51
|
Inaoka T, Matsumura Y, Tsuchido T. Molecular cloning and nucleotide sequence of the superoxide dismutase gene and characterization of its product from Bacillus subtilis. J Bacteriol 1998; 180:3697-703. [PMID: 9658017 PMCID: PMC107342 DOI: 10.1128/jb.180.14.3697-3703.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1997] [Accepted: 05/18/1998] [Indexed: 02/08/2023] Open
Abstract
Bacillus subtilis was found to possess one detectable superoxide dismutase (Sod) in both vegetative cells and spores. The Sod activity in vegetative cells was maximal at stationary phase. Manganese was necessary to sustain Sod activity at stationary phase, but paraquat, a superoxide generator, did not induce the expression of Sod. The specific activity of purified Sod was approximately 2, 600 U/mg of protein, and the enzyme was a homodimer protein with a molecular mass of approximately 25,000 per monomer. The gene encoding Sod, designated sodA, was cloned by the combination of several PCR methods and the Southern hybridization method. DNA sequence analysis revealed the presence of one open reading frame consisting of 606 bp. Several putative promoter sites were located in the upstream region of sodA. The deduced amino acid sequence showed high homology with other bacterial manganese Sods. Conserved regions in bacterial manganese Sod could also be seen. The phenotype of double mutant Escherichia coli sodA sodB, which could not grow in minimal medium without supplemental amino acids, was complemented by the expression of B. subtilis sodA.
Collapse
Affiliation(s)
- T Inaoka
- Department of Biotechnology, Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
| | | | | |
Collapse
|
52
|
Abstract
Different bands of catalase activity in zymograms (Cat-1a-Cat-1e) appear during Neurospora crassa development and under stress conditions. Here we demonstrate that singlet oxygen modifies Cat-1a, giving rise to a sequential shift in electrophoretic mobility, similar to the one observed in vivo. Purified Cat-1a was modified with singlet oxygen generated from a photosensitization reaction; even when the reaction was separated from the enzyme by an air barrier, a condition in which only singlet oxygen can reach the enzyme by diffusion. Modification of Cat-1a was hindered when reducing agents or singlet oxygen scavengers were present in the photosensitization reaction. The sequential modification of the four monomers gave rise to five active catalase conformers with more acidic isoelectric points. The pI of purified Cat-1a-Cat-1e decreased progressively, and a similar shift in pI was observed as Cat-1a was modified by singlet oxygen. No further change was detected once Cat-1e was reached. Catalase modification was traced to a three-step reaction of the heme. The heme of Cat-1a gave rise to three additional heme peaks in a high performance liquid chromatography when modified to Cat-1c. Full oxidation to Cat-1e shifted all peaks into a single one. Absorbance spectra were consistent with an increase in asymmetry as heme was modified. Bacterial, fungal, plant, and animal catalases were all susceptible to modification by singlet oxygen, indicating that this is a general feature of the enzyme that could explain in part the variety of catalases seen in several organisms and the modifications observed in some catalases. Modification of catalases during development and under stress could indicate in vivo generation of singlet oxygen.
Collapse
Affiliation(s)
- F Lledías
- Departmento de Bioquímica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, D. F
| | | | | |
Collapse
|
53
|
Bagyan I, Casillas-Martinez L, Setlow P. The katX gene, which codes for the catalase in spores of Bacillus subtilis, is a forespore-specific gene controlled by sigmaF, and KatX is essential for hydrogen peroxide resistance of the germinating spore. J Bacteriol 1998; 180:2057-62. [PMID: 9555886 PMCID: PMC107130 DOI: 10.1128/jb.180.8.2057-2062.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous work has shown that the katX gene encodes the major catalase in dormant spores of Bacillus subtilis but that this enzyme has no role in dormant spore resistance to hydrogen peroxide. Expression of a katX-lacZ fusion began at approximately h 2 of sporulation, and >75% of the katX-driven beta-galactosidase was packaged into the mature spore. A mutation in the gene coding for the sporulation-specific RNA polymerase sigma factor sigmaF abolished katX-lacZ expression, while mutations in genes encoding sigmaE, sigmaG, and sigmaK did not. Induction of sigmaF synthesis in vegetative cells also resulted in katX-lacZ expression, while induction of sigmaG expression did not; the katX-lacZ fusion was also not induced by hydrogen peroxide. Upstream of the in vivo katX transcription start site there are sequences with good homology to those upstream of known sigmaF-dependent start sites. These data indicate that katX is an additional member of the forespore-specific sigmaF regulon. A mutant in the katA gene, encoding the major catalase in growing cells, was sensitive to hydrogen peroxide during sporulation, while a katX mutant was not. However, outgrowth of katX spores, but not katA spores, was sensitive to hydrogen peroxide. Consequently, a major function for KatX is to protect germinating spores from hydrogen peroxide.
Collapse
Affiliation(s)
- I Bagyan
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032, USA
| | | | | |
Collapse
|
54
|
Scharf C, Riethdorf S, Ernst H, Engelmann S, Völker U, Hecker M. Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J Bacteriol 1998; 180:1869-77. [PMID: 9537387 PMCID: PMC107102 DOI: 10.1128/jb.180.7.1869-1877.1998] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thioredoxin, a small, ubiquitous protein which participates in redox reactions through the reversible oxidation of its active center dithiol to a disulfide, is an essential protein in Bacillus subtilis. A variety of stresses, including heat or salt stress or ethanol treatment, strongly enhanced the synthesis of thioredoxin in B. subtilis. The stress induction of the monocistronic trxA gene encoding thioredoxin occurs at two promoters. The general stress sigma factor, sigmaB, was required for the initiation of transcription at the upstream site, S(B), and the promoter preceding the downstream start site, S(A), was presumably recognized by the vegetative sigma factor, sigmaA. In contrast to the heat-inducible, sigmaA-dependent promoters preceding the chaperone-encoding operons groESL and dnaK, no CIRCE (for controlling inverted repeat of chaperone expression) was present in the vicinity of the start site, S(A). The induction patterns of the promoters differed, with the upstream promoter displaying the typical stress induction of sigmaB-dependent promoters. Transcription initiating at S(A), but not at S(B), was also induced after treatment with hydrogen peroxide or puromycin. Such a double control of stress induction at two different promoters seems to be typical of a subgroup of class III heat shock genes of B. subtilis, like clpC, and it either allows the cells to raise the level of the antioxidant thioredoxin after oxidative stress or allows stressed cells to accumulate thioredoxin. These increased levels of thioredoxin might help stressed B. subtilis cells to maintain the native and reduced state of cellular proteins.
Collapse
Affiliation(s)
- C Scharf
- Ernst-Moritz-Arndt-University, Institute for Microbiology and Molecular Biology, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
55
|
Antelmann H, Engelmann S, Schmid R, Sorokin A, Lapidus A, Hecker M. Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J Bacteriol 1997; 179:7251-6. [PMID: 9393687 PMCID: PMC179673 DOI: 10.1128/jb.179.23.7251-7256.1997] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SigmaB-dependent general stress proteins (Gsps) of Bacillus subtilis are essential for the development of glucose-starvation-induced cross-resistance to oxidative challenge. However, the proteins directly involved in this nonspecific resistance to oxidative stress have to be identified. We found that one prominent Gsp displayed strong sequence similarity to the previously characterized oxidative-stress-inducible MrgA protein of B. subtilis and to the starvation-induced Dps/PexB protein of Escherichia coli. We therefore designated this prominent Gsp Dps. While MrgA belongs to the peroxide-stress-inducible proteins needed for the H2O2-inducible adaptive response to oxidative stress, Dps belongs to the proteins induced by heat, salt, or ethanol stress and after starvation for glucose but not by a sublethal oxidative challenge. Primer extension experiments identified two overlapping promoters upstream of the coding region of dps, one being sigmaB dependent (PB) and the other being sigmaB independent (P1). Both promoters contribute to the basal level of dps during growth. After stress or during entry into the stationary phase, transcription from PB strongly increased whereas transcription from P1 decreased. Mutant strains lacking Dps completely failed to develop glucose-starvation-induced resistance to oxidative stress. These results confirm our suggestion that sigmaB-dependent general stress proteins of B. subtilis are absolutely required for the development of nonspecific resistance to oxidative stress.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
56
|
Mejía-Ruíz H, Guzmán J, Moreno S, Soberón-Chávez G, Espín G. The Azotobacter vinelandii alg8 and alg44 genes are essential for alginate synthesis and can be transcribed from an algD-independent promoter. Gene 1997; 199:271-7. [PMID: 9358065 DOI: 10.1016/s0378-1119(97)00380-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A 2.8-kb DNA region, located immediately downstream of algD, contains the A. vinelandii alg8 and alg44 genes, whose sequences are highly homologous to those of the corresponding Pseudomonas aeruginosa genes. These genes occur on a transcript that does not include algD, and are transcribed from a promoter different from that transcribing algD; this is the fourth promoter described within the alginate biosynthetic gene cluster. alg8 and alg44 mutants were constructed and shown to be completely impaired in alginate production. Alg8 shares 28.20% identity and 38.09% similarity to Azorhizobium caulinodans NodC, a glycosyl transferase catalyzing the formation of beta-1,4 linkages. A topological model is predicted, which supports the idea of Alg8 being the polymerase responsible for alginate synthesis.
Collapse
Affiliation(s)
- H Mejía-Ruíz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | | | | | |
Collapse
|
57
|
Antelmann H, Schmid R, Hecker M. The NAD synthetase NadE (OutB) of Bacillus subtilis is a sigma B-dependent general stress protein. FEMS Microbiol Lett 1997; 153:405-9. [PMID: 9271869 DOI: 10.1111/j.1574-6968.1997.tb12603.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The identification of sigma B-dependent general stress proteins is a useful strategy to understand the physiological role of the unspecific stress response in Bacillus subtilis. By N-terminal sequencing of B. subtilis stress proteins Gsp38 was identified as the NAD-synthetase (NadE). NadE was previously characterized as spore outgrowth factor B (OutB) conferring a temperature-sensitive spore outgrowth defective phenotype. Transcriptional studies showed that nadE is strongly induced in response to heat, ethanol and salt stress or after starvation for glucose in a sigma B-dependent manner. Two promoters are involved in transcriptional initiation, the sigma A-dependent upstream promoter contributes to the basal level during growth, whereas the sigma B-dependent downstream promoter is induced after different stress conditions.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | |
Collapse
|
58
|
Kawasaki L, Wysong D, Diamond R, Aguirre J. Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. J Bacteriol 1997; 179:3284-92. [PMID: 9150225 PMCID: PMC179108 DOI: 10.1128/jb.179.10.3284-3292.1997] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Catalases are ubiquitous hydrogen peroxide-detoxifying enzymes that are central to the cellular antioxidant response. Of two catalase activities detected in the fungus Aspergillus nidulans, the catA gene encodes the spore-specific catalase A (CatA). Here we characterize a second catalase gene, identified after probing a genomic library with catA, and demonstrate that it encodes catalase B. This gene, designated catB, predicts a 721-amino-acid polypeptide (CatB) showing 78% identity to an Aspergillus fumigatus catalase and 61% identity to Aspergillus niger CatR. Notably, similar levels of identity are found when comparing CatB to Escherichia coli catalase HPII (43%), A. nidulans CatA (40%), and the predicted peptide of a presumed catA homolog from A. fumigatus (38%). In contrast, the last two peptides share a 79% identity. The catalase B activity was barely detectable in asexual spores (conidia), disappeared after germination, and started to accumulate 10 h after spore inoculation, throughout growth and conidiation. The catB mRNA was absent from conidia, and its accumulation correlated with catalase activity, suggesting that catB expression is regulated at the transcription level. In contrast, the high CatA activity found in spores was lost gradually during germination and growth. In addition to its developmental regulation, CatB was induced by H2O2, heat shock, paraquat, or uric acid catabolism but not by osmotic stress. This pattern of regulation and the protective role against H2O2 offered by CatA and CatB, at different stages of the A. nidulans life cycle, suggest that catalase gene redundancy performs the function of satisfying catalase demand at the two different stages of metabolic and genetic regulation represented by growing hyphae versus spores. Alternative H2O2 detoxification pathways in A. nidulans were indicated by the fact that catA/catB double mutants were able to grow in substrates whose catabolism generates H2O2.
Collapse
Affiliation(s)
- L Kawasaki
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F
| | | | | | | |
Collapse
|
59
|
Krüger EI, Msadek T, Ohlmeier S, Hecker M. The Bacillus subtilis clpC operon encodes DNA repair and competence proteins. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1309-1316. [PMID: 9141693 DOI: 10.1099/00221287-143-4-1309] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ClpC of Bacillus subtilis, controlling competence gene expression and survival under stress conditions, is encoded by the fourth gene of a six-gene operon. The product of orf1 contains a potential helix-turn-helix motif, but shows no significant similarities with known protein sequences. The second and third genes encode proteins with similarities to zinc-finger proteins (orf2) and arginine kinases (orf3), respectively. The product of orf5 contains a zinc-finger motif and an ATP-binding domain, and is highly similar to the product of the Escherichia coli sms gene. A strain bearing a disruption of orf5 showed increased sensitivity to the alkylating agent methyl methanesulfonate. Furthermore, this mutant strain displayed decreased capacity for genetic recombination as measured by transformation experiments. The last open reading frame, orf6, encodes a protein with limited similarity in its C-terminal part to the B. subtilis comEA gene product and to the UvrC DNA repair excinuclease. Inactivation of orf5 resulted in strongly diminished transformation with all types of DNA. Mutations affecting either orf5 or orf6 resulted in strains with decreased resistance to UV-irradiation in the stationary phase, indicating that these proteins play a role in the development of a non-specific stationary-phase resistance to UV-irradiation. Moreover, these results suggest an involvement of both proteins in transformation and presumably in DNA repair.
Collapse
Affiliation(s)
- EIke Krüger
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany
| | - Tarek Msadek
- Unité de Biochimie Microbienne, Unité de Recherche Associeé 1300 du Centre National de la Recherche Scientifique, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Steffen Ohlmeier
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany
| |
Collapse
|
60
|
Abstract
We have identified a new member, csbX, of the general stress regulon controlled by sigmaB in Bacillus subtilis. As with other members of the sigmaB regulon csbX is expressed during the stationary phase of cell growth and inactivation of this gene produces no obvious phenotype during cell growth or early development. csbX lies uspstream from the sporulation gene bofC which is co-transcribed during stationary phase.
Collapse
Affiliation(s)
- M Gomez
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6076, USA
| | | |
Collapse
|
61
|
Bernhardt JR, V Lker U, V Lker A, Antelmann H, Schmid R, Mach H, Hecker M. Specific and general stress proteins in Bacillus subtilis--a two-deimensional protein electrophoresis study. MICROBIOLOGY (READING, ENGLAND) 1997; 143:999-1017. [PMID: 9296790 DOI: 10.1099/00221287-143-3-999] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A computer-aided analysis of high resolution two-dimensional polyacrylamide gels was used to investigate the changes in the protein synthesis profile in B. subtilis wild-type strains and sigB mutants in response to heat shock, salt and ethanol stress, and glucose of phosphate starvation. The data provided evidence that the induction of a least 42 general stress proteins absolutely required the alternative sigma factor sigmaB. However, at least seven stress proteins, among them ClpC, ClpP, Sod, AhpC and AhpF, remained stress-inducible in a sigB mutant. Such a detailed analysis also premitted the description of subgroups of general stress proteins which are subject to additional regulatory circuits, indicating a very thorough fine-tuning of this complex response. The relative synthesis rate of the general stress proteins constituted up to 40% of the total protein synthesis of stressed cells and thereby emphasizes the importance of the stress regulon. Besides the induction of these general or rather unspecific stress proteins, the induction of stress-specific proteins is shown and discussed.
Collapse
Affiliation(s)
- J Rg Bernhardt
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Uwe V Lker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Andrea V Lker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Haike Antelmann
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Roland Schmid
- Universit�t Osnabr�ck, Abteilung f�r Mikrobiologie, 49076 Osnabr�ck, Germany
| | - Hiltraut Mach
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| | - Michael Hecker
- Institut f�r Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universit�t Greifswald, 17487 Greifswald, Friedrich-Ludwig-Jahn-StraBe 15, Germany
| |
Collapse
|
62
|
Rosner JL, Storz G. Regulation of bacterial responses to oxidative stress. CURRENT TOPICS IN CELLULAR REGULATION 1997; 35:163-77. [PMID: 9192180 DOI: 10.1016/s0070-2137(97)80007-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J L Rosner
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
63
|
Antelmann H, Engelmann S, Schmid R, Hecker M. General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J Bacteriol 1996; 178:6571-8. [PMID: 8932314 PMCID: PMC178544 DOI: 10.1128/jb.178.22.6571-6578.1996] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The AhpC subunit of the Bacillus subtilis alkyl hydroperoxide reductase was identified as a general stress protein induced in response to heat or salt stress or after entry of the organism into the stationary phase. The ahp operon, encoding the two subunits AhpC and AhpF, was cloned and localized between the gntRKPZ operon and the bglA locus. Two-dimensional gel analyses revealed an especially strong induction of AhpC and AhpF in cells subjected to oxidative stress. Transcriptional studies showed a 3- to 4-fold induction of ahp mRNA after heat or salt stress or starvation for glucose and a 20-fold induction by oxidative stress, thus confirming the protein induction data for AhpC and AhpF. Stress induction occurred at a sigmaA-dependent promoter that overlaps with operator sites similar to the per box. Compared with the wild type, the ahpC mutant was resistant to hydrogen peroxide because of the derepression of the peroxide regulon (N. Bsat, L. Chen, and J. D. Helmann, J. Bacteriol. 178:6579-6586, 1996) but more sensitive to cumene hydroperoxide (CHP) during exponential growth. In contrast, stationary-phase wild-type and ahpC mutant cells displayed complete resistance to treatment with 1 mM CHP. Moreover, a sigmaB mutant was found to be extremely sensitive to CHP during vegetative growth and in stationary phase, which indicates that sigmaB-dependent general stress proteins are involved in the protection of cells against oxidative stress.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | |
Collapse
|
64
|
Akbar S, Price CW. Isolation and characterization of csbB, a gene controlled by Bacillus subtilis general stress transcription factor sigma B. Gene 1996; 177:123-8. [PMID: 8921856 DOI: 10.1016/0378-1119(96)00287-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the bacterium Bacillus subtilis (Bs), the alternative transcription factor sigma B is activated by environmental stresses to control the expression of a large set of unlinked genes. However, the range of physiological functions mediated by these sigma B-controlled genes is presently unknown. We report here that the newly identified gene csbB is under the dual control of a sigma B-dependent and a sigma B-independent promoter. The predicted product of csbB is a 329 residue protein containing two potential membrane-spanning segments in its C-terminal region, leading us to speculate that one class of sigma B-controlled genes acts to modify the cell envelope as part of the general stress response.
Collapse
Affiliation(s)
- S Akbar
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | |
Collapse
|
65
|
Yang X, Kang CM, Brody MS, Price CW. Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev 1996; 10:2265-75. [PMID: 8824586 DOI: 10.1101/gad.10.18.2265] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The general stress response of the bacterium Bacillus subtilis is governed by a signal transduction network that regulates activity of the sigma(B) transcription factor. We show that this network comprises two partner-switching modules, RsbX-RsbS-RsbT and RsbU-RsbV-RsbW, which contribute to regulating sigma(B). Each module consists of a phosphatase (X or U), an antagonist protein (S or V), and a switch protein/kinase (T or W). In the downstream module, the W anti-sigma factor is the primary regulator of sigma(B) activity. If the V antagonist is phosphorylated, the W switch protein binds and inhibits sigma(B). If V is unphosphorylated, it complexes W, freeing sigma(B) to interact with RNA polymerase and promote transcription. The phosphorylation state of V is controlled by opposing kinase (W) and phosphatase (U) activities. The U phosphatase is regulated by the upstream module. The T switch protein directly binds U, stimulating phosphatase activity. The T-U interaction is governed by the phosphorylation state of the S antagonist, controlled by opposing kinase (T) and phosphatase (X) activities. This partner-switching mechanism provides a general regulatory strategy in which linked modules sense and integrate multiple signals by protein-protein interaction.
Collapse
Affiliation(s)
- X Yang
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
66
|
Kang CM, Brody MS, Akbar S, Yang X, Price CW. Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor sigma(b) in response to environmental stress. J Bacteriol 1996; 178:3846-53. [PMID: 8682789 PMCID: PMC232645 DOI: 10.1128/jb.178.13.3846-3853.1996] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Bacillus subtilis, activity of the general stress transcription factor sigma B is controlled posttranslationally by a regulatory network that transmits signals of environmental and metabolic stress. These signals include heat, ethanol, or osmotic challenge, or a sharp decrease in cellular energy levels, and all ultimately control sigma B activity by influencing the binding decision of the RsbW anti-sigma factor. In the absence of stress, RsbW binds to sigma B and prevents its association with RNA polymerase core enzyme. However, following stress, RsbW binds instead to the RsbV anti-anti-sigma factor, thereby releasing sigma B to direct transcription of its target genes. These two principal regulators of sigmaB activity are encoded in the eight-gene sigB operon, which has the gene order rsbR-rsbS-rsbT-rsbU-rsbV-rsbW-sig B-rsbX (where rsb stands for regulator of sigma B). Notably, the predicted rsbS product has significant amino acid identity to the RsbV anti-anti-sigma factor and the predicted rsbT product resembles the RsbW anti-sigma factor. To determine the roles of rsbS and rsbT, null or missense mutations were constructed in the chromosomal copies or each and tested for their effects on expression of a sigma B-dependent reporter fusion. On the basis of this genetic analysis, our principal conclusions are that (i) the rsbS product is a negative regulator of or" activity, (ii) the rsbT product is a positive regulator, (iii) RsbS requires RsbT for function, and (iv) the RsbS-RsbT and RsbV-RsbW pairs act hierarchically by a common mechanism in which key protein-protein interactions are controlled by phosphorylation events.
Collapse
Affiliation(s)
- C M Kang
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
67
|
Krüger E, Msadek T, Hecker M. Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol Microbiol 1996; 20:713-23. [PMID: 8793870 DOI: 10.1111/j.1365-2958.1996.tb02511.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
clpC of Bacillus subtilis is part of an operon containing six genes. Northern blot analysis suggested that all genes are co-transcribed and encode stress-inducible proteins. Two promoters (PA and PB) were mapped upstream of the first gene. PA resembles promoters recognized by the vegetative RNA polymerase E sigma A. The other promoter (PB) was shown to be dependent on sigma B, the general stress sigma factor in B. subtilis, suggesting that clpC, a potential chaperone, is expressed in a sigma B-dependent manner. This is the first evidence that sigma B in B. subtilis is involved in controlling the expression of a gene whose counterpart, clpB, is subject to regulation by sigma 32 in Escherichia coli, indicating a new function of sigma B-dependent general stress proteins. PB deviated from the consensus sequence of sigma B promoters and was only slightly induced by starvation conditions. Nevertheless, strong induction by heat, ethanol, and salt stress occurred at the sigma B-dependent promoter, whereas the vegetative promoter was only weakly induced under these conditions. However, in a sigB mutant, the sigma A-like promoter became inducible by heat and ethanol stress, completely compensating for sigB deficiency. Only the downstream sigma A-like promoter was induced by certain stress conditions such as hydrogen peroxide or puromycin. These results suggest that novel stress-induction mechanisms are acting at a vegetative promoter. Involvement of additional elements in this mode of induction are discussed.
Collapse
Affiliation(s)
- E Krüger
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | |
Collapse
|
68
|
Varón D, Brody MS, Price CW. Bacillus subtilis operon under the dual control of the general stress transcription factor sigma B and the sporulation transcription factor sigma H. Mol Microbiol 1996; 20:339-50. [PMID: 8733232 DOI: 10.1111/j.1365-2958.1996.tb02621.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sigma B transcription factor of Bacillus subtilis is activated in response to a variety of environmental stresses, including those imposed by entry into the stationary-growth phase, and by heat, salt or ethanol challenge to logarithmically growing cells. Although sigma B is thought to control a general stress regulon, the range of cellular functions it directs remains largely unknown. Our approach to understand the physiological role of sigma B is to characterize genes that require this factor for all or part of their expression, i.e. the csb genes. In this study, we report that the transposon insertion csb40::Tn917lac identifies an operon with three open reading frames, the second of which resembles plant proteins induced by desiccation stress. Primer-extension and operon-fusion experiments showed that the csb40 operon has a sigma B-dependent promoter which is strongly induced by the addition of salt to logarithmically growing cells. The csb40 operon also has a second, sigma H-dependent promoter that is unaffected by salt addition. These results provide support for the hypothesis that sigma B controls a general stress regulon, and indicate that the sigma B and sigma H regulons partly overlap. We suggest that in addition to its acknowledged role in the sporulation process, sigma H is also involved in controlling a subclass of genes that are broadly involved in a general stress response.
Collapse
Affiliation(s)
- D Varón
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | | | |
Collapse
|