51
|
Nebbia P, Tramuta C, Odore R, Nucera D, Zanatta R, Robino P. Genetic and phenotypic characterisation of Escherichia coli producing cefotaximase-type extended-spectrum β-lactamases: first evidence of the ST131 clone in cats with urinary infections in Italy. J Feline Med Surg 2014; 16:966-71. [PMID: 24621854 PMCID: PMC11104081 DOI: 10.1177/1098612x14527103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The incidence of cefotaximase (CTX-M)-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli has increased dramatically in humans and animals since the middle of the last century. E coli that produce CTX-M β-lactamase represent a major cause of urinary tract infections, and pose a significant therapeutic challenge to both human and veterinary medicine. As data on uropathogenic CTX-M-producing strains in cats are limited, the aim of this study was to describe the genetic character and antibiotic resistance phenotypes of CTX-M-producing E coli isolated from cats with cystitis. Seven of 15 E coli bacteria isolated from 138 urine samples had the CTX-M gene and were therefore included in this study. These isolates were screened by polymerase chain reaction for the presence of 14 extra-intestinal virulence factors, class 1 and class 2 integrons, and to identify their phylogenetic groups. Multi-locus sequence typing (MLST) of the strains and susceptibility testing (disc diffusion method) were also performed. Virulence factor iutA was the most frequent determinant identified (86.7%), and the majority of CTX-M-producing strains (n = 5) carried class 1 integrons. MLST allowed us to discriminate four known sequence types (ST131, ST555, ST602, ST155) and three novel sequence types (ST3847, ST3848, ST4181). To the best of our knowledge, this is the first study to report uropathogenic CTX-M-producing E coli ST131 in cats in Italy. Accurate diagnostics and prudent use of antimicrobials are recommended to avoid the spread of multidrug-resistant pathogens in veterinary medicine and to prevent their transmission to humans.
Collapse
|
52
|
Abstract
Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted.
Collapse
|
53
|
Bihannic M, Ghanbarpour R, Auvray F, Cavalié L, Châtre P, Boury M, Brugère H, Madec JY, Oswald E. Identification and detection of three new F17 fimbrial variants in Escherichia coli strains isolated from cattle. Vet Res 2014; 45:76. [PMID: 25106491 PMCID: PMC4267768 DOI: 10.1186/s13567-014-0076-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/17/2014] [Indexed: 01/13/2023] Open
Abstract
F17 fimbriae are produced by pathogenic Escherichia coli involved in diarrhea and septicemia outbreaks in calves and lambs. These proteins result from the expression of four different clustered genes, namely f17A, f17D, f17C and f17G, encoding a pilin protein, a periplasmic protein, an anchor protein and an adhesin protein, respectively. Several variants of f17A and f17G genes have been reported and found genetically associated with typical virulence factors of bovine pathogenic E. coli strains. In this study, a new F17e-A variant, closely related to F17b-A, was identified from a collection of 58 E. coli isolates from diarrheic calves in Iran. While highly prevalent in Iranian F17-producing clinical isolates from calves, this variant was rare among E. coli from a French healthy adult bovine population, suggesting a possible association with virulence. The f17Ae gene was also found in the genome of the Shiga-like toxin variant Stx1d-producing bovine E. coli strain MHI813, and belonged to a gene cluster also encoding a new F17-G3 variant, which greatly differed from F17-G1 and F17-G2. This gene cluster was located on a pathogenicity island integrated in the tRNA pheV gene. The gene coding for a third new F17f-A variant corresponding to a combination of F17c-A and F17d-A was also identified on the pVir68 plasmid in the bovine pathogenic E. coli strain 6.0900. In conclusion, we identified three new F17-A and F17-G variants in cattle E. coli, which may also have significant impact on the development of new diagnostics and vaccination tools.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Anses Lyon, Lyon, France.
| | | |
Collapse
|
54
|
Shahrani M, Dehkordi FS, Momtaz H. Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. Biol Res 2014; 47:28. [PMID: 25052999 PMCID: PMC4105491 DOI: 10.1186/0717-6287-47-28] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/05/2014] [Indexed: 01/07/2023] Open
Abstract
Background Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. Results Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1–7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. Conclusions Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics.
Collapse
|
55
|
Maheux AF, Boudreau DK, Bergeron MG, Rodriguez MJ. Characterization of Escherichia fergusonii and Escherichia albertii isolated from water. J Appl Microbiol 2014; 117:597-609. [PMID: 24849008 DOI: 10.1111/jam.12551] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this study was to characterize Escherichia fergusonii and Escherichia albertii isolated from water. METHODS AND RESULTS The characterization of E. fergusonii and E. albertii isolated from water was determined using an Escherichia coli-specific uidA PCR, a tuf PCR, and with phylogenetic analysis using three housekeeping genes (adk, gyrB, and recA) from the E. coli MLST scheme, selected for their ability to discriminate among all Escherichia species. Among the 527 isolates tested, 25 (4·7%) were uidA PCR negative and tuf PCR positive. Phylogenetic analysis using adk, gyrB and recA genes showed that 6, 18 and 1 of these 25 non-E. coli Escherichia spp. isolates grouped with reference strains of E. fergusonii, E. albertii, and E. coli, respectively. Finally, the 25 non-E. coli Escherichia spp. strains isolated were investigated for the presence of pathogenic factors, comprising intimin (eae gene), cytolethal distending toxin (cdtB gene) and shiga toxin (stx gene). With the PCR primers used, the presence of eae and stx genes was not detected. However, cdtB genes types I/IV were detected for 3 (16·7%) E. albertii strains, whereas 15 of 18 (83·3%) possessed the cdtB gene types II/III/V. CONCLUSIONS These results showed that MLST scheme allows a more accurate identification of non-E. coli species than phenotypic tests. We also showed that E. fergusonii and E. albertii represent, respectively, 0·8 and 2·5% of all Escherichia species isolated and the pathogenic cdtB genes were present in 83·3% of these strains. SIGNIFICANCE AND IMPACT OF THE STUDY The data presented in this study provided an efficient way to correctly identify non-E. coli species contributing to our understanding of the risks associated with Escherichia species in water consumed by humans and animals. Furthermore, the results give an insight about the natural habitats of these species.
Collapse
Affiliation(s)
- A F Maheux
- Chaire de recherche en eau potable de l'Université Laval, Québec City, QC, Canada; École supérieure d'aménagement du territoire et de développement régional, Université Laval, Québec City, QC, Canada
| | | | | | | |
Collapse
|
56
|
Evolution of a self-inducible cytolethal distending toxin type V-encoding bacteriophage from Escherichia coli O157:H7 to Shigella sonnei. J Virol 2013; 87:13665-75. [PMID: 24109226 DOI: 10.1128/jvi.02860-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some cdt genes are located within the genome of inducible or cryptic bacteriophages, but there is little information about the mechanisms of cdt transfer because of the reduced number of inducible Cdt phages described. In this study, a new self-inducible Myoviridae Cdt phage (ΦAA91) was isolated from a nonclinical O157:H7 Shiga toxin-producing Escherichia coli strain and was used to lysogenize a cdt-negative strain of Shigella sonnei. We found that the phage induced from S. sonnei (ΦAA91-ss) was not identical to the original phage. ΦAA91-ss was used to infect a collection of 57 bacterial strains, was infectious in 59.6% of the strains, and was able to lysogenize 22.8% of them. The complete sequence of ΦAA91-ss showed a 33,628-bp genome with characteristics of a P2-like phage with the cdt operon located near the cosR site. We found an IS21 element composed of two open reading frames inserted within the cox gene of the phage, causing gene truncation. Truncation of cox does not affect lytic induction but could contribute to phage recombination and generation of lysogens. The IS21 element was not present in the ΦAA91 phage from E. coli, but it was incorporated into the phage genome after its transduction in Shigella. This study shows empirically the evolution of temperate bacteriophages carrying virulence genes after infecting a new host and the generation of a phage population with better lysogenic abilities that would ultimately lead to the emergence of new pathogenic strains.
Collapse
|
57
|
Diallo AA, Brugère H, Kérourédan M, Dupouy V, Toutain PL, Bousquet-Mélou A, Oswald E, Bibbal D. Persistence and prevalence of pathogenic and extended-spectrum beta-lactamase-producing Escherichia coli in municipal wastewater treatment plant receiving slaughterhouse wastewater. WATER RESEARCH 2013; 47:4719-4729. [PMID: 23774186 DOI: 10.1016/j.watres.2013.04.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/09/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
We compared the prevalence of pathogenic and extended-spectrum beta-lactamase (ESBL) - producing Escherichia coli in effluents of a municipal wastewater treatment plant (WWTP) receiving wastewater from a slaughterhouse. A total of 1248 isolates were screened for the presence of virulence genes associated with enterohemorrhagic E. coli (EHEC) (stx1, stx2, and eae) and extraintestinal pathogenic E. coli (ExPEC) (sfa/focDE, kpsMT K1, hlyA, papEF, afa/draBC, clbN, f17A and cnf). The prevalence of atypical enteropathogenic E. coli (EPEC) was 0.7%, 0.2% and 0.5% in city wastewater, slaughterhouse wastewater and in the treated effluent, respectively. One stx1a and stx2b-positive E. coli isolate was detected in city wastewater. The prevalence of ExPEC was significantly higher in city wastewater (8.4%), compared to slaughterhouse wastewater (1.2%). Treatment in the WWTP did not significantly impact the prevalence of ExPEC in the outlet effluent (5.0%) compared to city wastewater. Moreover, the most potentially pathogenic ExPEC were isolated from city wastewater and from the treated effluent. ESBL-producing E. coli was also mainly detected in city wastewater (1.7%), compared to slaughterhouse wastewater (0.2%), and treated effluent (0.2%). One ESBL-producing E. coli, isolated from city wastewater, was eae-β1 positive. These results showed that pathogenic and/or ESBL-producing E. coli were mainly detected in human wastewater, and at a lesser extend in animal wastewater. Treatment failed to eliminate these strains which were discharged into the river, and then these strains could be transmitted to animals and humans via the environment.
Collapse
|
58
|
Khan AA, Cash P. E. coli and colon cancer: is mutY a culprit? Cancer Lett 2013; 341:127-31. [PMID: 23933175 DOI: 10.1016/j.canlet.2013.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/24/2013] [Accepted: 08/02/2013] [Indexed: 12/13/2022]
Abstract
The recent demonstration of a role of Escherichia coli in the development of invasive carcinoma in mice ushers a new era of bacterial involvement in cancer etiology. It has been shown previously that the colonic mucosa of colorectal carcinoma (CRC) is exclusively colonized by intracellular E. coli instead of extracellular form found in normal colonic mucosa. Surprisingly, the DNA repair gene MUTYH, which is a homologue of the E. coli gene mutY, is responsible for CRC. The current paper discusses the potential role of mutY in CRC etiology and concludes that research in this area can bring together the diverse threads of the CRC etiology puzzle.
Collapse
Affiliation(s)
- Abdul Arif Khan
- Department of Microbiology, College of Life Sciences, Cancer Hospital & Research Institute, Gwalior, MP, India; Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia.
| | | |
Collapse
|
59
|
Nógrády N, Király M, Borbás K, Tóth Á, Pászti J, Tóth I. Antimicrobial resistance and genetic characteristics of integron-carrier shigellae isolated in Hungary (1998-2008). J Med Microbiol 2013; 62:1545-1551. [PMID: 23800597 DOI: 10.1099/jmm.0.058917-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial susceptibility, integron carriage, genetic relationship and presence of some important virulence genes of the integron-carrier strains of Shigella sonnei (n = 230) and Shigella flexneri (n = 22) isolated from stool samples of patients in Hungary between 1998 and 2008 were investigated. Sixty-seven per cent (168/252) of the strains were resistant to sulfamethoxazole/trimethoprim (SxT) followed by streptomycin (S, 47%), ampicillin (A, 32%) and tetracycline (Tc, 28%). Thirty-six per cent (90/252) exhibited multidrug resistance, mostly showing SSxTTc or ASSxTc, ASSxTTc resistance patterns. An S. sonnei strain of imported origin was resistant to cefotaxime and harboured a blaCTX-M-55-type extended-spectrum β-lactamase gene. Altogether 33% of the S. sonnei (n = 75) and 14% of the S. flexneri (n = 3) strains had either class 1 or class 2 integrons or both. The variable regions encoded aadA1 or dfrA1-aadA1 genes for the class 1 and dfrA1-sat2-aadA1 or dfrA1-sat2 genes for the class 2 integrons. Pulsed-field gel electrophoresis analysis revealed that those strains that have different integron types represented different genetic clusters. The Shiga toxin (stx1) gene was identified in one S. sonnei strain and the cdtB gene was detected in an S. flexneri strain. The results reveal the high incidence of antibiotic resistance among Shigella isolates and the presence of the stx1 gene in S. sonnei and the cdtB gene in S. flexneri. The genetic diversity of Shigella spp. isolated recently in Hungary was also demonstrated.
Collapse
Affiliation(s)
- Noémi Nógrády
- Department of Phage Typing and Molecular Epidemiology, National Center for Epidemiology, H-1097 Budapest, Gyáli út 2-6, Hungary
| | - Margit Király
- Department of Phage Typing and Molecular Epidemiology, National Center for Epidemiology, H-1097 Budapest, Gyáli út 2-6, Hungary
| | - Klára Borbás
- Central Regional Laboratory of Enteric Pathogens, National Center for Epidemiology, H-1097 Budapest, Gyáli út 2-6, Hungary
| | - Ákos Tóth
- Department of Bacteriology, National Center for Epidemiology, H-1097 Budapest, Gyáli út 2-6, Hungary
| | - Judit Pászti
- Department of Phage Typing and Molecular Epidemiology, National Center for Epidemiology, H-1097 Budapest, Gyáli út 2-6, Hungary
| | - István Tóth
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1143, Budapest, Hungária krt. 21, Hungary
| |
Collapse
|
60
|
Sequence variability of P2-like prophage genomes carrying the cytolethal distending toxin V operon in Escherichia coli O157. Appl Environ Microbiol 2013; 79:4958-64. [PMID: 23770900 DOI: 10.1128/aem.01134-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytolethal distending toxins (CDT) are potent cytotoxins of several Gram-negative pathogenic bacteria, including Escherichia coli, in which five types (CDT-I to CDT-V) have been identified so far. CDT-V is frequently associated with Shiga-toxigenic E. coli (STEC), enterohemorrhagic E. coli (EHEC) O157 strains, and strains not fitting any established pathotypes. In this study, we were the first to sequence and annotate a 31.2-kb-long, noninducible P2-like prophage carrying the cdt-V operon from an stx- and eae-negative E. coli O157:H43 strain of bovine origin. The cdt-V operon is integrated in the place of the tin and old phage immunity genes (termed the TO region) of the prophage, and the prophage itself is integrated into the bacterial chromosome between the housekeeping genes cpxP and fieF. The presence of P2-like genes (n = 20) was investigated in a further five CDT-V-positive bovine E. coli O157 strains of various serotypes, three EHEC O157:NM strains, four strains expressing other variants of CDT, and eight CDT-negative strains. All but one CDT-V-positive atypical O157 strain uniformly carried all the investigated genomic regions of P2-like phages, while the EHEC O157 strains missed three regions and the CDT-V-negative strains carried only a few P2-like sequences. Our results suggest that P2-like phages play a role in the dissemination of cdt-V between E. coli O157 strains and that after integration into the bacterial chromosome, they adapted to the respective hosts and became temperate.
Collapse
|
61
|
Borriello G, Lucibelli MG, Pesciaroli M, Carullo MR, Graziani C, Ammendola S, Battistoni A, Ercolini D, Pasquali P, Galiero G. Diversity of Salmonella spp. serovars isolated from the intestines of water buffalo calves with gastroenteritis. BMC Vet Res 2012; 8:201. [PMID: 23098237 PMCID: PMC3514206 DOI: 10.1186/1746-6148-8-201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/10/2012] [Indexed: 11/10/2022] Open
Abstract
Background Salmonellosis in water buffalo (Bubalus bubalis) calves is a widespread disease characterized by severe gastrointestinal lesions, profuse diarrhea and severe dehydration, occasionally exhibiting a systemic course. Several Salmonella serovars seem to be able to infect water buffalo, but Salmonella isolates collected from this animal species have been poorly characterized. In the present study, the prevalence of Salmonella spp. in water buffalo calves affected by lethal gastroenteritis was assessed, and a polyphasic characterization of isolated strains of S. Typhimurium was performed. Results The microbiological analysis of the intestinal contents obtained from 248 water buffalo calves affected by lethal gastroenteritis exhibited a significant prevalence of Salmonella spp. (25%), characterized by different serovars, most frequently Typhimurium (21%), Muenster (11%), and Give (11%). The 13 S. Typhimurium isolates were all associated with enterocolitis characterized by severe damage of the intestine, and only sporadically isolated with another possible causative agent responsible for gastroenteritis, such as Cryptosporidium spp., Rotavirus or Clostridium perfringens. Other Salmonella isolates were mostly isolated from minor intestinal lesions, and often (78% of cases) isolated with other microorganisms, mainly toxinogenic Escherichia coli (35%), Cryptosporidium spp. (20%) and Rotavirus (10%). The S. Typhimurium strains were characterized by phage typing and further genotyped by polymerase chain reaction (PCR) detection of 24 virulence genes. The isolates exhibited nine different phage types and 10 different genetic profiles. Three monophasic S. Typhimurium (B:4,12:i:-) isolates were also found and characterized, displaying three different phage types and three different virulotypes. The molecular characterization was extended to the 7 S. Muenster and 7 S. Give isolates collected, indicating the existence of different virulotypes also within these serovars. Three representative strains of S. Typhimurium were tested in vivo in a mouse model of mixed infection. The most pathogenic strain was characterized by a high number of virulence factors and the presence of the locus agfA, coding for a thin aggregative fimbria. Conclusions These results provide evidence that Salmonella is frequently associated with gastroenteritis in water buffalo calves, particularly S. Typhimurium. Moreover, the variety in the number and distribution of different virulence markers among the collected S. Typhimurium strains suggests that within this serovar there are different pathotypes potentially responsible for different clinical syndromes.
Collapse
Affiliation(s)
- Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Tóth I, Dobrindt U, Koscsó B, Kósa A, Herpay M, Nagy B. Genetic and phylogenetic analysis of avian extraintestinal and intestinal Escherichia coli. Acta Microbiol Immunol Hung 2012; 59:393-409. [PMID: 22982643 DOI: 10.1556/amicr.59.2012.3.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) isolates of animals and man are known to carry specific virulence associated genes. The intestinal tract, it is primarily colonized by various strains of commensal E. coli but it may include ExPEC as well. Here we aimed to assess possible genetic and evolutionary linkages between extraintestinal pathogenic and intestinal (commensal) E. coli of poultry. For that purpose we analysed 71 ExPEC isolates, and 40 intestinal isolates assumed to be commensal E. coli (IntEC), from dead chickens and turkey poults for 26 virulence related genes. Although the two groups shared several virulence determinants the genes pic, papC, and cdtIV were exclusively present in ExPEC and further five genes (colV, iss, kpsM, tsh and iutA), were significantly more frequent among ExPEC. Phylogenetic backgrounds of ExPEC and of IntEC isolates indicated significant differences. A 40% of ExPEC belonged to phylogroup A primarily containing strains of serogroup O78. Phylogroup D contained ExPEC strains of serogroups O53 (2 strains) and O115 (5 strains) characterized by the cdt-IV genes, suggesting the existence of new clones of avian ExPEC in phylogenetic group D. On the other hand, a 42.5% of IntEC belonged to phylogroup B1 with diverse serogroups. Our data provide insight into the clonal evolution of avian ExPEC especially in phylogenetic groups A and D, resulting avian ExPEC with similarities to human ExPEC.
Collapse
Affiliation(s)
- István Tóth
- 1 Hungarian Academy of Sciences Institute, for Veterinary Medical Research, Centre for Agricultural Research Budapest Hungary
| | | | - Balázs Koscsó
- 1 Hungarian Academy of Sciences Institute, for Veterinary Medical Research, Centre for Agricultural Research Budapest Hungary
| | - Anna Kósa
- 4 Central Agricultural Office Vas County Directorate Szombathely Hungary
| | - Mária Herpay
- 5 National Center for Epidemiology Budapest Hungary
| | - Béla Nagy
- 1 Hungarian Academy of Sciences Institute, for Veterinary Medical Research, Centre for Agricultural Research Budapest Hungary
| |
Collapse
|
63
|
Borriello G, Lucibelli MG, De Carlo E, Auriemma C, Cozza D, Ascione G, Scognamiglio F, Iovane G, Galiero G. Characterization of enterotoxigenic E. coli (ETEC), Shiga-toxin producing E. coli (STEC) and necrotoxigenic E. coli (NTEC) isolated from diarrhoeic Mediterranean water buffalo calves (Bubalus bubalis). Res Vet Sci 2012; 93:18-22. [PMID: 21658736 PMCID: PMC7118792 DOI: 10.1016/j.rvsc.2011.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 11/19/2022]
Abstract
Two hundred and twenty Escherichia coli isolates from 314 Mediterranean water buffalo calves less than 4 weeks old affected by severe diarrhoea with a lethal outcome were characterized for the presence of the virulence factors LT, ST, Stx1, Stx2, haemolysins, intimin, CNF1, CNF2, CDT-I, CDT-II, CDT-III, CDT-IV, and F17-related fimbriae (F17a, F17b, F17c, F17d). The prevalence of ETEC, STEC and NTEC were 1.8%, 6.8% and 20.9%, respectively. The ETEC isolates were all LT-positive and ST-negative. The STEC isolates were all Stx and intimin-positive, with Stx1 (80%) more frequent than Stx2 (27%). The NTEC isolates were all CNF and Hly-positive, with CNF2 (83%) more frequent than CNF1 (22%). Susceptibility assays to 11 antimicrobials displayed high rates of resistance (>30%) to antimicrobials tested. These data show that the most prevalent strains in diarrhoeic water buffalo calves were NTEC, mostly CNF2 and HlyA-positive, with strong associations CNF2/CDT-III and CNF2/F17c.
Collapse
Affiliation(s)
- G Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055 Portici, NA, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Norwegian sheep are an important reservoir for human-pathogenic Escherichia coli O26:H11. Appl Environ Microbiol 2012; 78:4083-91. [PMID: 22492457 DOI: 10.1128/aem.00186-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previous national survey of Escherichia coli in Norwegian sheep detected eae-positive (eae(+)) E. coli O26:H11 isolates in 16.3% (80/491) of the flocks. The purpose of the present study was to evaluate the human-pathogenic potential of these ovine isolates by comparing them with E. coli O26 isolates from humans infected in Norway. All human E. coli O26 isolates studied carried the eae gene and shared flagellar type H11. Two-thirds of the sheep flocks and 95.1% of the patients harbored isolates containing arcA allele type 2 and espK and were classified as enterohemorrhagic E. coli (EHEC) (stx positive) or EHEC-like (stx negative). These isolates were further divided into group A (EspK2 positive), associated with stx(2-EDL933) and stcE(O103), and group B (EspK1 positive), associated with stx(1a). Although the stx genes were more frequently present in isolates from patients (46.3%) than in those from sheep flocks (5%), more than half of the ovine isolates in the EHEC/EHEC-like group had multiple-locus variable number of tandem repeat analysis (MLVA) profiles that were identical to those seen in stx-positive human O26:H11 isolates. This indicates that EHEC-like ovine isolates may be able to acquire stx-carrying bacteriophages and thereby have the possibility to cause serious illness in humans. The remaining one-third of the sheep flocks and two of the patients had isolates fulfilling the criteria for atypical enteropathogenic E. coli (aEPEC): arcA allele type 1 and espK negative (group C). The majority of these ovine isolates showed MLVA profiles not previously seen in E. coli O26:H11 isolates from humans. However, according to their virulence gene profile, the aEPEC ovine isolates should be considered potentially pathogenic for humans. In conclusion, sheep are an important reservoir of human-pathogenic E. coli O26:H11 isolates in Norway.
Collapse
|
65
|
Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage. Int J Nephrol 2012; 2012:681473. [PMID: 22506110 PMCID: PMC3312279 DOI: 10.1155/2012/681473] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/02/2011] [Accepted: 12/01/2011] [Indexed: 01/17/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a causative agent in the vast majority of urinary tract infections (UTIs), including cystitis and pyelonephritis, and infectious complications, which may result in acute renal failure in healthy individuals as well as in renal transplant patients. UPEC expresses a multitude of virulence factors to break the inertia of the mucosal barrier. In response to the breach by UPEC into the normally sterile urinary tract, host inflammatory responses are triggered leading to cytokine production, neutrophil influx, and the exfoliation of infected bladder epithelial cells. Several signaling pathways activated during UPEC infection, including the pathways known to activate the innate immune response, interact with calcium-dependent signaling pathways. Some UPEC isolates, however, might possess strategies to delay or suppress the activation of components of the innate host response in the urinary tract. Studies published in the recent past provide new information regarding how virulence factors of uropathogenic E. coli are involved in activation of the innate host response. Despite numerous host defense mechanisms, UPEC can persist within the urinary tract and may serve as a reservoir for recurrent infections and serious complications. Presentation of the molecular details of these events is essential for development of successful strategies for prevention of human UTIs and urological complications associated with UTIs.
Collapse
|
66
|
Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. J Clin Microbiol 2012; 50:1673-8. [PMID: 22378905 DOI: 10.1128/jcm.05057-11] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to improve the identification of avian pathogenic Escherichia coli (APEC) strains, an extensive characterization of 1,491 E. coli isolates was conducted, based on serotyping, virulence genotyping, and experimental pathogenicity for chickens. The isolates originated from lesions of avian colibacillosis (n = 1,307) or from the intestines of healthy animals (n = 184) from France, Spain, and Belgium. A subset (460 isolates) of this collection was defined according to their virulence for chicks. Six serogroups (O1, O2, O5, O8, O18, and O78) accounted for 56.5% of the APEC isolates and 22.5% of the nonpathogenic isolates. Thirteen virulence genes were more frequently present in APEC isolates than in nonpathogenic isolates but, individually, none of them could allow the identification of an isolate as an APEC strain. In order to take into account the diversity of APEC strains, a statistical analysis based on a tree-modeling method was therefore conducted on the sample of 460 pathogenic and nonpathogenic isolates. This resulted in the identification of four different associations of virulence genes that enables the identification of 70.2% of the pathogenic strains. Pathogenic strains were identified with an error margin of 4.3%. The reliability of the link between these four virulence patterns and pathogenicity for chickens was validated on a sample of 395 E. coli isolates from the collection. The genotyping method described here allowed the identification of more APEC isolates with greater reliability than the classical serotyping methods currently used in veterinary laboratories.
Collapse
|
67
|
Molecular characterizations of cytolethal distending toxin produced by Providencia alcalifaciens strains isolated from patients with diarrhea. Infect Immun 2012; 80:1323-32. [PMID: 22252871 DOI: 10.1128/iai.05831-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytolethal distending toxins (CDTs), which block eukaryotic cell proliferation by acting as inhibitory cyclomodulins, are produced by diverse groups of Gram-negative bacteria. Active CDT is composed of three polypeptides--CdtA, CdtB, and CdtC--encoded by the genes cdtA, cdtB, and cdtC, respectively. We developed a PCR-restriction fragment length polymorphism assay for the detection and differentiation of five alleles of cdtB (Cdt-I through Cdt-V) in Escherichia coli and used the assay to investigate the prevalence and characteristic of CDT-producing E. coli in children with diarrhea (A. Hinenoya et al., Microbiol. Immunol. 53:206-215, 2009). In these assays, two untypable cdtB genes were detected and the organisms harboring the cdtB gene were identified as Providencia alcalifaciens (strains AH-31 and AS-1). Nucleotide sequence analysis of the cdt gene cluster revealed that the cdtA, cdtB, and cdtC genes of P. alcalifaciens are of 750, 810, and 549 bp, respectively. To understand the possible horizontal transfer of the cdt genes among closely related species, the presence of cdt genes was screened in various Providencia spp. by colony hybridization assay, and the cdt gene cluster was found in only limited strains of P. alcalifaciens. Genome walking revealed that the cdt gene cluster of P. alcalifaciens is located adjacent to a putative transposase gene, suggesting the locus might be horizontally transferable. Interestingly, the CDT of P. alcalifaciens (PaCDT) showed some homology with the CDT of Shigella boydii. Whereas filter-sterilized lysates of strains AH-31 and AS-1 showed distention of CHO but not of HeLa cells, E. coli CDT-I exhibited distention of both cells. This activity of PaCDT was confirmed by generating recombinant PaCDT protein, which could also be neutralized by rabbit anti-PaCdtB antibody. Furthermore, recombinant PaCDT was found to induce G(2)/M cell cycle arrest and phosphorylation of host histone H2AX, a sensitive marker of DNA double-strand breaks. To our knowledge, this is the first report showing that certain clinical P. alcalifaciens strains could produce variants of the CDTs compared.
Collapse
|
68
|
Azevedo Feitosa Ferro T, Costa Moraes F, Meneses da Silva A, Porcy C, Amorim Soares L, Andrade Monteiro C, Thyara Melo Lobão N, Amazonas Assis de Mello F, Monteiro-Neto V, de Maria Silva Figueirêdo P. Characterization of Virulence Factors in Enteroaggregative and Atypical Enteropathogenic <i>Escherichia coli</i> Strains Isolated from Children with Diarrhea. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aid.2012.24022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
69
|
Konno T, Yatsuyanagi J, Takahashi S, Kumagai Y, Wada E, Chiba M, Saito S. Isolation and Identification of Escherichia albertii from a Patient in an Outbreak of Gastroenteritis. Jpn J Infect Dis 2012; 65:203-7. [DOI: 10.7883/yoken.65.203] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
70
|
Pereira RVV, Santos TMA, Bicalho ML, Caixeta LS, Machado VS, Bicalho RC. Antimicrobial resistance and prevalence of virulence factor genes in fecal Escherichia coli of Holstein calves fed milk with and without antimicrobials. J Dairy Sci 2011; 94:4556-65. [PMID: 21854928 DOI: 10.3168/jds.2011-4337] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/30/2011] [Indexed: 12/31/2022]
Abstract
Diarrhea in calves has a significant effect on the dairy industry. A common management practice for preventing or decreasing the effects of such disease in preweaned calves is by the use of antimicrobials in milk or milk replacer. In this study, Escherichia coli antimicrobial resistance in fecal samples collected from calves 2 to 8 d of age that had or had not received antimicrobials in the milk and that had or had not signs of diarrhea by inspection of fecal consistency were investigated. Specifically, resistance of E. coli isolates to individual antimicrobials, multiresistance patterns, and presence of virulence factors were analyzed. Escherichia coli isolates were tested for susceptibility to 12 antimicrobials by use of a Kirby-Bauer disk diffusion assay. The study was conducted at 3 farms, 1 administering growth-promoting antimicrobials (GPA) in the milk and 2 not using GPA in the milk (NGPA). All isolates were susceptible to ciprofloxacin and cefepime. From the total isolates tested, 84% (n=251) were resistant to at least 2 antimicrobials and 81% (n=251) were resistant to 3 or more antimicrobials. When antimicrobial resistance was compared between GPA and NGPA, it was observed that the GPA group had higher odds of antimicrobial resistance for most of the individual antimicrobials tested. No significant correlation of virulence factors in GPA or NGPA and diarrheic or non-diarrheic (control) fecal samples was found. Of the 32 virulence factors evaluated, 21 were detected in the study population; the incidence of only 1 virulence factor was statistically significant in each of the diarrheic status (diarrheic or non-diarrheic) and treatment status (NGPA or GPA) groups. Phylogenetic analysis based on the nucleotide sequence of the DNA gyrase gene (gyrB) from 31 fecal E. coli isolates revealed 3 main clades.
Collapse
Affiliation(s)
- R V V Pereira
- Department of Population Medicine and Diagnostic Sciences. College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
71
|
Morris WE, Venzano AJ, Elizondo A, Vilte DA, Mercado EC, Fernandez-Miyakawa ME. Necrotic enteritis in young calves. J Vet Diagn Invest 2011; 23:254-9. [PMID: 21398444 DOI: 10.1177/104063871102300209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Non-enterotoxin (CPE)-producing Clostridium perfringens type A has been associated with enteritis in calves. Recent evidence has suggested that a novel toxin, named beta2 (CPB2), is implicated in the pathogenesis of this disease, although there is little evidence supporting this. In the current study, the role of C. perfringens type A in an outbreak of enteritis in calves was studied. Two 20-day-old dairy calves exhibiting apathy and reluctance to eat, with paresis of the anterior limbs, were euthanized for postmortem examination. Gross and histological changes compatible with acute enteritis, rumenitis, meningitis, and pneumonia were seen in both calves. Clostridium perfringens type A non-CPE, non-CPB2 was isolated from the abomasum and the small intestine. Escherichia coli ONTH8 (with cdtBIII and f17 virulence genes detected by polymerase chain reaction) was also isolated from the brain, abomasum, and intestine from both calves. All the samples were negative for Salmonella spp. When the C. perfringens strain was inoculated into bovine ligated small and large intestinal loops, cell detachment, erosion, and hemorrhage of the lamina propria were observed, predominantly in the small intestine. The results suggest that non-CPE, non-CPB2 C. perfringens type A is able to induce pathologic changes in the intestine of calves, probably enhanced by other pathogens, such as some pathogenic E. coli strains.
Collapse
Affiliation(s)
- Winston E Morris
- Instituto de Patobiología, CICVyA-INTA Castelar, De los reseros y las Cabañas, CC 25, 1712 Castelar, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
72
|
Tramuta C, Nucera D, Robino P, Salvarani S, Nebbia P. Virulence factors and genetic variability of uropathogenic Escherichia coli isolated from dogs and cats in Italy. J Vet Sci 2011; 12:49-55. [PMID: 21368563 PMCID: PMC3053467 DOI: 10.4142/jvs.2011.12.1.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the association between virulence genotypes and phylogenetic groups among Escherichia (E.) coli isolates obtained from pet dogs and cats with cystitis was detected, and fingerprinting methods were used to explore the relationship among strains. Forty uropathogenic E. coli (UPEC) isolated from dogs (n = 30) and cats (n = 10) in Italy were analysed by polymerase chain reaction (PCR) for the presence of virulence factors and their classification into phylogenetic groups. The same strains were characterized by repetitive extragenic palindromic (REP)- and enterobacterial repetitive intergenic consensus (ERIC)-PCR techniques. We found a high number of virulence factors such as fimbriae A, S fimbriae (sfa) and cytotoxic necrotizing factor 1 (cnf1) significantly associated with phylogenetic group B2. We demonstrated a high correlation between α-hemolysin A and pyelonephritis C, sfa, and cnf1 operons, confirming the presence of pathogenicity islands in these strains. In addition, UPEC belonging to group B2 harboured a greater number of virulence factors than strains from phylogenetic groups A, B1, and D. REP- and ERIC-PCR grouped the UPEC isolates into two major clusters, the former grouping E. coli strains belonging to phylogenetic group B2 and D, the latter grouping those belonging to groups A and B1. Given the significant genetic variability among the UPEC strains found in our study, it can be hypothesized that no specific genotype is responsible for cystitis in cats or dogs.
Collapse
Affiliation(s)
- Clara Tramuta
- Department of Animals Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, Italy
| | | | | | | | | |
Collapse
|
73
|
Bacteriophage-encoding cytolethal distending toxin type V gene induced from nonclinical Escherichia coli isolates. Infect Immun 2011; 79:3262-72. [PMID: 21646456 DOI: 10.1128/iai.05071-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytolethal distending toxin (Cdt) is produced by a variety of pathogenic bacteria, including pathogenic serotypes of Shiga toxin-producing Escherichia coli (STEC). The Cdt family comprises five variants (Cdt-I to Cdt-V) encoded by three genes located within the chromosome or plasmids or, in the case of Cdt-I, within bacteriophages. In this study, we evaluated the occurrence of the cdt gene in a collection of 140 environmental STEC isolates. cdt was detected in 12.1% of strains, of which five strains carried inducible bacteriophages containing the Cdt-V variant. Two Cdt-V phages of the Siphoviridae morphology lysogenized Shigella sonnei, generating two lysogens: a single Cdt phage lysogen and a double lysogen, containing a Cdt phage and an Stx phage, both from the wild-type strain. The rates of induction of Cdt phages were evaluated by quantitative PCR, and spontaneous induction of Cdt-V phage was observed, whereas induction of Stx phage in the double lysogen was mitomycin C dependent. The Cdt distending effect was observed in HeLa cells inoculated with the supernatant of the Cdt-V phage lysogen. A ClaI fragment containing the cdt-V gene of one phage was cloned, and sequencing confirmed the presence of Cdt-V, as well as a fragment downstream from the cdt homolog to gpA, encoding a replication protein of bacteriophage P2. Evaluation of Cdt-V phages in nonclinical water samples showed densities of 10(2) to 10(9) gene copies in 100 ml, suggesting the high prevalence of Cdt phages in nonclinical environments.
Collapse
|
74
|
Salvarani S, Tramuta C, Nebbia P, Robino P. Occurrence and functionality of cycle inhibiting factor, cytotoxic necrotising factors and cytolethal distending toxins in Escherichia coli isolated from calves and dogs in Italy. Res Vet Sci 2011; 92:372-7. [PMID: 21621806 DOI: 10.1016/j.rvsc.2011.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Escherichia coli isolated from animals up to three months of age, with diarrhea (255 calves and 29 dogs (pups)), without diarrhea (21 calves and 11 pups, used as controls), and 58 adult dogs with cystitis were tested to investigate the occurrence and functional expression of cyclomodulins cycle inhibiting factor (CIF), cytotoxic necrotizing factors (CNFs) and cytolethal distending toxins (CDTs). In cyclomodulin-positive isolates the association was assessed with other virulence genotypes and phylogenetic groups. Of 374 E. coli isolates, 80 (21.4%) were positive for at least one cyclomodulin and 14 of the latter (3.7%) showed different combinations of more than one. cif-positive isolates showed a low number of additional virulence factors, and were commonly associated with phylogroup B1, while cnf- and cdt-positive isolates, harboring many extraintestinal virulence factors, belonged to phylogroups B2 and D. Almost all isolates showed an irreversible cytopathic effect (CPE), displaying functionality of cyclomodulins. Five isolates that presented a mutation of cif were CPE-negative.
Collapse
Affiliation(s)
- S Salvarani
- Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco (TO), Italy
| | | | | | | |
Collapse
|
75
|
Jinadasa RN, Bloom SE, Weiss RS, Duhamel GE. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. MICROBIOLOGY-SGM 2011; 157:1851-1875. [PMID: 21565933 DOI: 10.1099/mic.0.049536-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytolethal distending toxin (CDT) is a heterotrimeric AB-type genotoxin produced by several clinically important Gram-negative mucocutaneous bacterial pathogens. Irrespective of the bacterial species of origin, CDT causes characteristic and irreversible cell cycle arrest and apoptosis in a broad range of cultured mammalian cell lineages. The active subunit CdtB has structural homology with the phosphodiesterase family of enzymes including mammalian DNase I, and alone is necessary and sufficient to account for cellular toxicity. Indeed, mammalian cells treated with CDT initiate a DNA damage response similar to that elicited by ionizing radiation-induced DNA double strand breaks resulting in cell cycle arrest and apoptosis. The mechanism of CDT-induced apoptosis remains incompletely understood, but appears to involve both p53-dependent and -independent pathways. While epithelial, endothelial and fibroblast cell lines respond to CDT by undergoing arrest of cell cycle progression resulting in nuclear and cytoplasmic distension that precedes apoptotic cell death, cells of haematopoietic origin display rapid apoptosis following a brief period of cell cycle arrest. In this review, the ecology of pathogens producing CDT, the molecular biology of bacterial CDT and the molecular mechanisms of CDT-induced cytotoxicity are critically appraised. Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens.
Collapse
Affiliation(s)
- Rasika N Jinadasa
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Stephen E Bloom
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gerald E Duhamel
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
76
|
Bicalho R, Machado V, Bicalho M, Gilbert R, Teixeira A, Caixeta L, Pereira R. Molecular and epidemiological characterization of bovine intrauterine Escherichia coli. J Dairy Sci 2010; 93:5818-30. [DOI: 10.3168/jds.2010-3550] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/30/2010] [Indexed: 11/19/2022]
|
77
|
Ghanbarpour R, Sami M, Salehi M, Ouromiei M. Phylogenetic background and virulence genes of Escherichia coli isolates from colisepticemic and healthy broiler chickens in Iran. Trop Anim Health Prod 2010; 43:153-7. [DOI: 10.1007/s11250-010-9667-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
|
78
|
Oaks JL, Besser TE, Walk ST, Gordon DM, Beckmen KB, Burek KA, Haldorson GJ, Bradway DS, Ouellette L, Rurangirwa FR, Davis MA, Dobbin G, Whittam TS. Escherichia albertii in wild and domestic birds. Emerg Infect Dis 2010; 16:638-46. [PMID: 20350378 PMCID: PMC3321939 DOI: 10.3201/eid1604.090695] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The isolates were similar to those that cause disease in humans. Escherichia albertii has been associated with diarrhea in humans but not with disease or infection in animals. However, in December 2004, E. albertii was found, by biochemical and genetic methods, to be the probable cause of death for redpoll finches (Carduelis flammea) in Alaska. Subsequent investigation found this organism in dead and subclinically infected birds of other species from North America and Australia. Isolates from dead finches in Scotland, previously identified as Escherichia coli O86:K61, also were shown to be E. albertii. Similar to the isolates from humans, E. albertii isolates from birds possessed intimin (eae) and cytolethal distending toxin (cdtB) genes but lacked Shiga toxin (stx) genes. Genetic analysis of eae and cdtB sequences, multilocus sequence typing, and pulsed-field gel electrophoresis patterns showed that the E. albertii strains from birds are heterogeneous but similar to isolates that cause disease in humans.
Collapse
Affiliation(s)
- J Lindsay Oaks
- Washington Animal Disease Diagnostic Laboratory, Washington State University, PO Box 647034, Pullman, WA 99164-7034, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Genome dynamics and its impact on evolution of Escherichia coli. Med Microbiol Immunol 2010; 199:145-54. [PMID: 20445988 DOI: 10.1007/s00430-010-0161-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Indexed: 02/08/2023]
Abstract
The Escherichia coli genome consists of a conserved part, the so-called core genome, which encodes essential cellular functions and of a flexible, strain-specific part. Genes that belong to the flexible genome code for factors involved in bacterial fitness and adaptation to different environments. Adaptation includes increase in fitness and colonization capacity. Pathogenic as well as non-pathogenic bacteria carry mobile and accessory genetic elements such as plasmids, bacteriophages, genomic islands and others, which code for functions required for proper adaptation. Escherichia coli is a very good example to study the interdependency of genome architecture and lifestyle of bacteria. Thus, these species include pathogenic variants as well as commensal bacteria adapted to different host organisms. In Escherichia coli, various genetic elements encode for pathogenicity factors as well as factors, which increase the fitness of non-pathogenic bacteria. The processes of genome dynamics, such as gene transfer, genome reduction, rearrangements as well as point mutations contribute to the adaptation of the bacteria into particular environments. Using Escherichia coli model organisms, such as uropathogenic strain 536 or commensal strain Nissle 1917, we studied mechanisms of genome dynamics and discuss these processes in the light of the evolution of microbes.
Collapse
|
80
|
Abstract
Determinants of urosepsis in Escherichia coli remain incompletely defined. Cyclomodulins (CMs) are a growing functional family of toxins that hijack the eukaryotic cell cycle. Four cyclomodulin types are actually known in E. coli: cytotoxic necrotizing factors (CNFs), cycle-inhibiting factor (Cif), cytolethal distending toxins (CDTs), and the pks-encoded toxin. In the present study, the distribution of CM-encoding genes and the functionality of these toxins were investigated in 197 E. coli strains isolated from patients with community-acquired urosepsis (n = 146) and from uninfected subjects (n = 51). This distribution was analyzed in relation to the phylogenetic background, clinical origin, and antibiotic resistance of the strains. It emerged from this study that strains harboring the pks island and the cnf1 gene (i) were strongly associated with the B2 phylogroup (P, <0.001), (ii) frequently harbored both toxin-encoded genes in phylogroup B2 (33%), and (iii) were predictive of a urosepsis origin (P, <0.001 to 0.005). However, the prevalences of the pks island among phylogroup B2 strains, in contrast to those of the cnf1 gene, were not significantly different between fecal and urosepsis groups, suggesting that the pks island is more important for the colonization process and the cnf1 gene for virulence. pks- or cnf1-harboring strains were significantly associated with susceptibility to antibiotics (amoxicillin, cotrimoxazole, and quinolones [P, <0.001 to 0.043]). Otherwise, only 6% and 1% of all strains harbored the cdtB and cif genes, respectively, with no particular distribution by phylogenetic background, antimicrobial susceptibility, or clinical origin.
Collapse
|
81
|
Choi SK, Lee MH, Lee BH, Jung JY, Choi CS. Virulence Factor Profiles of Escherichia coli Isolated from Pork and Chicken Meats Obtained from Retail Markets. Korean J Food Sci Anim Resour 2010. [DOI: 10.5851/kosfa.2010.30.1.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
82
|
Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle. Appl Environ Microbiol 2009; 75:6282-91. [PMID: 19684174 DOI: 10.1128/aem.00873-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Characterization of an Escherichia coli O157 strain collection (n = 42) derived from healthy Hungarian cattle revealed the existence of diverse pathotypes. Enteropathogenic E. coli (EPEC; eae positive) appeared to be the most frequent pathotype (n = 22 strains), 11 O157 strains were typical enterohemorrhagic E. coli (EHEC; stx and eae positive), and 9 O157 strains were atypical, with none of the key stx and eae virulence genes detected. EHEC and EPEC O157 strains all carried eae-gamma, tir-gamma, tccP, and paa. Other virulence genes located on the pO157 virulence plasmid and different O islands (O island 43 [OI-43] and OI-122), as well as espJ and espM, also characterized the EPEC and EHEC O157 strains with similar frequencies. However, none of these virulence genes were detected by PCR in atypical O157 strains. Interestingly, five of nine atypical O157 strains produced cytolethal distending toxin V (CDT-V) and carried genes encoding long polar fimbriae. Macro-restriction fragment enzyme analysis (pulsed-field gel electrophoresis) revealed that these E. coli O157 strains belong to four main clusters. Multilocus sequence typing analysis revealed that five housekeeping genes were identical in EHEC and EPEC O157 strains but were different in the atypical O157 strains. These results suggest that the Hungarian bovine E. coli O157 strains represent at least two main clones: EHEC/EPEC O157:H7/NM (nonmotile) and atypical CDT-V-producing O157 strains with H antigens different from H7. The CDT-V-producing O157 strains represent a novel genogroup. The pathogenic potential of these strains remains to be elucidated.
Collapse
|
83
|
Martin HR, Taylor NS, Buckley EM, Marini RP, Patterson MM, Fox JG. Characterization of cytotoxic necrotizing factor 1-producing Escherichia coli strains from faeces of healthy macaques. J Med Microbiol 2009; 58:1354-1358. [PMID: 19541782 DOI: 10.1099/jmm.0.012088-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Twenty-five (27 %) of 92 clinically normal macaques were found to have beta-haemolytic Escherichia coli isolated from their faeces. Five of six isolates chosen for further characterization had multiple antibiotic resistance and were PCR-positive for cytotoxic necrotizing factor 1 (cnf1) with a demonstrated cytopathic effect in vitro. By repetitive element sequence-based PCR genotyping, genetic similarity was established for selected isolates. We believe this to be the first report of E. coli strains producing CNF1 in non-human primates.
Collapse
Affiliation(s)
- Heather R Martin
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nancy S Taylor
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ellen M Buckley
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert P Marini
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mary M Patterson
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
84
|
Highet AR, Berry AM, Bettelheim KA, Goldwater PN. The frequency of molecular detection of virulence genes encoding cytolysin A, high-pathogenicity island and cytolethal distending toxin of Escherichia coli in cases of sudden infant death syndrome does not differ from that in other infant deaths and healthy infants. J Med Microbiol 2009; 58:285-289. [DOI: 10.1099/jmm.0.005322-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Consistent pathological findings in sudden infant death syndrome (SIDS) are seen which display similarities to the pathogenesis of toxaemic shock and/or sepsis. A key candidate infectious agent that is possibly involved is Escherichia coli, given its universal early colonization of the intestinal tract of infants and an increased frequency of toxigenic and mouse-lethal isolates from SIDS compared with comparison infants. An explanation for these findings has yet to be identified. Using PCR, we screened E. coli isolates from 145 SIDS and 101 dead control and healthy infants for three new candidate pathogenicity-related genes: clyA (cytolysin A), irp2 [high-pathogenicity island (HPI)-specific gene] and cdt (cytolethal distending toxin). The results failed to show a positive correlation with SIDS, instead proving that clyA and irp2 genes were common to the infant intestinal E. coli. Interestingly we observed a high rate of carriage of these two potentially pathogenic genes in E. coli from healthy infants in the absence of diarrhoeal disease, and we report that in a number of cases, the detection of HPI-specific genes was predictable by serotype. Despite the lack of associations defined so far, there remains the likelihood that genetic determinants influence the interactions between E. coli and the host, so these factors may be part of the multi-factorial aspect of SIDS.
Collapse
Affiliation(s)
- Amanda R. Highet
- University of Adelaide Discipline of Paediatrics, North Adelaide, South Australia, Australia
- Department of Microbiology and Infectious Diseases, SA Pathology, Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia, Australia
| | - Anne M. Berry
- Department of Microbiology and Infectious Diseases, SA Pathology, Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia, Australia
| | - Karl A. Bettelheim
- Department of Microbiology and Infectious Diseases, SA Pathology, Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia, Australia
| | - Paul N. Goldwater
- University of Adelaide Discipline of Paediatrics, North Adelaide, South Australia, Australia
- Department of Microbiology and Infectious Diseases, SA Pathology, Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia, Australia
| |
Collapse
|
85
|
Hinenoya A, Naigita A, Ninomiya K, Asakura M, Shima K, Seto K, Tsukamoto T, Ramamurthy T, Faruque SM, Yamasaki S. Prevalence and characteristics of cytolethal distending toxin-producing Escherichia coli from children with diarrhea in Japan. Microbiol Immunol 2009; 53:206-15. [DOI: 10.1111/j.1348-0421.2009.00116.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
86
|
Escherichia coli encoding Shiga toxin 2f as an emerging human pathogen. Int J Med Microbiol 2009; 299:343-53. [PMID: 19157976 DOI: 10.1016/j.ijmm.2008.10.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/24/2008] [Accepted: 10/19/2008] [Indexed: 11/22/2022] Open
Abstract
Escherichia coli harbouring the stx2f gene have been previously reported in pigeons. Here we demonstrate the presence of this allele in human diarrhoeagenic E. coli strains originally classified as atypical enteropathogenic E. coli (aEPEC). Thirty-two stx2f-positive E. coli serotyped as O63:H6, O128:H2, O132:H34, O145:H34, and O178:H7 were found to belong to a large number of clonal groups due to their different MLST-, PFGE- and virulence patterns. The appearance of various stx2f-positive clonal lineages among E. coli reveals emerging clinical significance. Therefore, it seems to be prudent to include stx2f into the diagnostic scope employed for laboratory investigation of enteric infections.
Collapse
|
87
|
Ghanbarpour R, Oswald E. Characteristics and virulence genes of Escherichia coli isolated from septicemic calves in southeast of Iran. Trop Anim Health Prod 2008; 41:1091-9. [PMID: 19067217 DOI: 10.1007/s11250-008-9289-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 11/28/2008] [Indexed: 11/25/2022]
Abstract
Virulence factors are associated with the capacity of E. coli strains to cause intestinal and extraintestinal infections. Thirty one E. coli isolates were obtained from heart blood or internal organs of septicemic calves. The O serogroups of isolates were determined. PCR assays were performed to determine the phylogenetic groups and presence of specific virulence genes. Fourteen (45.16%) isolates belonged to seven O serogroups (O8, O15, O20, O45, O78, O101 and O103) and 17 (54.83%) isolates were O-nontypeable. E. coli isolates fall into three phylogenetic groups included 15 isolates belonged to B1, 9 to A and 7 to D phylogenetic groups. Nineteen (61.29%) isolates exhibited at least one of the virulence genes. F17 family (5 isolates f17b, 3 isolates f17c, 1 isolate f17a) genes and aerobactin encoding gene of iucD (5 isolates) were the two most prevalent virulence genes. Three isolates were positive for cnf2 and cdtIII genes in combination and they were O-nontypeable. AfaE-VIII, CS31A gene (clpG) and hemolysin encoding gene (hly) were detected in 3, 4 and 3 isolates respectively. None of the isolates contained the ipaH sequences and the genes encoding fimbria (F5, F41, S, P), AfaI adesin, toxins (LT-I, ST-I, SLT-I, SLT-II, CNF1 and CDT-IV) and intimin.
Collapse
Affiliation(s)
- Reza Ghanbarpour
- Department of Microbiology, Faculty of Veterinary Medicine, Shahid Bahonar University, P.O. Box 76169-14111, Kerman, Iran.
| | | |
Collapse
|
88
|
Fratamico PM, Bhagwat AA, Injaian L, Fedorka-Cray PJ. Characterization of Shiga Toxin–ProducingEscherichia coliStrains Isolated from Swine Feces. Foodborne Pathog Dis 2008; 5:827-38. [DOI: 10.1089/fpd.2008.0147] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Pina M. Fratamico
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania
| | - Arvind A. Bhagwat
- Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| | - Lisa Injaian
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania
| | - Paula J. Fedorka-Cray
- Richard B. Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia
| |
Collapse
|
89
|
Cytolethal distending toxin type I and type IV genes are framed with lambdoid prophage genes in extraintestinal pathogenic Escherichia coli. Infect Immun 2008; 77:492-500. [PMID: 18981247 DOI: 10.1128/iai.00962-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five types of cytolethal distending toxin (CDT-I to CDT-V) have been identified in Escherichia coli. In the present study we cloned and sequenced the cdt-IV operon and flanking region from a porcine extraintestinal pathogenic E. coli (ExPEC) strain belonging to serogroup O75. We confirmed that similar to other CDTs, CDT-IV induced phosphorylation of host histone H2AX, a sensitive marker of DNA double-strand breaks, and blocked the HeLa cell cycle at the G(2)-M transition. The cdt-IV genes were framed by lambdoid prophage genes. We cloned and sequenced the cdt-I operon and flanking regions from a human ExPEC O18:K1:H7 strain and observed that cdt-I genes were also flanked by lambdoid prophage genes. PCR studies indicated that a gene coding for a putative protease was always associated with the cdtC-IV gene but was not associated with cdtC genes in strains producing CDT-I, CDT-III, and CDT-V. Our results suggest that the cdt-I and cdt-IV genes might have been acquired from a common ancestor by phage transduction and evolved in their bacterial hosts. The lysogenic bacteriophages have the potential to carry nonessential "cargo" genes or "morons" and therefore play a crucial role in the generation of genetic diversity within ExPEC.
Collapse
|
90
|
Yamasaki S, Asakura M, Tsukamoto T, Faruque SM, Deb R, Ramamurthy T. CYTOLETHAL DISTENDING TOXIN (CDT): GENETIC DIVERSITY, STRUCTURE AND ROLE IN DIARRHEAL DISEASE. TOXIN REV 2008. [DOI: 10.1080/15569540500320938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
91
|
The DNA Sequence of the Escherichia coli O22 O-Antigen Gene Cluster and Detection of Pathogenic Strains Belonging to E. coli Serogroups O22 and O91 by Multiplex PCR Assays Targeting Virulence Genes and Genes in the Respective O-Antigen Gene Clusters. FOOD ANAL METHOD 2008. [DOI: 10.1007/s12161-008-9046-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
92
|
Ok M, Güler L, Turgut K, Ok U, Sen I, Gündüz IK, Birdane MF, Güzelbekteş H. The studies on the aetiology of diarrhoea in neonatal calves and determination of virulence gene markers of Escherichia coli strains by multiplex PCR. Zoonoses Public Health 2008; 56:94-101. [PMID: 18771515 PMCID: PMC7165500 DOI: 10.1111/j.1863-2378.2008.01156.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to determine aetiological agents of diarrhoea in neonatal calves and to investigate virulence gene markers of Escherichia coli strains isolated from calves by multiplex polymerase chain reaction (PCR). Eighty‐two diarrhoeic calves and 18 healthy calves were used as subjects. Faeces were taken from the rectums of all the calves and were subjected to bacterial culture. Antigen enzyme‐linked immunosorbent assay (ELISA) was performed to detect rotavirus, coronavirus and E. coli K99 in faeces of all the calves. A multiplex PCR was used to characterize E. coli strains in all the calves. Escherichia coli was isolated from 37 faeces samples, Enterococcus ssp. was isolated from 22 faeces samples and Salmonella was isolated from one faeces sample in diarrhoeic calves. Furthermore, only E. coli was isolated from all 18 faeces samples of healthy calves. Of the 37 E. coli isolated from diarrhoeic calves, K99 (18.9%), F41 (18.9%), heat‐stable enterotoxin a (STa) (18.9%), Shiga toxin 1 (Stx1; 13.5%) and Shiga toxin 2 (Stx2; 5.4%) and intimin (8.1%) genes were identified by multiplex PCR. Of the 18 E. coli isolated from healthy calves, K99 (16.6%) and intimin (55.5%) genes were identified by PCR. A total of 15 rotavirus, 11 coronavirus and 11 E. coli K99 were detected in diarrhoeic calves by the antigen ELISA. As a result, this study shows that rotavirus, coronavirus, E. coli and Enterococcus ssp. were determined to play a role in the aetiology of diarrhoea in the neonatal calves. K99, F41, STa, Stx1 and Stx2 were found as the most common virulence gene markers of E. coli strains isolated from calves with diarrhoea. Multiplex PCR may be useful for characterization of E. coli isolated from calves.
Collapse
Affiliation(s)
- M Ok
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
OLOOMI MANA, BOUZARI SAEID. Molecular profile and genetic diversity of cytolethal distending toxin (CDT)-producing Escherichia coli isolates from diarrheal patients. APMIS 2008; 116:125-32. [DOI: 10.1111/j.1600-0463.2008.00910.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
94
|
Hinenoya A, Nagita A, Asakura M, Tsukamoto T, Ramamurthy T, Nair GB, Takeda Y, Yamasaki S. Cytolethal distending toxin (Cdt)-producing escherichia coli isolated from a child with bloody diarrhea in Japan. Microbiol Immunol 2008; 51:435-8. [PMID: 17446683 DOI: 10.1111/j.1348-0421.2007.tb03917.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a retrospective analysis by PCR, the cdtI gene encoding the cytolethal distending toxin (Cdt) was detected in Escherichia coli O2:H12 strain isolated from the bloody diarrheal stool specimen of a child. To our knowledge, this is the first report showing the possible association of Cdt-producing E. coli in Japan, particularly in a child with bloody diarrhea.
Collapse
Affiliation(s)
- Atsushi Hinenoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Loukiadis E, Nobe R, Herold S, Tramuta C, Ogura Y, Ooka T, Morabito S, Kérourédan M, Brugère H, Schmidt H, Hayashi T, Oswald E. Distribution, functional expression, and genetic organization of Cif, a phage-encoded type III-secreted effector from enteropathogenic and enterohemorrhagic Escherichia coli. J Bacteriol 2007; 190:275-85. [PMID: 17873042 PMCID: PMC2223761 DOI: 10.1128/jb.00844-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) inject effector proteins into host cells via a type III secretion system encoded by the locus of enterocyte effacement (LEE). One of these effectors is Cif, encoded outside the LEE by a lambdoid prophage. In this study, we demonstrated that the Cif-encoding prophage of EPEC strain E22 is inducible and produces infectious phage particles. We investigated the distribution and functional expression of Cif in 5,049 E. coli strains of human, animal, and environmental origins. A total of 115 E. coli isolates from diverse origins and geographic locations carried cif. The presence of cif was tightly associated with the LEE, since all the cif-positive isolates were positive for the LEE. These results suggested that the Cif-encoding prophages have been widely disseminated within the natural population of E. coli but positively selected within the population of LEE-positive strains. Nonetheless, 66% of cif-positive E. coli strains did not induce a typical Cif-related phenotype in eukaryotic cells due to frameshift mutations or insertion of an IS element in the cif gene. The passenger region of the prophages carrying cif was highly variable and showed various combinations of IS elements and genes coding for other effectors such as nleB, nleC, nleH, nleG, espJ, and nleA/espI (some of which were also truncated). This diversity and the presence of nonfunctional effectors should be taken into account to assess EPEC and EHEC pathogenicity and tropism.
Collapse
Affiliation(s)
- Estelle Loukiadis
- INRA, UMR 1225, Ecole Nationale Vétérinaire de Toulouse, Toulouse 31076, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Asakura M, Hinenoya A, Alam MS, Shima K, Zahid SH, Shi L, Sugimoto N, Ghosh AN, Ramamurthy T, Faruque SM, Nair GB, Yamasaki S. An inducible lambdoid prophage encoding cytolethal distending toxin (Cdt-I) and a type III effector protein in enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2007; 104:14483-8. [PMID: 17726095 PMCID: PMC1964815 DOI: 10.1073/pnas.0706695104] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Indexed: 01/01/2023] Open
Abstract
Cytolethal distending toxins (CDTs) are inhibitory cyclomodulins, which block eukaryotic cell proliferation and are produced by a diverse group of Gram-negative bacteria, including Escherichia coli strains associated with intestinal and extraintestinal infections. However, the mode of transmission of the toxin gene clusters among diverse bacterial pathogens is unclear. We found that Cdt-I produced by enteropathogenic E. coli strains associated with diarrhea is encoded by a lambdoid prophage, which is inducible and infectious. The genome of Cdt-I converting phage (CDT-1Phi) comprises 47,021 nucleotides with 60 predicted ORFs organized into six genomic regions encoding the head and tail, virulence, integrase, unknown functions, regulation, and lysis. The genomic organization of CDT-1Phi is similar to those of SfV, a serotype-converting phage of Shigella flexneri, and UTI89, a prophage identified in uropathogenic E. coli. Besides the cdtI gene cluster, the virulence region of CDT-1Phi genome contains sequences homologous to a truncated cycle inhibiting factor and a type 3 effector protein. Mutation analysis of susceptible E. coli strain C600 suggested that the outer membrane protein OmpC is a putative receptor for CDT-1Phi. CDT-1Phi genome was also found to integrate into the host bacterial chromosome forming lysogens, which produced biologically active Cdt-I. Furthermore, phage induction appeared to cause enhanced toxigenicity of the E. coli strains carrying lysogenic CDT-1Phi. Our results suggest that CDT-1Phi is the latest member of a growing family of lambdoid phages encoding bacterial cyclomodulins and that the phage may have a role in horizontal transfer of these virulence genes.
Collapse
Affiliation(s)
- Masahiro Asakura
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Hinenoya
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mohammad S. Alam
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kensuke Shima
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shamim Hasan Zahid
- Molecular Genetics Laboratory, International Center for Diarrhoeal Disease Research, Dhaka-1212, Bangladesh
| | - Lei Shi
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- College of Light Industry and Food Technology, South China University of Technology, Guangzou 510640, Peoples Republic of China
| | - Norihiko Sugimoto
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - A. N. Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India; and
| | - T. Ramamurthy
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India; and
| | - Shah M. Faruque
- Molecular Genetics Laboratory, International Center for Diarrhoeal Disease Research, Dhaka-1212, Bangladesh
| | - G. Balakrish Nair
- Molecular Genetics Laboratory, International Center for Diarrhoeal Disease Research, Dhaka-1212, Bangladesh
| | - Shinji Yamasaki
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- College of Light Industry and Food Technology, South China University of Technology, Guangzou 510640, Peoples Republic of China
| |
Collapse
|
97
|
Moulin-Schouleur M, Répérant M, Laurent S, Brée A, Mignon-Grasteau S, Germon P, Rasschaert D, Schouler C. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J Clin Microbiol 2007; 45:3366-76. [PMID: 17652485 PMCID: PMC2045314 DOI: 10.1128/jcm.00037-07] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains of human and avian origin show similarities that suggest that the avian strains potentially have zoonotic properties. However, the phylogenetic relationships between avian and human ExPEC strains are poorly documented, so this possibility is difficult to assess. We used PCR-based phylotyping and multilocus sequence typing (MLST) to determine the phylogenetic relationships between 39 avian pathogenic E. coli (APEC) strains of serogroups O1, O2, O18, and O78 and 51 human ExPEC strains. We also compared the virulence genotype and pathogenicity for chickens of APEC strains and human ExPEC strains. Twenty-eight of the 30 APEC strains of serogroups O1, O2, and O18 were classified by MLST into the same subcluster (B2-1) of phylogenetic group B2, whereas the 9 APEC strains of serogroup O78 were in phylogenetic groups D (3 strains) and B1 (6 strains). Human ExPEC strains were closely related to APEC strains in each of these three subclusters. The 28 avian and 25 human strains belonging to phylogenetic subcluster B2-1 all expressed the K1 antigen and presented no significant differences concerning the presence of other virulence factors. Moreover, human strains of this phylogenetic subcluster were highly virulent for chicks, so no host specificity was identified. Thus, APEC strains of serotypes O1:K1, O2:K1, and O18:K1 belong to the same highly pathogenic clonal group as human E. coli strains of the same serotypes isolated from cases of neonatal meningitis, urinary tract infections, and septicemia. These APEC strains constitute a potential zoonotic risk.
Collapse
|
98
|
Smith JL, Bayles DO. The contribution of cytolethal distending toxin to bacterial pathogenesis. Crit Rev Microbiol 2007; 32:227-48. [PMID: 17123907 DOI: 10.1080/10408410601023557] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytolethal distending toxin (CDT) is a bacterial toxin that initiates a eukaryotic cell cycle block at the G2 stage prior to mitosis. CDT is produced by a number of bacterial pathogens including: Campylobacter species, Escherichia coli, Salmonella enterica serovar Typhi, Shigella dystenteriae, enterohepatic Helicobacter species, Actinobacillus actinomycetemcomitans (the cause of aggressive periodontitis), and Haemophilus ducreyi (the cause of chancroid). The functional toxin is composed of three proteins; CdtB potentiates a cascade leading to cell cycle block, and CdtA and CdtC function as dimeric subunits, which bind CdtB and delivers it to the mammalian cell interior. Once inside the cell, CdtB enters the nucleus and exhibits a DNase I-like activity that results in DNA double-strand breaks. The eukaryotic cell responds to the DNA double-strand breaks by initiating a regulatory cascade that results in cell cycle arrest, cellular distension, and cell death. Mutations in CdtABC that cause any of the three subunits to lose function prevent the bacterial cell from inducing cytotoxicity. The result of CDT activity can differ somewhat depending on the eukaryotic cell types affected. Epithelial cells, endothelial cells, and keratinocytes undergo G2 cell cycle arrest, cellular distension, and death; fibroblasts undergo G1 and G2 arrest, cellular distension, and death; and immune cells undergo G2 arrest followed by apoptosis. CDT contributes to pathogenesis by inhibiting both cellular and humoral immunity via apoptosis of immune response cells, and by generating necrosis of epithelial-type cells and fibroblasts involved in the repair of lesions produced by pathogens resulting in slow healing and production of disease symptoms. Thus, CDT may function as a virulence factor in pathogens that produce the toxin.
Collapse
Affiliation(s)
- James L Smith
- Microbial Food Safety Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19083, USA.
| | | |
Collapse
|
99
|
Orth D, Grif K, Dierich MP, Würzner R. Cytolethal distending toxins in Shiga toxin-producing Escherichia coli: alleles, serotype distribution and biological effects. J Med Microbiol 2006; 55:1487-1492. [PMID: 17030906 DOI: 10.1099/jmm.0.46666-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To assess the prevalence of cytolethal distending toxin (CDT) among Shiga toxin-producing Escherichia coli (STEC), 202 STEC strains were investigated using PCRs targeting various cdt alleles (cdt-I to cdt-V). Seven of the 202 strains contained cdt-III and an additional seven contained cdt-V. All 14 cdt-positive strains produced biologically active CDT, as demonstrated by a progressive distension of cultured Chinese hamster ovary cells. The CDT-positive STEC belonged to eight different serotypes, including sorbitol-fermenting O157 : NM (non-motile). The data demonstrate that CDT is present in some STEC serotypes only. However, more studies are required to evaluate whether CDT presence is associated with severe disease.
Collapse
Affiliation(s)
- Dorothea Orth
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University and Austrian Reference Laboratory for Enterohaemorrhagic Escherichia coli, Schöpfstr. 41, A-6020 Innsbruck, Austria
| | - Katharina Grif
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University and Austrian Reference Laboratory for Enterohaemorrhagic Escherichia coli, Schöpfstr. 41, A-6020 Innsbruck, Austria
| | - Manfred P Dierich
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University and Austrian Reference Laboratory for Enterohaemorrhagic Escherichia coli, Schöpfstr. 41, A-6020 Innsbruck, Austria
| | - Reinhard Würzner
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University and Austrian Reference Laboratory for Enterohaemorrhagic Escherichia coli, Schöpfstr. 41, A-6020 Innsbruck, Austria
| |
Collapse
|
100
|
Moulin-Schouleur M, Schouler C, Tailliez P, Kao MR, Brée A, Germon P, Oswald E, Mainil J, Blanco M, Blanco J. Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J Clin Microbiol 2006; 44:3484-92. [PMID: 17021071 PMCID: PMC1594794 DOI: 10.1128/jcm.00548-06] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal pathogenic (ExPEC) Escherichia coli strains of serotype O18:K1:H7 are mainly responsible for neonatal meningitis and sepsis in humans and belong to a limited number of closely related clones. The same serotype is also frequently isolated from the extraintestinal lesions of colibacillosis in poultry, but it is not well known to what extent human and avian strains of this particular serotype are related. Twenty-two ExPEC isolates of human origin and 33 isolates of avian origin were compared on the basis of their virulence determinants, lethality for chicks, pulsed-field gel electrophoresis (PFGE) patterns, and classification in the main phylogenetic groups. Both avian and human isolates were lethal for chicks and harbored similar virulence genotypes. A major virulence pattern, identified in 75% of the isolates, was characterized by the presence of F1 variant fimbriae; S fimbriae; IbeA; the aerobactin system; and genomic fragments A9, A12, D1, D7, D10, and D11 and by the absence of P fimbriae, F1C fimbriae, Afa adhesin, and CNF1. All but one of the avian and human isolates also belonged to major phylogenetic group B2. However, various subclonal populations could be distinguished by PFGE in relation to animal species and geographical origin. These results demonstrate that very closely related clones can be recovered from extraintestinal infections in humans and chickens and suggest that avian pathogenic E. coli isolates of serotype O18:K1:H7 are potential human pathogens.
Collapse
|