51
|
Januszyk K, Lima CD. Structural components and architectures of RNA exosomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:9-28. [PMID: 21618871 PMCID: PMC3138715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A large body of structural work conducted over the past ten years has elucidated mechanistic details related to 3' to 5' processing and decay of RNA substrates by the RNA exosome. This chapter will focus on the structural organization of eukaryotic exosomes and their evolutionary cousins in bacteria and archaea with an emphasis on mechanistic details related to substrate recognition and to 3' to 5' phosphorolytic exoribonucleolytic activities of bacterial and archaeal exosomes as well as the hydrolytic exoribonucleolytic and endoribonucleolytic activities of eukaryotic exosomes. These points will be addressed in large part through presentation of crystal structures ofphosphorolytic enzymes such as bacterial RNase PH, PNPase and archaeal exosomes and crystal structures ofthe eukaryotic exosome and exosome sub-complexes in addition to standalone structures of proteins that catalyze activities associated with the eukaryotic RNA exosome, namely Rrp44, Rrp6 and their bacterial counterparts.
Collapse
|
52
|
Zhang CY, Cai K, Wu ZH, Li YZ. Improving cellular properties for genetic manipulation by dispersed growing mutagenesis in Myxococcus fulvus HW-1. Curr Microbiol 2009; 60:393-9. [PMID: 19998037 DOI: 10.1007/s00284-009-9554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/19/2009] [Indexed: 11/26/2022]
Abstract
One of the key limitations to genetic manipulation in myxobacteria is that the cells grow in clumps in liquid. A salt-tolerant strain HW-1 of Myxococcus fulvus was treated with UV irradiation and produced a completely dispersedly growing mutant UV684. There were no significant differences between the parent HW-1 and the mutant UV684 in terms of salt-tolerant growth. The mutant UV684 and the parent strain had the similar abilities of the fruiting body formation and S motility. Interestingly, the mutant exhibited high transformation/transposition efficiency with 10(5)-10(6) colony-forming units per microg DNA, which was about 10(3)-10(5) fold higher than HW-1. The results indicate that the mutation that led to dispersed growth in the UV684 mutant strain had a few impacts on social behavior, but greatly facilitated molecular genetic manipulation.
Collapse
|
53
|
Bulyha I, Schmidt C, Lenz P, Jakovljevic V, Höne A, Maier B, Hoppert M, Søgaard-Andersen L. Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol 2009; 74:691-706. [PMID: 19775250 PMCID: PMC2784877 DOI: 10.1111/j.1365-2958.2009.06891.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type IV pili (T4P) are surface structures that undergo extension/retraction oscillations to generate cell motility. In Myxococcus xanthus, T4P are unipolarly localized and undergo pole-to-pole oscillations synchronously with cellular reversals. We investigated the mechanisms underlying these oscillations. We show that several T4P proteins localize symmetrically in clusters at both cell poles between reversals, and these clusters remain stationary during reversals. Conversely, the PilB and PilT motor ATPases that energize extension and retraction, respectively, localize to opposite poles with PilB predominantly at the piliated and PilT predominantly at the non-piliated pole, and these proteins oscillate between the poles during reversals. Therefore, T4P pole-to-pole oscillations involve the disassembly of T4P machinery at one pole and reassembly of this machinery at the opposite pole. Fluorescence recovery after photobleaching experiments showed rapid turnover of YFP–PilT in the polar clusters between reversals. Moreover, PilT displays bursts of accumulation at the piliated pole between reversals. These observations suggest that the spatial separation of PilB and PilT in combination with the noisy PilT accumulation at the piliated pole allow the temporal separation of extension and retraction. This is the first demonstration that the function of a molecular machine depends on disassembly and reassembly of its individual parts.
Collapse
Affiliation(s)
- Iryna Bulyha
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str., 35043 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Black WP, Xu Q, Cadieux CL, Suh SJ, Shi W, Yang Z. Isolation and characterization of a suppressor mutation that restores Myxococcus xanthus exopolysaccharide production. MICROBIOLOGY-SGM 2009; 155:3599-3610. [PMID: 19684067 DOI: 10.1099/mic.0.031070-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myxococcus xanthus, a Gram-negative soil bacterium, undergoes multicellular development when nutrients become limiting. Aggregation, which is part of the developmental process, requires the surface motility of this organism. One component of M. xanthus motility, the social (S) gliding motility, enables the movement of cells in close physical proximity. Previous studies demonstrated that the cell surface-associated exopolysaccharide (EPS) is essential for S motility and that the Dif proteins form a chemotaxis-like pathway that regulates EPS production in M. xanthus. DifA, a homologue of methyl-accepting chemotaxis proteins (MCPs) in the Dif system, is required for EPS production, S motility and development. In this study, a spontaneous extragenic suppressor of a difA deletion was isolated in order to identify additional regulators of EPS production. The suppressor mutation was found to be a single base pair insertion in cheW7 at the che7 chemotaxis gene cluster. Further examination indicated that mutations in cheW7 may lead to the interaction of Mcp7 with DifC (CheW-like) and DifE (CheA-like) to reconstruct a functional pathway to regulate EPS production in the absence of DifA. In addition, the cheW7 mutation was found to partially suppress a pilA mutation in EPS production in a difA(+) background. Further deletion of difA from the pilA cheW7 double mutant resulted in a triple mutant that produced wild-type levels of EPS, implying that DifA (MCP-like) and Mcp7 compete for interactions with DifC and DifE in the modulation of EPS production.
Collapse
Affiliation(s)
- Wesley P Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Qian Xu
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Christena Linn Cadieux
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sang-Jin Suh
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wenyuan Shi
- Molecular Biology Institute and School of Dentistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
55
|
Affiliation(s)
- Dale Kaiser
- Departments of Biochemistry and of Developmental Biology, Stanford University School of Medicine, Stanford, California, 94305;
| |
Collapse
|
56
|
Zogaj X, Chakraborty S, Liu J, Thanassi DG, Klose KE. Characterization of the Francisella tularensis subsp. novicida type IV pilus. Microbiology (Reading) 2008; 154:2139-2150. [DOI: 10.1099/mic.0.2008/018077-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Xhavit Zogaj
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Subhra Chakraborty
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jirong Liu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - David G. Thanassi
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
57
|
Inclán YF, Laurent S, Zusman DR. The receiver domain of FrzE, a CheA-CheY fusion protein, regulates the CheA histidine kinase activity and downstream signalling to the A- and S-motility systems of Myxococcus xanthus. Mol Microbiol 2008; 68:1328-39. [PMID: 18430134 DOI: 10.1111/j.1365-2958.2008.06238.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Frz chemosensory system is a two-component signal transduction pathway that controls cell reversals and directional movements for the two motility systems in Myxococcus xanthus. To trigger cell reversals, FrzE, a hybrid CheA-CheY fusion protein, autophosphorylates the kinase domain at His-49, and phosphoryl groups are transferred to aspartate residues (Asp-52 and Asp-220) in the two receiver domains of FrzZ, a dual CheY-like protein that serves as the pathway output. The role of the receiver domain of FrzE was unknown. In this paper, we characterize the FrzE protein in vitro and show that the receiver domain of FrzE negatively regulates the autophosphorylation activity of the kinase domain of FrzE. Unexpectedly, it does not appear to play a direct role in phospho-relay as in most other histidine kinase receiver domain hybrid systems. The regulatory role of the FrzE receiver domain suggests that it may interact with or be phosphorylated by an unknown protein. We also show the dynamics of motility system-specific marker proteins in FrzE mutants as cells move forward and reverse. Our studies indicate that the two motility systems are functionally co-ordinated and that any system-specific branching of the pathway most likely occurs downstream of FrzE.
Collapse
Affiliation(s)
- Yuki F Inclán
- University of California, Graduate Group in Biophysics, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
58
|
Novel Transcriptome Patterns Accompany Evolutionary Restoration of Defective Social Development in the Bacterium Myxococcus xanthus. Mol Biol Evol 2008; 25:1274-81. [DOI: 10.1093/molbev/msn076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
59
|
Leonardy S, Bulyha I, Søgaard-Andersen L. Reversing cells and oscillating motility proteins. MOLECULAR BIOSYSTEMS 2008; 4:1009-14. [PMID: 19082140 DOI: 10.1039/b806640j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Simone Leonardy
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str., 35043 Marburg, Germany
| | | | | |
Collapse
|
60
|
Mauriello EM, Zusman DR. Polarity of motility systems in Myxococcus xanthus. Curr Opin Microbiol 2007; 10:624-9. [PMID: 17981496 DOI: 10.1016/j.mib.2007.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Myxococcus xanthus is a gliding bacterium that contains two motility systems: S-motility, powered by polar type IV pili, and A-motility, powered by uncharacterized motors and adhesion complexes. The localization and coordination of the two motility engines is essential for directed motility as cells move forward and reverse. During cell reversals, the polarity and localization of motility proteins are rapidly inverted, rendering this system a fascinating example of dynamic protein localization.
Collapse
Affiliation(s)
- Emilia Mf Mauriello
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, United States
| | | |
Collapse
|
61
|
Ossa F, Diodati ME, Caberoy NB, Giglio KM, Edmonds M, Singer M, Garza AG. The Myxococcus xanthus Nla4 protein is important for expression of stringent response-associated genes, ppGpp accumulation, and fruiting body development. J Bacteriol 2007; 189:8474-83. [PMID: 17905995 PMCID: PMC2168950 DOI: 10.1128/jb.00894-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Changes in gene expression are important for the landmark morphological events that occur during Myxococcus xanthus fruiting body development. Enhancer binding proteins (EBPs), which are transcriptional activators, play prominent roles in the coordinated expression of developmental genes. A mutation in the EBP gene nla4 affects the timing of fruiting body formation, the morphology of mature fruiting bodies, and the efficiency of sporulation. In this study, we showed that the nla4 mutant accumulates relatively low levels of the stringent nucleotide ppGpp. We also found that the nla4 mutant is defective for early developmental events and for vegetative growth, phenotypes that are consistent with a deficiency in ppGpp accumulation. Further studies revealed that nla4 cells produce relatively low levels of GTP, a precursor of RelA-dependent synthesis of (p)ppGpp. In addition, the normal expression patterns of all stringent response-associated genes tested, including the M. xanthus ppGpp synthetase gene relA, are altered in nla4 mutant cells. These findings indicate that Nla4 is part of regulatory pathway that is important for mounting a stringent response and for initiating fruiting body development.
Collapse
Affiliation(s)
- Faisury Ossa
- Department of Biology, Syracuse University, BRL Room 200, 130 College Place, Syracuse, NY 13244-1220, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Balasingham SV, Collins RF, Assalkhou R, Homberset H, Frye SA, Derrick JP, Tønjum T. Interactions between the lipoprotein PilP and the secretin PilQ in Neisseria meningitidis. J Bacteriol 2007; 189:5716-27. [PMID: 17526700 PMCID: PMC1951802 DOI: 10.1128/jb.00060-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neisseria meningitidis can be the causative agent of meningitis or septicemia. This bacterium expresses type IV pili, which mediate a variety of functions, including autoagglutination, twitching motility, biofilm formation, adherence, and DNA uptake during transformation. The secretin PilQ supports type IV pilus extrusion and retraction, but it also requires auxiliary proteins for its assembly and localization in the outer membrane. Here we have studied the physical properties of the lipoprotein PilP and examined its interaction with PilQ. We found that PilP was an inner membrane protein required for pilus expression and transformation, since pilP mutants were nonpiliated and noncompetent. These mutant phenotypes were restored by the expression of PilP in trans. The pilP gene is located upstream of pilQ, and analysis of their transcripts indicated that pilP and pilQ were cotranscribed. Furthermore, analysis of the level of PilQ expression in pilP mutants revealed greatly reduced amounts of PilQ only in the deletion mutant, exhibiting a polar effect on pilQ transcription. In vitro experiments using recombinant fragments of PilP and PilQ showed that the N-terminal region of PilP interacted with the middle part of the PilQ polypeptide. A three-dimensional reconstruction of the PilQ-PilP interacting complex was obtained at low resolution by transmission electron microscopy, and PilP was shown to localize around the cap region of the PilQ oligomer. These findings suggest a role for PilP in pilus biogenesis. Although PilQ does not need PilP for its stabilization or membrane localization, the specific interaction between these two proteins suggests that they might have another coordinated activity in pilus extrusion/retraction or related functions.
Collapse
Affiliation(s)
- Seetha V Balasingham
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
63
|
Berleman JE, Kirby JR. Multicellular development in Myxococcus xanthus is stimulated by predator-prey interactions. J Bacteriol 2007; 189:5675-82. [PMID: 17513469 PMCID: PMC1951827 DOI: 10.1128/jb.00544-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.
Collapse
Affiliation(s)
- James E Berleman
- Department of Microbiology, The University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | | |
Collapse
|
64
|
Han X, Kennan RM, Parker D, Davies JK, Rood JI. Type IV fimbrial biogenesis is required for protease secretion and natural transformation in Dichelobacter nodosus. J Bacteriol 2007; 189:5022-33. [PMID: 17513472 PMCID: PMC1951885 DOI: 10.1128/jb.00138-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to develop an understanding of the molecular mechanisms by which type IV fimbrial biogenesis, natural transformation, and protease secretion are linked in the ovine foot rot pathogen, Dichelobacter nodosus. We have shown that like the D. nodosus fimbrial subunit FimA, the pilin-like protein PilE and the FimN, FimO, and FimP proteins, which are homologs of PilB, PilC, and PilD from Pseudomonas aeruginosa, are essential for fimbrial biogenesis and natural transformation, indicating that transformation requires an intact type IV fimbrial apparatus. The results also showed that extracellular protease secretion in the fimN, fimO, fimP, and pilE mutants was significantly reduced, which represents the first time that PilB, PilC, and PilE homologs have been shown to be required for the secretion of unrelated extracellular proteins in a type IV fimbriate bacterium. Quantitative real-time PCR analysis of the three extracellular protease genes aprV2, aprV5, and bprV showed that the effects on protease secretion were not mediated at the transcriptional level. Bioinformatic analysis did not identify a classical type II secretion system, and the putative fimbrial biogenesis gene pilQ was the only outer membrane secretin gene identified. Based on these results, it is postulated that in D. nodosus, protease secretion occurs by a type II secretion-related process that directly involves components of the type IV fimbrial biogenesis machinery, which represents the only type II secretion system encoded by the small genome of this highly evolved pathogen.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Dichelobacter nodosus/genetics
- Dichelobacter nodosus/metabolism
- Dichelobacter nodosus/ultrastructure
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Fimbriae Proteins/analysis
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Gene Order
- Genes, Bacterial
- Immunoblotting
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Multigene Family
- Mutation
- Peptide Hydrolases/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Xiaoyan Han
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
65
|
Frye SA, Assalkhou R, Collins RF, Ford RC, Petersson C, Derrick JP, Tønjum T. Topology of the outer-membrane secretin PilQ from Neisseria meningitidis. MICROBIOLOGY-SGM 2007; 152:3751-3764. [PMID: 17159226 DOI: 10.1099/mic.0.2006/000315-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis is the causative agent of epidemic meningococcal meningitis and septicaemia. Type IV pili are surface organelles that mediate a variety of functions, including adhesion, twitching motility, and competence for DNA binding and uptake in transformation. The secretin PilQ is required for type IV pilus expression at the cell surface, and forms a dodecameric cage-like macromolecular complex in the meningococcal outer membrane. PilQ-null mutants are devoid of surface pili, and prevailing evidence suggests that the PilQ complex facilitates extrusion and retraction of type IV pili across the outer membrane. Defining the orientation of the meningococcal PilQ complex in the membrane is a prerequisite for understanding the structure-function relationships of this important protein in pilus biology. In order to begin to define the topology of the PilQ complex in the outer membrane, polyhistidine insertions in N- and C-terminal regions of PilQ were constructed, and their subcellular locations examined. Notably, the insertion epitopes at residues 205 and 678 were located within the periplasm, whereas residue 656 was exposed at the outer surface of the outer membrane. Using electron microscopy with Ni-NTA gold labelling, it was demonstrated that the insertion at residue 205 within the N-terminus mapped to a site on the arm-like features of the 3D structure of the PilQ multimer. Interestingly, mutation of the same region gave rise to an increase in vancomycin permeability through the PilQ complex. The results yield novel information on the PilQ N-terminal location and function in the periplasm, and reveal a complex organization of the membrane-spanning secretin in vivo.
Collapse
Affiliation(s)
- Stephan A Frye
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Norway
| | - Reza Assalkhou
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Norway
| | - Richard F Collins
- Faculty of Life Sciences, The University of Manchester, Sackville Street, PO Box 88, Manchester M60 1QD, UK
| | - Robert C Ford
- Faculty of Life Sciences, The University of Manchester, Sackville Street, PO Box 88, Manchester M60 1QD, UK
| | - Christoffer Petersson
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, Sweden
| | - Jeremy P Derrick
- Faculty of Life Sciences, The University of Manchester, Sackville Street, PO Box 88, Manchester M60 1QD, UK
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Norway
| |
Collapse
|
66
|
Abstract
Myxococcus leaves a trail of slime on agar as it moves. A filament of slime can be seen attached to the end of a cell, but it is seen only at one end at any particular moment. To identify genes essential for A motility, transposon insertion mutations with defective A motility were studied. Fifteen of the 33 mutants had totally lost A motility. All these mutant cells had filaments of slime emerging from both ends, indicating that bipolar secretion prevents A motility. The remaining 18 A motility mutants, also produced by gene knockout, secreted slime only from one pole, but they swarmed at a lower rate than A(+) and are called 'partial' gliding mutants, or pgl. For each pgl mutant, the reduction in swarm expansion rate was directly proportional to the reduction in the coefficient of elasticotaxis. The pgl mutants have a normal reversal frequency and normal gliding speed when they move. But their probability of movement per unit time is lower than pgl(+) cells. Many of the pgl mutants are produced by transposon insertions in glycosyltransferase genes. It is proposed that these glycosyltransferases carry out the synthesis of a repeat unit polysaccharide that constitutes the slime.
Collapse
Affiliation(s)
- Rosa Yu
- Departments of Biochemistry and of Developmental Biology, Stanford University School of Medicine Stanford, CA 94305, USA
| | | |
Collapse
|
67
|
Abstract
Fortunately, I began research in 1950 when the basic concepts of microbial genetics could be explored experimentally. I began with bacteriophage lambda and tried to establish the colinearity of its linkage map with its DNA molecule. My students and I worked out the regulation of lambda repressor synthesis for the establishment and maintenance of lysogeny. We also investigated the proteins responsible for assembly of the phage head. Using cell extracts, we discovered how to package DNA inside the head in vitro. Around 1972, I began to use molecular genetics to understand the developmental biology of Myxococcus xanthus. In particular, I wanted to learn how myxococcus builds its multicellular fruiting body within which it differentiates spores. We identified two cell-to-cell signals used to coordinate development. We have elucidated, in part, the signal transduction pathway for C-signal that directs the morphogenesis of a fruiting body.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
68
|
Hager AJ, Bolton DL, Pelletier MR, Brittnacher MJ, Gallagher LA, Kaul R, Skerrett SJ, Miller SI, Guina T. Type IV pili-mediated secretion modulates Francisella virulence. Mol Microbiol 2006; 62:227-37. [PMID: 16987180 DOI: 10.1111/j.1365-2958.2006.05365.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Francisella tularensis are the causative agent of the zoonotic disease, tularaemia. Among four F. tularensis subspecies, ssp. novicida (F. novicida) is pathogenic only for immunocompromised individuals, while all four subspecies are pathogenic for mice. This study utilized proteomic and bioinformatic approaches to identify seven F. novicida secreted proteins and the corresponding Type IV pilus (T4P) secretion system. The secreted proteins were predicted to encode two chitinases, a chitin binding protein, a protease (PepO), and a beta-glucosidase (BglX). The transcription of F. novicida pepO and bglX was regulated by the virulence regulator MglA. Intradermal infection of mice with F. novicida mutants defective in T4P secretion system or PepO resulted in enhanced F. novicida spread to systemic sites. Infection with F. novicida pepO mutants also resulted in increased neutrophil infiltration into the mouse airways. PepO is a zinc protease that is homologous to mammalian endothelin-converting enzyme ECE-1. Therefore, secretion of PepO likely results in increased production of endothelin and increased vasoconstriction at the infection site in skin that limits the F. novicida spread. Francisella human pathogenic strains contain a mutation in pepO predicted to abolish its secretion. Loss of PepO function may have contributed to evolution of highly virulent Francisellae.
Collapse
Affiliation(s)
- Anthony J Hager
- Department of Pediatrics, Division of Infectious Diseases, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Berleman JE, Chumley T, Cheung P, Kirby JR. Rippling is a predatory behavior in Myxococcus xanthus. J Bacteriol 2006; 188:5888-95. [PMID: 16885457 PMCID: PMC1540073 DOI: 10.1128/jb.00559-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of Myxococcus xanthus will, at times, organize their movement such that macroscopic traveling waves, termed ripples, are formed as groups of cells glide together on a solid surface. The reason for this behavior has long been a mystery, but we demonstrate here that rippling is a feeding behavior which occurs when M. xanthus cells make direct contact with either prey or large macromolecules. Rippling has been observed during two fundamentally distinct environmental conditions: (i) starvation-induced fruiting body development and (ii) predation of other organisms. Our results indicate that case (i) does not occur in all wild-type strains and is dependent on the intrinsic level of autolysis. Analysis of predatory rippling indicates that rippling behavior is inducible during predation on proteobacteria, gram-positive bacteria, yeast (such as Saccharomyces cerevisiae), and phage. Predatory efficiency decreases under genetic and physiological conditions in which rippling is inhibited. Rippling will also occur in the presence of purified macromolecules such as peptidoglycan, protein, and nucleic acid but does not occur in the presence of the respective monomeric components and also does not occur when the macromolecules are physically separated from M. xanthus cells. We conclude that rippling behavior is a mechanism utilized to efficiently consume nondiffusing growth substrates and that developmental rippling is a result of scavenging lysed cell debris.
Collapse
Affiliation(s)
- James E Berleman
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
70
|
Overgaard M, Wegener-Feldbrügge S, Søgaard-Andersen L. The orphan response regulator DigR is required for synthesis of extracellular matrix fibrils in Myxococcus xanthus. J Bacteriol 2006; 188:4384-94. [PMID: 16740945 PMCID: PMC1482965 DOI: 10.1128/jb.00189-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Myxococcus xanthus, two-component systems have crucial roles in regulating motility behavior and development. Here we describe an orphan response regulator, consisting of an N-terminal receiver domain and a C-terminal DNA binding domain, which is required for A and type IV pilus-dependent gliding motility. Genetic evidence suggests that phosphorylation of the conserved, phosphorylatable aspartate residue in the receiver domain is required for DigR activity. Consistent with the defect in type IV pilus-dependent motility, a digR mutant is slightly reduced in type IV pilus biosynthesis, and the composition of the extracellular matrix fibrils is abnormal, with an increased content of polysaccharides and decreased accumulation of the FibA metalloprotease. By using genome-wide transcriptional profiling, 118 genes were identified that are directly or indirectly regulated by DigR. These 118 genes include only 2, agmQ and cheY4, previously implicated in A and type IV pilus-dependent motility, respectively. In silico analyses showed that 36% of the differentially expressed genes are likely to encode exported proteins. Moreover, four genes encoding homologs of extracytoplasmic function (ECF) sigma factors, which typically control aspects of cell envelope homeostasis, are differentially expressed in a digR mutant. We suggest that the DigR response regulator has an important function in cell envelope homeostasis and that the motility defects in a digR mutant are instigated by the abnormal cell envelope and abnormal expression of agmQ and cheY4.
Collapse
Affiliation(s)
- Martin Overgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|
71
|
Rumszauer J, Schwarzenlander C, Averhoff B. Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 2006; 273:3261-72. [PMID: 16857013 DOI: 10.1111/j.1742-4658.2006.05335.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The natural transformation system of the thermophilic bacterium Thermus thermophilus HB27 comprises at least 16 distinct competence proteins encoded by seven distinct loci. In this article, we present for the first time biochemical analyses of the Thermus thermophilus competence proteins PilMNOWQ and PilA4, and demonstrate that the pilMNOWQ genes are each essential for natural transformation. We identified three different forms of PilA4, one with an apparent molecular mass of 14 kDa, which correlates with that of the deduced protein, an 18-kDa form and a 23-kDa form; the last was found to be glycosylated. We demonstrate that PilM, PilN and PilO are located in the inner membrane, whereas PilW, PilQ and PilA4 are located in the inner and outer membranes. These data show that PilMNOWQ and PilA4 are components of a DNA translocator structure that spans the inner and outer membranes. We further show that PilA4 and PilQ both copurify with pilus structures. Possible functions of PilQ and PilA4 in DNA translocation and in pilus biogenesis are discussed. Comparative mutant studies revealed that mutations in either pilW or pilQ significantly affect the location of the other protein in the outer membrane. Furthermore, no PilA4 was present in the outer membranes of these mutants. From these findings, we conclude that the abilities of PilW, PilQ and PilA4 to stably localize or accumulate in the outer membrane fraction are strongly dependent on one another, which is in accord with an outer membrane DNA translocator complex comprising PilW, PilQ, and PilA4.
Collapse
Affiliation(s)
- Judit Rumszauer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | | | | |
Collapse
|
72
|
Abstract
The type IV pilus filament of Myxococcus xanthus penetrates the outer membrane through a gated channel--the PilQ secretin. Assembly of the channel and formation of PilQ multimeric complexes that resist disassembly in heated detergent is correlated with the release of a 50 kDa fragment of PilQ. Tgl lipoprotein is required for PilQ assembly in M. xanthus, because PilQ monomers but no heat and detergent-resistant complexes are present in a strain from which tgl has been deleted. PilQ protein is often found in single patches at both poles of the cell. Tgl, however, is found in a patch at only one pole that most likely identifies the piliated cell pole. Tgl protein that has been transferred from another cell by contact stimulation leads to secretin assembly in the recipient. Pilus proteins PilQ, PilG, PilM, PilN, PilO and PilP are also required for the donation of Tgl by contact stimulation to a stimulation recipient. We suggest that these proteins are parts of a polar superstructure that holds PilQ monomers in a cluster and ready for Tgl to bring about secretin assembly.
Collapse
Affiliation(s)
- Eric Nudleman
- Department of Developmental Biology, Stanford University School of Medicine, B300 Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
73
|
Fiegna F, Yu YTN, Kadam SV, Velicer GJ. Evolution of an obligate social cheater to a superior cooperator. Nature 2006; 441:310-4. [PMID: 16710413 DOI: 10.1038/nature04677] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 02/23/2006] [Indexed: 01/29/2023]
Abstract
Obligate relationships have evolved many times and can be parasitic or mutualistic. Obligate organisms rely on others to survive and thus coevolve with their host or partner. An important but little explored question is whether obligate status is an evolutionarily terminal condition or whether obligate lineages can evolve back to an autonomous lifestyle. The bacterium Myxococcus xanthus survives starvation by the social development of spore-bearing fruiting bodies. Some M. xanthus genotypes defective at fruiting body development in isolation can nonetheless exploit proficient genotypes in chimaeric groups. Here we report an evolutionary transition from obligate dependence on an altruistic host to an autonomous mode of social cooperation. This restoration of social independence was caused by a single mutation of large effect that confers fitness superiority over both ancestral genotypes, including immunity from exploitation by the ancestral cheater. Thus, a temporary state of obligate cheating served as an evolutionary stepping-stone to a novel state of autonomous social dominance.
Collapse
Affiliation(s)
- Francesca Fiegna
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
74
|
Youderian P, Hartzell PL. Transposon insertions of magellan-4 that impair social gliding motility in Myxococcus xanthus. Genetics 2006; 172:1397-410. [PMID: 16299386 PMCID: PMC1456277 DOI: 10.1534/genetics.105.050542] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/31/2005] [Indexed: 11/18/2022] Open
Abstract
Myxococcus xanthus has two different mechanisms of motility, adventurous (A) motility, which permits individual cells to glide over solid surfaces, and social (S) motility, which permits groups of cells to glide. To identify the genes involved in S-gliding motility, we mutagenized a delta aglU (A-) strain with the defective transposon, magellan-4, and screened for S- mutants that form nonmotile colonies. Sequence analysis of the sites of the magellan-4 insertions in these mutants and the alignment of these sites with the M. xanthus genome sequence show that two-thirds of these insertions lie within 27 of the 37 nonessential genes known to be required for social motility, including those necessary for the biogenesis of type IV pili, exopolysaccharide, and lipopolysaccharide. The remaining insertions also identify 31 new, nonessential genes predicted to encode both structural and regulatory determinants of S motility. These include three tetratricopeptide repeat proteins, several regulators of transcription that may control the expression of genes involved in pilus extension and retraction, and additional enzymes involved in polysaccharide metabolism. Three insertions that abolish S motility lie within genes predicted to encode glycolytic enzymes, suggesting that the signal for pilus retraction may be a simple product of exopolysaccharide catabolism.
Collapse
Affiliation(s)
- Philip Youderian
- Department of Biology, Texas A&M University, College Station 83843-3052, USA
| | | |
Collapse
|
75
|
Zhao S, Tobiason DM, Hu M, Seifert HS, Nicholas RA. The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol Microbiol 2005; 57:1238-51. [PMID: 16101998 PMCID: PMC2673695 DOI: 10.1111/j.1365-2958.2005.04752.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The penC resistance gene was previously characterized in an FA19 penA mtrR penB gonococcal strain (PR100) as a spontaneous mutation that increased resistance to penicillin and tetracycline. We show here that antibiotic resistance mediated by penC is the result of a Glu-666 to Lys missense mutation in the pilQ gene that interferes with the formation of the SDS-resistant high-molecular-mass PilQ secretin complex, disrupts piliation and decreases transformation frequency by 50-fold. Deletion of pilQ in PR100 confers the same level of antibiotic resistance as the penC mutation, but increased resistance was observed only in strains containing the mtrR and penB resistance determinants. Site-saturation mutagenesis of Glu-666 revealed that only acidic or amidated amino acids at this position preserved PilQ function. Consistent with early studies suggesting the importance of cysteine residues for stability of the PilQ multimer, mutation of either of the two cysteine residues in FA19 PilQ led to a similar phenotype as penC: increased antibiotic resistance, loss of piliation, intermediate levels of transformation competence and absence of SDS-resistant PilQ oligomers. These data show that a functional secretin complex can enhance the entry of antibiotics into the cell and suggest that the PilQ oligomer forms a pore in the outer membrane through which antibiotics diffuse into the periplasm.
Collapse
Affiliation(s)
- Shuqing Zhao
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Deborah M. Tobiason
- Department of Microbiology and Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | - H. Steven Seifert
- Department of Microbiology and Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- To whom correspondence should be addressed at: University of North Carolina at Chapel Hill Department of Pharmacology CB#7365 Chapel Hill, NC 27599-7365 Office: (919) 966-6547 Fax: (919) 966-5640
| |
Collapse
|
76
|
Cusick JK, Gill RE. The bcsA gene influences multiple aspects of development in Myxococcus xanthus. Curr Microbiol 2005; 51:336-43. [PMID: 16235021 DOI: 10.1007/s00284-005-5059-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 06/07/2005] [Indexed: 11/28/2022]
Abstract
M. xanthus strains containing a mutation in the bcsA gene are able to bypass the B and C signaling requirements for development. The bcsA mutant was examined with regards to several aspects of development to better ascertain the function of the bcsA gene. The bcsA mutant developed on nutrient levels sufficient to support vegetative growth in wild-type cells, supporting previous evidence that the bcsA gene inhibits development. The earliest effect of the bcsA mutation on the development program was when cells were beginning to aggregate together to form fruiting bodies. Spores produced by bcsA mutants were hypersusceptible to sodium dodecyl sulfate, suggesting that the bcsA gene is important for optimal spore production. Transcription of the bcsA gene was induced significantly during development at a time when cells were beginning to aggregate together. Collectively, these results indicate that the bcsA gene inhibits development and is also transcriptionally upregulated during development.
Collapse
Affiliation(s)
- John K Cusick
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | |
Collapse
|
77
|
Abstract
Myxococcus xanthus cells can glide forward by retracting type IV pili. Tgl, an outer membrane lipoprotein, is necessary to assemble pili. Tgl mutants can be transiently "stimulated" if brought into end-to-end contact with tgl+ donor cells. By separating the stimulated recipient cells from donor cells, we found that Tgl protein was transferred from the donors to the rescued recipient cells. Mutants lacking CglB lipoprotein, which is part of a second gliding engine, could also be stimulated, and CglB protein was transferred from donor to recipient cells. The high transfer efficiency of Tgl and CglB proteins suggests that donor and recipient cells briefly fuse their outer membranes.
Collapse
Affiliation(s)
- Eric Nudleman
- Departments of Developmental Biology and Biochemistry, Stanford University School of Medicine, B300 Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
78
|
Galbis-Martínez M, Fontes M, Murillo FJ. The high-mobility group A-type protein CarD of the bacterium Myxococcus xanthus as a transcription factor for several distinct vegetative genes. Genetics 2005; 167:1585-95. [PMID: 15342500 PMCID: PMC1471020 DOI: 10.1534/genetics.104.029207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CarD is the only reported prokaryotic protein showing structural and functional features typical of eukaryotic high-mobility group A transcription factors. In prokaryotes, proteins similar to CarD appear to be confined primarily to myxobacteria. In Myxococcus xanthus, CarD has been previously shown to act as a positive element in two different regulatory networks: one for light-induced synthesis of carotenoids and the other for starvation-induced fruiting body formation. We have now tested the effect of a loss-of-function mutation in the carD gene (carD1) on the expression of a random collection of lacZ-tagged genes, which are normally expressed in the dark during vegetative growth in rich medium. Our results indicate that CarD plays a significant role in the transcriptional regulation of various indicated genes. The carD1 mutation downregulates some genes and upregulates others. Also reported here is the isolation of several mutations that suppress the strong effect of carD1 on the expression of a particular vegetative gene. One of them (sud-2) also suppresses the effect of carD1 on other vegetative genes and on fruiting-body formation. Thus, CarD and the sud-2 gene product appear to participate in a single mechanism, which underlies various apparently diverse regulatory phenomena ascribed to CarD.
Collapse
Affiliation(s)
- Marisa Galbis-Martínez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
79
|
Yang R, Bartle S, Otto R, Stassinopoulos A, Rogers M, Plamann L, Hartzell P. AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J Bacteriol 2004; 186:6168-78. [PMID: 15342587 PMCID: PMC515175 DOI: 10.1128/jb.186.18.6168-6178.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aglZ gene of Myxococcus xanthus was identified from a yeast two-hybrid assay in which MglA was used as bait. MglA is a 22-kDa cytoplasmic GTPase required for both adventurous and social gliding motility and sporulation. Genetic studies showed that aglZ is part of the A motility system, because disruption or deletion of aglZ abolished movement of isolated cells and aglZ sglK double mutants were nonmotile. The aglZ gene encodes a 153-kDa protein that interacts with purified MglA in vitro. The N terminus of AglZ shows similarity to the receiver domain of two-component response regulator proteins, while the C terminus contains heptad repeats characteristic of coiled-coil proteins, such as myosin. Consistent with this motif, expression of AglZ in Escherichia coli resulted in production of striated lattice structures. Similar to the myosin heavy chain, the purified C-terminal coiled-coil domain of AglZ forms filament structures in vitro.
Collapse
Affiliation(s)
- Ruifeng Yang
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Type IV pili are an efficient and versatile device for bacterial surface motility. They are widespread among the beta-, gamma-, and delta-proteobacteria and the cyanobacteria. Within that diversity, there is a core of conserved proteins that includes the pilin (PilA), the motors PilB and PilT, and various components of pilus biogenesis and assembly, PilC, PilD, PilM, PilN, PilO, PilP, and PilQ. Progress has been made in understanding the motor and the secretory functions. PilT is a motor protein that catalyzes pilus retraction; PilB may play a similar role in pilus extension. Type IV pili are multifunctional complexes that can act as bacterial virulence factors because pilus-based motility is used to spread pathogens over the surface of a tissue, or to build multicellular structures such as biofilms and fruiting bodies.
Collapse
Affiliation(s)
- Eric Nudleman
- Stanford University, Departments of Biochemistry and of Developmental Biology, Stanford, California 94305, USA
| | | |
Collapse
|
81
|
Long CD, Tobiason DM, Lazio MP, Kline KA, Seifert HS. Low-level pilin expression allows for substantial DNA transformation competence in Neisseria gonorrhoeae. Infect Immun 2003; 71:6279-91. [PMID: 14573647 PMCID: PMC219589 DOI: 10.1128/iai.71.11.6279-6291.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gonococcal pilus is a major virulence factor that has well-established roles in mediating epithelial cell adherence and DNA transformation. Gonococci expressing four gonococcal pilin variants with distinct piliation properties under control of the lac regulatory system were grown in different levels of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG). These pilin variants expressed various levels of pilin message and pilin protein in response to the level of IPTG in the growth medium. Moreover, posttranslational modifications of the variant pilin proteins were detected, including S-pilin production and glycosylation. The ratio of the modified and unmodified pilin forms did not substantially change with different levels of pilin expression, showing that these modifications are not linked to pilin expression levels. DNA transformation competence was also influenced by IPTG levels in the growth medium. Substantial increases in transformation competence over an isogenic, nonpiliated mutant were observed when limited amounts of three of the pilin variants were expressed. Immunoelectron microscopy showed that when limited amounts of pilin are expressed, pili are rare and do not explain the pilin-dependent transformation competence. This pilin-dependent transformation competence required prepilin processing, the outer membrane secretin PilQ, and the twitching-motility-regulating protein PilT. These requirements show that a fully functional pilus assembly apparatus is required for DNA uptake when limited pilin is produced. We conclude that the pilus assembly apparatus functions to import DNA into the bacterial cell in a pilin-dependent manner but that extended pili are not required for transformation competence.
Collapse
Affiliation(s)
- Cynthia D Long
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
82
|
Abstract
The myxobacteria are Gram-negative organisms that are capable of multicellular, social behaviour. In the presence of nutrients, swarms of myxobacteria feed cooperatively by sharing extracellular digestive enzymes, and can prey on other bacteria. When the food supply runs low, they initiate a complex developmental programme that culminates in the production of a fruiting body. Myxobacteria move by gliding and have two, polarly positioned engines to control their motility. The two engines undergo coordinated reversals, and changes in the reversal frequency and speed are responsible for the different patterns of movement that are seen during development. The myxobacteria communicate with each other and coordinate their movements through a cell-contact-dependent signal. Here, the cell movements that culminate in the development of the multicellular fruiting body are reviewed.
Collapse
Affiliation(s)
- Dale Kaiser
- Stanford University, Departments of Biochemistry and Developmental Biology, Stanford, California 94305, USA.
| |
Collapse
|
83
|
Simunovic V, Gherardini FC, Shimkets LJ. Membrane localization of motility, signaling, and polyketide synthetase proteins in Myxococcus xanthus. J Bacteriol 2003; 185:5066-75. [PMID: 12923079 PMCID: PMC181019 DOI: 10.1128/jb.185.17.5066-5075.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus cells coordinate cellular motility, biofilm formation, and development through the use of cell signaling pathways. In an effort to understand the mechanisms underlying these processes, the inner membrane (IM) and outer membrane (OM) of strain DK1622 were fractionated to examine protein localization. Membranes were enriched from spheroplasts of vegetative cells and then separated into three peaks on a three-step sucrose gradient. The high-density fraction corresponded to the putative IM, the medium-density fraction corresponded to a putative hybrid membrane (HM), and the low-density fraction corresponded to the putative OM. Each fraction was subjected to further separation on discontinuous sucrose gradients, which resulted in discrete protein peaks for each major fraction. The purity and origin of each peak were assessed by using succinate dehydrogenase (SDH) activity as the IM marker and reactivities to lipopolysaccharide core and O-antigen monoclonal antibodies as the OM markers. As previously reported, the OM markers localized to the low-density membrane fractions, while SDH localized to high-density fractions. Immunoblotting was used to localize important motility and signaling proteins within the protein peaks. CsgA, the C-signal-producing protein, and FibA, a fibril-associated protease, were localized in the IM (density, 1.17 to 1.24 g cm(-3)). Tgl and Cgl lipoproteins were localized in the OM, which contained areas of high buoyant density (1.21 to 1.24 g cm(-3)) and low buoyant density (1.169 to 1.171 g cm(-3)). FrzCD, a methyl-accepting chemotaxis protein, was predominantly located in the IM, although smaller amounts were found in the OM. The HM peaks showed twofold enrichment for the type IV pilin protein PilA, suggesting that this fraction contained cell poles. Two-dimensional polyacrylamide gel electrophoresis revealed the presence of proteins that were unique to the IM and OM. Characterization of proteins in an unusually low-density membrane peak (1.072 to 1.094 g cm(-3)) showed the presence of Ta-1 polyketide synthetase, which synthesizes the antibiotic myxovirescin A.
Collapse
Affiliation(s)
- Vesna Simunovic
- Department of Microbiology, University of Georgia, 527 Biological Sciences Building, Athens, GA 30602, USA
| | | | | |
Collapse
|
84
|
Rasmussen AA, Søgaard-Andersen L. TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 2003; 185:5452-64. [PMID: 12949097 PMCID: PMC193762 DOI: 10.1128/jb.185.18.5452-5464.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to starvation, Myxococcus xanthus initiates a developmental program that results in the formation of spore-filled multicellular fruiting bodies. Fruiting body formation depends on the temporal and spatial coordination of aggregation and sporulation. These two processes are induced by the cell surface-associated C signal, with aggregation being induced after 6 h and sporulation being induced once cells have completed the aggregation process. We report the identification of TodK, a putative histidine protein kinase of two-component regulatory systems that is important for the correct timing of aggregation and sporulation. Loss of TodK function results in early aggregation and early, as well as increased levels of, sporulation. Transcription of todK decreases 10-fold in response to starvation independently of the stringent response. Loss of TodK function specifically results in increased expression of a subset of C-signal-dependent genes. Accelerated development in a todK mutant depends on the known components in the C-signal transduction pathway. TodK is not important for synthesis of the C signal. From these results we suggest that TodK is part of a signal transduction system which converges on the C-signal transduction pathway to negatively regulate aggregation, sporulation, and the expression of a subset of C-signal-dependent genes. TodK and the SdeK histidine protein kinase, which is part of a signal transduction system that converges on the C-signal transduction pathway to stimulate aggregation, sporulation, and C-signal-dependent gene expression, act in independent genetic pathways. We suggest that the signal transduction pathways defined by TodK and SdeK act in concert with the C-signal transduction pathway to control the timing of aggregation and sporulation.
Collapse
Affiliation(s)
- Anders A Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark Odense, 5230 Odense M, Denmark
| | | |
Collapse
|
85
|
Fiegna F, Velicer GJ. Competitive fates of bacterial social parasites: persistence and self-induced extinction of Myxococcus xanthus cheaters. Proc Biol Sci 2003; 270:1527-34. [PMID: 12965020 PMCID: PMC1691394 DOI: 10.1098/rspb.2003.2387] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cooperative biological systems are susceptible to disruption by cheating. Using the social bacterium Myxococcus xanthus, we have tested the short-term competitive fates of mixed cheater and wild-type strains over multiple cycles of cooperative development. Cheater/wild-type mixes underwent several cycles of starvation-induced multicellular development followed by spore germination and vegetative population growth. The population sizes of cheater and wild-type strains in each pairwise mixture were measured at the end of each developmental phase and each growth phase. Cheater genotypes showed several distinct competitive fates, including cheater persistence at high frequencies with little effect on total population dynamics, cheater persistence after major disruption of total population dynamics, self-extinction of cheaters with wild-type survival, and total population extinction. Our results empirically demonstrate that social exploitation can destabilize a cooperative biological system and increase the risk of local extinction events.
Collapse
Affiliation(s)
- Francesca Fiegna
- Department of Evolutionary Biology, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
86
|
Youderian P, Burke N, White DJ, Hartzell PL. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 2003; 49:555-70. [PMID: 12828649 DOI: 10.1046/j.1365-2958.2003.03582.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Myxococcus xanthus glides over solid surfaces without the use of flagella, dependent upon two large sets of adventurous (A) and social (S) genes, using two different mechanisms of gliding motility. Myxococcus xanthus A-S- double mutants form non-motile colonies lacking migratory cells at their edges. We have isolated 115 independent mutants of M. xanthus with insertions of transposon magellan-4 in potential A genes by screening for insertions that reduce the motility of a mutant S- parental strain. These insertions are found not only in the three loci known to be required for A motility, mglBA, cglB, and aglU, but also in 30 new genes. Six of these new genes encode different homologues of the TolR, TolB, and TolQ transport proteins, suggesting that adventurous motility is dependent on biopolymer transport. Other insertions which affect both A and S motility suggest that both systems share common energy and cell wall determinants. Because the spectrum of magellan-4 insertions in M. xanthus is extraordinarily broad, transposon mutagenesis with this eukaryotic genetic element permits the rapid genetic analysis of large sets of genes that contribute to a complex microbial behaviors such as A motility.
Collapse
Affiliation(s)
- Philip Youderian
- Department of Biology, Texas A and M University, College Station, Texas 77843-3258, USA
| | | | | | | |
Collapse
|
87
|
Bitter W. Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch Microbiol 2003; 179:307-14. [PMID: 12664194 DOI: 10.1007/s00203-003-0541-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Revised: 02/24/2003] [Accepted: 02/24/2003] [Indexed: 10/20/2022]
Abstract
Pseudomonas aeruginosa produces a large number of exoproteins, ranging from the ADP-ribosyltransferases exotoxin A and ExoS to degradative enzymes, such as elastase and chitinase. As it is a gram-negative bacterium, P. aeruginosa must be able to transport these exoproteins across both membranes of the cell envelope. In addition, also proteins that are part of cellular appendages, such as type IV pili and flagella, have to cross the cell envelope. Whereas the majority of the proteins transported across the inner membrane are dependent on the Sec channel, the systems for translocation across the outer membrane seem to be more diverse. Gram-negative bacteria have invented a number of different strategies during the course of evolution to achieve this goal. Although these transport machineries seem to be radically different, many of them actually depend on a member of the secretin protein family for their function. Recent results show that secretins form a large complex in the outer membrane, which constitutes the actual translocation channel. Understanding the working mechanism of this protein translocation channel could open up new strategies to target molecular machineries at the heart of many important virulence factors.
Collapse
Affiliation(s)
- Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Centre, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
88
|
Fontes M, Galbis-Martínez L, Murillo FJ. A novel regulatory gene for light-induced carotenoid synthesis in the bacterium Myxococcus xanthus. Mol Microbiol 2003; 47:561-71. [PMID: 12519205 DOI: 10.1046/j.1365-2958.2003.03319.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myxococcus xanthus cells respond to blue light by producing carotenoids. Light triggers a network of regulatory actions that lead to the transcriptional activation of the carotenoid genes. By screening the colour phenotype of a collection of Tn5-lac insertion mutants, we have isolated a new mutant devoid of carotenoid synthesis. We map the transposon insertion, which co-segregates with the mutant phenotype, to a previously unknown gene designated here as carF. An in frame deletion within carF causes the same phenotype as the Tn5-lac insertion. The carF deletion prevents the activation of the normally light-inducible genes, without affecting the expression of any of the regulatory genes known to be expressed in a light-independent manner. Until now, the switch that sets off the regulatory cascade had been identified with light-driven inactivation of protein CarR, an antisigma factor. The exact mechanism of this inactivation has remained elusive. We show by epistatic analysis that the carF gene product participates in the light-dependent inactivation of CarR. The predicted CarF amino acid sequence reveals no known prokaryotic homologues. On the other hand, CarF is remarkably similar to Kua, a family of proteins of unknown function that is widely distributed among eukaryotes.
Collapse
Affiliation(s)
- Marta Fontes
- Departamento de Genética y Microbiología, Facultad de Biologie, Universidad de Murcia, Spain
| | | | | |
Collapse
|
89
|
Thomasson B, Link J, Stassinopoulos AG, Burke N, Plamann L, Hartzell PL. MglA, a small GTPase, interacts with a tyrosine kinase to control type IV pili-mediated motility and development of Myxococcus xanthus. Mol Microbiol 2002; 46:1399-413. [PMID: 12453225 DOI: 10.1046/j.1365-2958.2002.03258.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mglA gene encodes a 22 kDa GTPase that is critical for single-cell (A) gliding, type IV pili-mediated (S) gliding and development of Myxococcus xanthus. To identify components that interact with MglA to control these processes, second-site mutations that restore movement to non-motile mglA mutants were sought. An allele-specific extragenic suppressor of mglA8, named mas815 (mglA8 suppressor 15), was obtained. mas815 does not bypass the requirement for MglA, yet it restores type IV pili-mediated motility and starvation-induced development. Single-cell (A) motility is not restored. The suppressing mutation maps to the 3' end of a gene, masK, in an operon immediately upstream of the mglBA operon. masK encodes a protein of the STY kinase family. When the masK gene was used as bait against a library carrying M. xanthus DNA in the yeast two-hybrid system, eight positive, independent clones containing fusions of mglA to GAL4 were obtained, thus confirming the interaction between MglA and MasK. MasK, expressed in Escherichia coli, was shown to phosphorylate at a tyrosine residue(s). The gain-of-function in the masK815 mutant was correlated with increased production of extracellular fibrils, which are required for adhesion, cell-cell contact and sensing phosphatidylethanolamine chemoattractants. These data suggest that the interaction between MasK and MglA is an essential part of a signal transduction pathway controlling motility and development.
Collapse
Affiliation(s)
- Bobbie Thomasson
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | | | | | |
Collapse
|
90
|
Cusick JK, Hager E, Gill RE. Characterization of bcsA mutations that bypass two distinct signaling requirements for Myxococcus xanthus development. J Bacteriol 2002; 184:5141-50. [PMID: 12193631 PMCID: PMC135330 DOI: 10.1128/jb.184.18.5141-5150.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Accepted: 06/18/2002] [Indexed: 11/20/2022] Open
Abstract
The BsgA protease is required for starvation-induced development in Myxococcus xanthus. Bypass suppressors of a bsgA mutant were isolated to identify genes that may encode additional components of BsgA protease-dependent regulation of development. Strain M951 was isolated following Tn5 mutagenesis of a bsgA mutant and was capable of forming fruiting bodies and viable spores in the absence of the BsgA protease. The Tn5Omega951 insertion was localized to a gene, bcsA, that encodes a protein that has significant amino acid similarity to a group of recently described flavin-containing monooxygenases involved in styrene catabolism. Mutations in bcsA bypassed the developmental requirements for both extracellular B and C signaling but did not bypass the requirement for A signaling. Bypass of the B-signaling requirement by the bcsA mutation was accompanied by restored expression of a subset of developmentally induced lacZ fusions to the BsgA protease-deficient strain. bcsA mutant cells developed considerably faster than wild-type cells at low cell density and altered transcriptional levels of a developmentally induced, cell-density-regulated gene (Omega4427), suggesting that the bcsA gene product may normally act to inhibit development in a cell-density-regulated fashion. Bypass of the requirements for both B and C signaling by bcsA mutations suggests a possible link between these two genetically, biochemically, and temporally distinct signaling requirements.
Collapse
Affiliation(s)
- John K Cusick
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
91
|
Velicer GJ, Lenski RE, Kroos L. Rescue of social motility lost during evolution of Myxococcus xanthus in an asocial environment. J Bacteriol 2002; 184:2719-27. [PMID: 11976301 PMCID: PMC135031 DOI: 10.1128/jb.184.10.2719-2727.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Accepted: 02/15/2002] [Indexed: 11/20/2022] Open
Abstract
Replicate populations of the social bacterium Myxococcus xanthus underwent extensive evolutionary adaptation to an asocial selective environment (liquid batch culture). All 12 populations showed partial or complete loss of their social (S) motility function after 1,000 generations of evolution. Mutations in the pil gene cluster (responsible for type IV pilus biogenesis and function) were found to be at least partially responsible for the loss of S motility in the majority of evolved lines. Restoration (partial or complete) of S motility in the evolved lines by genetic complementation with wild-type pil genes positively affected their fruiting body development and sporulation while negatively affecting their competitive fitness in the asocial regime. This genetic tradeoff indicates that mutations in the pil region were adaptive in the asocial selective environment. This finding was confirmed by experiments showing that defined deletions of pil gene regions conferred a competitive advantage under asocial conditions. Moreover, an amino acid substitution in an evolved genotype was located in a region predicted by genetic complementation analysis to bear an adaptive mutation.
Collapse
Affiliation(s)
- Gregory J Velicer
- Department of Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
92
|
Martinez-Canamero M, Ortiz-Codorniu C, Extremera AL, Munoz-Dorado J, Arias JM. mlpB, a gene encoding a new lipoprotein in Myxococcus xanthus. J Appl Microbiol 2002; 92:134-9. [PMID: 11849337 DOI: 10.1046/j.1365-2672.2002.01517.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To search for and study the genes involved in the regulation of phosphate in the soil developmental bacterium Myxococcus xanthus. METHODS AND RESULTS The mlpB gene encoding a 149 residue polypeptide was identified while screening for genes with products related to phosphate metabolism. The amino terminal 19 residues of MlpB encode a typical prokaryotic signal sequence with a putative lipoprotein cleavage site. CONCLUSIONS In this study, a new myxobacterial putative lipoprotein is reported. The data suggest that MlpB may be involved in the secretion of phosphate-related proteins. SIGNIFICANCE AND IMPACT OF THE STUDY Soil bacteria have complex regulatory systems for using inorganic phosphate. This nutrient is limiting in the environment, and has a critical importance for growth and in the initiation of differentiation for developmental bacteria. A number of proteins are involved in all these processes, including membrane lipoproteins, which are being increasingly studied in M. xanthus.
Collapse
Affiliation(s)
- M Martinez-Canamero
- Departamento de Microbiologia, Facultad de Ciencias, Universidad de Granada, Spain.
| | | | | | | | | |
Collapse
|
93
|
Abstract
BACKGROUND Many microorganisms, including myxobacteria, cyanobacteria, and flexibacteria, move by gliding. Although gliding always describes a slow surface-associated translocation in the direction of the cell's long axis, it can result from two very different propulsion mechanisms: social (S) motility and adventurous (A) motility. The force for S motility is generated by retraction of type 4 pili. A motility may be associated with the extrusion of slime, but evidence has been lacking, and how force might be generated has remained an enigma. Recently, nozzle-like structures were discovered in cyanobacteria from which slime emanated at the same rate at which the bacteria moved. This strongly implicates slime extrusion as a propulsion mechanism for gliding. RESULTS Here we show that similar but smaller nozzle-like structures are found in Myxococcus xanthus and that they are clustered at both cell poles, where one might expect propulsive organelles. Furthermore, light and electron microscopical observations show that slime is secreted in ribbons from the ends of cells. To test whether the slime propulsion hypothesis is physically reasonable, we construct a mathematical model of the slime nozzle to see if it can generate a force sufficient to propel M. xanthus at the observed velocities. The model assumes that the hydration of slime, a cationic polyelectrolyte, is the force-generating mechanism. CONCLUSIONS The discovery of nozzle-like organelles in various gliding bacteria suggests their role in prokaryotic gliding. Our calculations and our observations of slime trails demonstrate that slime extrusion from such nozzles can account for most of the observed properties of A motile gliding.
Collapse
Affiliation(s)
- Charles Wolgemuth
- Department of Molecular and Cellular Biology and ESPM, University of California, Berkeley 94720-3112, USA
| | | | | | | |
Collapse
|
94
|
Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B. Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 2002; 68:745-55. [PMID: 11823215 PMCID: PMC126729 DOI: 10.1128/aem.68.2.745-755.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermus thermophilus HB27, an extremely thermophilic bacterium, exhibits high competence for natural transformation. To identify genes of the natural transformation machinery of T. thermophilus HB27, we performed homology searches in the partially completed T. thermophilus genomic sequence for conserved competence genes. These analyses resulted in the detection of 28 open reading frames (ORFs) exhibiting significant similarities to known competence proteins of gram-negative and gram-positive bacteria. Disruption of 15 selected potential competence genes led to the identification of 8 noncompetent mutants and one transformation-deficient mutant with a 100-fold reduced transformation frequency. One competence protein is similar to DprA of Haemophilus influenzae, seven are similar to type IV pilus proteins of Pseudomonas aeruginosa or Neisseria gonorrhoeae (PilM, PilN, PilO, PilQ, PilF, PilC, PilD), and another deduced protein (PilW) is similar to a protein of unknown function in Deinococcus radiodurans R1. Analysis of the piliation phenotype of T. thermophilus HB27 revealed the presence of single pilus structures on the surface of the wild-type cells, whereas the noncompetent pil mutants of Thermus, with the exception of the pilF mutant, were devoid of pilus structures. These results suggest that pili and natural transformation in T. thermophilus HB27 are functionally linked.
Collapse
Affiliation(s)
- Alexandra Friedrich
- Institut für Genetik und Mikrobiologie, Ludwig-Maximilians-Universität, Maria-Ward-Strasse 1a, D-80638 Münich, Germany
| | | | | | | | | |
Collapse
|
95
|
Abstract
The mechanisms responsible for bacterial gliding motility have been a mystery for almost 200 years. Gliding bacteria move actively over surfaces by a process that does not involve flagella. Gliding bacteria are phylogenetically diverse and are abundant in many environments. Recent results indicate that more than one mechanism is needed to explain all forms of bacterial gliding motility. Myxococcus xanthus "social gliding motility" and Synechocystis gliding are similar to bacterial "twitching motility" and rely on type IV pilus extension and retraction for cell movement. In contrast, gliding of filamentous cyanobacteria, mycoplasmas, members of the Cytophaga-Flavobacterium group, and "adventurous gliding" of M. xanthus do not appear to involve pili. The mechanisms of movement employed by these bacteria are still a matter of speculation. Genetic, biochemical, ultrastructural, and behavioral studies are providing insight into the machineries employed by these diverse bacteria that enable them to glide over surfaces.
Collapse
Affiliation(s)
- M J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, P. O. Box 413, Wisconsin 53201, USA.
| |
Collapse
|
96
|
Liu H, Kang Y, Genin S, Schell MA, Denny TP. Twitching motility of Ralstonia solanacearum requires a type IV pilus system. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3215-29. [PMID: 11739754 DOI: 10.1099/00221287-147-12-3215] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Twitching motility is a form of bacterial translocation over firm surfaces that requires retractile type IV pili. Microscopic colonies of Ralstonia solanacearum strains AW1, K60 and GMI1000 growing on the surface of a rich medium solidified with 1.6% agar appeared to exhibit twitching motility, because early on they divided into motile 'rafts' of cells and later developed protruding 'spearheads' at their margins. Individual motile bacteria were observed only when they were embedded within masses of other cells. Varying degrees of motility were observed for 33 of 35 strains of R. solanacearum in a selected, diverse collection. Timing was more important than culture conditions for observing motility, because by the time wild-type colonies were easily visible by eye (about 48 h) this activity ceased and the spearheads were obscured by continued bacterial multiplication. In contrast, inactivation of PhcA, a transcriptional regulator that is essential for R. solanacearum to cause plant disease, resulted in colonies that continued to expand for at least several additional days. Multiple strains with mutations in regulatory genes important for virulence were tested, but all exhibited wild-type motility. Many of the genes required for production of functional type IV pili, and hence for twitching motility, are conserved among unrelated bacteria, and pilD, pilQ and pilT orthologues were identified in R. solanacearum. Colonies of R. solanacearum pilQ and pilT mutants did not develop spearheads or rafts, confirming that the movement of cells that had been observed was due to twitching motility. Compared to the wild-type parents, both pilQ and pilT mutants caused slower and less severe wilting on susceptible tomato plants. This is the first report of twitching motility by a phytopathogenic bacterium, and the first example where type IV pili appear to contribute significantly to plant pathogenesis.
Collapse
Affiliation(s)
- H Liu
- Departments of Plant Pathology and Microbiology, University of Georgia, Athens, GA 30602, USA. Laboratoire de Biologie Moléculaire des Relations Plantes-Micro-organismes, INRA-CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
97
|
White DJ, Merod R, Thomasson B, Hartzell PL. GidA is an FAD-binding protein involved in development of Myxococcus xanthus. Mol Microbiol 2001; 42:503-17. [PMID: 11703671 DOI: 10.1046/j.1365-2958.2001.02659.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A gene encoding a homologue of the Escherichia coli GidA protein (glucose-inhibited division protein A) lies immediately upstream of aglU, a gene encoding a WD-repeat protein required for motility and development in Myxococcus xanthus. The GidA protein of M. xanthus shares about 48% identity overall with the small (approximately equal to 450 amino acid) form of GidA from eubacteria and about 24% identity overall with the large (approximately equal to 620 amino acid) form of GidA from eubacteria and eukaryotes. Each of these proteins has a conserved dinucleotide-binding motif at the N-terminus. To determine if GidA binds dinucleotide, the M. xanthus gene was expressed with a His6 tag in E. coli cells. Purified rGidA is a yellow protein that absorbs maximally at 374 and 450 nm, consistent with FAD or FMN. Thin-layer chromatography (TLC) showed that rGidA contains an FAD cofactor. Fractionation and immunocytochemical localization show that full length GidA protein is present in the cytoplasm and transported to the periplasm of vegetative-grown M. xanthus cells. In cells that have been starved for nutrients, GidA is found in the cytoplasm. Although GidA lacks an obvious signal sequence, it contains a twin arginine transport (Tat) motif, which is conserved among proteins that bind cofactors in the cytoplasm and are transported to the periplasm as folded proteins. To determine if GidA, like AglU, is involved in motility and development, the gidA gene was disrupted. The gidA- mutant has wild-type gliding motility and initially is able to form fruiting bodies like the wild type when starved for nutrients. However, after several generations, a stable derivative arises, gidA*, which is indistinguishable from the gidA- parent on vegetative medium, but is no longer able to form fruiting bodies. The gidA* mutant releases a heat-stable, protease-resistant, small molecular weight molecule that acts in trans to inhibit aggregation and gene expression of wild-type cells during development.
Collapse
Affiliation(s)
- D J White
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | |
Collapse
|
98
|
Schmidt SA, Bieber D, Ramer SW, Hwang J, Wu CY, Schoolnik G. Structure-function analysis of BfpB, a secretin-like protein encoded by the bundle-forming-pilus operon of enteropathogenic Escherichia coli. J Bacteriol 2001; 183:4848-59. [PMID: 11466288 PMCID: PMC99539 DOI: 10.1128/jb.183.16.4848-4859.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Production of type IV bundle-forming pili by enteropathogenic Escherichia coli (EPEC) requires BfpB, an outer-membrane lipoprotein and member of the secretin protein superfamily. BfpB was found to compose a ring-shaped, high-molecular-weight outer-membrane complex that is stable in 4% sodium dodecyl sulfate at temperatures of < or = 65 degrees C. Chemical cross-linking and immunoprecipitation experiments disclosed that the BfpB multimeric complex interacts with BfpG, and mutational studies showed that BfpG is required for the formation and/or stability of the multimer but not for the outer-membrane localization of BfpB. Formation of the BfpB multimer also does not require BfpA, the repeating subunit of the pilus filament. Functional studies of the BfpB-BfpG complex revealed that its presence confers vancomycin sensitivity, indicating that it may form an incompletely gated channel through the outer membrane. BfpB expression is also associated with accumulation of EPEC proteins in growth medium, suggesting that it may support both pilus biogenesis and protein secretion.
Collapse
Affiliation(s)
- S A Schmidt
- Departments of Medicine (Infectious Diseases and Geographic Medicine) and Microbiology & Immunology, Stanford Medical School, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
99
|
Zhan XL, Wishart MJ, Guan KL. Nonreceptor tyrosine phosphatases in cellular signaling: regulation of mitogen-activated protein kinases. Chem Rev 2001; 101:2477-96. [PMID: 11749384 DOI: 10.1021/cr000245u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- X L Zhan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
100
|
Abstract
The type II secretion pathway or the main terminal branch of the general secretion pathway, as it has also been referred to, is widely distributed among Proteobacteria, in which it is responsible for the extracellular secretion of toxins and hydrolytic enzymes, many of which contribute to pathogenesis in both plants and animals. Secretion through this pathway differs from most other membrane transport systems, in that its substrates consist of folded proteins. The type II secretion apparatus is composed of at least 12 different gene products that are thought to form a multiprotein complex, which spans the periplasmic compartment and is specifically required for translocation of the secreted proteins across the outer membrane. This pathway shares many features with the type IV pilus biogenesis system, including the ability to assemble a pilus-like structure. This review discusses recent findings on the organization of the secretion apparatus and the role of its various components in secretion. Different models for pilus-mediated secretion through the gated pore in the outer membrane are also presented, as are the possible properties that determine whether a protein is recognized and secreted by the type II pathway.
Collapse
Affiliation(s)
- M Sandkvist
- Department of Biochemistry, American Red Cross, Jerome H. Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, USA.
| |
Collapse
|