51
|
McCallum N, Berger-Bächi B, Senn MM. Regulation of antibiotic resistance in Staphylococcus aureus. Int J Med Microbiol 2009; 300:118-29. [PMID: 19800843 DOI: 10.1016/j.ijmm.2009.08.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Staphylococcus aureus has a formidable ability to adapt to varying environmental conditions and an extraordinary capacity to rapidly become resistant to virtually all antibiotics. Resistance develops either through mutations and rearrangements within the staphylococcal genome, or by the acquisition of resistance determinants. Antibiotic resistances often impose a fitness burden on the host. Such biological costs can be reduced by tight regulation and antibiotic-inducible expression of resistance genes, or by compensatory mutations. Resistance induction by antibiotics can be mediated by dedicated, antibiotic-recognizing signal transducers or by mechanisms relieving translational attenuation. Antibiotic tolerance and the expression of resistance phenotypes can also be strongly influenced by the genetic backgrounds of strains and several other factors. Modification and indirect regulation of resistance levels can occur by mutations that alter gene expression or substrate specificity of genes contributing to resistance. Insertion elements can alter resistance profiles by turning relevant genes on or off. Environmental conditions and stress response mechanisms triggered by perturbation of the cell envelope, DNA damage, or faulty intermediary metabolism can also have an impact on resistance development and expression. Clinically relevant resistance is often built up through multiple steps, each of which contributes to an increase in resistance. The driving force behind resistance formation is antibiotic stress, and under clinical conditions selection for resistance is continuously competing with selection for bacterial fitness.
Collapse
Affiliation(s)
- Nadine McCallum
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 32, CH-8006 Zürich, Switzerland
| | | | | |
Collapse
|
52
|
Fàbrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb Biotechnol 2009; 2:40-61. [PMID: 21261881 PMCID: PMC3815421 DOI: 10.1111/j.1751-7915.2008.00063.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/20/2008] [Accepted: 08/24/2008] [Indexed: 01/11/2023] Open
Abstract
Fluoroquinolones are an important class of wide-spectrum antibacterial agents. The first quinolone described was nalidixic acid, which showed a narrow spectrum of activity. The evolution of quinolones to more potent molecules was based on changes at positions 1, 6, 7 and 8 of the chemical structure of nalidixic acid. Quinolones inhibit DNA gyrase and topoisomerase IV activities, two enzymes essential for bacteria viability. The acquisition of quinolone resistance is frequently related to (i) chromosomal mutations such as those in the genes encoding the A and B subunits of the protein targets (gyrA, gyrB, parC and parE), or mutations causing reduced drug accumulation, either by a decreased uptake or by an increased efflux, and (ii) quinolone resistance genes associated with plasmids have been also described, i.e. the qnr gene that encodes a pentapeptide, which blocks the action of quinolones on the DNA gyrase and topoisomerase IV; the aac(6')-Ib-cr gene that encodes an acetylase that modifies the amino group of the piperazin ring of the fluoroquinolones and efflux pump encoded by the qepA gene that decreases intracellular drug levels. These plasmid-mediated mechanisms of resistance confer low levels of resistance but provide a favourable background in which selection of additional chromosomally encoded quinolone resistance mechanisms can occur.
Collapse
Affiliation(s)
- Anna Fàbrega
- Department of Microbiology, Hospital Clinic, School of Medicine, University of Barcelona, Spain
| | - Sergi Madurga
- Institute for Research in Biomedicine, Barcelona, Spain
- Departments of Physical Chemistry & IQTCUB and
| | - Ernest Giralt
- Institute for Research in Biomedicine, Barcelona, Spain
- Organic Chemistry, University of Barcelona, Spain
| | - Jordi Vila
- Department of Microbiology, Hospital Clinic, School of Medicine, University of Barcelona, Spain
| |
Collapse
|
53
|
Posttranslational modification influences the effects of MgrA on norA expression in Staphylococcus aureus. J Bacteriol 2008; 190:7375-81. [PMID: 18805983 DOI: 10.1128/jb.01068-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MgrA is a global regulator in Staphylococcus aureus. Differences in the effects of MgrA on norA expression have been reported for different strains, which varied in rsbU, a gene that affects the expression of sigB, which encodes an alternative sigma factor involved in stress responses. We hypothesized that MgrA was modified by sigB-dependent factors that affected its ability to control the expression of the norA efflux pump. Heterologously expressed MgrA purified from Escherichia coli was incubated with crude extracts (CE) from strains RN6390 (rsbU) and SH1000 (rsbU(+)) and tested for binding to the norA promoter. Purified MgrA exhibited greater binding to norA promoter DNA after being incubated with SH1000 CE than MgrA incubated with the RN6390 CE. Phosphorylation of MgrA occurring in cell extracts caused it to lose the ability to bind norA promoter DNA. Overexpression of pknB, encoding a candidate serine/threonine kinase, produced increased phospho-MgrA and led to a fivefold increase in the transcript level of norA for both RN6390 and SH1000, as well as a fourfold increase in the MICs of norfloxacin and ciprofloxacin for these two strains. The levels of expression of pknB in RN6390 and SH1000, however, indicated that additional factors related to rsbU or sigB contribute to the differential regulatory effects of MgrA on norA expression.
Collapse
|
54
|
NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. J Bacteriol 2008; 190:7123-9. [PMID: 18723624 DOI: 10.1128/jb.00655-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While remaining a major problem in hospitals, Staphylococcus aureus is now spreading in communities. Strain MW2 (USA400 lineage) and other community methicillin-resistant S. aureus strains most commonly cause skin infections with abscess formation. Multidrug resistance (MDR) efflux pumps contribute to antimicrobial resistance but may also contribute to bacterial survival by removal of environmental toxins. In S. aureus, NorA, NorB, NorC, and Tet38 are chromosomally encoded efflux pumps whose overexpression can confer MDR to quinolones and other compounds (Nor pumps) or tetracyclines alone (Tet38), but the natural substrates of these pumps are not known. To determine the role of these efflux pumps in a natural environment in the absence of antibiotics, we used strain MW2 in a mouse subcutaneous abscess model and compared pump gene expression as determined by reverse transcription-PCR in the abscesses and in vitro. norB and tet38 were selectively upregulated in vivo more than 171- and 24-fold, respectively, whereas norA and norC were downregulated. These changes were associated with an increase in expression of mgrA, which encodes a transcriptional regulator known to affect pump gene expression. In competition experiments using equal inocula of a norB or tet38 mutant and parent strain MW2, each mutant exhibited growth defects of about two- to threefold in vivo. In complementation experiments, a single-copy insertion of norB (but not a single-copy insertion of tet38) in the attB site within geh restored the growth fitness of the norB mutant in vivo. Our findings indicate that some MDR pumps, like NorB, can facilitate bacterial survival when they are overexpressed in a staphylococcal abscess and may contribute to the relative resistance of abscesses to antimicrobial therapy, thus linking bacterial fitness and resistance in vivo.
Collapse
|
55
|
Lubelski J, Konings WN, Driessen AJM. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71:463-76. [PMID: 17804667 PMCID: PMC2168643 DOI: 10.1128/mmbr.00001-07] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukaryotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms. Predictions about the functions of genes in the growing number of sequenced genomes indicate that MDR transporters are ubiquitous in nature. The majority of described MDR transporters in bacteria use ion motive force, while only a few systems have been shown to rely on ATP hydrolysis. However, recent reports on MDR proteins from gram-positive organisms, as well as genome analysis, indicate that the role of ABC-type MDR transporters in bacterial drug resistance might be underestimated. Detailed structural and mechanistic analyses of these proteins can help to understand their molecular mode of action and may eventually lead to the development of new strategies to counteract their actions, thereby increasing the effectiveness of drug-based therapies. This review focuses on recent advances in the analysis of ABC-type MDR transporters in bacteria.
Collapse
Affiliation(s)
- Jacek Lubelski
- Department of Molecular Microbiology, University of Groningen, Kerklaan 30, NL-9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
56
|
Hassan KA, Skurray RA, Brown MH. Active Export Proteins Mediating Drug Resistance in Staphylococci. J Mol Microbiol Biotechnol 2007; 12:180-96. [PMID: 17587867 DOI: 10.1159/000099640] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Drug resistance mediated by integral membrane transporters is an important mode of cellular resistance to cytotoxic agents across all classes of living organisms. Gram-positive bacteria, such as staphylococcal species, are not encapsulated by a selective outer membrane permeability barrier. Therefore, these organisms often employ integral membrane drug transport systems to maintain cellular concentrations of antimicrobials at subtoxic levels. Staphylococcal species, including the opportunistic human pathogen Staphylococcus aureus, encode a multitude of drug exporters, encompassing transporters from each of the five currently recognized families of bacterial drug resistance transporters. A number of these transporters are chromosomally encoded and allow the host cell to realize clinically significant levels of drug resistance after minor mutations to regulatory regions. Others are plasmid-encoded and can be easily passed between staphylococcal strains and species, or acquired from other Gram-positive genera. In combination, staphylococcal drug transporters potentiate resistance to a vast array of antimicrobial compounds, including macrolide, quinolone, tetracycline and streptogramin antibiotics, as well as a broad range of biocides, such as quaternary ammonium compounds, biguanidines and diamidines. An understanding of the genetic and molecular properties of drug transporters will lead to effective treatments of staphylococcal infections. Here we provide a detailed review of the active drug transporters of the staphylococci.
Collapse
Affiliation(s)
- Karl A Hassan
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
57
|
Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 2007; 20:79-114. [PMID: 17223624 PMCID: PMC1797629 DOI: 10.1128/cmr.00015-06] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Since antibiotic resistance usually affords a gain of function, there is an associated biological cost resulting in a loss of fitness of the bacterial host. Considering that antibiotic resistance is most often only transiently advantageous to bacteria, an efficient and elegant way for them to escape the lethal action of drugs is the alteration of resistance gene expression. It appears that expression of bacterial resistance to antibiotics is frequently regulated, which indicates that modulation of gene expression probably reflects a good compromise between energy saving and adjustment to a rapidly evolving environment. Modulation of gene expression can occur at the transcriptional or translational level following mutations or the movement of mobile genetic elements and may involve induction by the antibiotic. In the latter case, the antibiotic can have a triple activity: as an antibacterial agent, as an inducer of resistance to itself, and as an inducer of the dissemination of resistance determinants. We will review certain mechanisms, all reversible, that bacteria have elaborated to achieve antibiotic resistance by the fine-tuning of the expression of genetic information.
Collapse
Affiliation(s)
- Florence Depardieu
- Unité des Agents Antibactériens, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
58
|
Ba BB, Arpin C, Vidaillac C, Chausse A, Saux MC, Quentin C. Activity of gatifloxacin in an in vitro pharmacokinetic-pharmacodynamic model against Staphylococcus aureus strains either susceptible to ciprofloxacin or exhibiting various levels and mechanisms of ciprofloxacin resistance. Antimicrob Agents Chemother 2006; 50:1931-6. [PMID: 16723548 PMCID: PMC1479150 DOI: 10.1128/aac.01586-05] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gatifloxacin (GAT) is a new 8-methoxy fluoroquinolone with enhanced activity against gram-positive cocci. Its activity was studied in an in vitro pharmacokinetic-pharmacodynamic model against five Staphylococcus aureus strains, either susceptible to ciprofloxacin or exhibiting various levels and mechanisms of ciprofloxacin (CIP) resistance: the ATCC 25923 reference strain (MICs of CIP and GAT: 0.5 and 0.1 microg/ml, respectively), its efflux mutant SA-1 (16 and 0.5 microg/ml; mutation in the norA promoter region), and three clinical strains, Sa2102 (2 and 0.2 microg/ml), Sa2667 (4 and 0.5 microg/ml), and Sa2669 (16 and 1 microg/ml), carrying mutations in the grlA (Ser80Tyr or Phe) and gyrA (Ser84Ala) quinolone resistance-determining regions (QRDRs) for Sa2669. Plasmatic pharmacokinetic profiles after daily 1-h perfusion of 400 mg for 48 h were accurately simulated. Thus, mean maximum concentration of drug in serum values for the two administration intervals were 5.36 and 5.80 microg/ml, respectively, and the corresponding half-life at beta-phase values were 8.68 and 7.80 h (goodness of fit coefficient, >0.98). Therapeutic concentrations of GAT allowed the complete eradication of the susceptible strain within 12 h (difference between the bacterial counts at the beginning of the treatment and at a defined time: -2.18 at the 1-h time point [t(1)] and -6.80 at t(24) and t(48); the bacterial killing and regrowth curve from 0 to 48 h was 30.2 h x log CFU/milliliter). However, mutants (M) with GAT MICs increased by 4- to 40-fold were selected from the other strains. They acquired mutations either supplementary (MSa2102 and MSa2667) or different (Ala84Val for MSa2669) in gyrA or in both gyrA and grlA QRDRs (MSA-1). MSa2667 additionally overproduced efflux system(s) without norA promoter modification. Thus, GAT properties should allow the total elimination of ciprofloxacin-susceptible S. aureus, but resistant mutants might emerge from strains showing reduced susceptibility to older fluoroquinolones independently of the first-step mutation(s).
Collapse
Affiliation(s)
- Boubakar B Ba
- Laboratoire de Pharmacocinétique et de Pharmacie Clinique, EA525, Faculté de Pharmacie, Université Victor Segalen Bordeaux 2, France.
| | | | | | | | | | | |
Collapse
|
59
|
Davies KM, Skamnaki V, Johnson LN, Vénien-Bryan C. Structural and Functional Studies of the Response Regulator HupR. J Mol Biol 2006; 359:276-88. [PMID: 16631791 DOI: 10.1016/j.jmb.2006.02.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
HupR is a response regulator that controls the synthesis of the membrane-bound [NiFe]hydrogenase of the photosynthetic bacterium Rhodobacter capsulatus. The protein belongs to the NtrC subfamily of response regulators and is the second protein of a two-component system. We have crystallized the full-length protein HupR in the unphosphorylated state in two dimensions using the lipid monolayer technique. The 3D structure of negatively stained HupR was calculated to a resolution of approximately 23 A from tilted electron microscope images. HupR crystallizes as a dimer, and forms an elongated V-shaped structure with extended arms. The dimensions of the dimer are about 80 A length, 40 A width and 85 A thick. The HupR monomer consists of three domains, N-terminal receiver domain, central domain and C-terminal DNA-binding domain. We have fitted the known 3D structure of the central domain from NtrC1 Aquifex aeolicus protein into our 3D model; we propose that contact between the dimers is through the central domain. The N-terminal domain is in contact with the lipid monolayer and is situated on the top of the V-shaped structure. The central domain alone has been expressed and purified; it forms a pentamer in solution and lacks ATPase activity.
Collapse
Affiliation(s)
- Karen M Davies
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
60
|
Gális I, Simek P, Narisawa T, Sasaki M, Horiguchi T, Fukuda H, Matsuoka K. A novel R2R3 MYB transcription factor NtMYBJS1 is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:573-92. [PMID: 16640595 DOI: 10.1111/j.1365-313x.2006.02719.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Target metabolic and large-scale transcriptomic analyses of tobacco (Nicotiana tabacum L.) Bright Yellow-2 (BY-2) cells were employed to identify novel gene(s) involved in methyl jasmonate (MJ)-dependent function in plants. At the metabolic level, we describe the specific accumulation of several phenylpropanoid-polyamine conjugates in MJ-treated BY-2 cells. Furthermore, global gene expression analysis of MJ-treated cells using a 16K cDNA microarray containing expressed sequence tags (ESTs) from BY-2 cells revealed 828 genes that were upregulated by MJ treatment within 48 h. Using time-course expression data we identified a novel MJ-inducible R2R3 MYB-type transcription factor (NtMYBJS1) that was co-expressed in a close temporal pattern with the core phenylpropanoid genes phenylalanine ammonia-lyase (PAL) and 4-coumarate:CoA ligase (4CL). Overexpression of NtMYBJS1 in tobacco BY-2 cells caused accumulation of specific phenylpropanoid conjugates in the cells. Subsequent microarray analysis of NtMYBJS1 transgenic lines revealed that a limited number of genes, including PAL and 4CL, were specifically induced in the presence of the NtMYBJS1 transgene. These results, together with results of both antisense expression analysis and of gel mobility shift assays, strongly indicate that the NtMYBJS1 protein functions in tobacco MJ signal transduction, inducing phenylpropanoid biosynthetic genes and the accumulation of phenylpropanoid-polyamine conjugates during stress.
Collapse
Affiliation(s)
- Ivan Gális
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku,Yokohama 230-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
61
|
Truong-Bolduc QC, Strahilevitz J, Hooper DC. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50:1104-7. [PMID: 16495280 PMCID: PMC1426456 DOI: 10.1128/aac.50.3.1104-1107.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NorC, a new efflux pump, like NorB, contributes to quinolone resistance that includes resistance to moxifloxacin and sparfloxacin in Staphylococcus aureus. norC expression, like that of norB and tet38, is negatively regulated by MgrA, and overexpression of both norC and norB contributes to the quinolone resistance phenotype of an mgrA mutant.
Collapse
Affiliation(s)
- Que Chi Truong-Bolduc
- Division of Infectious Diseases and Medical Services, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston Massachusetts 02114-2696, USA
| | | | | |
Collapse
|
62
|
Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19:382-402. [PMID: 16614254 PMCID: PMC1471989 DOI: 10.1128/cmr.19.2.382-402.2006] [Citation(s) in RCA: 758] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed.
Collapse
Affiliation(s)
- Laura J V Piddock
- Antimicrobial Agents Research Group, Division of Immunity and Infection, The Medical School, University of Birmingham, Birmingham, United Kingdom, B15 2TT.
| |
Collapse
|
63
|
|
64
|
Sierra JM, Cabeza JG, Ruiz Chaler M, Montero T, Hernandez J, Mensa J, Llagostera M, Vila J. The selection of resistance to and the mutagenicity of different fluoroquinolones in Staphylococcus aureus and Streptococcus pneumoniae. Clin Microbiol Infect 2005; 11:750-8. [PMID: 16104991 DOI: 10.1111/j.1469-0691.2005.01211.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two quinolone-susceptible Staphylococcus aureus and five quinolone-susceptible Streptococcus pneumoniae isolates were used to obtain in-vitro quinolone-resistant mutants in a multistep resistance selection process. The fluoroquinolones used were ciprofloxacin, moxifloxacin, levofloxacin, gemifloxacin, trovafloxacin and clinafloxacin. The mutagenicity of these quinolones was determined by the Salmonella and the Escherichia coli retromutation assays. All quinolone-resistant Staph. aureus mutants had at least one mutation in the grlA gene, while 86.6% of quinolone-resistant Strep. pneumoniae mutants had mutations in either or both the gyrA and parC genes. Moxifloxacin and levofloxacin selected resistant mutants later than the other quinolones, but this difference was more obvious in Staph. aureus. Accumulation of the fluoroquinolones by Staph. aureus did not explain these differences, since levofloxacin and moxifloxacin accumulated inside bacteria to the same extent as clinafloxacin and trovafloxacin. The results also showed that moxifloxacin and levofloxacin had less mutagenic potency in both mutagenicity assays, suggesting a possible relationship between the selection of resistance to quinolones and the mutagenic potency of the molecule. Furthermore, gemifloxacin selected efflux mutants more frequently than the other quinolones used. Thus, the risk of developing quinolone resistance may depend on the density of the microorganism at the infection site and the concentration of the fluoroquinolone, and also on the mutagenicity of the quinolone used, with moxifloxacin and levofloxacin being the least mutagenic.
Collapse
Affiliation(s)
- J M Sierra
- Departament de Microbiologia, Centre de Diagnòstic Biomèdic, IDIBAPS, Hospital Clínic Barcelona, and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Lin J, Akiba M, Sahin O, Zhang Q. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother 2005; 49:1067-75. [PMID: 15728904 PMCID: PMC549222 DOI: 10.1128/aac.49.3.1067-1075.2005] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CmeABC, a resistance-nodulation-division (RND) type of efflux pump, contributes to Campylobacter resistance to a broad spectrum of antimicrobial agents and is also essential for Campylobacter colonization of the animal intestinal tract by mediation of bile resistance. As one of the main systems for Campylobacter adaptation to different environments, CmeABC is likely subject to control by regulatory elements. We describe the identification of a transcriptional repressor for CmeABC. Insertional mutagenesis of cmeR, an open reading frame immediately upstream of the cmeABC operon, resulted in overexpression of cmeABC, as determined by transcriptional fusion (P(cmeABC-lacZ)) and immunoblotting with CmeABC-specific antibodies. Overexpression of the efflux pump was correlated with a moderate increase in the level of resistance of the cmeR mutant to several antimicrobials. In vitro, recombinant CmeR bound specifically to the promoter region of cmeABC, precisely, to the inverted repeat sequences in the cmeABC promoter. A single nucleotide deletion between the two half sites of the inverted repeat reduced the level of CmeR binding to the promoter sequence and resulted in overexpression of cmeABC. Together, these findings indicate that cmeR encodes a transcriptional repressor that directly interacts with the cmeABC promoter and modulates the expression of cmeABC. Mutation either in CmeR or in the inverted repeat impedes the repression and leads to enhanced production of the MDR efflux pump.
Collapse
Affiliation(s)
- Jun Lin
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, 1116 Veterinary Medicine Complex, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
66
|
Truong-Bolduc QC, Dunman PM, Strahilevitz J, Projan SJ, Hooper DC. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 2005; 187:2395-405. [PMID: 15774883 PMCID: PMC1065235 DOI: 10.1128/jb.187.7.2395-2405.2005] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an analysis of the resistance mechanisms of an mgrA mutant, we identified two genes encoding previously undescribed transporters, NorB and Tet38. norB was 1,392 bp and encoded a predicted 49-kDa protein. When overexpressed, NorB led to an increase in resistance to hydrophilic quinolones, ethidium bromide, and cetrimide and also to sparfloxacin, moxifloxacin, and tetracycline, a resistance phenotype of the mgrA mutant. NorA and NorB shared 30% similarity, and NorB shared 30 and 41% similarities with the Bmr and Blt transporters of Bacillus subtilis, respectively. The second efflux pump was a more selective transporter that we have called Tet38, which had 46% similarity with the plasmid-encoded TetK efflux transporter of S. aureus. tet38 was 1,353 bp and encoded a predicted 49-kDa protein. Overexpression of tet38 produced resistance to tetracycline but not to minocycline and other drugs. norB and tet38 transcription was negatively regulated by MgrA. Limited binding of MgrA to the promoter regions of norB and tet38 was demonstrated by gel shift assays, suggesting that MgrA was an indirect regulator of norB and tet38 expression. The mgrA norB double mutant was reproducibly twofold more susceptible to the tested quinolones than the mgrA mutant. The mgrA tet38 double mutant became more susceptible to tetracycline than the wild-type parent strain. These data demonstrate that overexpression of NorB and Tet38 contribute, respectively, to the hydrophobic quinolone resistance and the tetracycline resistance of the mgrA mutant and that MgrA regulates expression of norB and tet38 in addition to its role in regulation of norA expression.
Collapse
Affiliation(s)
- Q C Truong-Bolduc
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114-2696, USA
| | | | | | | | | |
Collapse
|
67
|
Fournier B, Klier A. Protein A gene expression is regulated by DNA supercoiling which is modified by the ArlS-ArlR two-component system of Staphylococcus aureus. MICROBIOLOGY-SGM 2005; 150:3807-3819. [PMID: 15528666 DOI: 10.1099/mic.0.27194-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacterial pathogens such as Staphylococcus aureus undergo major physiological changes when they infect their hosts, requiring the coordinated regulation of gene expression in response to the stresses encountered. Several environmental factors modify the expression of S. aureus virulence genes. This report shows that the expression of spa (virulence gene encoding the cell-wall-associated protein A) is down-regulated by high osmolarity (1 M NaCl, 1 M KCl or 1 M sucrose) in the wild-type strain and upregulated by novobiocin (a DNA gyrase inhibitor that relaxes DNA). A gyrB142 allele corresponding to a double mutation in the B subunit of DNA gyrase relaxed DNA and consequently induced spa expression, confirming that spa expression is regulated by DNA topology. Furthermore, in the presence of novobiocin plus 1 M NaCl, a good correlation was observed between DNA supercoiling and spa expression. The ArlS-ArlR two-component system is involved in the expression of virulence genes such as spa. Presence of an arlRS deletion decreased the effect of DNA supercoiling modulators on spa expression, suggesting that active Arl proteins are necessary for the full effect of DNA gyrase inhibitors and high osmolarity on spa expression. Indeed, evidence is provided for a relationship between the arlRS deletion and topological changes in plasmid DNA.
Collapse
Affiliation(s)
- Bénédicte Fournier
- Laboratoire des Listeria, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - André Klier
- Université Paris 7, UFR de Biochimie, 2 place Jussieu, 75005 Paris, France
| |
Collapse
|
68
|
Kaatz GW, Thyagarajan RV, Seo SM. Effect of promoter region mutations and mgrA overexpression on transcription of norA, which encodes a Staphylococcus aureus multidrug efflux transporter. Antimicrob Agents Chemother 2005; 49:161-9. [PMID: 15616291 PMCID: PMC538897 DOI: 10.1128/aac.49.1.161-169.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NorA is a Staphylococcus aureus multidrug transporter that confers resistance to structurally distinct compounds. The MgrA global regulatory protein is reported to augment norA expression when mgrA is overexpressed from an undefined plasmid-based promoter. Further details about norA regulatory mechanisms are scant. A chromosomal norA::lacZ transcriptional fusion was constructed in different S. aureus strains, and allele replacement was used to define the relevance of promoter region sequences to norA expression. The effect of mgrA overexpression in wild-type and mutant backgrounds was also determined. Contrary to existing data, overexpression of mgrA repressed norA transcription in all parent and selected norA promoter mutant strains in a dose-dependent fashion. Disruption of a near-perfect inverted repeat or other putative regulatory protein binding sites did not affect norA transcription, but the repressive effect of mgrA overexpression was blunted in these mutants. This result, and the conservation of all of these motifs in S. aureus, suggests that their presence is required for the full effect of MgrA, or other regulatory proteins, on norA expression. Mutations at the +5 nucleotide of norA mRNA (flqB mutations) had a major impact; all resulted in markedly increased norA expression that was significantly reversed by mgrA overexpression. The flqB position of norA mRNA is part of a conserved imperfect inverted repeat; it is feasible that this motif could be a binding site for a norA regulatory protein.
Collapse
Affiliation(s)
- Glenn W Kaatz
- Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, B4333 John D. Dingell VA Medical Center, 4646 John R, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
69
|
Pragman AA, Schlievert PM. Virulence regulation in Staphylococcus aureus: the need for in vivo analysis of virulence factor regulation. ACTA ACUST UNITED AC 2004; 42:147-54. [PMID: 15364098 DOI: 10.1016/j.femsim.2004.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Staphylococcus aureus is a pathogenic microorganism that is responsible for a wide variety of clinical infections. These infections can be relatively mild, but serious, life-threatening infections may result from the expression of staphylococcal virulence factors that are coordinated by virulence regulators. Much work has been done to characterize the actions of staphylococcal virulence regulators in broth culture. Recently, several laboratories showed that transcriptional analyses of virulence regulators in in vivo animal models or in human infection did not correlate with transcriptional analyses accomplished in vitro. In describing the differences between in vitro and in vivo transcription of staphylococcal virulence regulators, we hope to encourage investigators to study virulence regulators using infection models whenever possible.
Collapse
Affiliation(s)
- Alexa A Pragman
- Department of Microbiology, University of Minnesota Medical School, 960 Mayo Building, MMC 196, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
70
|
Jefferson KK, Pier DB, Goldmann DA, Pier GB. The teicoplanin-associated locus regulator (TcaR) and the intercellular adhesin locus regulator (IcaR) are transcriptional inhibitors of the ica locus in Staphylococcus aureus. J Bacteriol 2004; 186:2449-56. [PMID: 15060048 PMCID: PMC412131 DOI: 10.1128/jb.186.8.2449-2456.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections involving Staphylococcus aureus are often more severe and difficult to treat when the organism assumes a biofilm mode of growth. The polysaccharide poly-N-acetylglucosamine (PNAG), also known as polysaccharide intercellular adhesin, is synthesized by the products of the intercellular adhesin (ica) locus and plays a key role in biofilm formation. Numerous conditions and exogenous factors influence ica transcription and PNAG synthesis, but the regulatory factors and pathways through which these environmental stimuli act have been only partially characterized. We developed a DNA affinity chromatography system to purify potential regulatory proteins that bind to the ica promoter region. Using this technique, we isolated four proteins, including the staphylococcal gene regulator SarA, a MarR family transcriptional regulator of the teicoplanin-associated locus TcaR, DNA-binding protein II, and topoisomerase IV, that bound to the ica promoter. Site-directed deletion mutagenesis of tcaR indicated that TcaR was a negative regulator of ica transcription, but deletion of tcaR alone did not induce any changes in PNAG production or in adherence to polystyrene. We also investigated the role of IcaR, encoded within the ica locus but divergently transcribed from the biosynthetic genes. As has been shown previously in Staphylococcus epidermidis, we found that IcaR was also a negative regulator of ica transcription in S. aureus. We also demonstrate that mutation of icaR augmented PNAG production and adherence to polystyrene. Transcription of the ica locus, PNAG production, and adherence to polystyrene were further increased in a tcaR icaR double mutant. In summary, TcaR appeared to be a weak negative regulator of transcription of the ica locus, whereas IcaR was a strong negative regulator, and in their absence PNAG production and biofilm formation were enhanced.
Collapse
Affiliation(s)
- Kimberly K Jefferson
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
71
|
Abstract
Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
72
|
Bronner S, Monteil H, Prévost G. Regulation of virulence determinants inStaphylococcus aureus: complexity and applications. FEMS Microbiol Rev 2004; 28:183-200. [PMID: 15109784 DOI: 10.1016/j.femsre.2003.09.003] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 05/16/2003] [Accepted: 09/15/2003] [Indexed: 11/22/2022] Open
Abstract
The virulence of Staphylococcus aureus is essentially determined by cell wall associated proteins and secreted toxins that are regulated and expressed according to growth phases and/or growth conditions. Gene expression is regulated by specific and sensitive mechanisms, most of which act at the transcriptional level. Regulatory factors constitute numerous complex networks, driving specific interactions with target gene promoters. These factors are largely regulated by two-component regulatory systems, such as the agr, saeRS, srrAB, arlSR and lytRS systems. These systems are sensitive to environmental signals and consist of a sensor histidine kinase and a response regulator protein. DNA-binding proteins, such as SarA and the recently identified SarA homologues (SarR, Rot, SarS, SarT, SarU), also regulate virulence factor expression. These homologues might be intermediates in the regulatory networks. The multiple pathways generated by these factors allow the bacterium to adapt to environmental conditions rapidly and specifically, and to develop infection. Precise knowledge of these regulatory mechanisms and how they control virulence factor expression would open up new perspectives for antimicrobial chemotherapy using key inhibitors of these systems.
Collapse
Affiliation(s)
- Stéphane Bronner
- Institut de Bactériologie, Faculté de Médecine, Université Louis Pasteur - Hôpitaux, Universitaires de Strasbourg, 3, rue Koeberlé, F-67000 Strasbourg, France
| | | | | |
Collapse
|
73
|
Ingavale SS, Van Wamel W, Cheung AL. Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Mol Microbiol 2003; 48:1451-66. [PMID: 12791130 DOI: 10.1046/j.1365-2958.2003.03503.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In trying to identify genetic loci involved in the regulation of cap5 genes in Staphylococcus aureus, we isolated a transposon mutant that exhibited a growth defect, enhanced autolysis and increased sensitivity to Triton X-100 and penicillin, attributable in part to increased murein hydrolase activity. Analysis of the chromosomal sequence flanking the transposon insertion site revealed that the gene disrupted in the mutant encodes an open reading frame of 147 amino acids. We named this gene rat, which stands for regulator of autolytic activity. Sequence analysis indicated that Rat is homologous to the MarR and, to a lesser extent, the SarA protein families. Mutations in rat resulted in decreased expression of known autolytic regulators lytSR, lrgAB and arlRS. Gel shift studies indicated that Rat binds to the lytRS and arlRS promoters, thus confirming Rat as a DNA-binding protein to these known repressors of autolytic activity. As anticipated, rat appears to be a negative regulator of autolysin genes including lytM and lytN. These data suggest that the rat gene product is an important regulator of autolytic activity in S. aureus.
Collapse
Affiliation(s)
- S S Ingavale
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
74
|
Truong-Bolduc QC, Zhang X, Hooper DC. Characterization of NorR protein, a multifunctional regulator of norA expression in Staphylococcus aureus. J Bacteriol 2003; 185:3127-38. [PMID: 12730173 PMCID: PMC154082 DOI: 10.1128/jb.185.10.3127-3138.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We characterized a Staphylococcus aureus norA gene expression regulator, NorR, initially identified from its binding to the norA promoter. The norR gene was 444 bp in length, located approximately 7 kb upstream from the norA gene, and encoded a predicted 17.6-kDa protein. Overexpression of norR in wild-type S. aureus strain ISP794 led to a fourfold decrease in sensitivity to quinolones and ethidium bromide and an increase in the level of norA transcripts, suggesting that NorR acts as a positive regulator of norA expression. Overexpression of norR in sarA and agr mutants did not alter quinolone sensitivity or levels of norA transcription, indicating that the presence of these two global regulatory systems is necessary for NorR to affect the expression of norA. Insertion and disruption of norR in ISP794 increased resistance to quinolones by 4- to 16-fold but had no effect on norA transcription, suggesting that NorR acts as a repressor for another unidentified efflux pump or pumps. These mutants also exhibited an exaggerated clumping phenotype in liquid media, which was complemented fully by a plasmid-encoded norR gene. Collectively, these results indicate that NorR is a multifunctional regulator, affecting cell surface properties as well as the expression of NorA and likely other multidrug resistance efflux pumps.
Collapse
Affiliation(s)
- Que Chi Truong-Bolduc
- Division of Infectious Diseases and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-2696, USA
| | | | | |
Collapse
|
75
|
Jefferson KK, Cramton SE, Götz F, Pier GB. Identification of a 5-nucleotide sequence that controls expression of the ica locus in Staphylococcus aureus and characterization of the DNA-binding properties of IcaR. Mol Microbiol 2003; 48:889-99. [PMID: 12753184 DOI: 10.1046/j.1365-2958.2003.03482.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biofilm formation is an important aspect of the pathogenesis of staphylococcal infections. A beta-1,6-linked N-acetyl glucosamine polysaccharide is critical to biofilm elaboration and is synthesized by proteins encoded by the intercellular adhesion (ica) locus. These studies were undertaken to characterize the mechanism by which transcription of the ica locus in S. aureus is regulated using isogenic S. aureus MN8 and MN8 mucoid (MN8m) strains, the latter of which constitutively overproduces biofilm. Transformation of the ica locus from MN8m to the ica knock-out mutants of two strains, MN8 and NCTC 10833, conferred a strong biofilm-producing phenotype. Sequence analysis revealed a 5-nucleotide deletion within the promoter region of the ica locus in MN8m compared with the sequence in the wild-type locus. Deletion or substitution of these 5 nucleotides within the wild-type ica locus augmented transcription of the ica locus and induced the strong biofilm-producing phenotype. Gel shift analysis demonstrated that a protein(s) within cell-free lysates from strain MN8 bind(s) specifically to oligonucleotides representative of the wild-type ica promoter sequence and that this binding is greatly diminished by the deletion or substitution of the 5 nucleotides. DNase I footprint analysis revealed that purified IcaR, thought to be a regulator of ica transcription, also binds to the ica promoter sequence just upstream of the ica start codon, but its affinity for the ica promoter is unaffected by deletion of the 5-nucleotide motif. These findings identify a 5-nucleotide motif within the ica promoter region that has a functional role in transcriptional regulation of the ica locus that is independent of IcaR, and also show that IcaR binds to the promoter region of the S. aureus ica locus.
Collapse
Affiliation(s)
- Kimberly K Jefferson
- The Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
76
|
Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002; 66:671-701, table of contents. [PMID: 12456787 PMCID: PMC134658 DOI: 10.1128/mmbr.66.4.671-701.2002] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The active transport of toxic compounds by membrane-bound efflux proteins is becoming an increasingly frequent mechanism by which cells exhibit resistance to therapeutic drugs. This review examines the regulation of bacterial drug efflux systems, which occurs primarily at the level of transcription. Investigations into these regulatory networks have yielded a substantial volume of information that has either not been forthcoming from or complements that obtained by analysis of the transport proteins themselves. Several local regulatory proteins, including the activator BmrR from Bacillus subtilis and the repressors QacR from Staphylococcus aureus and TetR and EmrR from Escherichia coli, have been shown to mediate increases in the expression of drug efflux genes by directly sensing the presence of the toxic substrates exported by their cognate pump. This ability to bind transporter substrates has permitted detailed structural information to be gathered on protein-antimicrobial agent-ligand interactions. In addition, bacterial multidrug efflux determinants are frequently controlled at a global level and may belong to stress response regulons such as E. coli mar, expression of which is controlled by the MarA and MarR proteins. However, many regulatory systems are ill-adapted for detecting the presence of toxic pump substrates and instead are likely to respond to alternative signals related to unidentified physiological roles of the transporter. Hence, in a number of important pathogens, regulatory mutations that result in drug transporter overexpression and concomitant elevated antimicrobial resistance are often observed.
Collapse
Affiliation(s)
- Steve Grkovic
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
77
|
Sierra JM, Marco F, Ruiz J, Jiménez de Anta MT, Vila J. Correlation between the activity of different fluoroquinolones and the presence of mechanisms of quinolone resistance in epidemiologically related and unrelated strains of methicillin-susceptible and -resistant Staphylococcus aureus. Clin Microbiol Infect 2002; 8:781-90. [PMID: 12519351 DOI: 10.1046/j.1469-0691.2002.00400.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To study the activity of five different fluoroquinolones against 22 epidemiologically related and unrelated strains of Staphylococcus aureus (13 methicillin-resistant (MRSA) strains and nine methicillin-susceptible (MSSA) strains) in which the mechanisms of quinolone resistance are also investigated. METHODS The MICs of the different fluoroquinolones were determined by the microdilution method, in the presence and absence of reserpine. The quinolone resistance-determining regions of the gyrA, gyrB, grlA and grlB genes were amplified and sequenced to establish the presence of mutations. The molecular epidemiology of the 22 strains was performed by low-frequency restriction analysis of chromosomal DNA with SmaI. RESULTS MSSA strains showed lower homology than MRSA strains, in which only two clones were seen. Trovafloxacin showed the best activity against these clinical isolates of S. aureus, since strains carrying one amino acid change in both GyrA and GrlA subunits remained susceptible to this antimicrobial agent. Furthermore, trovafloxacin did not seem to be a substrate for NorA. CONCLUSION Trovafloxacin was the most active quinolone tested against S. aureus strains, followed by levofloxacin and sparfloxacin, whereas ciprofloxacin and norfloxacin were the least active quinolones, in both the presence and absence of reserpine. Epidemiologically related S. aureus strains presented different mechanisms of quinolone resistance, suggesting a divergent evolution of the same clone. Finally, 16 S. aureus strains with a ciprofloxacin plus reserpine MIC > or = 1 mg/L already showed a mutation in the grlA gene. This MIC may be useful as a marker of mutation in this gene, contraindicating the use of this quinolone, since a second mutation may develop during treatment.
Collapse
Affiliation(s)
- J M Sierra
- Institut Clínic d'Infeccions i Immunologia, IDIBAPS, Departament de Microbiologia, Facultat de Medicina, Hospital Clínic, Barcelona, Spain
| | | | | | | | | |
Collapse
|
78
|
Abstract
Resistance to fluoroquinolones among Gram-positive cocci has emerged as these antimicrobial agents have become extensively used in clinical medicine. Resistance is effected by changes in the bacterial target enzymes DNA gyrase and topoisomerase IV, which reduce drug binding, and by action of native bacterial membrane pumps that remove drug from the cell. In both cases, quinolone exposure selects for spontaneous mutants that are present in large bacterial populations, and which contain chromosomal mutations that alter the target protein or increase the level of pump expression. Resistance among clinical isolates has been greatest in Staphylococcus aureus and particularly among meticillin-resistant strains, in which both selection by quinolone exposure and transmission of clonal strains in health-care settings have contributed to high prevalence. Resistance in Streptococcus pneumoniae has also emerged in the community. Fluoroquinolone resistance has arisen in multidrug-resistant clones and its prevalence has been especially high in Hong Kong and Spain. Further spread and selection of such resistance could compromise the utility of a valuable class of antimicrobial agents, a point that emphasises the importance of the careful use of these agents in appropriate patients and doses, as well as careful infection-control practices.
Collapse
Affiliation(s)
- David C Hooper
- Division of Infectious Diseases, Infection Control Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2696, USA.
| |
Collapse
|
79
|
Nagakubo S, Nishino K, Hirata T, Yamaguchi A. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 2002; 184:4161-7. [PMID: 12107133 PMCID: PMC135206 DOI: 10.1128/jb.184.15.4161-4167.2002] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Overproduction of the response regulator BaeR confers resistance to novobiocin and bile salts in a DeltaacrAB mutant by stimulating drug exporter gene expression. The mdtABC (multidrug transporter ABC, formerly known as yegMNO) genes, which encode a resistance-nodulation-cell division (RND) drug efflux system, are responsible for resistance. The MdtABC system comprises the transmembrane MdtB/MdtC heteromultimer and MdtA membrane fusion protein. MdtAC also confers bile salt, but not novobiocin, resistance. This indicates that the evolution from an MdtC homomultimer to an MdtBC heteromultimer contributed to extend the drug resistance spectrum. A BLAST search suggested that such a heteromultimer-type RND exporter constitutes a unique family among gram-negative organisms.
Collapse
Affiliation(s)
- Satoshi Nagakubo
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki-shi, Japan
| | | | | | | |
Collapse
|
80
|
Abstract
The introduction and increasing use of antibiotics for antibacterial therapy has initiated a rapid development and expansion of antibiotic resistance in microorganisms, particularly in human pathogens. Additionally, a shift to an increase in number and severity of Gram-positive infections has been observed the last decades. Common to these pathogens is their tendency to accumulate multiple resistances under antibiotic pressure and selection. Methicillin-resistant Staphylococcus aureus (MRSA), that have acquired multiresistance to all classes of antibiotics, have become a serious nosocomial problem. Recently, the emergence of the first MRSA with reduced vancomycin susceptibility evoked the specter of a totally resistant S. aureus. Problems with multiresistance expand also to penicillin-resistant Streptococcus pneumoniae that are partially or totally resistant to multiple antibiotics, and to vancomycin-resistant Enterococcus ssp., completely resistant to all commonly used antibiotics. The rapid development of resistance is due to mutational events and/or gene transfer and acquisition of resistance determinants, allowing strains to survive antibiotic treatment.
Collapse
|
81
|
Nishino K, Yamaguchi A. EvgA of the two-component signal transduction system modulates production of the yhiUV multidrug transporter in Escherichia coli. J Bacteriol 2002; 184:2319-23. [PMID: 11914367 PMCID: PMC134960 DOI: 10.1128/jb.184.8.2319-2323.2002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of the EvgA regulator of the two-component signal transduction system was previously found to modulate multidrug resistance of Escherichia coli by increasing efflux of drugs (K. Nishino and A. Yamaguchi, J. Bacteriol. 183:1455-1458, 2001). Here we present data showing that EvgA contributes to multidrug resistance through increased expression of the multidrug transporter yhiUV gene.
Collapse
Affiliation(s)
- Kunihiko Nishino
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki-shi, Osaka 567-0047, Japan
| | | |
Collapse
|
82
|
|
83
|
Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 2001; 45:3375-80. [PMID: 11709311 PMCID: PMC90840 DOI: 10.1128/aac.45.12.3375-3380.2001] [Citation(s) in RCA: 412] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multidrug-resistant strain Acinetobacter baumannii BM4454 was isolated from a patient with a urinary tract infection. The adeB gene, which encodes a resistance-nodulation-cell division (RND) protein, was detected in this strain by PCR with two degenerate oligodeoxynucleotides. Insertional inactivation of adeB in BM4454, which generated BM4454-1, showed that the corresponding protein was responsible for aminoglycoside resistance and was involved in the level of susceptibility to other drugs including fluoroquinolones, tetracyclines, chloramphenicol, erythromycin, trimethoprim, and ethidium bromide. Study of ethidium bromide accumulation in BM4454 and BM4454-1, in the presence or in the absence of carbonyl cyanide m-chlorophenylhydrazone, demonstrated that AdeB was responsible for the decrease in intracellular ethidium bromide levels in a proton motive force-dependent manner. The adeB gene was part of a cluster that included adeA and adeC which encodes proteins homologous to membrane fusion and outer membrane proteins of RND-type three-component efflux systems, respectively. The products of two upstream open reading frames encoding a putative two-component regulatory system might be involved in the regulation of expression of the adeABC gene cluster.
Collapse
Affiliation(s)
- S Magnet
- Unité des Agents Antibactériens, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
84
|
Fournier B, Klier A, Rapoport G. The two-component system ArlS-ArlR is a regulator of virulence gene expression in Staphylococcus aureus. Mol Microbiol 2001; 41:247-61. [PMID: 11454217 DOI: 10.1046/j.1365-2958.2001.02515.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Staphylococcus aureus is a major human pathogen that produces many virulence factors in a temporally regulated manner controlled by at least two global virulence regulatory loci (agr and sarA). We identified previously a two-component system, ArlS-ArlR, that modifies the activity of extracellular serine protease and may be involved in virulence regulation. Here, we show that mutations in either arlR or arlS increase the production of secreted proteins [alpha-toxin (Hla), beta-haemolysin, lipase, coagulase, serine protease (Ssp)] and especially protein A (Spa). Furthermore, the pattern of proteins secreted by both mutants was strikingly different from that of the wild-type strain. Transcriptional fusions showed that expression of hla, ssp and spa was higher in both mutants than in the wild-type strain, indicating that the arl operon decreases the production of virulence factors by downregulating the transcription of their genes. The arl mutation did not change spa expression in an agrA mutant or in a sarA mutant, suggesting that both the sarA and the agr loci are required for the action of arl on spa. Northern blot analyses indicated that the arl mutation increased the synthesis of both RNA II and RNA III, but decreased sarA transcription. Finally, arl was not autoregulated, but its expression was stimulated by agr and sarA. These results suggest that the Arl system interacts with both agr and sarA regulatory loci to modulate the virulence regulation network.
Collapse
Affiliation(s)
- B Fournier
- Unité de Biochimie Microbienne, URA 2172 du Centre National de la Recherche Scientifique, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
85
|
Grkovic S, Brown MH, Skurray RA. Transcriptional regulation of multidrug efflux pumps in bacteria. Semin Cell Dev Biol 2001; 12:225-37. [PMID: 11428915 DOI: 10.1006/scdb.2000.0248] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As integral membrane proteins demonstrating an extraordinarily wide substrate range, some degree of regulatory control over the expression of bacterial multidrug-resistance (MDR) transporters is to be expected. Excessive expression could be deleterious, due to direct, physical disruption of membrane integrity, or the unwanted export of essential metabolites, a potential side-effect of their broad substrate specificity. There are limited clues as to the physiological functions of most MDR transporters, but their expression is likely to be up-regulated in response to the presence of natural substrates of these pumps. Thus, it is no surprise that MDR genes are subject to regulation at the local level, consisting of examples of both transcriptional repression and activation by proteins encoded adjacent to that for the transporter. Furthermore, an increasing number of MDR genes have also been found to be controlled by global transcriptional activator proteins.
Collapse
Affiliation(s)
- S Grkovic
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
86
|
Fournier B, Truong-Bolduc QC, Zhang X, Hooper DC. A mutation in the 5' untranslated region increases stability of norA mRNA, encoding a multidrug resistance transporter of Staphylococcus aureus. J Bacteriol 2001; 183:2367-71. [PMID: 11244079 PMCID: PMC95146 DOI: 10.1128/jb.183.7.2367-2371.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NorA, a multidrug efflux pump in Staphylococcus aureus, protects the cell from multiple drugs, including quinolones. The flqB mutation (T-->G) in the 5' untranslated region upstream of norA causes norA overexpression of 4.9-fold in cis, as measured in norA::blaZ fusions. The transcriptional initiation site of norA was unchanged in mutant and wild-type strains, but the half-life of norA mRNA was increased 4.8-fold in the flqB mutant compared to the wild-type strain. Computer-generated folding of the first 68 nucleotides of the norA transcript predicts an additional stem-loop and changes in a putative RNase III cleavage site in the flqB mutant.
Collapse
Affiliation(s)
- B Fournier
- Infectious Disease Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-2696, USA
| | | | | | | |
Collapse
|
87
|
Nishino K, Yamaguchi A. Overexpression of the response regulator evgA of the two-component signal transduction system modulates multidrug resistance conferred by multidrug resistance transporters. J Bacteriol 2001; 183:1455-8. [PMID: 11157960 PMCID: PMC95021 DOI: 10.1128/jb.183.4.1455-1458.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of evgA, a response regulator of a two-component system, increased multidrug efflux in Escherichia coli. Since overexpression of the emrKY operon, which is controlled by evgAS, could account only for deoxycholate resistance, the evgAS locus apparently controls expression of at least one other multidrug efflux operon.
Collapse
Affiliation(s)
- K Nishino
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | |
Collapse
|
88
|
Poole K. Efflux-mediated resistance to fluoroquinolones in gram-positive bacteria and the mycobacteria. Antimicrob Agents Chemother 2000; 44:2595-9. [PMID: 10991829 PMCID: PMC90120 DOI: 10.1128/aac.44.10.2595-2599.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- K Poole
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
89
|
Fournier B, Hooper DC. A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of Staphylococcus aureus. J Bacteriol 2000; 182:3955-64. [PMID: 10869073 PMCID: PMC94580 DOI: 10.1128/jb.182.14.3955-3964.2000] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A transposition mutant of Staphylococcus aureus was selected from the parent strain MT23142, a derivative of strain 8325. The site of transposition was near the 5' terminus of the gene arlS. ArlS exhibits strong similarities with histidine protein kinases. Sequence analysis suggested that arlS forms an operon with upstream gene arlR. The predicted product of arlR is a member of the OmpR-PhoB family of response regulators. The arlS mutant formed a biofilm on a polystyrene surface unlike the parent strain and the complemented mutant. Biofilm formation was associated with increased primary adherence to polystyrene, whereas cellular adhesion was only slightly decreased. In addition, the arlS mutant exhibited increased autolysis and altered peptidoglycan hydrolase activity compared to the parental strain and to the complemented mutant. As it has been shown for coagulase-negative staphylococci that some autolysins are able to bind polymer surfaces, these data suggest that the two-component regulatory system ArlS-ArlR may control attachment to polymer surfaces by affecting secreted peptidoglycan hydrolase activity. Finally, the arlS mutant showed a dramatic decrease of extracellular proteolytic activity, including serine protease activity, in comparison to the wild-type strain and the complemented mutant, and cells grown in the presence of phenylmethylsulfonyl fluoride (a serine protease inhibitor) showed an increased autolysin activity. Since the locus arlR-arlS strikingly modifies extracellular proteolytic activity, this locus might also be involved in the virulence of S. aureus.
Collapse
Affiliation(s)
- B Fournier
- Infectious Disease Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston 02114-2696, USA.
| | | |
Collapse
|