed that they exhibit higher beta-galactosidase activity than the parental strain after growth on glucose, and that some of them constitutively express a fructose PTS which is induced by fructose in the parental strain. In an attempt to determine whether the expression of other genes is affected by the mutation and what the physiological link is between them, we examined three S. salivarius IIIManL-defective mutants (strains A37, B31 and G29) and the parental strain using two-dimensional gel electrophoresis after growth of the cells on a variety of sugars. After growth on glucose, five new proteins were detected in the cytoplasm of the three mutants. Two of these proteins were induced in the parental strain by galactose or oligosaccharides containing galactose, and one was specifically induced by melibiose. The other two proteins were not detected in the parental strain under any of the growth conditions tested. Two other proteins were only detected in glucose-grown cells of mutant A37, and a protein associated with the metabolism of fructose was constitutively expressed in mutants B31 and G29. Moreover, we have found that under identical growth conditions the amounts of several other proteins which were detected in the parental strain were either increased or decreased in the mutants. Globally, our results have indicated that (1) the expression of several genes was affected in the spontaneous IIIManL-defective mutants; (2) some of the proteins abnormally produced in the mutants were specifically induced in the parental strain by sugars; (3) the phenotypic modifications observed in the mutants were of two types: most were observed solely after growth of the cells on glucose whereas the others were glucose-independent; and (4) the mutants shared common phenotypic traits, but also exhibited idiosyncratic characteristics.
Collapse
Affiliation(s)
- R Lapointe
- Department of Biochemistry (Sciences), Université Laval, Québec, Canada
| | | | | |
Collapse
|
63
|
Bork P, Sander C, Valencia A. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci 1993; 2:31-40. [PMID: 8382990 PMCID: PMC2142297 DOI: 10.1002/pro.5560020104] [Citation(s) in RCA: 305] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Kinases that catalyze phosphorylation of sugars, called here sugar kinases, can be divided into at least three distinct nonhomologous families. The first is the hexokinase family, which contains many prokaryotic and eukaryotic sugar kinases with diverse specificities, including a new member, rhamnokinase from Salmonella typhimurium. The three-dimensional structure of hexokinase is known and can be used to build models of functionally important regions of other kinases in this family. The second is the ribokinase family, of unknown three-dimensional structure, and comprises pro- and eukaryotic ribokinases, bacterial fructokinases, the minor 6-phosphofructokinase 2 from Escherichia coli, 6-phosphotagatokinase, 1-phosphofructokinase, and, possibly, inosine-guanosine kinase. The third family, also of unknown three-dimensional structure, contains several bacterial and yeast galactokinases and eukaryotic mevalonate and phosphomevalonate kinases and may have a substrate binding region in common with homoserine kinases. Each of the three families of sugar kinases appears to have a distinct three-dimensional fold, since conserved sequence patterns are strikingly different for the three families. Yet each catalyzes chemically equivalent reactions on similar or identical substrates. The enzymatic function of sugar phosphorylation appears to have evolved independently on the three distinct structural frameworks, by convergent evolution. In addition, evolutionary trees reveal that (1) fructokinase specificity has evolved independently in both the hexokinase and ribokinase families and (2) glucose specificity has evolved independently in different branches of the hexokinase family. These are examples of independent Darwinian adaptation of a structure to the same substrate at different evolutionary times. The flexible combination of active sites and three-dimensional folds observed in nature can be exploited by protein engineers in designing and optimizing enzymatic function.
Collapse
Affiliation(s)
- P Bork
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
64
|
Zheng R, Kemp R. The mechanism of ATP inhibition of wild type and mutant phosphofructo-1-kinase from Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35886-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
65
|
Rosey EL, Stewart GC. Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans. J Bacteriol 1992; 174:6159-70. [PMID: 1400164 PMCID: PMC207683 DOI: 10.1128/jb.174.19.6159-6170.1992] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The complete nucleotide sequences of lacRABCDF and partial nucleotide sequence of lacE from the lactose operon of Streptococcus mutans are presented. Comparison of the streptococcal lac determinants with those of Staphylococcus aureus and Lactococcus lactis indicate exceptional protein and nucleotide identity. The deduced polypeptides also demonstrate significant, but lower, sequence similarity with the corresponding lactose proteins of Lactobacillus casei. Additionally, LacR has sequence homology with the repressor (DeoR) of the Escherichia coli deoxyribonucleotide operon, while LacC is similar to phosphokinases (FruK and PfkB) from E. coli. The primary translation products of the lacRABCDFE genes are polypeptides of 251 (M(r) 28,713), 142 (M(r) 15,610), 171 (M(r) 18,950), 310 (M(r) 33,368), 325 (M(r) 36,495), 104 (M(r) 11,401), and 123 (NH2-terminal) amino acids, respectively. As inferred from their direct homology to the staphylococcal lac genes, these determinants would encode the repressor of the streptococcal lactose operon (LacR), galactose-6-phosphate isomerase (LacA and LacB), tagatose-6-phosphate kinase (LacC), tagatose-1,6-bisphosphate aldolase (LacD), and the sugar-specific components enzyme III-lactose (LacF) and enzyme II-lactose (LacE) of the S. mutans phosphoenolpyruvate-dependent phosphotransferase system. The nucleotide sequence encompassing the S. mutans lac promoter appears to contain repeat elements analogous to those of S. aureus, suggesting that repression and catabolite repression of the lactose operons may be similar in these organisms.
Collapse
Affiliation(s)
- E L Rosey
- Department of Microbiology, University of Kansas, Lawrence 66045
| | | |
Collapse
|
66
|
Aulkemeyer P, Ebner R, Heilenmann G, Jahreis K, Schmid K, Wrieden S, Lengeler JW. Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol 1991; 5:2913-22. [PMID: 1809835 DOI: 10.1111/j.1365-2958.1991.tb01851.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sucrose-positive derivatives of Escherichia coli K-12, containing the plasmid pUR400, and of Klebsiella pneumoniae hydrolyse intracellular sucrose 6-phosphate by means of an invertase into D-glucose 6-phosphate and free D-fructose. The latter is phosphorylated by an ATP-dependent fructokinase (gene scrK of an scr regulon) to D-fructose 6-phosphate. The lack of ScrK does not cause any visible phenotype in wild-type strains of both organisms. Using genes and enzymes normally involved in D-arabinitol metabolism from E. coli C and K. pneumoniae, derivatives of E. coli K-12 were constructed which allowed the identification of scrK mutations on conventional indicator plates. Cloning and sequencing of scrK from sucrose plasmid pUR400 and from the chromosome of K. pneumoniae revealed an open reading frame of 924 bp in both cases--the equivalent of a peptide containing 307 amino acid residues (Mr 39 and 34 kDa, respectively, on sodium dodecyl sulphate gels). The sequences showed overall identity among each other (69% identical residues) and to a kinase from Vibrio alginolyticus (57%) also involved in sucrose metabolism, lower overall identity (39%) to a D-ribose-kinase from E. coli, and local similarity to prokaryotic, and eukaryotic phosphofructokinases at the putative ATP-binding sites.
Collapse
Affiliation(s)
- P Aulkemeyer
- Fachbereich Biologie/Chemie, Universität Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
67
|
Wu LF, Saier MH. Differences in codon usage among genes encoding proteins of different function in Rhodobacter capsulatus. Res Microbiol 1991; 142:943-9. [PMID: 1805308 DOI: 10.1016/0923-2508(91)90004-t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Codon usage in Rhodobacter was evaluated and found to be strikingly different from that in Escherichia coli. While codon usage for genes concerned with nitrogen utilization and carotenoid biosynthesis corresponded to expectation, based on codon usage for Rhodobacter in general, that for the fructose utilization (fru) operon and for the photosynthetic genes encoding the reaction centre and light harvesting proteins exhibited significant deviation from expectation and from each other for specific amino acids. The differences in codon usage for the fru operon versus the photosynthetic genes may reflect different proportions of the various tRNA specific for certain amino acids when cells are grown under heterotrophic versus phototropic conditions. In addition, preferential use of the initiation codon, GTG, was found for the first cistrons of Rhodobacter operons.
Collapse
Affiliation(s)
- L F Wu
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|
68
|
Rosey EL, Oskouian B, Stewart GC. Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J Bacteriol 1991; 173:5992-8. [PMID: 1655695 PMCID: PMC208343 DOI: 10.1128/jb.173.19.5992-5998.1991] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The nucleotide and deduced amino acid sequences of the lacA and lacB genes of the Staphylococcus aureus lactose operon (lacABCDFEG) are presented. The primary translation products are polypeptides of 142 (Mr = 15,425) and 171 (Mr = 18,953) amino acids, respectively. The lacABCD loci were shown to encode enzymes of the tagatose 6-phosphate pathway through both in vitro studies and complementation analysis in Escherichia coli. A serum aldolase assay, modified to allow detection of the tagatose 6-phosphate pathway enzymes utilizing galactose 6-phosphate or fructose phosphate analogs as substrate, is described. Expression of both lacA and lacB was required for galactose 6-phosphate isomerase activity. LacC (34 kDa) demonstrated tagatose 6-phosphate kinase activity and was found to share significant homology with LacC from Lactococcus lactis and with both the minor 6-phosphofructokinase (PfkB) and 1-phosphofructokinase (FruK) from E. coli. Detection of tagatose 1,6-bisphosphate aldolase activity was dependent on expression of the 36-kDa protein specified by lacD. The LacD protein is highly homologous with LacD of L. lactis. Thus, the lacABCD genes comprise the tagatose 6-phosphate pathway and are cotranscribed with genes lacFEG, which specify proteins for transport and cleavage of lactose in S. aureus.
Collapse
Affiliation(s)
- E L Rosey
- Department of Microbiology, University of Kansas, Lawrence 66045
| | | | | |
Collapse
|
69
|
Reizer A, Pao GM, Saier MH. Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria. J Mol Evol 1991; 33:179-93. [PMID: 1920454 DOI: 10.1007/bf02193633] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The amino acid sequences of 15 sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS) were divided into four homologous segments, and these segments were analyzed to give phylogenetic trees. The permease segments fell into four clusters: the lactose-cellobiose cluster, the fructose-mannitol cluster, the glucose-N-acetylglucosamine cluster, and the sucrose-beta-glucoside cluster. Sequences of the glucitol and mannose permeases (clusters 5 and 6, respectively) were too dissimilar to establish homology with the other permeases, but short regions of statistically significant sequence similarities were noted. The functional and structural relationships of these permease segments are discussed. Some of the homologous PTS permeases were found to exhibit sufficient sequence similarity to subunits 4 and 5 of the eukaryotic mitochondrial NADH dehydrogenase complex to suggest homology. Moreover, subunits 4 and 5 of this complex appeared to be homologous to each other, suggesting that these PTS and mitochondrial proteins comprise a superfamily. The integral membrane subunits of the evolutionarily divergent mannose PTS permease, the P and M subunits, exhibited limited sequence similarity to subunit 6 of the mitochondrial F1F0-ATPase and subunit 5b of cytochrome oxidase, respectively. These results suggest that PTS sugar permeases and mitochondrial proton-translocating proteins may be related, although the possibility of convergent evolution cannot be ruled out.
Collapse
Affiliation(s)
- A Reizer
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | | | |
Collapse
|