51
|
Synthesis and decay of varicella zoster virus transcripts. J Neurovirol 2011; 17:281-7. [PMID: 21484478 DOI: 10.1007/s13365-011-0029-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/18/2011] [Accepted: 03/22/2011] [Indexed: 12/14/2022]
Abstract
Varicella zoster virus (VZV) is highly cell-associated. At least 68 VZV open reading frames (ORFs) are transcribed in varying amounts that increase as infection progresses. Using reverse transcriptase PCR, quantification of total and newly synthesized mRNA showed that ongoing VZV DNA replication is required for continued accumulation of VZV ORF 63, 9, and 40 transcripts. Analysis of stability of 4-thiouridine-labeled transcripts of nine VZV ORFs revealed a similar half-life for all VZV ORFs tested. Thus, difference in mRNA synthesis, and not mRNA decay, is the major factor contributing to the difference in the relative abundance of VZV transcripts in infected cells.
Collapse
|
52
|
Abstract
Primary infection by varicella zoster virus (VZV) typically results in childhood chickenpox, at which time latency is established in the neurons of the cranial nerve, dorsal root and autonomic ganglia along the entire neuraxis. During latency, the histone-associated virus genome assumes a circular episomal configuration from which transcription is epigenetically regulated. The lack of an animal model in which VZV latency and reactivation can be studied, along with the difficulty in obtaining high-titer cell-free virus, has limited much of our understanding of VZV latency to descriptive studies of ganglia removed at autopsy and analogy to HSV-1, the prototype alphaherpesvirus. However, the lack of miRNA, detectable latency-associated transcript and T-cell surveillance during VZV latency highlight basic differences between the two neurotropic herpesviruses. This article focuses on VZV latency: establishment, maintenance and reactivation. Comparisons are made with HSV-1, with specific attention to differences that make these viruses unique human pathogens.
Collapse
Affiliation(s)
| | - Aamir Shahzad
- Department for Biomolecular Structural Chemistry Max F. Perutz Laboratories, University of Vienna, Austria
| | - Randall J Cohrs
- Author for correspondence: University of Colorado Denver Medical School, Aurora, CO, USA, Tel.: +1 303 742 4325
| |
Collapse
|
53
|
Grose C, Carpenter JE, Jackson W, Duus KM. Overview of varicella-zoster virus glycoproteins gC, gH and gL. Curr Top Microbiol Immunol 2010; 342:113-28. [PMID: 20186613 DOI: 10.1007/82_2009_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The VZV genome is smaller than the HSV genome and only encodes nine glycoproteins. This chapter provides an overview of three VZV glycoproteins: gH (ORF37), gL (ORF60), and gC (ORF14). All three glycoproteins are highly conserved among the alpha herpesviruses. However, VZV gC exhibits unexpected differences from its HSV counterpart gC. In particular, both VZV gC transcription and protein expression are markedly delayed in cultured cells. These delays occur regardless of the virus strain or the cell type, and may account in part for the aberrant assembly of VZV particles. In contrast to VZV gC, the general properties of gH and gL more closely resemble their HSV homologs. VZV gL behaves as a chaperone protein to facilitate the maturation of the gH protein. The mature gH protein in turn is a potent fusogen. Its fusogenic activity can be abrogated when infected cultures are treated with monoclonal anti-gH antibodies.
Collapse
Affiliation(s)
- Charles Grose
- Department of Pediatrics/2501 JCP, University of Iowa Hospital, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
54
|
Kennedy PGE, Cohrs RJ. Varicella-zoster virus human ganglionic latency: a current summary. J Neurovirol 2010; 16:411-8. [PMID: 20874010 DOI: 10.1007/bf03210846] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Varicella-zoster virus (VZV) is a ubiquitous human herpes virus typically acquired in childhood when it causes varicella (chickenpox), following which the virus establishes a latent infection in trigeminal and dorsal root ganglia that lasts for the life of the individual. VZV subsequently reactivates, spontaneously or after specific triggering factors, to cause herpes zoster (shingles), which may be complicated by postherpetic neuralgia and several other neurological complications including vasculopathy. Our understanding of VZV latency lags behind our knowledge of herpes simplex virus type 1 (HSV-1) latency primarily due to the difficulty in propagating the virus to high titers in a cell-free state, and the lack of a suitable small-animal model for studying virus latency and reactivation. It is now established beyond doubt that latent VZV is predominantly located in human ganglionic neurons. Virus gene transcription during latency is epigenetically regulated, and appears to be restricted to expression of at least six genes, with expression of gene 63 being the hallmark of latency. However, viral gene transcription may be more extensive than previously thought. There is also evidence for several VZV genes being expressed at the protein level, including VZV gene 63-encoded protein, but recent evidence suggests that this may not be a common event. The nature and extent of the chronic inflammatory response in latently infected ganglia is also of current interest. There remain several questions concerning the VZV latency process that still need to be resolved unambiguously and it is likely that this will require the use of newly developed molecular technologies, such as GeXPS multiplex polymerase chain reaction (PCR) for virus transcriptional analysis and ChIP-seq to study the epigenetic of latent virus genome ( Liu et al, 2010 , BMC Biol 8: 56).
Collapse
Affiliation(s)
- Peter G E Kennedy
- Department of Neurology, Glasgow University, Southern General Hospital, Glasgow, Scotland, UK.
| | | |
Collapse
|
55
|
Myosin Va enhances secretion of herpes simplex virus 1 virions and cell surface expression of viral glycoproteins. J Virol 2010; 84:9889-96. [PMID: 20631136 DOI: 10.1128/jvi.00732-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The final step in the egress of herpes simplex virus (HSV) virions requires virion-laden vesicles to bypass cortical actin and fuse with the plasma membrane, releasing virions into the extracellular space. Little is known about the host or viral proteins involved. In the current study, we noted that the conformation of myosin Va (myoVa), a protein known to be involved in melanosome and secretory granule trafficking to the plasma membrane in melanocytes and neuroendocrine cells, respectively, was altered by 4 h after infection with HSV-1 such that an N-terminal epitope expected to be masked in its inactive state was rendered immunoreactive. Wild-type myoVa localized throughout the cytoplasm and to a limited extent in the nuclei of HSV-infected cells. Two different dominant negative myoVa molecules containing cargo-binding domains but lacking the lever arms and actin-binding domains colocalized with markers of the trans-Golgi network (TGN). Expression of dominant negative myoVa isoforms reduced secretion of HSV-1 infectivity into the medium by 50 to 75%, reduced surface expression of glycoproteins B, M, and D, and increased intracellular virus infectivity to levels consistent with increased retention of virions in the cytoplasm. These data suggest that myoVa is activated during HSV-1 infection to help transport virion- and glycoprotein-laden vesicles from the TGN, through the cortical actin, to the plasma membrane. We cannot exclude a role for myoVa in promoting fusion of these vesicles with the inner surface of the plasma membrane. These data also indicate that myoVa is involved in exocytosis in human epithelial cells as well as other cell types.
Collapse
|
56
|
Li Q, Ali MA, Wang K, Sayre D, Hamel FG, Fischer ER, Bennett RG, Cohen JI. Insulin degrading enzyme induces a conformational change in varicella-zoster virus gE, and enhances virus infectivity and stability. PLoS One 2010; 5:e11327. [PMID: 20593027 PMCID: PMC2892511 DOI: 10.1371/journal.pone.0011327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/25/2010] [Indexed: 11/19/2022] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein E (gE) is essential for virus infectivity and binds to a cellular receptor, insulin-degrading enzyme (IDE), through its unique amino terminal extracellular domain. Previous work has shown IDE plays an important role in VZV infection and virus cell-to-cell spread, which is the sole route for VZV spread in vitro. Here we report that a recombinant soluble IDE (rIDE) enhances VZV infectivity at an early step of infection associated with an increase in virus internalization, and increases cell-to-cell spread. VZV mutants lacking the IDE binding domain of gE were impaired for syncytia formation and membrane fusion. Pre-treatment of cell-free VZV with rIDE markedly enhanced the stability of the virus over a range of conditions. rIDE interacted with gE to elicit a conformational change in gE and rendered it more susceptible to proteolysis. Co-incubation of rIDE with gE modified the size of gE. We propose that the conformational change in gE elicited by IDE enhances infectivity and stability of the virus and leads to increased fusogenicity during VZV infection. The ability of rIDE to enhance infectivity of cell-free VZV over a wide range of incubation times and temperatures suggests that rIDE may be useful for increasing the stability of varicella or zoster vaccines.
Collapse
Affiliation(s)
- Qingxue Li
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mir A. Ali
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kening Wang
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dean Sayre
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Frederick G. Hamel
- Research Service, Omaha VA Medical Center and the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Elizabeth R. Fischer
- Research Technology Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert G. Bennett
- Research Service, Omaha VA Medical Center and the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jeffrey I. Cohen
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
57
|
Rowe J, Greenblatt RJ, Liu D, Moffat JF. Compounds that target host cell proteins prevent varicella-zoster virus replication in culture, ex vivo, and in SCID-Hu mice. Antiviral Res 2010; 86:276-85. [PMID: 20307580 DOI: 10.1016/j.antiviral.2010.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/12/2010] [Accepted: 03/12/2010] [Indexed: 01/09/2023]
Abstract
Varicella-zoster virus (VZV) replicates in quiescent T cells, neurons, and skin cells. In cultured fibroblasts (HFFs), VZV induces host cyclin expression and cyclin-dependent kinase (CDK) activity without causing cell cycle progression. CDK1/cyclin B1 phosphorylates the major viral transactivator, and the CDK inhibitor roscovitine prevents VZV mRNA transcription. We investigated the antiviral effects of additional compounds that target CDKs or other cell cycle enzymes in culture, ex vivo, and in vivo. Cytotoxicity and cell growth arrest doses were determined by Neutral Red assay. Antiviral effects were evaluated in HFFs by plaque assay, genome copy number, and bioluminescence. Positive controls were acyclovir (400 microM) and phosphonoacetic acid (PAA, 1 mM). Test compounds were roscovitine, aloisine A, and purvalanol A (CDK inhibitors), aphidicolin (inhibits human and herpesvirus DNA polymerase), l-mimosine (indirectly inhibits human DNA polymerase), and DRB (inhibits casein kinase 2). All had antiviral effects below the concentrations required for cell growth arrest. Compounds were tested in skin organ culture at EC(99) doses; all prevented VZV replication in skin, except for aloisine A and purvalanol A. In SCID mice with skin xenografts, roscovitine (0.7 mg/kg/day) was as effective as PAA (36 mg/kg/day). The screening systems described here are useful models for evaluating novel antiviral drugs for VZV.
Collapse
Affiliation(s)
- Jenny Rowe
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | |
Collapse
|
58
|
Gershon MD, Gershon AA. VZV infection of keratinocytes: production of cell-free infectious virions in vivo. Curr Top Microbiol Immunol 2010; 342:173-88. [PMID: 20225011 PMCID: PMC5408736 DOI: 10.1007/82_2010_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Varicella-zoster virus (VZV) is the cause of varicella (chickenpox) and zoster (shingles). Varicella is a primary infection that spreads rapidly in epidemics while zoster is a secondary infection that occurs sporadically as a result of the reactivation of previously acquired VZV. Reactivation is made possible by the establishment of latency during the initial episode of varicella. The signature lesions of both varicella and zoster are cutaneous vesicles, which are filled with a clear fluid that is rich in infectious viral particles. It has been postulated that the skin is the critical organ in which both host-to-host transmission of VZV and the infection of neurons to establish latency occur. This hypothesis is built on evidence that the large cation-independent mannose 6-phosphate receptor (MPR(ci)) interacts with VZV in virtually all infected cells, except those of the suprabasal epidermis, in a way that prevents the release of infectious viral particles. Specifically, the virus is diverted in an MPR(ci)-dependent manner from the secretory pathway to late endosomes where VZV is degraded. Because nonepidermal cells are thus prevented from releasing infectious VZV, a slow process, possibly involving fusion of infected cells with their neighbors, becomes the means by which VZV is disseminated. In the epidermis, however, the maturation of keratinocytes to give rise to corneocytes in the suprabasal epidermis is associated uniquely with a downregulation of the MPR(ci). As a result, the diversion of VZV to late endosomes does not occur in the suprabasal epidermis where vesicular lesions occur. The formation of the waterproof, chemically resistant barrier of the epidermis, however, requires that constitutive secretion outlast the downregulation of the endosomal pathway. Infectious VZV is therefore secreted by default, accounting for the presence of infectious virions in vesicular fluid. Sloughing of corneocytes, aided by scratching, then aerosolizes the virus, which can float with dust to be inhaled by susceptible hosts. Infectious virions also bathe the terminals of those sensory neurons that innervate the epidermis. These terminals become infected with VZV and provide a route, retrograde transport, which can conduct VZV to cranial nerve (CNG), dorsal root ganglia (DRG), and enteric ganglia (EG) to establish latency. Reactivation returns VZV to the skin, now via anterograde transport in axons, to cause the lesions of zoster. Evidence in support of these hypotheses includes observations of the VZV-infected human epidermis and studies of guinea pig neurons in an in vitro model system.
Collapse
Affiliation(s)
- Michael D Gershon
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
59
|
Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proc Natl Acad Sci U S A 2009; 107:866-71. [PMID: 20080767 DOI: 10.1073/pnas.0913351107] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Varicella-zoster virus (VZV) and herpes simplex virus (HSV) are prevalent neurotropic herpesviruses that cause various nervous system diseases. Similar to other enveloped viruses, membrane fusion is an essential process for viral entry. Therefore, identification of host molecules that mediate membrane fusion is important to understand the mechanism of viral infection. Here, we demonstrate that myelin-associated glycoprotein (MAG), mainly distributed in neural tissues, associates with VZV glycoprotein B (gB) and promotes cell-cell fusion when coexpressed with VZV gB and gH/gL. VZV preferentially infected MAG-transfected oligodendroglial cells. MAG also associated with HSV-1 gB and enhanced HSV-1 infection of promyelocytes. These findings suggested that MAG is involved in VZV and HSV infection of neural tissues.
Collapse
|
60
|
Abstract
The increased spread of dengue fever and its more severe form, dengue hemorrhagic fever, have made the study of the mosquito-borne dengue viruses that cause these diseases a public health priority. Little is known about how or why the four different (serotypes 1-4) dengue viruses cause pathology in humans only, and there have been no animal models of disease to date. Therefore, there are no vaccines or antivirals to prevent or treat infection and mortality rates of dengue hemorrhagic fever patients can reach up to 20%. Cases occur mainly in tropical zones within developing countries worldwide, and control measures have been limited to the elimination of the mosquito vectors. Thus, it is imperative that we develop new methods of studying dengue virus pathogenicity. This article presents new approaches that may help us to understand dengue virus virulence and the specific mechanisms that lead to dengue fever and severe disease.
Collapse
Affiliation(s)
- Rebeca Rico-Hesse
- Department of Virology & Immunology, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78245, USA
| |
Collapse
|
61
|
Histone deacetylases 1 and 2 are phosphorylated at novel sites during varicella-zoster virus infection. J Virol 2009; 83:11502-13. [PMID: 19740981 DOI: 10.1128/jvi.01318-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ORF66p, a virion-associated varicella-zoster virus (VZV) protein, is a member of a conserved Alphaherpesvirinae kinase family with homology to herpes simplex virus US3 kinase. Expression of ORF66p in cells infected with VZV or an adenovirus expressing only ORF66p results in hyperphosphorylation of histone deacetylase 1 (HDAC1) and HDAC2. Mapping studies reveal that phosphorylation is at a unique conserved Ser residue in the C terminus of both HDACs. This modification requires an active kinase domain in ORF66p, as neither protein is phosphorylated in cells infected with VZV lacking kinase activity. However, hyperphosphorylation appears to occur indirectly, as within the context of in vitro kinase reactions, purified ORF66p phosphorylates a peptide derived from ORF62p, a known substrate, but does not phosphorylate HDAC. These results support a model where ORF66p is necessary but not sufficient to effect hyperphosphorylation of HDAC1 and HDAC2.
Collapse
|