51
|
Suppressor analysis of the MotB(D33E) mutation to probe bacterial flagellar motor dynamics coupled with proton translocation. J Bacteriol 2008; 190:6660-7. [PMID: 18723617 DOI: 10.1128/jb.00503-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MotA and MotB form the stator of the proton-driven bacterial flagellar motor, which conducts protons and couples proton flow with motor rotation. Asp-33 of Salmonella enterica serovar Typhimurium MotB, which is a putative proton-binding site, is critical for torque generation. However, the mechanism of energy coupling remains unknown. Here, we carried out genetic and motility analysis of a slowly motile motB(D33E) mutant and its pseudorevertants. We first confirmed that the poor motility of the motB(D33E) mutant is due to neither protein instability, mislocalization, nor impaired interaction with MotA. We isolated 17 pseudorevertants and identified the suppressor mutations in the transmembrane helices TM2 and TM3 of MotA and in TM and the periplasmic domain of MotB. The stall torque produced by the motB(D33E) mutant motor was about half of the wild-type level, while those for the pseudorevertants were recovered nearly to the wild-type levels. However, the high-speed rotations of the motors under low-load conditions were still significantly impaired, suggesting that the rate of proton translocation is still severely limited at high speed. These results suggest that the second-site mutations recover a torque generation step involving stator-rotor interactions coupled with protonation/deprotonation of Glu-33 but not maximum proton conductivity.
Collapse
|
52
|
Passmore SE, Meas R, Marykwas DL. Analysis of the FliM/FliG motor protein interaction by two-hybrid mutation suppression analysis. Microbiology (Reading) 2008; 154:714-724. [DOI: 10.1099/mic.0.2007/014597-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Steven E. Passmore
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA
| | - Rithy Meas
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA
| | - Donna L. Marykwas
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
53
|
Mashimo T, Hashimoto M, Yamaguchi S, Aizawa SI. Temperature-hypersensitive sites of the flagellar switch component FliG in Salmonella enterica serovar typhimurium. J Bacteriol 2007; 189:5153-60. [PMID: 17496083 PMCID: PMC1951853 DOI: 10.1128/jb.00061-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Three flagellar proteins, FliG, FliM, and FliN (FliGMN), are the components of the C ring of the flagellar motor. The genes encoding these proteins are multifunctional; they show three different phenotypes (Fla(-), Mot(-), and Che(-)), depending on the sites and types of mutations. Some of the Mot(-) mutants previously characterized are found to be motile. Reexamination of all Mot(-) mutants in fliGMN genes so far studied revealed that many of them are actually temperature sensitive (TS); that is, they are motile at 20 degrees C but nonmotile at 37 degrees C. There were two types of TS mutants: one caused a loss of function that was not reversed by a return to the permissive temperature (rigid TS), and the other caused a loss that was reversed (hyper-TS). The rigid TS mutants showed an all-or-none phenotype; that is, once a structure was formed, the structure and function were stable against temperature shifts. All of fliM and fliN and most of the fliG TS mutants belong to this group. On the other hand, the hyper-TS mutants (three of the fliG mutants) showed a temporal swimming/stop phenotype, responding to temporal temperature shifts when the structure was formed at a permissive temperature. Those hyper-TS mutation sites are localized in the C-terminal domain of the FliG molecules at sites that are different from the previously proposed functional sites. We discuss a role for this new region of FliG in the torque generation of the flagellar motor.
Collapse
Affiliation(s)
- Takuji Mashimo
- CREST, Japan Science and Technology Agency, c/o Innovation Plaza Hiroshima, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | | | | | | |
Collapse
|
54
|
Malapaka RRV, Adebayo LO, Tripp BC. A Deletion Variant Study of the Functional Role of the Salmonella Flagellin Hypervariable Domain Region in Motility. J Mol Biol 2007; 365:1102-16. [PMID: 17109884 DOI: 10.1016/j.jmb.2006.10.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 10/12/2006] [Accepted: 10/16/2006] [Indexed: 01/17/2023]
Abstract
The eubacterial flagellum is a complex structure with an elongated extracellular filament that is composed primarily of many subunits of a flagellin protein. The highly conserved N and C termini of flagellin are important in its export and self-assembly, whereas the middle sequence region varies greatly in size and composition in different species and is known to be deletion-tolerant. In Salmonella typhimurium phase 1 flagellin, this "hypervariable" region encodes two solvent-exposed domains, D2 and D3, that form a knob-like feature on flagella fibers. The functional role of this structural feature in motility remains unclear. We investigated the structural and physiological role of the hypervariable region in flagella assembly, stability and cellular motility. A library of random internal deletion variants of S. typhimurium flagellin was constructed and screened for functional variants using a swarming agar motility assay. The relative cellular motility and propulsive force of ten representative variants were determined in semi-solid and liquid medium using colony swarming motility assays, video microscopy and optical trapping of single cells. All ten variants exhibited diminished motility, with varying extents of motility observed for internal deletions less than 75 residues and nearly complete loss of motility for deletions greater than 100 residues. The mechanical stability of the variant flagella fibers also decreased with increasing size of deletion. Comparison of the variant sequences with the wild-type sequence and structure indicated that all deletions involved loss of hydrophobic core residues, and removal of both partial and complete segments of secondary structure in the D2 and D3 domains. Homology modeling predicted disruptions of secondary structures in each variant. The hypervariable region D2 and D3 domains appear to stabilize the folded conformation of the flagellin protein and contribute to the mechanical stability and propulsive force of the flagella fibers.
Collapse
Affiliation(s)
- Raghu Ram V Malapaka
- Department of Biological Sciences, College of Arts and Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA
| | | | | |
Collapse
|
55
|
Thomas DR, Francis NR, Xu C, DeRosier DJ. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol 2006; 188:7039-48. [PMID: 17015643 PMCID: PMC1636246 DOI: 10.1128/jb.00552-06] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional reconstructions from electron cryomicrographs of the rotor of the flagellar motor reveal that the symmetry of individual M rings varies from 24-fold to 26-fold while that of the C rings, containing the two motor/switch proteins FliM and FliN, varies from 32-fold to 36-fold, with no apparent correlation between the symmetries of the two rings. Results from other studies provided evidence that, in addition to the transmembrane protein FliF, at least some part of the third motor/switch protein, FliG, contributes to a thickening on the face of the M ring, but there was no evidence as to whether or not any portion of FliG also contributes to the C ring. Of the four morphological features in the cross section of the C ring, the feature closest to the M ring is not present with the rotational symmetry of the rest of the C ring, but instead it has the symmetry of the M ring. We suggest that this inner feature arises from a domain of FliG. We present a hypothetical docking in which the C-terminal motor domain of FliG lies in the C ring, where it can interact intimately with FliM.
Collapse
Affiliation(s)
- Dennis R Thomas
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
56
|
van Asten AJAM, van Dijk JE. Distribution of "classic" virulence factors among Salmonella spp. ACTA ACUST UNITED AC 2006; 44:251-9. [PMID: 15907446 DOI: 10.1016/j.femsim.2005.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/27/2005] [Accepted: 02/02/2005] [Indexed: 11/16/2022]
Abstract
Whether an infection with Salmonella spp. leads to a disease largely depends on the virulence of the strain and the constitution of the host. The virulence of the strain is determined by so-called virulence factors. Whereas a number of virulence factors of Salmonella have been identified only recently, others have been studied for decades. These latter virulence factors i.e., virulence-plasmids, toxins, fimbriae and flagella are therefore referred to as "classic" virulence factors. Here we present an overview on the distribution of (genes coding for) these virulence factors among Salmonella spp. The pathogenicity islands of Salmonella are also reviewed, all be it briefly, since they contain a major part of the virulence genes.
Collapse
Affiliation(s)
- Alphons J A M van Asten
- Department of Pathobiology, Division Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, P.O. Box 80.158, 3508TD, Utrecht, The Netherlands.
| | | |
Collapse
|
57
|
Yakushi T, Hattori N, Homma M. Deletion analysis of the carboxyl-terminal region of the PomB component of the vibrio alginolyticus polar flagellar motor. J Bacteriol 2005; 187:778-84. [PMID: 15629950 PMCID: PMC543542 DOI: 10.1128/jb.187.2.778-784.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stator of the sodium-driven flagellar motor of Vibrio alginolyticus is a membrane protein complex composed of four PomA and two PomB subunits. PomB has a peptidoglycan-binding motif in the C-terminal region. In this study, four kinds of PomB deletions in the C terminus were constructed. None of the deletion proteins restored motility of the DeltapomB strain. The PomA protein was coisolated with all of the PomB derivatives under detergent-solubilized conditions. Homotypic disulfide cross-linking of all of the deletion derivatives through naturally occurring Cys residues was detected. We conclude that the C-terminal region of PomB is essential for motor function but not for oligomerization of PomB with itself or PomA.
Collapse
Affiliation(s)
- Toshiharu Yakushi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan.
| | | | | |
Collapse
|
58
|
Stecher B, Hapfelmeier S, Müller C, Kremer M, Stallmach T, Hardt WD. Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 2004; 72:4138-50. [PMID: 15213159 PMCID: PMC427403 DOI: 10.1128/iai.72.7.4138-4150.2004] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Salmonella enterica subspecies 1 serovar Typhimurium is a common cause of gastrointestinal infections. The host's innate immune system and a complex set of Salmonella virulence factors are thought to contribute to enteric disease. The serovar Typhimurium virulence factors have been studied extensively by using tissue culture assays, and bovine infection models have been used to verify the role of these factors in enterocolitis. Streptomycin-pretreated mice provide an alternative animal model to study enteric salmonellosis. In this model, the Salmonella pathogenicity island 1 type III secretion system has a key virulence function. Nothing is known about the role of other virulence factors. We investigated the role of flagella in murine serovar Typhimurium colitis. A nonflagellated serovar Typhimurium mutant (fliGHI) efficiently colonized the intestine but caused little colitis during the early phase of infection (10 and 24 h postinfection). In competition assays with differentially labeled strains, the fliGHI mutant had a reduced capacity to get near the intestinal epithelium, as determined by fluorescence microscopy. A flagellated but nonchemotactic cheY mutant had the same virulence defects as the fliGHI mutant for causing colitis. In competitive infections, both mutants colonized the intestine of streptomycin-pretreated mice by day 1 postinfection but were outcompeted by the wild-type strain by day 3 postinfection. Together, these data demonstrate that flagella are required for efficient colonization and induction of colitis in streptomycin-pretreated mice. This effect is mostly attributable to chemotaxis. Recognition of flagellar subunits (i.e., flagellin) by innate immune receptors (i.e., Toll-like receptor 5) may be less important.
Collapse
Affiliation(s)
- Bärbel Stecher
- Institute of Microbiology, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
59
|
Ito M, Xu H, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA. The voltage-gated Na+ channel NaVBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci U S A 2004; 101:10566-71. [PMID: 15243157 PMCID: PMC490023 DOI: 10.1073/pnas.0402692101] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Indexed: 11/18/2022] Open
Abstract
The prokaryotic voltage-gated Na(+) channel, NaChBac, is one of a growing channel superfamily of unknown function. Here we show that Na(V)BP, the NaChBac homologue encoded by ncbA in alkaliphilic Bacillus pseudofirmus OF4, is a voltage-gated Na(+) channel potentiated by alkaline pH. Na(V)BP has roles in motility, chemotaxis, and pH homeostasis at high pH. Reduced motility of bacteria lacking functional Na(V)BP was reversed by restoration of the native channel but not by a mutant Na(V)BP engineered to be Ca(2+)-selective. Motile ncbA mutant cells and wild-type cells treated with a channel inhibitor exhibited behavior opposite to the wild type in response to chemoeffectors. Mutants lacking functional Na(V)BP were also defective in pH homeostasis in response to a sudden alkaline shift in external pH under conditions in which cytoplasmic [Na(+)] is limiting for this crucial process. The defect was exacerbated by mutation of motPS, the motility channel genes. We hypothesize that activation of Na(V)BP at high pH supports diverse physiological processes by a combination of direct and indirect effects on the Na(+) cycle and the chemotaxis system.
Collapse
Affiliation(s)
- Masahiro Ito
- Faculty of Life Sciences, Toyo University, Oura-gun, Gunma 374-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
60
|
Van Way SM, Millas SG, Lee AH, Manson MD. Rusty, jammed, and well-oiled hinges: Mutations affecting the interdomain region of FliG, a rotor element of the Escherichia coli flagellar motor. J Bacteriol 2004; 186:3173-81. [PMID: 15126479 PMCID: PMC400624 DOI: 10.1128/jb.186.10.3173-3181.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The FliG protein is a central component of the bacterial flagellar motor. It is one of the first proteins added during assembly of the flagellar basal body, and there are 26 copies per motor. FliG interacts directly with the Mot protein complex of the stator to generate torque, and it is a crucial player in switching the direction of flagellar rotation from clockwise (CW) to counterclockwise and vice versa. A primarily helical linker joins the N-terminal assembly domain of FliG, which is firmly attached to the FliF protein of the MS ring of the basal body, to the motility domain that interacts with MotA/MotB. We report here the results of a mutagenic analysis focused on what has been called the hinge region of the linker. Residue substitutions in this region generate a diversity of phenotypes, including motors that are strongly CW biased, infrequent switchers, rapid switchers, and transiently or permanently paused. Isolation of these mutants was facilitated by a "sensitizing" mutation (E232G) outside of the hinge region that was accidentally introduced during cloning of the chromosomal fliG gene into our vector plasmid. This mutation partially interferes with flagellar assembly and accentuates the defects associated with mutations that by themselves have little phenotypic consequence. The effects of these mutations are analyzed in the context of a conformational-coupling model for motor switching and with respect to the structure of the C-terminal 70% of FliG from Thermotoga maritima.
Collapse
Affiliation(s)
- Susan M Van Way
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
61
|
Braun TF, Al-Mawsawi LQ, Kojima S, Blair DF. Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. Biochemistry 2004; 43:35-45. [PMID: 14705929 DOI: 10.1021/bi035406d] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stator of the bacterial flagellar motor is formed from the membrane proteins MotA and MotB, which associate in complexes with stoichiometry MotA(4)MotB(2) (Kojima, S., and Blair, D. F., preceding paper in this issue). The MotA/MotB complexes conduct ions across the membrane, and couple ion flow to flagellar rotation by a mechanism that appears to involve conformational changes within the complex. MotA has four membrane-crossing segments, termed A1-A4, and MotB has one, termed B. We are studying the organization of the 18 membrane segments in the MotA(4)MotB(2) complex by using targeted disulfide cross-linking. A previous cross-linking study showed that the two B segments in the complex (one from each MotB subunit) are arranged as a symmetrical dimer of alpha-helices. Here, we extend the cross-linking study to segments A3 and A4. Single Cys residues were introduced by mutation in several consecutive positions in segments A3 and A4, and double mutants were made by pairwise combination of subsets of the Cys replacements in segments A3, A4, and B. Disulfide cross-linking of the single- and double-Cys proteins was studied in whole cells, in membranes, and in detergent solution. Several combinations of Cys residues in segments A3 and B gave a high yield of disulfide-linked MotA/MotB heterodimer upon oxidation with iodine. Positions of efficient cross-linking identify a helix face on segment A3 that is in proximity to segment(s) B. Some combinations of Cys residues in segments A4 and B also gave a significant yield of disulfide-linked heterodimer, indicating that segment A4 is also near segment(s) B. Certain combinations of Cys residues in segments A3 and A4 cross-linked to form MotA tetramers in high yield upon oxidation. The high-yield positions identify faces on A3 and A4 that are at an interface between MotA subunits. Taken together with mutational studies and patterns of amino acid conservation, the cross-linking results delineate the overall arrangement of 10 membrane segments in the MotA/MotB complex, and identify helix faces likely to line the proton channels.
Collapse
Affiliation(s)
- Timothy F Braun
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
62
|
Kojima S, Blair DF. The bacterial flagellar motor: structure and function of a complex molecular machine. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 233:93-134. [PMID: 15037363 DOI: 10.1016/s0074-7696(04)33003-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bacterial flagellar motor harnesses ion flow to drive rotary motion, at speeds reaching 100000 rpm and with apparently tight coupling. The functional properties of the motor are quite well understood, but its molecular mechanism remains unknown. Studies of motor physiology, together with mutational and biochemical studies of the components, place significant constraints on the mechanism. Rotation is probably driven by conformational changes in membrane-protein complexes that form the stator. These conformational changes occur as protons move on and off a critical aspartate residue in the stator protein MotB, and the resulting forces are applied to the rotor protein FliG. The bacterial flagellum is a complex structure built from about two dozen proteins. Its construction requires an apparatus at the base that exports many flagellar components to their sites of installation by way of an axial channel through the structure. The sequence of events in assembly is understood in general terms, but not yet at the molecular level. A fuller understanding of motor rotation and flagellar assembly will require more data on the structures and organization of the constituent proteins.
Collapse
Affiliation(s)
- Seiji Kojima
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
63
|
Minamino T, González-Pedrajo B, Kihara M, Namba K, Macnab RM. The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH. J Bacteriol 2003; 185:3983-8. [PMID: 12813095 PMCID: PMC161568 DOI: 10.1128/jb.185.13.3983-3988.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella FliI is the ATPase that drives flagellar protein export. It normally exists as a complex together with the regulatory protein FliH. A fliH null mutant was slightly motile, with overproduction of FliI resulting in substantial improvement of its motility. Mutations in the cytoplasmic domains of FlhA and FlhB, which are integral membrane components of the type III flagellar export apparatus, also resulted in substantially improved motility, even at normal FliI levels. Thus, FliH, though undoubtedly important, is not essential.
Collapse
Affiliation(s)
- Tohru Minamino
- Protonic NanoMachine Project, ERATO and Dynamic NanoMachine Project, ICORP, JST, Seika, Kyoto 619-0237, Japan
| | | | | | | | | |
Collapse
|
64
|
Abstract
The bacterial flagellar motor couples ion flow to rotary motion at high speed and with apparently fixed stoichiometry. The functional properties of the motor are quite well understood, but its molecular mechanism remains unknown. Recent studies of motor physiology, coupled with mutational and biochemical studies of the components, put significant constraints on the mechanism. Rotation is probably driven by conformational changes in membrane-protein complexes that form the stator. These conformational changes occur as protons move on and off a critical Asp residue in the stator protein MotB, and the resulting forces are applied to the rotor protein FliG.
Collapse
Affiliation(s)
- David F Blair
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA.
| |
Collapse
|
65
|
Abstract
A model for the transduction of energy occurring in bacterial flagellar motors is presented. In this model, the influx of ions across the channel causes the cyclic conformational change of the channel itself, which in turn produces travelling waves in one of the subcomponents of the motor, the C ring. This wave stabilizes the cyclical movement of the channel which generates the rotating force. The estimated frequency of cyclic conformational change is between 36 kHz and 6.3 MHz, i.e. in the ultrasonic range. This phenomenon is therefore referred to as the ultrasonic micromotor of microorganisms.
Collapse
Affiliation(s)
- T Atsumi
- Protonic NanoMachine Project, ERATO JST, 1-7 Hikaridai, Seika, Kyoto, 619-0237, Japan.
| |
Collapse
|
66
|
Abstract
Polar flagella of Vibrio species can rotate at speeds as high as 100,000 rpm and effectively propel the bacteria in liquid as fast as 60 microm/s. The sodium motive force powers rotation of the filament, which acts as a propeller. The filament is complex, composed of multiple subunits, and sheathed by an extension of the cell outer membrane. The regulatory circuitry controlling expression of the polar flagellar genes of members of the Vibrionaceae is different from the peritrichous system of enteric bacteria or the polar system of Caulobacter crescentus. The scheme of gene control is also pertinent to other members of the gamma purple bacteria, in particular to Pseudomonas species. This review uses the framework of the polar flagellar system of Vibrio parahaemolyticus to provide a synthesis of what is known about polar motility systems of the Vibrionaceae. In addition to its propulsive role, the single polar flagellum of V. parahaemolyticus is believed to act as a tactile sensor controlling surface-induced gene expression. Under conditions that impede rotation of the polar flagellum, an alternate, lateral flagellar motility system is induced that enables movement through viscous environments and over surfaces. Although the dual flagellar systems possess no shared structural components and although distinct type III secretion systems direct the simultaneous placement and assembly of polar and lateral organelles, movement is coordinated by shared chemotaxis machinery.
Collapse
Affiliation(s)
- L L McCarter
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
67
|
Kojima S, Shoji T, Asai Y, Kawagishi I, Homma M. A slow-motility phenotype caused by substitutions at residue Asp31 in the PomA channel component of a sodium-driven flagellar motor. J Bacteriol 2000; 182:3314-8. [PMID: 10809720 PMCID: PMC94527 DOI: 10.1128/jb.182.11.3314-3318.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PomA is thought to be a component of the ion channel in the sodium-driven polar-flagellar motor of Vibrio alginolyticus. We have found that some cysteine substitutions in the periplasmic region of PomA result in a slow-motility phenotype, in which swarming and swimming speeds are reduced even in the presence of high concentrations of NaCl. Most of the mutants showed a sodium ion dependence similar to that of the wild type but with significantly reduced motility at all sodium ion concentrations. By contrast, motility of the D31C mutant showed a sharp dependence on NaCl concentration, with a threshold at 38 mM. The motor of the D31C mutant rotates stably, as monitored by laser dark-field microscopy, suggesting that the mutant PomA protein is assembled normally into the motor complex. Mutational studies of Asp31 suggest that, although this residue is not essential for motor rotation, a negative charge at this position contributes to optimal speed and/or efficiency of the motor.
Collapse
Affiliation(s)
- S Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
68
|
Van Way SM, Hosking ER, Braun TF, Manson MD. Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene. J Mol Biol 2000; 297:7-24. [PMID: 10704303 DOI: 10.1006/jmbi.2000.3548] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 308 residue MotB protein anchors the stator complex of the Escherichia coli flagellar motor to the peptidoglycan of the cell wall. Together with MotA, it comprises the transmembrane channel that delivers protons to the motor. At the outset of the mutational analysis of MotB described here, we found that the non-motile phenotype of a DeltamotAB strain was rescued better by a pmotA(+)B(+) plasmid than the non-motile phenotype of a DeltamotB strain was rescued by a pmotB(+) plasmid. Transcription in each case was from the inducible tac promoter but relied on the native ribosome-binding site (RBS). This result confirms that translational coupling to motA is important for normal translation of the motB mRNA, since overproduction of MotA in trans did not improve complementation by pmotB. However, introduction of an optimized RBS into pmotB (to generate pmotB(o)) did. To dissect the function of the periplasmic domain of MotB, site-directed mutagenesis was used to replace Gln, Ser, and Tyr codons scattered throughout motB with amber (UAG) codons. Plasmid-borne motB(am) genes were introduced into sup(o), supE, and supF strains to see what motility defects were imposed by particular amber mutations and whether the defects could be suppressed by amber-suppressor tRNAs inserting the native or heterologous amino acids. Amber mutations at codon 268 or earlier in pmotB, and at codon 261 or earlier in pmotB(o) or pmotAB, eliminated motility. Thus, in agreement with the deletion analysis of motB by another laboratory, we conclude that the portion of MotB carboxyl-terminal to its peptidoglycan-binding motif (residues 161 to 264) is not essential. In strains containing supE or supF alleles, motility defects associated with motB(am) mutations were suppressed weakly, if at all, in pmotB. In contrast, motility defects conferred by most motB(am) mutations in pmotB(o) or pmotAB could be suppressed to a significant extent. However, the S18(am), Q100(am), Q112(am), Q124(am), Y201(am), and Y208(am) mutations were still suppressed extremely poorly. Full-length MotB was present at very low levels in suppressor strains containing the first four mutations, but Y201(am) and Y208(am) were suppressed efficiently at the translational level. We suggest that a translational pause by suppressor tRNAs reading UAG at these two positions may divert the nascent polypeptide into an alternative folding pathway that traps MotB in a non-functional conformation. We further propose that MotA and MotB form a stable pre-assembly complex in the membrane. In this complex, MotB exists in a form that cannot associate with peptidoglycan and blocks the proton-conducting channel. Opening of the channel and attachment to the cell wall may occur when the complex collides with a flagellar basal body and MotA makes specific contacts with the C ring and/or the MS ring.
Collapse
Affiliation(s)
- S M Van Way
- Department of Biology, Texas A&M University, TX 77843-3258, USA
| | | | | | | |
Collapse
|
69
|
Boles BR, McCarter LL. Insertional inactivation of genes encoding components of the sodium-type flagellar motor and switch of Vibrio parahaemolyticus. J Bacteriol 2000; 182:1035-45. [PMID: 10648530 PMCID: PMC94380 DOI: 10.1128/jb.182.4.1035-1045.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vibrio parahaemolyticus possesses two types of flagella, polar and lateral, powered by distinct energy sources, which are derived from the sodium and proton motive forces, respectively. Although proton-powered flagella in Escherichia coli and Salmonella enterica serovar Typhimurium have been extensively studied, the mechanism of torque generation is still not understood. Molecular knowledge of the structure of the sodium-driven motor is only now being developed. In this work, we identify the switch components, FliG, FliM, and FliN, of the sodium-type motor. This brings the total number of genes identified as pertinent to polar motor function to seven. Both FliM and FliN possess charged domains not found in proton-type homologs; however, they can interact with the proton-type motor of E. coli to a limited extent. Residues known to be critical for torque generation in the proton-type motor are conserved in the sodium-type motor, suggesting a common mechanism for energy transfer at the rotor-stator interface regardless of the driving force powering rotation. Mutants representing a complete panel of insertionally inactivated switch and motor genes were constructed. All of these mutants were defective in sodium-driven swimming motility. Alkaline phosphatase could be fused to the C termini of MotB and MotY without abolishing motility, whereas deletion of the unusual, highly charged C-terminal domain of FliM disrupted motor function. All of the mutants retained proton-driven, lateral motility over surfaces. Thus, although central chemotaxis genes are shared by the polar and lateral systems, genes encoding the switch components, as well as the motor genes, are distinct for each motility system.
Collapse
Affiliation(s)
- B R Boles
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
70
|
Manson MD. Allele-specific suppression as a tool to study protein-protein interactions in bacteria. Methods 2000; 20:18-34. [PMID: 10610801 DOI: 10.1006/meth.1999.0902] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Suppression analysis is well suited to study the interactions of gene products. It offers the advantage of simplicity for any organism for which a convenient genetic system has been developed, which holds for a wide spectrum of bacteria and an ever-increasing number of unicellular as well as complex eukaryotes. No other method provides as much information about the functional relationships of biological macromolecules. The intrinsic value of suppression analysis is enhanced by advances in genomics and in biophysical techniques for investigating the properties of nucleic acids and proteins, such as X-ray crystallography, liquid and solid-state nuclear magnetic resonance, electron spin labeling, and isothermal calorimetry. These approaches confirm and complement whatever is revealed by genetics. Despite these sterling qualities, suppression analysis has its dangers, less in execution than in conceptualization of experiments and interpretation of data. A consistent nomenclature is essential for a uniform and widespread understanding of the results. Familiarity with the genetic background and idiosyncracies of the organism studied is critical in avoiding extraneous phenomena that can affect the outcome. Finally, it is imperative not to underestimate potentially bizarre and improbable consequences that can transpire when rigorous genetic selection is maintained for an appreciable length of time. The article begins with a somewhat pedagogical discussion of genetic terminology. It then moves on to the necessary precautions to observe while planning and conducting suppression analysis. The remainder of the article considers different manifestations of suppression: bypass suppression; gradients of suppression; suppression by relaxed specificity; allele-specific "suppression at a distance"; and true conformational suppression. The treatment is not exhaustive, but representative examples have been gleaned from the recent bacterial literature.
Collapse
Affiliation(s)
- M D Manson
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
71
|
Komoriya K, Shibano N, Higano T, Azuma N, Yamaguchi S, Aizawa SI. Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol Microbiol 1999; 34:767-79. [PMID: 10564516 DOI: 10.1046/j.1365-2958.1999.01639.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We analysed all major proteins secreted into culture media from Salmonella typhimurium. Proteins in culture supernatants were collected by trichloroacetic acid precipitation, separated in SDS-polyacrylamide gels and analysed by amino acid sequencing. Wild-type strain SJW1103 cells typically gave rise to nine bands in SDS gels: 89, 67, 58, 52, 50, 42, 40, 35 and (sometimes) 28 kDa. A search of the sequences in the available databases revealed that they were either flagellar proteins or virulence factors. Six of them were flagella specific: FlgK or HAP1 (58 kDa), FliC or flagellin (52 kDa), FliD or HAP2 (50 kDa), FlgE or hook protein (42 kDa), FlgL or HAP3 (35 kDa) and FlgD or hook-cap protein (28 kDa). The other four bands were specific for virulence factors: SipA (89 kDa), SipB (67 kDa), SipC (42 kDa) and InvJ (40 kDa). The 42 kDa band was a mixture of FlgE and SipC. We also analysed secreted proteins from more than 30 flagellar mutants, and they were categorized into four groups according to their band patterns: wild type, mot type, polyhook type and master gene type. Virulence factors were constantly secreted at a higher level in all flagellar mutants except a deltamot (motAB deletion) mutant, in which the amounts were greatly reduced. A new morphological pathway of flagellar biogenesis including protein secretion is presented.
Collapse
Affiliation(s)
- K Komoriya
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan. Department of Applied Biochemistry, Utsunomiya University, Utsunomiya 321-8505, Japan
| | | | | | | | | | | |
Collapse
|
72
|
Samuel AD, Pitta TP, Ryu WS, Danese PN, Leung EC, Berg HC. Flagellar determinants of bacterial sensitivity to chi-phage. Proc Natl Acad Sci U S A 1999; 96:9863-6. [PMID: 10449785 PMCID: PMC22301 DOI: 10.1073/pnas.96.17.9863] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage chi is known to infect motile strains of enteric bacteria by adsorbing randomly along the length of a flagellar filament and then injecting its DNA into the bacterial cell at the filament base. Here, we provide evidence for a "nut and bolt" model for translocation of phage along the filament: the tail fiber of chi fits the grooves formed by helical rows of flagellin monomers, and active flagellar rotation forces the phage to follow the grooves as a nut follows the threads of a bolt.
Collapse
Affiliation(s)
- A D Samuel
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
73
|
Braun TF, Poulson S, Gully JB, Empey JC, Van Way S, Putnam A, Blair DF. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. J Bacteriol 1999; 181:3542-51. [PMID: 10348868 PMCID: PMC93823 DOI: 10.1128/jb.181.11.3542-3551.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial flagellar motors obtain energy for rotation from the membrane gradient of protons or, in some species, sodium ions. The molecular mechanism of flagellar rotation is not understood. MotA and MotB are integral membrane proteins that function in proton conduction and are believed to form the stator of the motor. Previous mutational studies identified two conserved proline residues in MotA (Pro 173 and Pro 222 in the protein from Escherichia coli) and a conserved aspartic acid residue in MotB (Asp 32) that are important for function. Asp 32 of MotB probably forms part of the proton path through the motor. To learn more about the roles of the conserved proline residues of MotA, we examined motor function in Pro 173 and Pro 222 mutants, making measurements of torque at high load, speed at low and intermediate loads, and solvent-isotope effects (D2O versus H2O). Proton conduction by wild-type and mutant MotA-MotB channels was also assayed, by a growth defect that occurs upon overexpression. Several different mutations of Pro 173 reduced the torque of the motor under high load, and a few prevented motor rotation but still allowed proton flow through the MotA-MotB channels. These and other properties of the mutants suggest that Pro 173 has a pivotal role in coupling proton flow to motor rotation and is positioned in the channel near Asp 32 of MotB. Replacements of Pro 222 abolished function in all assays and were strongly dominant. Certain Pro 222 mutant proteins prevented swimming almost completely when expressed at moderate levels in wild-type cells. This dominance might be caused by rotor-stator jamming, because it was weaker when FliG carried a mutation believed to increase rotor-stator clearance. We propose a mechanism for torque generation, in which specific functions are suggested for the proline residues of MotA and Asp32 of MotB.
Collapse
Affiliation(s)
- T F Braun
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Donato GM, Kawula TH. Enhanced binding of altered H-NS protein to flagellar rotor protein FliG causes increased flagellar rotational speed and hypermotility in Escherichia coli. J Biol Chem 1998; 273:24030-6. [PMID: 9727020 DOI: 10.1074/jbc.273.37.24030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H-NS is an Escherichia coli nucleoid protein known only to function as a modulator of gene expression. In this study, we found that specific single amino acid substitutions in H-NS caused an approximately 50% increase in flagellum rotational speed. In fluorescence anisotropy and chemical cross-linking assays, H-NS interacted with the flagellar torque-generating rotor protein FliG to form a complex with a Kd of 2.15 microM. Furthermore, one of the altered H-NS proteins that exhibited high speed flagellum rotation bound FliG 50% tighter than wild-type H-NS. These results demonstrate the first non-regulatory role for H-NS and provide a direct correlation between H-NS-FliG binding affinities, flagellar rotation, and motor torque generation.
Collapse
Affiliation(s)
- G M Donato
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7290, USA
| | | |
Collapse
|
75
|
Muramoto K, Macnab RM. Deletion analysis of MotA and MotB, components of the force-generating unit in the flagellar motor of Salmonella. Mol Microbiol 1998; 29:1191-202. [PMID: 9767587 DOI: 10.1046/j.1365-2958.1998.00998.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MotA and MotB are cytoplasmic membrane proteins that form the force-generating unit of the flagellar motor in Salmonella typhimurium and many other bacteria. Many missense mutations in both proteins are known to cause slow motor rotation (slow-motile phenotype) or no rotation at all (non-motile or paralysed phenotype). However, large stretches of sequence in the cytoplasmic regions of MotA and in the periplasmic region of MotB have failed to yield these types of mutations. In this study, we have investigated the effect of a series of 10-amino-acid deletions in these phenotypically silent regions. In the case of MotA, we found that only the C-terminal 5 amino acids were completely dispensable; an adjacent 10 amino acids were partially dispensable. In the cytoplasmic loop region of MotA, deletions made the protein unstable. For MotB, we found that two large segments of the periplasmic region were dispensable: the results with individual deletions showed that the first consisted of six deletions between the sole transmembrane span and the peptidoglycan binding motif, whereas the second consisted of four deletions at the C-terminus. We also found that deletions in the MotB cytoplasmic region at the N-terminus impaired motility but did not abolish it. Further investigations in MotB were carried out by combining dispensable deletion segments. The most extreme version of MotB that still retained some degree of function lacked a total of 99 amino acids in the periplasmic region, beginning immediately after the transmembrane span. These results indicate that the deleted regions in the MotA cytoplasmic loop region are essential for stability; they may or may not be directly involved in torque generation. Part of the MotA C-terminal cytoplasmic region is not essential for torque generation. MotB can be divided into three regions: an N-terminal region of about 30 amino acids in the cytoplasm, a transmembrane span and about 260 amino acids in the periplasm, including a peptidoglycan binding motif. In the periplasmic region, we suggest that the first of the two dispensable stretches in MotB may comprise part of a linker between the transmembrane span of MotB and its attachment point to the peptidoglycan layer, and that the length or specific sequence of much of that linker sequence is not critical. About 40 residues at the C-terminus are also unimportant.
Collapse
Affiliation(s)
- K Muramoto
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
76
|
Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol 1998; 180:2729-35. [PMID: 9573160 PMCID: PMC107227 DOI: 10.1128/jb.180.10.2729-2735.1998] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rotation of the bacterial flagellar motor is powered by a transmembrane gradient of protons or, in some species, sodium ions. The molecular mechanism of coupling between ion flow and motor rotation is not understood. The proteins most closely involved in motor rotation are MotA, MotB, and FliG. MotA and MotB are transmembrane proteins that function in transmembrane proton conduction and that are believed to form the stator. FliG is a soluble protein located on the cytoplasmic face of the rotor. Two other proteins, FliM and FliN, are known to bind to FliG and have also been suggested to be involved to some extent in torque generation. Proton (or sodium)-binding sites in the motor are likely to be important to its function and might be formed from the side chains of acidic residues. To investigate the role of acidic residues in the function of the flagellar motor, we mutated each of the conserved acidic residues in the five proteins that have been suggested to be involved in torque generation and measured the effects on motility. None of the conserved acidic residues of MotA, FliG, FliM, or FliN proved essential for torque generation. An acidic residue at position 32 of MotB did prove essential. Of 15 different substitutions studied at this position, only the conservative-replacement D32E mutant retained any function. Previous studies, together with additional data presented here, indicate that the proteins involved in motor rotation do not contain any conserved basic residues that are critical for motor rotation per se. We propose that Asp 32 of MotB functions as a proton-binding site in the bacterial flagellar motor and that no other conserved, protonatable residues function in this capacity.
Collapse
Affiliation(s)
- J Zhou
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Affiliation(s)
- D J DeRosier
- W. M. Keck Institute of Cellular Visualization, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| |
Collapse
|
78
|
Affiliation(s)
- S Khan
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
79
|
Platzer J, Sterr W, Hausmann M, Schmitt R. Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti. J Bacteriol 1997; 179:6391-9. [PMID: 9335288 PMCID: PMC179555 DOI: 10.1128/jb.179.20.6391-6399.1997] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The peritrichous flagella of Rhizobium meliloti rotate only clockwise and control directional changes of swimming cells by modulating flagellar rotary speed. Using Tn5 insertions, we have identified and sequenced a motility (mot) operon containing three genes, motB, motC, and motD, that are translationally coupled. The motB gene (and an unlinked motA) has been assigned by similarity to the Escherichia coli and Bacillus subtilis homologs, whereas motC and motD are new and without known precedents in other bacteria. In-frame deletions introduced in motB, motC, or motD each result in paralysis. MotD function was fully restored by complementation with the wild-type motD gene. By contrast, deletions in motB or motC required the native combination of motB and motC in trans for restoring normal flagellar rotation, whereas complementation with motB or motC alone led to uncoordinated (jiggly) swimming. Similarly, a motB-motC gene fusion and a Tn5 insertion intervening between motB and motC resulted in jiggly swimming as a consequence of large fluctuations in flagellar rotary speed. We conclude that MotC biosynthesis requires coordinate expression of motB and motC and balanced amounts of the two gene products. The MotC polypeptide contains an N-terminal signal sequence for export, and Western blots have confirmed its location in the periplasm of the R. meliloti cell. A working model suggests that interactions between MotB and MotC at the periplasmic surface of the motor control the energy flux or the energy coupling that drives flagellar rotation.
Collapse
Affiliation(s)
- J Platzer
- Lehrstuhl für Genetik, Universität Regensburg, Germany
| | | | | | | |
Collapse
|