51
|
Lee SE, Seo JS, Keum YS, Lee KJ, Li QX. Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14. Proteomics 2007; 7:2059-69. [PMID: 17514677 DOI: 10.1002/pmic.200600489] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) commonly present in PAH-contaminated soils. We studied fluoranthene catabolism and associated proteins in Mycobacterium sp. JS14, a bacterium isolated from a PAH-contaminated soil in Hilo (HI, USA). Fluoranthene degrades in at least three separated pathways via 1-indanone, 2',3'-dihydroxybiphenyl-2,3,-dicarboxylic acid, and naphthalene-1,8-dicarboxylic acid. Part of the diverse catabolism is converged into phthalate catabolism. An increased expression of 25 proteins related to fluoranthene catabolism is found with 1-D PAGE or 2-DE and nano-LC-MS/MS. Detection of fluoranthene catabolism associated proteins coincides well with its multiple degradation pathways that are mapped via metabolites identified. Among the up-regulated proteins, PAH ring-hydroxylating dioxygenase alpha-subunit and beta-subunit and 2,3-dihydroxybiphenyl 1,2-dioxygenase are notably induced. The up-regulation of trans-2-carboxybenzalpyruvate hydratase suggests that some of fluoranthene metabolites may be further degraded through aromatic dicarboxylic acid pathways. Catalase and superoxide dismutase were up-regulated to control unexpected oxidative stress during the fluoranthene catabolism. The up-regulation of chorismate synthase and nicotine-nucleotide phosphorylase may be necessary for sustaining shikimate pathway and pyrimidine biosynthesis, respectively. A fluoranthene degradation pathway for Mycobacterium sp. JS14 was proposed and confirmed by proteomic study by identifying almost all the enzymes required during the initial steps of fluoranthene degradation.
Collapse
Affiliation(s)
- Sung-Eun Lee
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 9682, USA
| | | | | | | | | |
Collapse
|
52
|
Lessner DJ, Ferry JG. The archaeon Methanosarcina acetivorans contains a protein disulfide reductase with an iron-sulfur cluster. J Bacteriol 2007; 189:7475-84. [PMID: 17675382 PMCID: PMC2168450 DOI: 10.1128/jb.00891-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Methanosarcina acetivorans, a strictly anaerobic methane-producing species belonging to the domain Archaea, contains a gene cluster annotated with homologs encoding oxidative stress proteins. One of the genes (MA3736) is annotated as a gene encoding an uncharacterized carboxymuconolactone decarboxylase, an enzyme required for aerobic growth with aromatic compounds by species in the domain Bacteria. Methane-producing species are not known to utilize aromatic compounds, suggesting that MA3736 is incorrectly annotated. The product of MA3736, overproduced in Escherichia coli, had protein disulfide reductase activity dependent on a C(67)XXC(70) motif not found in carboxymuconolactone decarboxylase. We propose that MA3736 be renamed mdrA (methanosarcina disulfide reductase). Further, unlike carboxymuconolactone decarboxylase, MdrA contained an Fe-S cluster. Binding of the Fe-S cluster was dependent on essential cysteines C(67) and C(70), while cysteines C(39) and C(107) were not required. Loss of the Fe-S cluster resulted in conversion of MdrA from an inactive hexamer to a trimer with protein disulfide reductase activity. The data suggest that MdrA is the prototype of a previously unrecognized protein disulfide reductase family which contains an intermolecular Fe-S cluster that controls oligomerization as a mechanism to regulate protein disulfide reductase activity.
Collapse
Affiliation(s)
- Daniel J Lessner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
53
|
Cary JW, OBrian GR, Nielsen DM, Nierman W, Harris-Coward P, Yu J, Bhatnagar D, Cleveland TE, Payne GA, Calvo AM. Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Appl Microbiol Biotechnol 2007; 76:1107-18. [PMID: 17646985 DOI: 10.1007/s00253-007-1081-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 06/06/2007] [Accepted: 06/10/2007] [Indexed: 02/07/2023]
Abstract
The aflatoxin-producing fungi, Aspergillus flavus and A. parasiticus, form structures called sclerotia that allow for survival under adverse conditions. Deletion of the veA gene in A. flavus and A. parasiticus blocks production of aflatoxin as well as sclerotial formation. We used microarray technology to identify genes differentially expressed in wild-type veA and veA mutant strains that could be involved in aflatoxin production and sclerotial development in A. flavus. The DNA microarray analysis revealed 684 genes whose expression changed significantly over time; 136 of these were differentially expressed between the two strains including 27 genes that demonstrated a significant difference in expression both between strains and over time. A group of 115 genes showed greater expression in the wild-type than in the veA mutant strain. We identified a subgroup of veA-dependent genes that exhibited time-dependent expression profiles similar to those of known aflatoxin biosynthetic genes or that were candidates for involvement in sclerotial production in the wild type.
Collapse
Affiliation(s)
- J W Cary
- Southern Regional Research Center,Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Veselý M, Knoppová M, Nesvera J, Pátek M. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Appl Microbiol Biotechnol 2007; 76:159-68. [PMID: 17483937 DOI: 10.1007/s00253-007-0997-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/11/2007] [Accepted: 04/12/2007] [Indexed: 10/23/2022]
Abstract
The gene cluster catRABC, involved in catechol degradation, was isolated from Rhodococcus erythropolis CCM2595. The genes catA, catB, catC, and the divergently transcribed catR code for catechol 1,2-dioxygenase, cis,cis-muconate cycloisomerase, muconolactone isomerase, and an IclR-type transcriptional regulator, respectively. Measurements of catechol 1,2-dioxygenase activity showed that the expression of catA is induced by phenol but not by catechol or cis,cis-muconate. The activity of catechol 1,2-dioxygenase was repressed by succinate, but no repression by glucose was observed. The transcription start points of catA and catR were determined by primer extension analysis, and the respective promoters (P-catA and P-catR) were thus localized. Measurements of promoter activity during batch cultivation using transcriptional fusion with the gfpuv reporter gene showed that expression of the catR-catABC operon is regulated at the level of transcription. Both P-catR and P-catA are repressed by CatR, and the induction of P-catA by phenol is maintained in the absence of the repressor (in R. erythropolis DeltacatR). Two different potential binding sites for the IclR-type regulator and a recognition site for the cyclic AMP receptor protein (CRP) were identified within the intergenic region between catR and catA.
Collapse
Affiliation(s)
- M Veselý
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v. v. i., Vídenská 1083, 14220, Prague 4, Czech Republic
| | | | | | | |
Collapse
|
55
|
El Azhari N, Chabaud S, Percept A, Bru D, Martin-Laurent F. pcaH, a molecular marker for estimating the diversity of the protocatechuate-degrading bacterial community in the soil environment. PEST MANAGEMENT SCIENCE 2007; 63:459-67. [PMID: 17427160 DOI: 10.1002/ps.1357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microorganisms degrading phenolic compounds play an important role in soil carbon cycling as well as in pesticide degradation. The pcaH gene encoding a key ring-cleaving enzyme of the beta-ketoadipate pathway was selected as a functional marker. Using a degenerate primer pair, pcaH fragments were cloned from two agricultural soils. Restriction fragment length polymorphism (RFLP) screening of 150 pcaH clones yielded 68 RFLP families. Comparison of 86 deduced amino acid sequences displayed 70% identity to known PcaH sequences. Phylogenetic analysis results in two major groups mainly related to PcaH sequences from Actinobacteria and Proteobacteria phyla. This confirms that the developed primer pair targets a wide diversity of pcaH sequences, thereby constituting a suitable molecular marker to estimate the response of the pca community to agricultural practices.
Collapse
Affiliation(s)
- Najoi El Azhari
- UMR Microbiologie du Sol et de l'Environnement, INRA-Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | |
Collapse
|
56
|
Gao H, Yang ZK, Gentry TJ, Wu L, Schadt CW, Zhou J. Microarray-based analysis of microbial community RNAs by whole-community RNA amplification. Appl Environ Microbiol 2006; 73:563-71. [PMID: 17098911 PMCID: PMC1796964 DOI: 10.1128/aem.01771-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new approach, termed whole-community RNA amplification (WCRA), was developed to provide sufficient amounts of mRNAs from environmental samples for microarray analysis. This method employs fusion primers (six to nine random nucleotides with an attached T7 promoter) for the first-strand synthesis. The shortest primer (T7N6S) gave the best results in terms of the yield and representativeness of amplification. About 1,200- to 1,800-fold amplification was obtained with amounts of the RNA templates ranging from 10 to 100 ng, and very representative detection was obtained with 50 to 100 ng total RNA. Evaluation with a Shewanella oneidensis Deltafur strain revealed that the amplification method which we developed could preserve the original abundance relationships of mRNAs. In addition, to determine whether representative detection of RNAs can be achieved with mixed community samples, amplification biases were evaluated with a mixture containing equal quantities of RNAs (100 ng each) from four bacterial species, and representative amplification was also obtained. Finally, the method which we developed was applied to the active microbial populations in a denitrifying fluidized bed reactor used for denitrification of contaminated groundwater and ethanol-stimulated groundwater samples for uranium reduction. The genes expressed were consistent with the expected functions of the bioreactor and groundwater system, suggesting that this approach is useful for analyzing the functional activities of microbial communities. This is one of the first demonstrations that microarray-based technology can be used to successfully detect the activities of microbial communities from real environmental samples in a high-throughput fashion.
Collapse
Affiliation(s)
- Haichun Gao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
57
|
Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 2006; 189:464-72. [PMID: 17085566 PMCID: PMC1797382 DOI: 10.1128/jb.01310-06] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium vanbaalenii PYR-1 was the first bacterium isolated by virtue of its ability to metabolize the high-molecular-weight polycyclic aromatic hydrocarbon (PAH) pyrene. We used metabolic, genomic, and proteomic approaches in this investigation to construct a complete and integrated pyrene degradation pathway for M. vanbaalenii PYR-1. Genome sequence analyses identified genes involved in the pyrene degradation pathway that we have proposed for this bacterium. To identify proteins involved in the degradation, we conducted a proteome analysis of cells exposed to pyrene using one-dimensional gel electrophoresis in combination with liquid chromatography-tandem mass spectrometry. Database searching performed with the M. vanbaalenii PYR-1 genome resulted in identification of 1,028 proteins with a protein false discovery rate of <1%. Based on both genomic and proteomic data, we identified 27 enzymes necessary for constructing a complete pathway for pyrene degradation. Our analyses indicate that this bacterium degrades pyrene to central intermediates through o-phthalate and the beta-ketoadipate pathway. Proteomic analysis also revealed that 18 enzymes in the pathway were upregulated more than twofold, as indicated by peptide counting when the organism was grown with pyrene; three copies of the terminal subunits of ring-hydroxylating oxygenase (NidAB2, MvanDraft_0817/0818, and PhtAaAb), dihydrodiol dehydrogenase (MvanDraft_0815), and ring cleavage dioxygenase (MvanDraft_3242) were detected only in pyrene-grown cells. The results presented here provide a comprehensive picture of pyrene metabolism in M. vanbaalenii PYR-1 and a useful framework for understanding cellular processes involved in PAH degradation.
Collapse
Affiliation(s)
- Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | | | | | | | |
Collapse
|
58
|
Halak S, Basta T, Bürger S, Contzen M, Stolz A. Characterization of the genes encoding the 3-carboxy-cis,cis-muconate-lactonizing enzymes from the 4-sulfocatechol degradative pathways of Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2. Microbiology (Reading) 2006; 152:3207-3216. [PMID: 17074892 DOI: 10.1099/mic.0.29136-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogenophaga intermediastrain S1 andAgrobacterium radiobacterstrain S2 form a mixed bacterial culture which degrades sulfanilate (4-aminobenzenesulfonate) by a novel variation of theβ-ketoadipate pathway via 4-sulfocatechol and 3-sulfomuconate. It was previously proposed that the further metabolism of 3-sulfomuconate is catalysed by modified 3-carboxy-cis,cis-muconate-lactonizing enzymes (CMLEs) and that these ‘type 2’ enzymes were different from the conventional CMLEs (‘type 1’) from the protocatechuate pathway in their ability to convert 3-sulfomuconate in addition to 3-carboxy-cis,cis-muconate. In the present study the genes for two CMLEs (pcaB2S1andpcaB2S2) were cloned fromH. intermediaS1 andA. radiobacterS2, respectively. In both strains, these genes were located close to the previously identified genes encoding the 4-sulfocatechol-converting enzymes. The gene products ofpcaB2S1andpcaB2S2were therefore tentatively identified as type 2 enzymes involved in the metabolism of 3-sulfomuconate. The genes were functionally expressed and the gene products were shown to convert 3-carboxy-cis,cis-muconate and 3-sulfomuconate. 4-Carboxymethylene-4-sulfo-but-2-en-olide (4-sulfomuconolactone) was identified by HPLC-MS as the product, which was enzymically formed from 3-sulfomuconate. His-tagged variants of both CMLEs were purified and compared with the CMLE from the protocatechuate pathway ofPseudomonas putidaPRS2000 for the conversion of 3-carboxy-cis,cis-muconate and 3-sulfomuconate. The CMLEs from the 4-sulfocatechol pathway converted 3-sulfomuconate with considerably higher activities than 3-carboxy-cis,cis-muconate. Also the CMLE fromP. putidaconverted 3-sulfomuconate, but this enzyme demonstrated a clear preference for 3-carboxy-cis,cis-muconate as substrate. Thus it was demonstrated that in the 4-sulfocatechol pathway, distinct CMLEs are formed, which are specifically adapted for the preferred conversion of sulfonated substrates.
Collapse
Affiliation(s)
- Sad Halak
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Tamara Basta
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Sibylle Bürger
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Matthias Contzen
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Andreas Stolz
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| |
Collapse
|
59
|
Sasoh M, Masai E, Ishibashi S, Hara H, Kamimura N, Miyauchi K, Fukuda M. Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Appl Environ Microbiol 2006; 72:1825-32. [PMID: 16517628 PMCID: PMC1393238 DOI: 10.1128/aem.72.3.1825-1832.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated Comamonas sp. strain E6, which utilizes terephthalate (TPA) as the sole carbon and energy source via the protocatechuate (PCA) 4,5-cleavage pathway. Two almost identical TPA degradation gene clusters, tphRICIA2IA3IBIA1I and tphRIICIIA2IIA3IIBIIA1II, were isolated from this strain. Based on amino acid sequence similarity, the genes tphR, tphC, tphA2, tphA3, tphB, and tphA1 were predicted to code, respectively, for an IclR-type transcriptional regulator, a periplasmic TPA binding receptor, the large subunit of the oxygenase component of TPA 1,2-dioxygenase (TPADO), the small subunit of the oxygenase component of TPADO, a 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate (DCD) dehydrogenase, and a reductase component of TPADO. The growth of E6 on TPA was not affected by disruption of either tphA2I or tphA2II singly; however, the tphA2I tphA2II double mutant no longer grew on TPA, suggesting that both TPADO genes are involved in TPA degradation. Introduction of a plasmid carrying tphRIICIIA2IIA3IIBIIA1II conferred the TPA utilization phenotype on Comamonas testosteroni IAM 1152, which is able to grow on PCA but not on TPA. Disruption of either tphRII or tphCII on this plasmid resulted in the loss of the growth of IAM 1152 on TPA, suggesting that these genes are essential to convert TPA to PCA in E6. The genes tphA1II, tphA2II, tphA3II, and tphBII were expressed in Escherichia coli, and the resultant cell extracts containing TphA1II, TphA2II, and TphA3II converted TPA in the presence of NADPH into a product which was transformed to PCA by TphBII. On the basis of these results, TPADO was strongly suggested to be a two-component dioxygenase which consists of the terminal oxygenase component (TphA2 and TphA3) and the reductase (TphA1), and tphB codes for the DCD dehydrogenase.
Collapse
Affiliation(s)
- Mikio Sasoh
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | | | | | | | | | | | | |
Collapse
|
60
|
Habe H, Chung JS, Ishida A, Kasuga K, Ide K, Takemura T, Nojiri H, Yamane H, Omori T. The fluorene catabolic linear plasmid in Terrabacter sp. strain DBF63 carries the beta-ketoadipate pathway genes, pcaRHGBDCFIJ, also found in proteobacteria. MICROBIOLOGY-SGM 2005; 151:3713-3722. [PMID: 16272392 DOI: 10.1099/mic.0.28215-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Terrabacter sp. strain DBF63 is capable of degrading fluorene (FN) to tricarboxylic acid cycle intermediates via phthalate and protocatechuate. Genes were identified for the protocatechuate branch of the beta-ketoadipate pathway (pcaR, pcaHGBDCFIJ) by sequence analysis of a 70 kb DNA region of the FN-catabolic linear plasmid pDBF1. RT-PCR analysis of RNA from DBF63 cells grown with FN, dibenzofuran, and protocatechuate indicated that the pcaHGBDCFIJ operon was expressed during both FN and protocatechuate degradation in strain DBF63. The gene encoding beta-ketoadipate enol-lactone hydrolase (pcaD) was not fused to the next gene, which encodes gamma-carboxymuconolactone decarboxylase (pcaC), in strain DBF63, even though the presence of the pcaL gene (the fusion of pcaD and pcaC) within a pca gene cluster has been thought to be a Gram-positive trait. Quantitative RT-PCR analysis revealed that pcaD mRNA levels increased sharply in response to protocatechuate, and a biotransformation experiment with cis,cis-muconate using Escherichia coli carrying both catBC and pcaD indicated that PcaD exhibited beta-ketoadipate enol-lactone hydrolase activity. The location of the pca gene cluster on the linear plasmid, and the insertion sequences around the pca gene cluster suggest that the ecologically important beta-ketoadipate pathway genes, usually located chromosomally, may be spread widely among bacterial species via horizontal transfer or transposition events.
Collapse
Affiliation(s)
- Hiroshi Habe
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jin-Sung Chung
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ayako Ishida
- Department of Chemistry, Faculty of Sciences, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kano Kasuga
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-7 Kaidobata-nishi, Shimoshinjo-nakano, Akita 010-0195, Japan
| | - Kazuki Ide
- Geo and Water Environmental Engineering Department, Obayashi Corporation, 4-640 Shimokiyoto, Kiyose-shi, Tokyo 204-0011, Japan
| | - Tetsuo Takemura
- Department of Chemistry, Faculty of Sciences, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshio Omori
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
61
|
Shen X, Liu S. Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. ACTA ACUST UNITED AC 2005; 48:241-9. [PMID: 16092756 DOI: 10.1007/bf03183617] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Although the protocatechuate branch of the beta-ketoadipate pathway in Gram+ bacteria has been well studied, this branch is less understood in Gram+ bacteria. In this study, Corynebacterium glutamicum was cultivated with protocatechuate, p-cresol, vanillate and 4-hydroxybenzoate as sole carbon and energy sources for growth. Enzymatic assays indicated that growing cells on these aromatic compounds exhibited protocatechuate 3,4-dioxygenase activities. Data-mining of the genome of this bacterium revealed that the genetic locus ncg12314-ncg12315 encoded a putative protocatechuate 3,4-dioxygenase. The genes, ncg12314 and ncg12315, were amplified by PCR technique and were cloned into plasmid (pET21aP34D). Recombinant Escherichia coli strain harboring this plasmid actively expressed protocatechuate 3,4-dioxygenase activity. Further, when this locus was disrupted in C. glutamicum, the ability to degrade and assimilate protocatechuate, p-cresol, vanillate or 4-hydroxybenzoate was lost and protocatechuate 3,4-dioxygenase activity was disappeared. The ability to grow with these aromatic compounds and protocatechuate 3,4-dioxygenase activity of C. glutamicum mutant could be restored by gene complementation. Thus, it is clear that the key enzyme for ring-cleavage, protocatechuate 3,4-dioxygenase, was encoded by ncg12314 and ncg12315. The additional genes involved in the protocatechuate branch of the beta-ketoadipate pathway were identified by mining the genome data publically available in the GenBank. The functional identification of genes and their unique organization in C. glutamicum provided new insight into the genetic diversity of aromatic compound degradation.
Collapse
Affiliation(s)
- Xihui Shen
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | | |
Collapse
|
62
|
Hu Z, Ferraina RA, Ericson JF, Smets BF. Effect of long-term exposure, biogenic substrate presence, and electron acceptor conditions on the biodegradation of multiple substituted benzoates and phenolates. WATER RESEARCH 2005; 39:3501-10. [PMID: 16051311 DOI: 10.1016/j.watres.2005.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/10/2005] [Accepted: 06/16/2005] [Indexed: 05/03/2023]
Abstract
Biodegradation rates of benzoate and related aromatic compounds, 3-nitrobenzoate, 4-chlorobenzoate, 4-chlorophenol, and 2,4-dichlorophenol by unexposed (unacclimated) and long-term exposed (acclimated) biomass were quantified using a modified fed-batch technique. The acclimated biomass was taken after approximately 1-year of operation from three lab-scale sequencing batch reactors (SBR). These reactors were operated under various cycling electron acceptor conditions with a continuous feed of a synthetic wastewater containing biogenic and nonbiogenic chemicals including benzoate, 3-nitrobenzoate, and 4-chlorophenol, but not 4-chlorobenzoate or 2,4-dichlorophenol. The unexposed biomass was taken from a full-scale wastewater treatment plant, which constituted one of the original sources of inoculum for the lab-scale SBRs. The acclimated biomass manifested high removal rates of benzoate and related aromatic compounds with additional removal of structurally similar chemicals (4-chlorobenzoate and 2,4-dichlorophenol). The unacclimated biomass showed no removal of 3-nitrobenzoate, 4-chlorobenzoate or 2,4-dichlorophenol. Addition of biogenic substrates reduced the degradation of most aromatic compounds tested, but it enhanced 2,4-dichlorophenol removal. Biodegradation rates of each aromatic compound with the biomass from the anoxic/aerobic SBR were further determined under anaerobic (absence of aeration and NO3-), anoxic (no aeration, but with surplus NO3-), standard oxygen (DO > 0.2 mg/L), and elevated oxygen (DO > 25 mg/L) conditions. The removal rate of both benzoate and 3-nitrobenzoate decreased under anaerobic condition but not under the anoxic condition; 4-chlorophenol biodegradation, on the other hand, was reduced significantly under both anoxic and anaerobic conditions. The removal rates of aromatic compounds, particularly those of 3-nitrobenzoate and 2,4-dichlorophenol, increased significantly under elevated dissolved oxygen conditions. Our results demonstrated that when the biochemical conditions shifted from oxygen-respiration to nitrate respiration, to anaerobiosis, the biodegradation rates of test aromatic compounds decreased or ceased.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Environmental Engineering Program, Department of Civil & Environmental Engineering, University of Connecticut, Storrs, CT 06269-2037, USA
| | | | | | | |
Collapse
|
63
|
Patrauchan MA, Florizone C, Dosanjh M, Mohn WW, Davies J, Eltis LD. Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. J Bacteriol 2005; 187:4050-63. [PMID: 15937168 PMCID: PMC1151724 DOI: 10.1128/jb.187.12.4050-4063.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic and proteomic approaches were used to investigate phthalate and benzoate catabolism in Rhodococcus sp. strain RHA1, a polychlorinated biphenyl-degrading actinomycete. Sequence analyses identified genes involved in the catabolism of benzoate (ben) and phthalate (pad), the uptake of phthalate (pat), and two branches of the beta-ketoadipate pathway (catRABC and pcaJIHGBLFR). The regulatory and structural ben genes are separated by genes encoding a cytochrome P450. The pad and pat genes are contained on a catabolic island that is duplicated on plasmids pRHL1 and pRHL2 and includes predicted terephthalate catabolic genes (tpa). Proteomic analyses demonstrated that the beta-ketoadipate pathway is functionally convergent. Specifically, the pad and pat gene products were only detected in phthalate-grown cells. Similarly, the ben and cat gene products were only detected in benzoate-grown cells. However, pca-encoded enzymes were present under both growth conditions. Activity assays for key enzymes confirmed these results. Disruption of pcaL, which encodes a fusion enzyme, abolished growth on phthalate. In contrast, after a lag phase, growth of the mutant on benzoate was similar to that of the wild type. Proteomic analyses revealed 20 proteins in the mutant that were not detected in wild-type cells during growth on benzoate, including a CatD homolog that apparently compensated for loss of PcaL. Analysis of completed bacterial genomes indicates that the convergent beta-ketoadipate pathway and some aspects of its genetic organization are characteristic of rhodococci and related actinomycetes. In contrast, the high redundancy of catabolic pathways and enzymes appears to be unique to RHA1 and may increase its potential to adapt to new carbon sources.
Collapse
Affiliation(s)
- Marianna A Patrauchan
- Department of Microbiology and Immunology, University of British Columbia, #300-6174 University Blvd., Vancouver, BC, V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
64
|
König C, Eulberg D, Gröning J, Lakner S, Seibert V, Kaschabek SR, Schlömann M. A linear megaplasmid, p1CP, carrying the genes for chlorocatechol catabolism of Rhodococcus opacus 1CP. MICROBIOLOGY-SGM 2005; 150:3075-3087. [PMID: 15347765 DOI: 10.1099/mic.0.27217-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Gram-positive actinobacterium Rhodococcus opacus 1CP is able to utilize several (chloro)aromatic compounds as sole carbon sources, and gene clusters for various catabolic enzymes and pathways have previously been identified. Pulsed-field gel electrophoresis indicates the occurrence of a 740 kb megaplasmid, designated p1CP. Linear topology and the presence of covalently bound proteins were shown by the unchanged electrophoretic mobility after S1 nuclease treatment and by the immobility of the native plasmid during non-denaturing agarose gel electrophoresis, respectively. Sequence comparisons of both termini revealed a perfect 13 bp terminal inverted repeat (TIR) as part of an imperfect 583/587 bp TIR, as well as two copies of the highly conserved centre (GCTXCGC) of a palindromic motif. An initial restriction analysis of p1CP was performed. By means of PCR and hybridization techniques, p1CP was screened for several genes encoding enzymes of (chloro)aromatic degradation. A single maleylacetate reductase gene macA, the clc gene cluster for 4-chloro-/3,5-dichlorocatechol degradation, and the clc2 gene cluster for 3-chlorocatechol degradation were found on p1CP whereas the cat and pca gene clusters for the catechol and the protocatechuate pathways, respectively, were not. Prolonged cultivation of the wild-type strain 1CP under non-selective conditions led to the isolation of the clc- and clc2-deficient mutants 1CP.01 and 1CP.02 harbouring the shortened plasmid variants p1CP.01 (500 kb) and p1CP.02 (400 kb).
Collapse
Affiliation(s)
- Christina König
- Interdisziplinäres Ökologisches Zentrum, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| | - Dirk Eulberg
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Janosch Gröning
- Interdisziplinäres Ökologisches Zentrum, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| | - Silvia Lakner
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Volker Seibert
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Stefan R Kaschabek
- Interdisziplinäres Ökologisches Zentrum, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| | - Michael Schlömann
- Interdisziplinäres Ökologisches Zentrum, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| |
Collapse
|
65
|
Shen XH, Huang Y, Liu SJ. Genomic Analysis and Identification of Catabolic Pathways for Aromatic Compounds in Corynebacterium glutamicum. Microbes Environ 2005. [DOI: 10.1264/jsme2.20.160] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xi-Hui Shen
- Institute of Microbiology, Chinese Academy of Sciences
| | - Yan Huang
- Institute of Microbiology, Chinese Academy of Sciences
| | | |
Collapse
|
66
|
Brown CK, Vetting MW, Earhart CA, Ohlendorf DH. Biophysical analyses of designed and selected mutants of protocatechuate 3,4-dioxygenase1. Annu Rev Microbiol 2004; 58:555-85. [PMID: 15487948 DOI: 10.1146/annurev.micro.57.030502.090927] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The catechol dioxygenases allow a wide variety of bacteria to use aromatic compounds as carbon sources by catalyzing the key ring-opening step. These enzymes use specifically either catechol or protocatechuate (2,3-dihydroxybenozate) as their substrates; they use a bare metal ion as the sole cofactor. To learn how this family of metalloenzymes functions, a structural analysis of designed and selected mutants of these enzymes has been undertaken. Here we review the results of this analysis on the nonheme ferric iron intradiol dioxygenase protocatechuate 3,4-dioxygenase.
Collapse
Affiliation(s)
- C Kent Brown
- Center for Metals in Biocatalysis and Department of Biochemistry, Molecular Biology, and Biophysics , Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
67
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
68
|
Gürtler V, Mayall BC, Seviour R. Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 2004; 28:377-403. [PMID: 15449609 DOI: 10.1016/j.femsre.2004.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current systematics of the genus Rhodococcus is unclear, partly because many members were originally included before the application of a polyphasic taxonomic approach, central to which is the acquisition of 16S rRNA sequence data. This has resulted in the reclassification and description of many new species. Hence, the literature is replete with new species names that have not been brought together in an organized and easily interpreted form. This taxonomic confusion has been compounded by assigning many xenobiotic degrading isolates with phylogenetic positions but without formal taxonomic descriptions. In order to provide a framework for a taxonomic approach based on multiple genetic loci, a survey was undertaken of the known genome characteristics of members of the genus Rhodococcus including: (i) genetics of cell envelope biosynthesis; (ii) virulence genes; (iii) gene clusters involved in metabolic degradation and industrially relevant pathways; (iv) genetic analysis tools; (v) rapid identification of bacteria including rhodococci with specific gene RFLPs; (vi) genomic organization of rrn operons. Genes encoding virulence factors have been characterized for Rhodococcus equi and Rhodococcus fascians. Based on peptide signature comparisons deduced from gene sequences for cytochrome P-450, mono- and dioxygenases, alkane degradation, nitrile metabolism, proteasomes and desulfurization, phylogenetic relationships can be deduced for Rhodococcus erythropolis, Rhodococcus globerulus, Rhodococcus ruber and a number of undesignated Rhodococcus spp. that may distinguish the genus Rhodococcus into two further genera. The linear genome topologies that exist in some Rhodococcus species may alter a previously proposed model for the analysis of genomic fingerprinting techniques used in bacterial systematics.
Collapse
Affiliation(s)
- Volker Gürtler
- Department of Microbiology, Austin Health, Studley Road, Heidelberg, Vic. 3084, Australia.
| | | | | |
Collapse
|
69
|
Müller WEG, Grebenjuk VA, Thakur NL, Thakur AN, Batel R, Krasko A, Müller IM, Breter HJ. Oxygen-controlled bacterial growth in the sponge Suberites domuncula: toward a molecular understanding of the symbiotic relationships between sponge and bacteria. Appl Environ Microbiol 2004; 70:2332-41. [PMID: 15066829 PMCID: PMC383090 DOI: 10.1128/aem.70.4.2332-2341.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sponges (phylum Porifera), known to be the richest producers among the metazoans of bioactive secondary metabolites, are assumed to live in a symbiotic relationship with microorganisms, especially bacteria. Until now, the molecular basis of the mutual symbiosis, the exchange of metabolites for the benefit of the other partner, has not been understood. We show with the demosponge Suberites domuncula as a model that the sponge expresses under optimal aeration conditions the enzyme tyrosinase, which synthesizes diphenols from monophenolic compounds. The cDNA isolated was used as a probe to determine the steady-state level of gene expression. The gene expression level parallels the level of specific activity in sponge tissue, indicating that without aeration the tyrosinase level drops drastically; this effect is reversible. The SB2 bacterium isolated from the sponge surface grew well in M9 minimal salt medium supplemented with the dihydroxylated aromatic compound protocatechuate; this carbon source supported growth more than did glucose. From the SB2 bacterium the protocatechuate gene cluster was cloned and sequenced. This cluster comprises all genes coding for enzymes involved in the conversion of protocatechuate to acetyl coenzyme A. Expression is strongly induced if the bacteria are cultivated on M9-protocatechuate medium; the genes pcaQ (encoding the putative transcriptional activator of the pca operon) and pcaDC were used for quantitative PCR analyses. We conclude that metabolites, in this case diphenols, which might be produced by the sponge S. domuncula are utilized by the sponge surface-associated bacterium for energy generation. This rationale will help to further uncover the symbiotic pathways between sponges and their associated "nonculturable" microorganisms; our approach is flanked by the establishment of an EST (expressed sequence tags) database in our laboratory.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität Mainz, D-55099 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Arias-Barrau E, Olivera ER, Luengo JM, Fernández C, Galán B, García JL, Díaz E, Miñambres B. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol 2004; 186:5062-77. [PMID: 15262943 PMCID: PMC451635 DOI: 10.1128/jb.186.15.5062-5077.2004] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Accepted: 05/03/2004] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Whereas the phh, tyr, and hpd genes are not linked in the P. putida genome, the hmgABC genes appear to form a single transcriptional unit. Gel retardation assays and lacZ translational fusion experiments have shown that hmgR encodes a specific repressor that controls the inducible expression of the divergently transcribed hmgABC catabolic genes, and homogentisate is the inducer molecule. Footprinting analysis revealed that HmgR protects a region in the Phmg promoter that spans a 17-bp palindromic motif and an external direct repetition from position -16 to position 29 with respect to the transcription start site. The HmgR protein is thus the first IclR-type regulator that acts as a repressor of an aromatic catabolic pathway. We engineered a broad-host-range mobilizable catabolic cassette harboring the hmgABC, hpd, and tyrB genes that allows heterologous bacteria to use Tyr as a unique carbon and energy source. Remarkably, we show here that the catabolism of 3-hydroxyphenylacetate in P. putida U funnels also into the homogentisate central pathway, revealing that the hmg cluster is a key catabolic trait for biodegradation of a small number of aromatic compounds.
Collapse
Affiliation(s)
- Elsa Arias-Barrau
- Estación Agrícola Experimental, Consejo Superior de Investigaciones Científicas, Finca Marzanas, 24346 Grulleros, León, Spain
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Ishiyama D, Vujaklija D, Davies J. Novel pathway of salicylate degradation by Streptomyces sp. strain WA46. Appl Environ Microbiol 2004; 70:1297-306. [PMID: 15006746 PMCID: PMC368302 DOI: 10.1128/aem.70.3.1297-1306.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gene cluster in a plasmid library of WA46 chromosomal DNA. The nucleotide sequence of a 13.5-kb insert in recombinant plasmid pWD1 (which was sufficient for the complete degradation of salicylate) showed that nine putative open reading frames (ORFs) (sdgABCDEFGHR) were involved. Plasmid pWD1 derivatives disrupted in each putative gene were transformed into Streptomyces lividans TK64. Disruption of either sdgA or sdgC blocked salicylate degradation; constructs lacking sdgD accumulated gentisate. Cell extracts from Escherichia coli DH5 alpha transformants harboring pUC19 that expressed each of the sdg ORFs showed that conversions of salicylate to salicylyl-coenzyme A (CoA) and salicylyl-CoA to gentisyl-CoA required SdgA and SdgC, respectively. SdgA required CoA and ATP as cofactors, while NADH was required for SdgC activity; SdgC was identified as salicylyl-CoA 5-hydroxylase. Gentisyl-CoA underwent spontaneous cleavage to gentisate and CoA. SdgA behaved as a salicylyl-CoA ligase despite showing amino acid sequence similarity to an AMP-ligase. SdgD was identified as a GDO. These results suggest that Streptomyces sp. strain WA46 degrades salicylate by a novel pathway via a CoA derivative. Two-dimensional polyacrylamide gel electrophoresis and reverse transcriptase-PCR studies indicated that salicylate induced expression of the sdg cluster.
Collapse
Affiliation(s)
- Daisuke Ishiyama
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
72
|
Buchan A, Neidle EL, Moran MA. Diverse organization of genes of the beta-ketoadipate pathway in members of the marine Roseobacter lineage. Appl Environ Microbiol 2004; 70:1658-68. [PMID: 15006791 PMCID: PMC368412 DOI: 10.1128/aem.70.3.1658-1668.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the Roseobacter lineage, an ecologically important marine clade within the class alpha-Proteobacteria, harbor genes for the protocatechuate branch of the beta-ketoadipate pathway, a major catabolic route for lignin-related aromatic compounds. The genes of this pathway are typically clustered, although gene order varies among organisms. Here we characterize genes linked to pcaH and -G, which encode protocatechuate 3,4-dioxygenase, in eight closely related members of the Roseobacter lineage (pairwise 16S rRNA gene sequence identities, 92 to 99%). Sequence analysis of genomic fragments revealed five unique pca gene arrangements. Identical gene organization was found for isolates demonstrating species-level identity (i.e., >99% 16S rRNA gene similarity). In one isolate, six functionally related genes were clustered: pcaQ, pobA, pcaD, pcaC, pcaH, and pcaG. The remaining seven isolates lacked at least one of these genes in their clusters, although the relative order of the remaining genes was preserved. Three genes (pcaC, -H, and -G) were physically linked in all isolates. A highly conserved open reading frame (ORF) was found immediately downstream of pcaG in all eight isolates. Reverse transcription-PCR analysis of RNA from one isolate, Silicibacter pomeroyi DSS-3, provides evidence that this ORF is coexpressed with upstream pca genes. The absence of this ORF in similar bacterial pca gene clusters from diverse microbes suggests a niche-specific role for its protein product in Roseobacter group members. Collectively, these comparisons of bacterial pca gene organization illuminate a complex evolutionary history and underscore the widespread ecological importance of the encoded beta-ketoadipate pathway.
Collapse
Affiliation(s)
- Alison Buchan
- Department of Marine Sciences, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
73
|
Kleinsteuber S, Hoffmann D, Müller RH, Babel W. Detection of chlorocatechol 1,2-dioxygenase genes in proteobacteria by PCR and gene probes. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/abio.370180306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
74
|
Solyanikova IP, Moiseeva OV, Boeren S, Boersma MG, Kolomytseva MP, Vervoort J, Rietjens IMCM, Golovleva LA, van Berkel WJH. Conversion of 2-fluoromuconate to cis-dienelactone by purified enzymes of Rhodococcus opacus 1cp. Appl Environ Microbiol 2003; 69:5636-42. [PMID: 12957954 PMCID: PMC194941 DOI: 10.1128/aem.69.9.5636-5642.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study describes the (19)F nuclear magnetic resonance analysis of the conversion of 3-halocatechols to lactones by purified chlorocatechol 1,2-dioxygenase (ClcA2), chloromuconate cycloisomerase (ClcB2), and chloromuconolactone dehalogenase (ClcF) from Rhodococcus opacus 1cp grown on 2-chlorophenol. The 3-halocatechol substrates were produced from the corresponding 2-halophenols by either phenol hydroxylase from Trichosporon cutaneum or 2-hydroxybiphenyl 3-mono-oxygenase from Pseudomonas azelaica. Several fluoromuconates resulting from intradiol ring cleavage by ClcA2 were identified. ClcB2 converted 2-fluoromuconate to 5-fluoromuconolactone and 2-chloro-4-fluoromuconate to 2-chloro-4-fluoromuconolactone. Especially the cycloisomerization of 2-fluoromuconate is a new observation. ClcF catalyzed the dehalogenation of 5-fluoromuconolactone to cis-dienelactone. The ClcB2 and ClcF-mediated reactions are in line with the recent finding of a second cluster of chlorocatechol catabolic genes in R. opacus 1cp which provides a new route for the microbial dehalogenation of 3-chlorocatechol.
Collapse
Affiliation(s)
- Inna P Solyanikova
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Torres B, Porras G, Garcia JL, Diaz E. Regulation of the mhp cluster responsible for 3-(3-hydroxyphenyl)propionic acid degradation in Escherichia coli. J Biol Chem 2003; 278:27575-85. [PMID: 12748194 DOI: 10.1074/jbc.m303245200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mhp gene cluster from Escherichia coli constitutes a model system to study bacterial degradation of 3-(3-hydroxyphenyl)propionic acid (3HPP). In this work the regulation of the inducible mhp catabolic genes has been studied by genetic and biochemical approaches. The Pr and Pa promoters, which control the expression of the divergently transcribed mhpR regulatory gene and mhp catabolic genes, respectively, show a peculiar arrangement leading to transcripts that are complementary at their 5'-ends. By using Pr-lacZ and Pa-lacZ translational fusions and gel retardation assays, we have shown that the mhpR gene product behaves as a 3HPP-dependent activator of the Pa promoter, being the expression from Pr constitutive and MhpR-independent. DNase I footprinting experiments and mutational analysis mapped an MhpR-protected region, centered at position -58 with respect to the Pa transcription start site, which is indispensable for MhpR binding and in vivo activation of the Pa promoter. Superimposed in the specific MhpR-mediated regulation of the Pa promoter, we have observed a strict catabolite repression control carried out by the cAMP receptor protein (CRP) that allows expression of the mhp catabolic genes when the preferred carbon source (glucose) is not available and 3HPP is present in the medium. Gel retardation assays revealed that the specific activator, MhpR, is essential for the binding of the second activator, CRP, to the Pa promoter. Such peculiar synergistic transcription activation has not yet been observed in other aromatic catabolic pathways, and the MhpR activator becomes the first member of the IclR family of transcriptional regulators that is indispensable for recruiting CRP to the target promoter.
Collapse
Affiliation(s)
- Begona Torres
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
76
|
Hara H, Masai E, Miyauchi K, Katayama Y, Fukuda M. Characterization of the 4-carboxy-4-hydroxy-2-oxoadipate aldolase gene and operon structure of the protocatechuate 4,5-cleavage pathway genes in Sphingomonas paucimobilis SYK-6. J Bacteriol 2003; 185:41-50. [PMID: 12486039 PMCID: PMC141877 DOI: 10.1128/jb.185.1.41-50.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protocatechuate (PCA) 4,5-cleavage pathway is the essential metabolic route for degradation of low-molecular-weight products derived from lignin by Sphingomonas paucimobilis SYK-6. In the 10.5-kb EcoRI fragment carrying the genes for PCA 4,5-dioxygenase (ligAB), 2-pyrone-4,6-dicarboxylate hydrolase (ligI), 4-oxalomesaconate hydratase (ligJ), and a part of 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (ligC), we found the ligK gene, which encodes 4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolase. The ligK gene was located 1,183 bp upstream of ligI and transcribed in the same direction as ligI. We also found the ligR gene encoding a LysR-type transcriptional activator, which was located 174 bp upstream of ligK. The ligK gene consists of a 684-bp open reading frame encoding a polypeptide with a molecular mass of 24,131 Da. The deduced amino acid sequence of ligK showed 57 to 88% identity with those of the corresponding genes recently reported in Sphingomonas sp. strain LB126, Comamonas testosteroni BR6020, Arthrobacter keyseri 12B, and Pseudomonas ochraceae NGJ1. The ligK gene was expressed in Escherichia coli, and the gene product (LigK) was purified to near homogeneity. Electrospray-ionization mass spectrometry indicated that LigK catalyzes not only the conversion of CHA to pyruvate and oxaloacetate but also that of oxaloacetate to pyruvate and CO(2). LigK is a hexamer, and its isoelectric point is 5.1. The K(m) for CHA and oxaloacetate are 11.2 and 136 micro M, respectively. Inactivation of ligK in S. paucimobilis SYK-6 resulted in the growth deficiency of vanillate and syringate, indicating that ligK encodes the essential CHA aldolase for catabolism of these compounds. Reverse transcription-PCR analysis revealed that the PCA 4,5-cleavage pathway genes of S. paucimobilis SYK-6 consisted of four transcriptional units, including the ligK-orf1-ligI-lsdA cluster, the ligJAB cluster, and the monocistronic ligR and ligC genes.
Collapse
Affiliation(s)
- Hirofumi Hara
- Department of Bioengineering, Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | | | | | | | | |
Collapse
|
77
|
Jiménez JI, Miñambres B, García JL, Díaz E. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 2002; 4:824-41. [PMID: 12534466 DOI: 10.1046/j.1462-2920.2002.00370.x] [Citation(s) in RCA: 352] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.
Collapse
Affiliation(s)
- José Ignacio Jiménez
- Departmento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Velázquez 144, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
78
|
Moiseeva OV, Solyanikova IP, Kaschabek SR, Gröning J, Thiel M, Golovleva LA, Schlömann M. A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. J Bacteriol 2002; 184:5282-92. [PMID: 12218013 PMCID: PMC135353 DOI: 10.1128/jb.184.19.5282-5292.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 4-chloro- and 2,4-dichlorophenol-degrading strain Rhodococcus opacus 1CP has previously been shown to acquire, during prolonged adaptation, the ability to mineralize 2-chlorophenol. In addition, homogeneous chlorocatechol 1,2-dioxygenase from 2-chlorophenol-grown biomass has shown relatively high activity towards 3-chlorocatechol. Based on sequences of the N terminus and tryptic peptides of this enzyme, degenerate PCR primers were now designed and used for cloning of the respective gene from genomic DNA of strain 1CP. A 9.5-kb fragment containing nine open reading frames was obtained on pROP1. Besides other genes, a gene cluster consisting of four chlorocatechol catabolic genes was identified. As judged by sequence similarity and correspondence of predicted N termini with those of purified enzymes, the open reading frames correspond to genes for a second chlorocatechol 1,2-dioxygenase (ClcA2), a second chloromuconate cycloisomerase (ClcB2), a second dienelactone hydrolase (ClcD2), and a muconolactone isomerase-related enzyme (ClcF). All enzymes of this new cluster are only distantly related to the known chlorocatechol enzymes and appear to represent new evolutionary lines of these activities. UV overlay spectra as well as high-pressure liquid chromatography analyses confirmed that 2-chloro-cis,cis-muconate is transformed by ClcB2 to 5-chloromuconolactone, which during turnover by ClcF gives cis-dienelactone as the sole product. cis-Dienelactone was further hydrolyzed by ClcD2 to maleylacetate. ClcF, despite its sequence similarity to muconolactone isomerases, no longer showed muconolactone-isomerizing activity and thus represents an enzyme dedicated to its new function as a 5-chloromuconolactone dehalogenase. Thus, during 3-chlorocatechol degradation by R. opacus 1CP, dechlorination is catalyzed by a muconolactone isomerase-related enzyme rather than by a specialized chloromuconate cycloisomerase.
Collapse
Affiliation(s)
- Olga V Moiseeva
- Institut für Mikrobiologie, University of Stuttgart, 70550 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
79
|
Popp R, Kohl T, Patz P, Trautwein G, Gerischer U. Differential DNA binding of transcriptional regulator PcaU from Acinetobacter sp. strain ADP1. J Bacteriol 2002; 184:1988-97. [PMID: 11889107 PMCID: PMC134916 DOI: 10.1128/jb.184.7.1988-1997.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulator PcaU from Acinetobacter sp. strain ADP1 governs expression of genes for protocatechuate degradation (pca genes) as a repressor or an activator depending on the levels of the inducer protocatechuate and of its own gene. PcaU is a member of the IclR protein family. Here the DNA binding properties of the purified protein are described in terms of the location of the binding sites and the affinity to these sites. Native PcaU was purified after overexpression of the pcaU gene in Escherichia coli. It is a dimer in solution. The binding site in the pcaU-pcaI intergenic region is located between the two divergent promoters covering 45 bp, which includes three perfect 10-bp repetitions. A PcaU binding site downstream of pcaU is covered by PcaU across two palindromic sequence repetitions. The affinity of PcaU for the intergenic binding sites is 50-fold higher (dissociation constant [K(d)], 0.16 nM) than the affinity for the site downstream of pcaU (K(d), 8 nM). The binding of PcaU was tested after modifications of the intergenic binding site. Removal of any external sequence repetition still allowed for specific binding of PcaU, but the affinity was significantly reduced, suggesting an important role for all three sequence repetitions in gene expression. The involvement of DNA bending in the regulatory process is suggested by the observed strong intrinsic curvature displayed by the pcaU-pcaI intergenic DNA.
Collapse
Affiliation(s)
- Roland Popp
- Mikrobiologie und Biotechnologie, Universität Ulm, D-89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
80
|
Kaschabek SR, Kuhn B, Müller D, Schmidt E, Reineke W. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase. J Bacteriol 2002; 184:207-15. [PMID: 11741862 PMCID: PMC134768 DOI: 10.1128/jb.184.1.207-215.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2001] [Accepted: 10/02/2001] [Indexed: 11/20/2022] Open
Abstract
The degradation of 3-oxoadipate in Pseudomonas sp. strain B13 was investigated and was shown to proceed through 3-oxoadipyl-coenzyme A (CoA) to give acetyl-CoA and succinyl-CoA. 3-Oxoadipate:succinyl-CoA transferase of strain B13 was purified by heat treatment and chromatography on phenyl-Sepharose, Mono-Q, and Superose 6 gels. Estimation of the native molecular mass gave a value of 115,000 +/- 5,000 Da with a Superose 12 column. Polyacrylamide gel electrophoresis under denaturing conditions resulted in two distinct bands of equal intensities. The subunit A and B values were 32,900 and 27,000 Da. Therefore it can be assumed that the enzyme is a heterotetramer of the type A2B2 with a molecular mass of 120,000 Da. The N-terminal amino acid sequences of both subunits are as follows: subunit A, AELLTLREAVERFVNDGTVALEGFTHLIPT; subunit B, SAYSTNEMMTVAAARRLKNGAVVFV. The pH optimum was 8.4. Km values were 0.4 and 0.2 mM for 3-oxoadipate and succinyl-CoA, respectively. Reversibility of the reaction with succinate was shown. The transferase of strain B13 failed to convert 2-chloro- and 2-methyl-3-oxoadipate. Some activity was observed with 4-methyl-3-oxoadipate. Even 2-oxoadipate and 3-oxoglutarate were shown to function as poor substrates of the transferase. 3-oxoadipyl-CoA thiolase was purified by chromatography on DEAE-Sepharose, blue 3GA, and reactive brown-agarose. Estimation of the native molecular mass gave 162,000 +/- 5,000 Da with a Superose 6 column. The molecular mass of the subunit of the denatured protein, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 42 kDa. On the basis of these results, 3-oxoadipyl-CoA thiolase should be a tetramer of the type A4. The N-terminal amino acid sequence of 3-oxoadipyl-CoA thiolase was determined to be SREVYI-DAVRTPIGRFG. The pH optimum was 7.8. Km values were 0.15 and 0.01 mM for 3-oxoadipyl-CoA and CoA, respectively. Sequence analysis of the thiolase terminus revealed high percentages of identity (70 to 85%) with thiolases of different functions. The N termini of the transferase subunits showed about 30 to 35% identical amino acids with the glutaconate-CoA transferase of an anaerobic bacterium but only an identity of 25% with the respective transferases of aromatic compound-degrading organisms was found.
Collapse
Affiliation(s)
- Stefan R Kaschabek
- Chemische Mikrobiologie, Bergische Universität-Gesamthochschule Wuppertal, Wuppertal, Germany
| | | | | | | | | |
Collapse
|
81
|
Göbel M, Kassel-Cati K, Schmidt E, Reineke W. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: cloning, characterization, and analysis of sequences encoding 3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase. J Bacteriol 2002; 184:216-23. [PMID: 11741863 PMCID: PMC134769 DOI: 10.1128/jb.184.1.216-223.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase carry out the ultimate steps in the conversion of benzoate and 3-chlorobenzoate to tricarboxylic acid cycle intermediates in bacteria utilizing the 3-oxoadipate pathway. This report describes the characterization of DNA fragments with the overall length of 5.9 kb from Pseudomonas sp. strain B13 that encode these enzymes. DNA sequence analysis revealed five open reading frames (ORFs) plus an incomplete one. ORF1, of unknown function, has a length of 414 bp. ORF2 (catI) encodes a polypeptide of 282 amino acids and starts at nucleotide 813. ORF3 (catJ) encodes a polypeptide of 260 amino acids and begins at nucleotide 1661. CatI and CatJ are the subunits of the 3-oxoadipate:succinyl-CoA transferase, whose activity was demonstrated when both genes were ligated into expression vector pET11a. ORF4, termed catF, codes for a protein of 401 amino acid residues with a predicted mass of 41,678 Da with 3-oxoadipyl-CoA thiolase activity. The last three ORFs seem to form an operon since they are oriented in the same direction and showed an overlapping of 1 bp between catI and catJ and of 4 bp between catJ and catF. Conserved functional groups important for the catalytic activity of CoA transferases and thiolases were identified in CatI, CatJ, and CatF. ORF5 (catD) encodes the 3-oxoadipate enol-lactone hydrolase. An incomplete ORF6 of 1,183 bp downstream of ORF5 and oriented in the opposite direction was found. The protein sequence deduced from ORF6 showed a putative AMP-binding domain signature.
Collapse
Affiliation(s)
- Markus Göbel
- Chemische Mikrobiologie, Bergische Universität-Gesamthochschule Wuppertal, Wuppertal, Germany
| | | | | | | |
Collapse
|
82
|
Donald LJ, Hosfield DJ, Cuvelier SL, Ens W, Standing KG, Duckworth HW. Mass spectrometric study of the Escherichia coli repressor proteins, Ic1R and Gc1R, and their complexes with DNA. Protein Sci 2001; 10:1370-80. [PMID: 11420439 PMCID: PMC2374109 DOI: 10.1110/ps.780101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
In Escherichia coli, the IclR protein regulates both the aceBAK operon and its own synthesis. Database homology searches have identified many IclR-like proteins, now known as the IclR family, which can be identified by a conserved C-terminal region. We have cloned and purified one of these proteins, which we have named GclR (glyoxylate carboligase repressor). Although purification is straightforward, both the IclR and GclR proteins are difficult to manipulate, requiring high salt (up to 0.6 M KCl) for solubility. With the advent of nanospray ionization, we could transfer the proteins into much higher concentrations of volatile buffer than had been practical with ordinary electrospray. In 0.5 M ammonium bicarbonate buffer, both proteins were stable as tetramers, with a small amount of dimer. In a separate experiment, we found that IclR protein selected from a random pool a sequence which matched exactly that of the presumed binding region of the GclR protein, although IclR does not regulate the gcl gene. We designed a 29 bp synthetic DNA to which IclR and GclR bind, and with which we were able to form noncovalent DNA-protein complexes for further mass spectrometry analysis. These complexes were far more stable than the proteins alone, and we have evidence of a stoichiometry which has not been described previously with (protein monomer : dsDNA) = (4 : 1).
Collapse
Affiliation(s)
- L J Donald
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
83
|
Trautwein G, Gerischer U. Effects exerted by transcriptional regulator PcaU from Acinetobacter sp. strain ADP1. J Bacteriol 2001; 183:873-81. [PMID: 11208784 PMCID: PMC94953 DOI: 10.1128/jb.183.3.873-881.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2000] [Accepted: 11/13/2000] [Indexed: 11/20/2022] Open
Abstract
Protocatechuate degradation is accomplished in a multistep inducible catabolic pathway in Acinetobacter sp. strain ADP1. The induction is brought about by the transcriptional regulator PcaU in concert with the inducer protocatechuate. PcaU, a member of the new IclR family of transcriptional regulators, was shown to play a role in the activation of transcription at the promoter for the structural pca genes, leaving open the participation of additional activators. In this work we show that there is no PcaU-independent transcriptional activation at the pca gene promoter. The minimal inducer concentration leading to an induction response is 10(-5) M protocatechuate. The extent of expression of the pca genes was observed to depend on the nature of the inducing carbon source, and this is assumed to be caused by different internal levels of protocatechuate in the cells. The basal level of expression was shown to be comparatively high and to vary depending on the noninducing carbon source independent of PcaU. In addition to the activating function, in vivo results suggest a repressing function for PcaU at the pca gene promoter in the absence of an elevated inducer concentration. Expression at the pcaU gene promoter is independent of the growth condition but is subject to strong negative autoregulation. We propose a model in which PcaU exerts a repressor function both at its own promoter and at the structural gene promoter and in addition functions as an activator of transcription at the structural gene promoter at elevated inducer concentration.
Collapse
Affiliation(s)
- G Trautwein
- Department of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany
| | | |
Collapse
|
84
|
Parke D. Positive selection for mutations affecting bioconversion of aromatic compounds in Agrobacterium tumefaciens: analysis of spontaneous mutations in the protocatechuate 3,4-dioxygenase gene. J Bacteriol 2000; 182:6145-53. [PMID: 11029436 PMCID: PMC94750 DOI: 10.1128/jb.182.21.6145-6153.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A positive selection method for mutations affecting bioconversion of aromatic compounds was applied to a mutant strain of Agrobacterium tumefaciens A348. The nucleotide sequence of the A348 pcaHGB genes, which encode protocatechuate 3,4-dioxygenase (PcaHG) and beta-carboxy-cis,cis-muconate cycloisomerase (PcaB) for the first two steps in catabolism of the diphenolic protocatechuate, was determined. An omega element was introduced into the pcaB gene of A348, creating strain ADO2077. In the presence of phenolic compounds that can serve as carbon sources, growth of ADO2077 is inhibited due to accumulation of the tricarboxylate intermediate. The toxic effect, previously described for Acinetobacter sp., affords a powerful selection for suppressor mutations in genes required for upstream catabolic steps. By monitoring loss of the marker in pcaB, it was possible to determine that the formation of deletions was minimal compared to results obtained with Acinetobacter sp. Thus, the tricarboxylic acid trick in and of itself does not appear to select for large deletion mutations. The power of the selection was demonstrated by targeting the pcaHG genes of A. tumefaciens for spontaneous mutation. Sixteen strains carrying putative second-site mutations in pcaH or -G were subjected to sequence analysis. All single-site events, their mutations revealed no particular bias toward multibase deletions or unusual patterns: five (-1) frameshifts, one (+1) frameshift, one tandem duplication of 88 bp, one deletion of 92 bp, one nonsense mutation, and seven missense mutations. PcaHG is considered to be the prototypical ferric intradiol dioxygenase. The missense mutations served to corroborate the significance of active site amino acid residues deduced from crystal structures of PcaHG from Pseudomonas putida and Acinetobacter sp. as well as of residues in other parts of the enzyme.
Collapse
Affiliation(s)
- D Parke
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA.
| |
Collapse
|
85
|
Buchan A, Collier LS, Neidle EL, Moran MA. Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Appl Environ Microbiol 2000; 66:4662-72. [PMID: 11055908 PMCID: PMC92364 DOI: 10.1128/aem.66.11.4662-4672.2000] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aromatic compound degradation in six bacteria representing an ecologically important marine taxon of the alpha-proteobacteria was investigated. Initial screens suggested that isolates in the Roseobacter lineage can degrade aromatic compounds via the beta-ketoadipate pathway, a catabolic route that has been well characterized in soil microbes. Six Roseobacter isolates were screened for the presence of protocatechuate 3,4-dioxygenase, a key enzyme in the beta-ketoadipate pathway. All six isolates were capable of growth on at least three of the eight aromatic monomers presented (anthranilate, benzoate, p-hydroxybenzoate, salicylate, vanillate, ferulate, protocatechuate, and coumarate). Four of the Roseobacter group isolates had inducible protocatechuate 3, 4-dioxygenase activity in cell extracts when grown on p-hydroxybenzoate. The pcaGH genes encoding this ring cleavage enzyme were cloned and sequenced from two isolates, Sagittula stellata E-37 and isolate Y3F, and in both cases the genes could be expressed in Escherichia coli to yield dioxygenase activity. Additional genes involved in the protocatechuate branch of the beta-ketoadipate pathway (pcaC, pcaQ, and pobA) were found to cluster with pcaGH in these two isolates. Pairwise sequence analysis of the pca genes revealed greater similarity between the two Roseobacter group isolates than between genes from either Roseobacter strain and soil bacteria. A degenerate PCR primer set targeting a conserved region within PcaH successfully amplified a fragment of pcaH from two additional Roseobacter group isolates, and Southern hybridization indicated the presence of pcaH in the remaining two isolates. This evidence of protocatechuate 3, 4-dioxygenase and the beta-ketoadipate pathway was found in all six Roseobacter isolates, suggesting widespread abilities to degrade aromatic compounds in this marine lineage.
Collapse
Affiliation(s)
- A Buchan
- Departments of Marine Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
86
|
Contzen M, Stolz A. Characterization of the genes for two protocatechuate 3, 4-dioxygenases from the 4-sulfocatechol-degrading bacterium Agrobacterium radiobacter strain S2. J Bacteriol 2000; 182:6123-9. [PMID: 11029433 PMCID: PMC94747 DOI: 10.1128/jb.182.21.6123-6129.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes for two different protocatechuate 3,4-dioxygenases (P34Os) were cloned from the 4-sulfocatechol-degrading bacterium Agrobacterium radiobacter strain S2 (DSMZ 5681). The pcaH1G1 genes encoded a P34O (P34O-I) which oxidized protocatechuate but not 4-sulfocatechol. These genes were part of a protocatechuate-degradative operon which strongly resembled the isofunctional operon from the protocatechuate-degrading strain Agrobacterium tumefaciens A348 described previously by D. Parke (FEMS Microbiol. Lett. 146:3-12, 1997). The second P34O (P34O-II), encoded by the pcaH2G2 genes, was functionally expressed and shown to convert protocatechuate and 4-sulfocatechol. A comparison of the deduced amino acid sequences of PcaH-I and PcaH-II, and of PcaG-I and PcaG-II, with each other and with the corresponding sequences from the P34Os, from other bacterial genera suggested that the genes for the P34O-II were obtained by strain S2 by lateral gene transfer. The genes encoding the P34O-II were found in a putative operon together with two genes which, according to sequence alignments, encoded transport proteins. Further downstream from this putative operon, two open reading frames which code for a putative regulator protein of the IclR family and a putative 3-carboxymuconate cycloisomerase were identified.
Collapse
Affiliation(s)
- M Contzen
- Institut für Mikrobiologie, Universität Stuttgart, 70569 Stuttgart, Germany
| | | |
Collapse
|
87
|
Iwagami SG, Yang K, Davies J. Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065. Appl Environ Microbiol 2000; 66:1499-508. [PMID: 10742233 PMCID: PMC92014 DOI: 10.1128/aem.66.4.1499-1508.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protocatechuate 3,4-dioxygenase (EC 1.13.11.3) catalyzes the ring cleavage step in the catabolism of aromatic compounds through the protocatechuate branch of the beta-ketoadipate pathway. A protocatechuate 3,4-dioxygenase was purified from Streptomyces sp. strain 2065 grown in p-hydroxybenzoate, and the N-terminal sequences of the beta- and alpha-subunits were obtained. PCR amplification was used for the cloning of the corresponding genes, and DNA sequencing of the flanking regions showed that the pcaGH genes belonged to a 6. 5-kb protocatechuate catabolic gene cluster; at least seven genes in the order pcaIJFHGBL appear to be transcribed unidirectionally. Analysis of the cluster revealed the presence of a pcaL homologue which encodes a fused gamma-carboxymuconolactone decarboxylase/beta-ketoadipate enol-lactone hydrolase previously identified in the pca gene cluster from Rhodococcus opacus 1CP. The pcaIJ genes encoded proteins with a striking similarity to succinyl-coenzyme A (CoA):3-oxoacid CoA transferases of eukaryotes and contained an indel which is strikingly similar between high-G+C gram-positive bacteria and eukaryotes.
Collapse
Affiliation(s)
- S G Iwagami
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
88
|
D'Argenio DA, Vetting MW, Ohlendorf DH, Ornston LN. Substitution, insertion, deletion, suppression, and altered substrate specificity in functional protocatechuate 3,4-dioxygenases. J Bacteriol 1999; 181:6478-87. [PMID: 10515940 PMCID: PMC103785 DOI: 10.1128/jb.181.20.6478-6487.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protocatechuate 3,4-dioxygenase is a member of a family of bacterial enzymes that cleave the aromatic rings of their substrates between two adjacent hydroxyl groups, a key reaction in microbial metabolism of varied environmental chemicals. In an appropriate genetic background, it is possible to select for Acinetobacter strains containing spontaneous mutations blocking expression of pcaH or -G, genes encoding the alpha and beta subunits of protocatechuate 3, 4-dioxygenase. The crystal structure of the Acinetobacter oxygenase has been determined, and this knowledge affords us the opportunity to understand how mutations alter function in the enzyme. An earlier investigation had shown that a large fraction of spontaneous mutations inactivating Acinetobacter protocatechuate oxygenase are either insertions or large deletions. Therefore, the prior procedure of mutant selection was modified to isolate Acinetobacter strains in which mutations within pcaH or -G cause a heat-sensitive phenotype. These mutations affected residues distributed throughout the linear amino acid sequences of PcaH and PcaG and impaired the dioxygenase to various degrees. Four of 16 mutants had insertions or deletions in the enzyme ranging in size from 1 to 10 amino acid residues, highlighting areas of the protein where large structural changes can be tolerated. To further understand how protein structure influences function, we isolated strains in which the phenotypes of three different deletion mutations in pcaH or -G were suppressed either by a spontaneous mutation or by a PCR-generated random mutation introduced into the Acinetobacter chromosome by natural transformation. The latter procedure was also used to identify a single amino acid substitution in PcaG that conferred activity towards catechol sufficient for growth with benzoate in a strain in which catechol 1,2-dioxygenase was inactivated.
Collapse
Affiliation(s)
- D A D'Argenio
- Department of Molecular Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | |
Collapse
|
89
|
Segura A, Bünz PV, D'Argenio DA, Ornston LN. Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter. J Bacteriol 1999; 181:3494-504. [PMID: 10348863 PMCID: PMC93818 DOI: 10.1128/jb.181.11.3494-3504.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VanA and VanB form an oxygenative demethylase that converts vanillate to protocatechuate in microorganisms. Ferulate, an abundant phytochemical, had been shown to be metabolized through a vanillate intermediate in several Pseudomonas isolates, and biochemical evidence had indicated that vanillate also is an intermediate in ferulate catabolism by Acinetobacter. Genetic evidence supporting this conclusion was obtained by characterization of mutant Acinetobacter strains blocked in catabolism of both ferulate and vanillate. Cloned Acinetobacter vanA and vanB were shown to be members of a chromosomal segment remote from a supraoperonic cluster containing other genes required for completion of the catabolism of ferulate and its structural analogs, caffeate and coumarate, through protocatechuate. The nucleotide sequence of DNA containing vanA and vanB demonstrated the presence of genes that, on the basis of nucleotide sequence similarity, appeared to be associated with transport of aromatic compounds, metabolism of such compounds, or iron scavenging. Spontaneous deletion of 100 kb of DNA containing this segment does not impede the growth of cells with simple carbon sources other than vanillate or ferulate. Additional spontaneous mutations blocking vanA and vanB expression were shown to be mediated by IS1236, including insertion of the newly discovered composite transposon Tn5613. On the whole, vanA and vanB appear to be located within a nonessential genetic region that exhibits considerable genetic malleability in Acinetobacter. The overall organization of genes neighboring Acinetobacter vanA and vanB, including a putative transcriptional regulatory gene that is convergently transcribed and overlaps vanB, is conserved in Pseudomonas aeruginosa but has undergone radical rearrangement in other Pseudomonas species.
Collapse
Affiliation(s)
- A Segura
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | |
Collapse
|
90
|
Tsoi TV, Plotnikova EG, Cole JR, Guerin WF, Bagdasarian M, Tiedje JM. Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Appl Environ Microbiol 1999; 65:2151-62. [PMID: 10224014 PMCID: PMC91311 DOI: 10.1128/aem.65.5.2151-2162.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned and characterized novel oxygenolytic ortho-dehalogenation (ohb) genes from 2-chlorobenzoate (2-CBA)- and 2,4-dichlorobenzoate (2,4-dCBA)-degrading Pseudomonas aeruginosa 142. Among 3,700 Escherichia coli recombinants, two clones, DH5alphaF'(pOD22) and DH5alphaF'(pOD33), converted 2-CBA to catechol and 2,4-dCBA and 2,5-dCBA to 4-chlorocatechol. A subclone of pOD33, plasmid pE43, containing the 3,687-bp minimized ohb DNA region conferred to P. putida PB2440 the ability to grow on 2-CBA as a sole carbon source. Strain PB2440(pE43) also oxidized but did not grow on 2,4-dCBA, 2,5-dCBA, or 2,6-dCBA. Terminal oxidoreductase ISPOHB structural genes ohbA and ohbB, which encode polypeptides with molecular masses of 20,253 Da (beta-ISP) and 48,243 Da (alpha-ISP), respectively, were identified; these proteins are in accord with the 22- and 48-kDa (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) polypeptides synthesized in E. coli and P. aeruginosa parental strain 142. The ortho-halobenzoate 1,2-dioxygenase activity was manifested in the absence of ferredoxin and reductase genes, suggesting that the ISPOHB utilized electron transfer components provided by the heterologous hosts. ISPOHB formed a new phylogenetic cluster that includes aromatic oxygenases featuring atypical structural-functional organization and is distant from the other members of the family of primary aromatic oxygenases. A putative IclR-type regulatory gene (ohbR) was located upstream of the ohbAB genes. An open reading frame (ohbC) of unknown function that overlaps lengthwise with ohbB but is transcribed in the opposite direction was found. The ohbC gene codes for a 48,969-Da polypeptide, in accord with the 49-kDa protein detected in E. coli. The ohb genes are flanked by an IS1396-like sequence containing a putative gene for a 39,715-Da transposase A (tnpA) at positions 4731 to 5747 and a putative gene for a 45,247-Da DNA topoisomerase I/III (top) at positions 346 to 1563. The ohb DNA region is bordered by 14-bp imperfect inverted repeats at positions 56 to 69 and 5984 to 5997.
Collapse
Affiliation(s)
- T V Tsoi
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
91
|
Seibert V, Kourbatova EM, Golovleva LA, Schlömann M. Characterization of the maleylacetate reductase MacA of Rhodococcus opacus 1CP and evidence for the presence of an isofunctional enzyme. J Bacteriol 1998; 180:3503-8. [PMID: 9657989 PMCID: PMC107314 DOI: 10.1128/jb.180.14.3503-3508.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Maleylacetate reductases (EC 1.3.1.32) have been shown to contribute not only to the bacterial catabolism of some usual aromatic compounds like quinol or resorcinol but also to the degradation of aromatic compounds carrying unusual substituents, such as halogen atoms or nitro groups. Genes coding for maleylacetate reductases so far have been analyzed mainly in chloroaromatic compound-utilizing proteobacteria, in which they were found to belong to specialized gene clusters for the turnover of chlorocatechols or 5-chlorohydroxyquinol. We have now cloned the gene macA, which codes for one of apparently (at least) two maleylacetate reductases in the gram-positive, chlorophenol-degrading strain Rhodococcus opacus 1CP. Sequencing of macA showed the gene product to be relatively distantly related to its proteobacterial counterparts (ca. 42 to 44% identical positions). Nevertheless, like the known enzymes from proteobacteria, the cloned Rhodococcus maleylacetate reductase was able to convert 2-chloromaleylacetate, an intermediate in the degradation of dichloroaromatic compounds, relatively fast and with reductive dehalogenation to maleylacetate. Among the genes ca. 3 kb up- and downstream of macA, none was found to code for an intradiol dioxygenase, a cycloisomerase, or a dienelactone hydrolase. Instead, the only gene which is likely to be cotranscribed with macA encodes a protein of the short-chain dehydrogenase/reductase family. Thus, the R. opacus maleylacetate reductase gene macA clearly is not part of a specialized chlorocatechol gene cluster.
Collapse
Affiliation(s)
- V Seibert
- Institut für Mikrobiologie, Universität Stuttgart, D-70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
92
|
Eulberg D, Kourbatova EM, Golovleva LA, Schlömann M. Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in proteobacteria: sequence divergence and functional convergence. J Bacteriol 1998; 180:1082-94. [PMID: 9495745 PMCID: PMC106994 DOI: 10.1128/jb.180.5.1082-1094.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biochemical investigations of the muconate and chloromuconate cycloisomerases from the chlorophenol-utilizing strain Rhodococcus opacus (erythropolis) 1CP had previously indicated that the chlorocatechol catabolic pathway of this strain may have developed independently from the corresponding pathways of proteobacteria. To test this hypothesis, we cloned the chlorocatechol catabolic gene cluster of strain 1CP by using PCR with primers derived from sequences of N termini and peptides of purified chlorocatechol 1,2-dioxygenase and chloromuconate cycloisomerase. Sequencing of the clones revealed that they comprise different parts of the same gene cluster in which five open reading frames have been identified. The clcB gene for chloromuconate cycloisomerase is transcribed divergently from a gene which codes for a LysR-type regulatory protein, the presumed ClcR. Downstream of clcR but separated from it by 222 bp, we detected the clcA and clcD genes, which could unambiguously be assigned to chlorocatechol 1,2-dioxygenase and dienelactone hydrolase. A gene coding for a maleylacetate reductase could not be detected. Instead, the product encoded by the fifth open reading frame turned out to be homologous to transposition-related proteins of IS1031 and Tn4811. Sequence comparisons of ClcA and ClcB to other 1,2-dioxygenases and cycloisomerases, respectively, clearly showed that the chlorocatechol catabolic enzymes of R. opacus 1CP represent different branches in the dendrograms than their proteobacterial counterparts. Thus, while the sequences diverged, the functional adaptation to efficient chlorocatechol metabolization occurred independently in proteobacteria and gram-positive bacteria, that is, by functionally convergent evolution.
Collapse
Affiliation(s)
- D Eulberg
- Institut für Mikrobiologie, Universität Stuttgart, Germany
| | | | | | | |
Collapse
|