51
|
Development of CAR-T cells for long-term eradication and surveillance of HIV-1 reservoir. Curr Opin Virol 2019; 38:21-30. [PMID: 31132749 DOI: 10.1016/j.coviro.2019.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) reservoir is a pool of latently infected cells harboring replication-competent proviral DNA that limits antiretroviral therapy. Suppression of HIV-1 by combination antiretroviral therapy (cART) delays progression of the disease but does not eliminate the viral reservoir, necessitating lifetime daily administration of antiretroviral drugs. To achieve durable suppression of viremia without daily therapy, various strategies have been developed, including long-acting antiretroviral drugs (LA-ARVs), broadly neutralizing antibodies (bNAbs), and chimeric antigen receptor T (CAR-T) cells. Here, we summarize and discuss recent breakthroughs in CAR-T cell therapies toward the eradication of HIV-1 reservoir. Although substantial challenges exist, CAR-T cell technology may serve as a promising strategy toward HIV-1 functional cure.
Collapse
|
52
|
Tsukamoto T. Gene Therapy Approaches to Functional Cure and Protection of Hematopoietic Potential in HIV Infection. Pharmaceutics 2019; 11:E114. [PMID: 30862061 PMCID: PMC6470728 DOI: 10.3390/pharmaceutics11030114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
Although current antiretroviral drug therapy can suppress the replication of human immunodeficiency virus (HIV), a lifelong prescription is necessary to avoid viral rebound. The problem of persistent and ineradicable viral reservoirs in HIV-infected people continues to be a global threat. In addition, some HIV-infected patients do not experience sufficient T-cell immune restoration despite being aviremic during treatment. This is likely due to altered hematopoietic potential. To achieve the global eradication of HIV disease, a cure is needed. To this end, tremendous efforts have been made in the field of anti-HIV gene therapy. This review will discuss the concepts of HIV cure and relative viral attenuation and provide an overview of various gene therapy approaches aimed at a complete or functional HIV cure and protection of hematopoietic functions.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- Department of Immunology, Kindai University Faculty of Medicine, Osaka 5898511, Japan.
| |
Collapse
|
53
|
Falkenhagen A, Joshi S. Genetic Strategies for HIV Treatment and Prevention. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:514-533. [PMID: 30388625 PMCID: PMC6205348 DOI: 10.1016/j.omtn.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/28/2018] [Accepted: 09/02/2018] [Indexed: 01/02/2023]
Abstract
Conventional HIV gene therapy approaches are based on engineering HIV target cells that are non-permissive to viral replication. However, expansion of gene-modified HIV target cells has been limited in patients. Alternative genetic strategies focus on generating gene-modified producer cells that secrete antiviral proteins (AVPs). The secreted AVPs interfere with HIV entry, and, therefore, they extend the protection against infection to unmodified HIV target cells. Since any cell type can potentially secrete AVPs, hematopoietic and non-hematopoietic cell lineages can function as producer cells. Secretion of AVPs from non-hematopoietic cells opens the possibility of using a genetic approach for HIV prevention. Another strategy aims at modifying cytotoxic T cells to selectively target and eliminate infected cells. This review provides an overview of the different genetic approaches for HIV treatment and prevention.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sadhna Joshi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
54
|
Yang H, Wallace Z, Dorrell L. Therapeutic Targeting of HIV Reservoirs: How to Give T Cells a New Direction. Front Immunol 2018; 9:2861. [PMID: 30564246 PMCID: PMC6288286 DOI: 10.3389/fimmu.2018.02861] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023] Open
Abstract
HIV cannot be cured by current antiretroviral therapy (ART) because it persists in a transcriptionally silent form in long-lived CD4+ cells. Leading efforts to develop a functional cure have prioritized latency reversal to expose infected cells to immune surveillance, coupled with enhancement of the natural cytolytic function of immune effectors, or "kick and kill." The most clinically advanced approach to improving the kill is therapeutic immunization, which aims to augment or re-focus HIV-specific cytolytic T cell responses. However, no vaccine strategy has enabled sustained virological control after ART withdrawal. Novel approaches are needed to overcome the limitations of natural adaptive immune responses, which relate to their specificity, potency, durability, and access to tissue reservoirs. Adoptive T cell therapy to treat HIV infection was first attempted over two decades ago, without success. Since then, progress in the field of cancer immunotherapy, together with recognition of the similarities in tumor microenvironments and HIV reservoirs has reignited interest in the application of T cell therapies to HIV eradication. Advances in engineering of chimeric antigen receptor (CAR)-transduced T cells have led to improved potency, persistence and latterly, resistance to HIV infection. Immune retargeting platforms have incorporated non-neutralizing and broadly neutralizing antibodies to generate Bispecific T cell Engagers (BiTEs) and Dual-Affinity Re-Targeting proteins (DARTs). T cell receptor engineering has enabled the development of the first bispecific Immune-mobilizing monoclonal T Cell receptors Against Viruses (ImmTAV) molecules. Here, we review the potential for these agents to provide a better "kill" and the challenges ahead for clinical development.
Collapse
Affiliation(s)
- Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom
| | - Zoë Wallace
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom.,Immunocore Ltd., Oxon, United Kingdom
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom.,Immunocore Ltd., Oxon, United Kingdom.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
55
|
Patel S, Chorvinsky E, Albihani S, Cruz CR, Jones RB, Shpall EJ, Margolis DM, Ambinder RF, Bollard CM. HIV-Specific T Cells Generated from Naive T Cells Suppress HIV In Vitro and Recognize Wide Epitope Breadths. Mol Ther 2018; 26:1435-1446. [PMID: 29724686 DOI: 10.1016/j.ymthe.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022] Open
Abstract
The Berlin Patient represents the first and only functional HIV cure achieved by hematopoietic stem cell transplant (HSCT). In subsequent efforts to replicate this result, HIV rebounded post-HSCT after withdrawal of antiretroviral therapy. Providing HIV-specific immunity through adoptive T cell therapy may prevent HIV rebound post-HSCT by eliminating newly infected cells before they can seed systemic infection. Adoptive T cell therapy has demonstrated success in boosting Epstein-Barr virus and cytomegalovirus-specific immunity post-HSCT, controlling viral reactivation. However, T cell immunotherapies to boost HIV-specific immunity have been limited by single-epitope specificity and minimal persistence or efficacy in vivo. To improve this strategy, we sought to generate allogeneic HIV-specific T cells from human leukocyte antigen (HLA)-A02+ HIV-negative adult or cord blood donors. We focused on HLA-A02+ donors due to well-characterized epitope restrictions observed in HIV+ populations. We show that multi-antigen HIV-specific T cells can be generated from naive T cells of both cord blood and adults using a reproducible good manufacturing practice (GMP)-grade protocol. This product lysed antigen-pulsed targets and suppressed active HIV in vitro. Interestingly, these cells displayed broad epitope recognition despite lacking recognition of the common HLA-A02-restricted HIV epitope Gag SL9. This first demonstration of functional multi-antigen HIV-specific T cells has implications for improving treatment of HIV through allogeneic HSCT.
Collapse
Affiliation(s)
- Shabnum Patel
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA; Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - Elizabeth Chorvinsky
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Shuroug Albihani
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Conrad Russell Cruz
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA; Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - R Brad Jones
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC 20037, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David M Margolis
- University of North Carolina HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard F Ambinder
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA; Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
56
|
Glycosyl-Phosphatidylinositol-Anchored Anti-HIV Env Single-Chain Variable Fragments Interfere with HIV-1 Env Processing and Viral Infectivity. J Virol 2018; 92:JVI.02080-17. [PMID: 29321330 DOI: 10.1128/jvi.02080-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/02/2018] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we demonstrated that single-chain variable fragments (scFvs) from anti-human immunodeficiency virus (HIV) Env monoclonal antibodies act as entry inhibitors when tethered to the surface of target cells by a glycosyl-phosphatidylinositol (GPI) anchor. Interestingly, even if a virus escapes inhibition at entry, its replication is ultimately controlled. We hypothesized that in addition to functioning as entry inhibitors, anti-HIV GPI-scFvs may also interact with Env in an infected cell, thereby interfering with the infectivity of newly produced virions. Here, we show that expression of the anti-HIV Env GPI-scFvs in virus-producing cells reduced the release of HIV from cells 5- to 22-fold, and infectivity of the virions that were released was inhibited by 74% to 99%. Additionally, anti-HIV Env GPI-scFv X5 inhibited virion production and infectivity after latency reactivation and blocked transmitter/founder virus production and infectivity in primary CD4+ T cells. In contrast, simian immunodeficiency virus (SIV) production and infectivity were not affected by the anti-HIV Env GPI-scFvs. Loss of infectivity of HIV was associated with a reduction in the amount of virion-associated Env gp120. Interestingly, an analysis of Env expression in cell lysates demonstrated that the anti-Env GPI-scFvs interfered with processing of Env gp160 precursors in cells. These data indicate that GPI-scFvs can inhibit Env processing and function, thereby restricting production and infectivity of newly synthesized HIV. Anti-Env GPI-scFvs therefore appear to be unique anti-HIV molecules as they derive their potent inhibitory activity by interfering with both early (receptor binding/entry) and late (Env processing and incorporation into virions) stages of the HIV life cycle.IMPORTANCE The restoration of immune function and persistence of CD4+ T cells in HIV-1-infected individuals without antiretroviral therapy requires a way to increase resistance of CD4+ T cells to infection by both R5- and X4-tropic HIV-1. Previously, we reported that anchoring anti-HIV-1 single-chain variable fragments (scFvs) via glycosyl-phosphatidylinositol (GPI) to the surface of permissive cells conferred a high level of resistance to HIV-1 variants at the level of entry. Here, we report that anti-HIV GPI-scFvs also derive their potent antiviral activity in part by blocking HIV production and Env processing, which consequently inhibits viral infectivity even in primary infection models. Thus, we conclude that GPI-anchored anti-HIV scFvs derive their potent blocking activity of HIV replication by interfering with successive stages of the viral life cycle. They may be effectively used in genetic intervention of HIV-1 infection.
Collapse
|
57
|
Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol 2018; 14:317-324. [PMID: 29377003 PMCID: PMC6035732 DOI: 10.1038/nchembio.2565] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022]
Abstract
Chimeric antigen receptor (CAR)-expressing T cells targeting surface-bound tumor antigens have yielded promising clinical outcomes, with two CD19 CAR-T cell therapies recently receiving FDA approval for the treatment of B-cell malignancies. The adoption of CARs for the recognition of soluble ligands, a distinct class of biomarkers in physiology and disease, could considerably broaden the utility of CARs in disease treatment. In this study, we demonstrate that CAR-T cells can be engineered to respond robustly to diverse soluble ligands, including the CD19 ectodomain, GFP variants, and transforming growth factor beta (TGF-β). We additionally show that CAR signaling in response to soluble ligands relies on ligand-mediated CAR dimerization and that CAR responsiveness to soluble ligands can be fine-tuned by adjusting the mechanical coupling between the CAR's ligand-binding and signaling domains. Our results support a role for mechanotransduction in CAR signaling and demonstrate an approach for systematically engineering immune-cell responses to soluble, extracellular ligands.
Collapse
|
58
|
Abstract
Cellular immunotherapy holds great promise for the treatment of human disease. Clinical evidence suggests that T cell immunotherapies have the potential to combat cancers that evade traditional immunotherapy. Despite promising results, adverse effects leading to fatalities have left scientists seeking tighter control over these therapies, which is reflected in the growing body of synthetic biology literature focused on developing tightly controlled, context-independent parts. In addition, researchers are adapting these tools for other uses, such as for the treatment of autoimmune disease, HIV infection, and fungal interactions. We review this body of work and devote special attention to approaches that may lend themselves to the development of an "ideal" therapy: one that is safe, efficient, and easy to manufacture. We conclude with a look toward the future of immunotherapy: how synthetic biology can shift the paradigm from the treatment of disease to a focus on wellness and human health as a whole.
Collapse
Affiliation(s)
- Matthew J Brenner
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| | - Jang Hwan Cho
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| | - Nicole M L Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| | - Wilson W Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| |
Collapse
|
59
|
Bispecific chimeric antigen receptors targeting the CD4 binding site and high-mannose Glycans of gp120 optimized for anti-human immunodeficiency virus potency and breadth with minimal immunogenicity. Cytotherapy 2018; 20:407-419. [PMID: 29306566 DOI: 10.1016/j.jcyt.2017.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND AIMS Chimeric antigen receptors (CARs) offer great potential toward a functional cure of human immunodeficiency virus (HIV) infection. To achieve the necessary long-term virus suppression, we believe that CARs must be designed for optimal potency and anti-HIV specificity, and also for minimal probability of virus escape and CAR immunogenicity. CARs containing antibody-based motifs are problematic in the latter regard due to epitope mutation and anti-idiotypic immune responses against the variable regions. METHODS We designed bispecific CARs, each containing a segment of human CD4 linked to the carbohydrate recognition domain of a human C-type lectin. These CARs target two independent regions on HIV-1 gp120 that presumably must be conserved on clinically significant virus variants (i.e., the primary receptor binding site and the dense oligomannose patch). Functionality and specificity of these bispecific CARs were analyzed in assays of CAR-T cell activation and spreading HIV-1 suppression. RESULTS T cells expressing a CD4-dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DCSIGN) CAR displayed robust stimulation upon encounter with Env-expressing targets, but negligible activity against intercellular adhesion molecule (ICAM)-2 and ICAM-3, the natural dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin ligands. Moreover, the presence of the lectin moiety prevented the CD4 from acting as an entry receptor on CCR5-expressing cells, including CD8+ T cells. However, in HIV suppression assays, the CD4-DCSIGN CAR and the related CD4-liver/lymph node-specific intercellular adhesion molecule-3-grabbing non-integrin CAR displayed only minimally increased potency compared with the CD4 CAR against some HIV-1 isolates and reduced potency against others. By contrast, the CD4-langerin and CD4-mannose binding lectin (MBL) CARs uniformly displayed enhanced potency compared with the CD4 CAR against all the genetically diverse HIV-1 isolates examined. Further experimental data, coupled with known biological features, suggest particular advantages of the CD4-MBL CAR. DISCUSSION These studies highlight features of bispecific CD4-lectin CARs that achieve potency enhancement by targeting two distinct highly conserved Env determinants while lacking immunogenicity-prone antibody-based motifs.
Collapse
|
60
|
Rogers GL, Cannon PM. Gene Therapy Approaches to Human Immunodeficiency Virus and Other Infectious Diseases. Hematol Oncol Clin North Am 2017; 31:883-895. [PMID: 28895854 DOI: 10.1016/j.hoc.2017.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Advances in gene therapy technologies, particularly in gene editing, are suggesting new avenues for the treatment of human immunodeficiency virus and other infectious diseases. This article outlines recent developments in antiviral gene therapies, including those based on the disruption of entry receptors or that target viral genomes using targeted nucleases, such as the CRISPR/Cas9 system. In addition, new ways to express circulating antiviral factors, such as antibodies, and approaches to harness and engineer the immune system to provide an antiviral effect that is not naturally achieved are described.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 413A, Los Angeles, CA 90033, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 413A, Los Angeles, CA 90033, USA.
| |
Collapse
|
61
|
Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era. Viruses 2017; 9:v9100281. [PMID: 28961190 PMCID: PMC5691633 DOI: 10.3390/v9100281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a causative agent of acquired immune deficiency syndrome (AIDS). Highly active antiretroviral therapy (HAART) can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR)-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.
Collapse
|
62
|
New approaches for the enhancement of chimeric antigen receptors for the treatment of HIV. Transl Res 2017; 187:83-92. [PMID: 28755872 DOI: 10.1016/j.trsl.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022]
Abstract
HIV infection continues to be a life-long chronic disease in spite of the success of antiretroviral therapy (ART) in controlling viral replication and preventing disease progression. However, because of the high cost of treatment, severe side effects, and inefficiency in curing the disease with ART, there is a call for alternative therapies that will provide a functional cure for HIV. Cytotoxic T lymphocytes (CTLs) are vital in the control and clearance of viral infections and therefore immune-based therapies have attempted to engineer HIV-specific CTLs that would be able to clear the infection from the body. The development of chimeric antigen receptors (CARs) provides an opportunity to engineer superior HIV-specific CTLs that will be independent of the major histocompatibility complex for target recognition. A CD4-based CAR has been previously tested in clinical trials to test the antiviral efficacy of peripheral T cells armed with this CD4-based CAR. The results from these clinical trials showed the safety and feasibility of CAR T cell therapy for HIV infection; however, minimal antiviral efficacy was seen. In this review, we will discuss the various strategies being developed to enhance the therapeutic potency of anti-HIV CARs with the goal of generating superior antiviral responses that will lead to life-long HIV immunity and clearance of the virus from the body.
Collapse
|
63
|
Liu ZJ, Bai J, Liu FL, Zhang XY, Wang JZ. Focus on the therapeutic efficacy of 3BNC117 against HIV-1: In vitro studies, in vivo studies, clinical trials and challenges. Int Immunopharmacol 2017; 52:44-50. [PMID: 28858725 DOI: 10.1016/j.intimp.2017.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 11/29/2022]
Abstract
3BNC117, which was discovered in 2011, is a broadly neutralizing antibody (bNAb) and specifically neutralizes the human immunodeficiency virus type-1 (HIV-1) by targeting the CD4-binding site. This is the first comprehensive review that focuses on the role of 3BNC117 in the prevention of HIV-1 and acquired immune deficiency syndrome (AIDS). Briefly, 3BNC117 neutralizes many HIV/SHIV strains in vitro, blocks HIV-1 acquisition in animal models via a pre-exposure prophylaxis, alleviates HIV-1-associated viremia via a post-exposure therapeutic effect, prevents the establishment of latent HIV-1 reservoirs, and induces both humoral and cellular anti-HIV immune responses in vivo. The outcomes of Phase I and Phase IIa clinical trials in 2015 and 2016 showed the safety, tolerability, and therapeutic efficacy of 3BNC117 in HIV-1-infected human individuals. Nevertheless, anti-3BNC117 antibodies and HIV-1 strains resistant to 3BNC117 pose clinical challenges to immunotherapy with 3BNC117, so potential strategies for optimizing the potency of 3BNC117 are suggested here. Predictably, HIV-1 prevention and AIDS treatment will benefit from combinational immunotherapies with 3BNC117 and other pharmaceuticals (bNAbs, antiretroviral medicines, viral inducers, etc.) in the near future.
Collapse
Affiliation(s)
- Zhi-Jun Liu
- Hebei University of Engineering, Affiliated Hospital, College of Medicine, Handan 056002, PR China
| | - Jing Bai
- Hebei University of Engineering, Affiliated Hospital, College of Medicine, Handan 056002, PR China
| | - Feng-Li Liu
- Hebei University of Engineering, Affiliated Hospital, College of Medicine, Handan 056002, PR China
| | - Xiang-Yang Zhang
- Hebei University of Engineering, Affiliated Hospital, College of Medicine, Handan 056002, PR China
| | - Jing-Zhang Wang
- Hebei University of Engineering, Affiliated Hospital, College of Medicine, Handan 056002, PR China.
| |
Collapse
|
64
|
Thorlund K, Horwitz MS, Fife BT, Lester R, Cameron DW. Landscape review of current HIV 'kick and kill' cure research - some kicking, not enough killing. BMC Infect Dis 2017; 17:595. [PMID: 28851294 PMCID: PMC5576299 DOI: 10.1186/s12879-017-2683-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Current antiretroviral therapy (ART) used to treat human immunodeficiency virus (HIV) patients is life-long because it only suppresses de novo infections. Recent efforts to eliminate HIV have tested the ability of a number of agents to reactivate ('Kick') the well-known latent reservoir. This approach is rooted in the assumption that once these cells are reactivated the host's immune system itself will eliminate ('Kill') the virus. While many agents have been shown to reactivate large quantities of the latent reservoir, the impact on the size of the latent reservoir has been negligible. This suggests that the immune system is not sufficient to eliminate reactivated reservoirs. Thus, there is a need for more emphasis on 'kill' strategies in HIV cure research, and how these might work in combination with current or future kick strategies. METHODS We conducted a landscape review of HIV 'cure' clinical trials using 'kick and kill' approaches. We identified and reviewed current available clinical trial results in human participants as well as ongoing and planned clinical trials. We dichotomized trials by whether they did not include or include a 'kill' agent. We extracted potential reasons why the 'kill' is missing from current 'kick and kill' strategies. We subsequently summarized and reviewed current 'kill' strategies have entered the phase of clinical trial testing in human participants and highlighted those with the greatest promise. RESULTS The identified 'kick' trials only showed promise on surrogate measures activating latent T-cells, but did not show any positive effects on clinical 'cure' measures. Of the 'kill' agents currently being tested in clinical trials, early results have shown small but meaningful proportions of participants remaining off ART for several months with broadly neutralizing antibodies, as well as agents for regulating immune cell responses. A similar result was also recently observed in a trial combining a conventional 'kick' with a vaccine immune booster ('kill'). CONCLUSION While an understanding of the efficacy of each individual component is crucial, no single 'kick' or 'kill' agent is likely to be a fully effective cure. Rather, the solution is likely found in a combination of multiple 'kick and kill' interventions.
Collapse
Affiliation(s)
- Kristian Thorlund
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Marc S. Horwitz
- Faculty of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455 USA
| | - Richard Lester
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - D. William Cameron
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada
- Division of Infectious Diseases, Department of Medicine, University of Ottawa at The Ottawa Hospital / Research Institute, 501 Smyth Road, Ottawa, K1H 6V2 Ontario Canada
| |
Collapse
|
65
|
Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nat Med 2017; 23:18-27. [PMID: 28060797 DOI: 10.1038/nm.4241] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
Abstract
T memory stem (TSCM) cells are a rare subset of memory lymphocytes endowed with the stem cell-like ability to self-renew and the multipotent capacity to reconstitute the entire spectrum of memory and effector T cell subsets. Cumulative evidence in mice, nonhuman primates and humans indicates that TSCM cells are minimally differentiated cells at the apex of the hierarchical system of memory T lymphocytes. Here we describe emerging findings demonstrating that TSCM cells, owing to their extreme longevity and robust potential for immune reconstitution, are central players in many physiological and pathological human processes. We also discuss how TSCM cell stemness could be leveraged therapeutically to enhance the efficacy of vaccines and adoptive T cell therapies for cancer and infectious diseases or, conversely, how it could be disrupted to treat TSCM cell driven and sustained diseases, such as autoimmunity, adult T cell leukemia and HIV-1.
Collapse
Affiliation(s)
- Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel E Speiser
- Department of Oncology, Ludwig Cancer Research, Lausanne University Hospital, Lausanne, Switzerland
| | - Mathias Lichterfeld
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology Transplantation and Infectious Diseases, Leukemia Unit, San Raffaele Scientific Institute, Milan, Italy.,Hematology Department, Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
66
|
Huyghe J, Magdalena S, Vandekerckhove L. Fight fire with fire: Gene therapy strategies to cure HIV. Expert Rev Anti Infect Ther 2017; 15:747-758. [DOI: 10.1080/14787210.2017.1353911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jon Huyghe
- Department of Internal Medicine, HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Sips Magdalena
- Department of Internal Medicine, HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Linos Vandekerckhove
- Department of Internal Medicine, HIV Cure Research Center, Ghent University, Ghent, Belgium
| |
Collapse
|
67
|
Abstract
Lentivirus-mediated transduction of autologous T cells with a chimeric antigen receptor (CAR) to confer a desired epitope specificity as a targeted immunotherapy for cancer has been among the first human gene therapy techniques to demonstrate widespread therapeutic efficacy. Other approaches to using gene therapy to enhance antitumor immunity have been less specific and less effective. These have included amplification, marking, and cytokine transduction of tumor infiltrating lymphocytes, recombinant virus-based expression of tumor antigens as a tumor vaccine, and transduction of antigen-presenting cells with tumor antigens. Unlike any of those methods, the engineering of CAR T cells combine specific monoclonal antibody gene sequences to confer epitope specificity and other T-cell receptor and activation domains to create a self-contained single vector approach to produce a very specific antitumor response, as is seen with CD19-directed CAR T cells used to treat CD19-expressing B-cell malignancies. Recent success with these therapies is the culmination of a long step-wise iterative process of improvement in the design of CAR vectors. This review aims to summarize this long series of advances in the development of effective CAR vector since their initial development in the 1990s, and to describe emerging approaches to design that promise to enhance and widen the human gene therapy relevance of CAR T-cell therapy in the future.
Collapse
Affiliation(s)
- Olivia Wilkins
- 1 Department of Biology, Wheaton College , Norton, Massachusetts
| | - Allison M Keeler
- 1 Department of Biology, Wheaton College , Norton, Massachusetts.,2 Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Terence R Flotte
- 2 Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
68
|
Haworth KG, Ironside C, Norgaard ZK, Obenza WM, Adair JE, Kiem HP. In Vivo Murine-Matured Human CD3 + Cells as a Preclinical Model for T Cell-Based Immunotherapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017. [PMID: 28649577 PMCID: PMC5470556 DOI: 10.1016/j.omtm.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adoptive cellular immunotherapy is a promising and powerful method for the treatment of a broad range of malignant and infectious diseases. Although the concept of cellular immunotherapy was originally proposed in the 1990s, it has not seen successful clinical application until recent years. Despite significant progress in creating engineered receptors against both malignant and viral epitopes, no efficient preclinical animal models exist for rapidly testing and directly comparing these engineered receptors. The use of matured human T cells in mice usually leads to graft-versus-host disease (GvHD), which severely limits the effectiveness of such studies. Alternatively, adult apheresis CD34+ cells engraft in neonatal non-obese diabetic (NOD)-severe combined immunodeficiency (SCID)-common γ chain–/– (NSG) mice and lead to the development of CD3+ T cells in peripheral circulation. We demonstrate that these in vivo murine-matured autologous CD3+ T cells from humans (MATCH) can be collected from the mice, engineered with lentiviral vectors, reinfused into the mice, and detected in multiple lymphoid compartments at stable levels over 50 days after injection. Unlike autologous CD3+ cells collected from human donors, these MATCH mice did not exhibit GvHD after T cell administration. This novel mouse model offers the opportunity to screen different immunotherapy-based treatments in a preclinical setting.
Collapse
Affiliation(s)
- Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Christina Ironside
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Zachary K Norgaard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Willimark M Obenza
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
69
|
Zhen A, Carrillo MA, Kitchen SG. Chimeric antigen receptor engineered stem cells: a novel HIV therapy. Immunotherapy 2017; 9:401-410. [PMID: 28357916 DOI: 10.2217/imt-2016-0121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the success of combination antiretroviral therapy (cART) for suppressing HIV and improving patients' quality of life, HIV persists in cART-treated patients and remains an incurable disease. Financial burdens and health consequences of lifelong cART treatment call for novel HIV therapies that result in a permanent cure. Cellular immunity is central in controlling HIV replication. However, HIV adopts numerous strategies to evade immune surveillance. Engineered immunity via genetic manipulation could offer a functional cure by generating cells that have enhanced antiviral activity and are resistant to HIV infection. Recently, encouraging reports from several human clinical trials using an anti-CD19 chimeric antigen receptor (CAR) modified T-cell therapy for treating B-cell malignancies have provided valuable insights and generated remarkable enthusiasm in engineered T-cell therapy. In this review, we discuss the development of HIV-specific chimeric antigen receptors and the use of stem cell based therapies to generate lifelong anti-HIV immunity.
Collapse
Affiliation(s)
- Anjie Zhen
- Division of Hematology & Oncology, Department of Medicine; UCLA AIDS Institute, David Geffen School of Medicine University of California, Los Angeles, CA 90095, USA
| | - Mayra A Carrillo
- Division of Hematology & Oncology, Department of Medicine; UCLA AIDS Institute, David Geffen School of Medicine University of California, Los Angeles, CA 90095, USA
| | - Scott G Kitchen
- Division of Hematology & Oncology, Department of Medicine; UCLA AIDS Institute, David Geffen School of Medicine University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
70
|
Liu D, Tian S, Zhang K, Xiong W, Lubaki NM, Chen Z, Han W. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein Cell 2017; 8:861-877. [PMID: 28488245 PMCID: PMC5712291 DOI: 10.1007/s13238-017-0415-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/22/2017] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body’s immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.
Collapse
Affiliation(s)
- Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| | - Shuo Tian
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kai Zhang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Xiong
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ndongala Michel Lubaki
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Weidong Han
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
71
|
Hale M, Mesojednik T, Romano Ibarra GS, Sahni J, Bernard A, Sommer K, Scharenberg AM, Rawlings DJ, Wagner TA. Engineering HIV-Resistant, Anti-HIV Chimeric Antigen Receptor T Cells. Mol Ther 2017; 25:570-579. [PMID: 28143740 DOI: 10.1016/j.ymthe.2016.12.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/27/2016] [Accepted: 12/27/2016] [Indexed: 12/28/2022] Open
Abstract
The treatment or cure of HIV infection by cell and gene therapy has been a goal for decades. Recent advances in both gene editing and chimeric antigen receptor (CAR) technology have created new therapeutic possibilities for a variety of diseases. Broadly neutralizing monoclonal antibodies (bNAbs) with specificity for the HIV envelope glycoprotein provide a promising means of targeting HIV-infected cells. Here we show that primary human T cells engineered to express anti-HIV CARs based on bNAbs (HIVCAR) show specific activation and killing of HIV-infected versus uninfected cells in the absence of HIV replication. We also show that homology-directed recombination of the HIVCAR gene expression cassette into the CCR5 locus enhances suppression of replicating virus compared with HIVCAR expression alone. This work demonstrates that HIV immunotherapy utilizing potent bNAb-based single-chain variable fragments fused to second-generation CAR signaling domains, delivered directly into the CCR5 locus of T cells by homology-directed gene editing, is feasible and effective. This strategy has the potential to target HIV-infected cells in HIV-infected individuals, which might help in the effort to cure HIV.
Collapse
Affiliation(s)
- Malika Hale
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Taylor Mesojednik
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Guillermo S Romano Ibarra
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jaya Sahni
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Alison Bernard
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew M Scharenberg
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98101, USA; Department of Immunology, University of Washington, Seattle, WA 98101, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98101, USA; Department of Immunology, University of Washington, Seattle, WA 98101, USA.
| | - Thor A Wagner
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98101, USA.
| |
Collapse
|
72
|
Wagner TA. Combining Cell and Gene Therapy in an Effort to Eradicate HIV. AIDS Patient Care STDS 2016; 30:534-538. [PMID: 27905840 DOI: 10.1089/apc.2016.0226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
More than 30 million people are infected with HIV, and HIV remains the fifth leading cause of disability-adjusted life years worldwide. Antiretroviral therapy (ART) dramatically decreases mortality rate, but there are side effects, long-term toxicities, expenses, stigmas, and inconveniences associated with chronic treatment, and HIV-infected individuals on ART have an increased risk of malignancies, cardiovascular disease, neurologic disease, and shortened life expectancy. Therefore, a cure for HIV remains an important goal. Combining new cell and gene therapy technology is an exciting approach that appears promising in vitro. Animal testing and careful clinical trials will be needed to determine if these strategies are clinically useful.
Collapse
Affiliation(s)
- Thor A. Wagner
- Department of Pediatrics, University of Washington, Seattle, Washington
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
73
|
Kitchen SG, Zack JA. Engineering HIV-Specific Immunity with Chimeric Antigen Receptors. AIDS Patient Care STDS 2016; 30:556-561. [PMID: 27905838 DOI: 10.1089/apc.2016.0239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
HIV remains a highly important public health and clinical issue despite many recent advances in attempting to develop a cure, which has remained elusive for most people infected with HIV. HIV disease can be controlled with pharmacologic therapies; however, these treatments are expensive, may have severe side effects, and are not curative. Consequently, an improved means to control or eliminate HIV replication is needed. Cytotoxic T lymphocytes (CTLs) play a critical role in controlling viral replication and are an important part in the ability of the immune response to eradicate most viral infections. There are considerable efforts to enhance CTL responses in HIV-infected individuals in hopes of providing the immune response with armaments to more effectively control viral replication. In this review, we discuss some of these efforts and focus on the development of a gene therapy-based approach to engineer hematopoietic stem cells with an HIV-1-specific chimeric antigen receptor, which seeks to provide an inexhaustible source of HIV-1-specific immune cells that are MHC unrestricted and superior to natural antiviral T cell responses. These efforts provide the basis for further development of T cell functional enhancement to target and treat chronic HIV infection in hopes of eradicating the virus from the body.
Collapse
Affiliation(s)
- Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine, and UCLA Center for AIDS Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jerome A. Zack
- Division of Hematology/Oncology, Department of Medicine, and UCLA Center for AIDS Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
74
|
Chimeric Antigen Receptor T Cells Guided by the Single-Chain Fv of a Broadly Neutralizing Antibody Specifically and Effectively Eradicate Virus Reactivated from Latency in CD4+ T Lymphocytes Isolated from HIV-1-Infected Individuals Receiving Suppressive Combined Antiretroviral Therapy. J Virol 2016; 90:9712-9724. [PMID: 27535056 DOI: 10.1128/jvi.00852-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/08/2016] [Indexed: 01/06/2023] Open
Abstract
Despite the advent of combined antiretroviral therapy (cART), the persistence of viral reservoirs remains a major barrier to curing human immunodeficiency virus type 1 (HIV-1) infection. Recently, the shock and kill strategy, by which such reservoirs are eradicated following reactivation of latent HIV-1 by latency-reversing agents (LRAs), has been extensively practiced. It is important to reestablish virus-specific and reliable immune surveillance to eradicate the reactivated virus-harboring cells. In this report, we attempted to reach this goal by using newly developed chimeric antigen receptor (CAR)-T cell technology. To generate anti-HIV-1 CAR-T cells, we connected the single-chain variable fragment of the broadly neutralizing HIV-1-specific antibody VRC01 to a third-generation CAR moiety as the extracellular and intracellular domains and subsequently transduced this into primary CD8+ T lymphocytes. We demonstrated that the resulting VC-CAR-T cells induced T cell-mediated cytolysis of cells expressing HIV-1 Env proteins and significantly inhibited HIV-1 rebound after removal of antiviral inhibitors in a viral infectivity model in cell culture that mimics the termination of the cART in the clinic. Importantly, the VC-CAR-T cells also effectively induced the cytolysis of LRA-reactivated HIV-1-infected CD4+ T lymphocytes isolated from infected individuals receiving suppressive cART. Our data demonstrate that the special features of genetically engineered CAR-T cells make them a particularly suitable candidate for therapeutic application in efforts to reach a functional HIV cure. IMPORTANCE The presence of latently infected cells remains a key obstacle to the development of a functional HIV-1 cure. Reactivation of dormant viruses is possible with latency-reversing agents, but the effectiveness of these compounds and the subsequent immune response require optimization if the eradication of HIV-1-infected cells is to be achieved. Here, we describe the use of a chimeric antigen receptor, comprised of T cell activation domains and a broadly neutralizing antibody, VRC01, targeting HIV-1 to treat the infected cells. T cells expressing this construct exerted specific cytotoxic activity against wild-type HIV-1-infected cells, resulting in a dramatic reduction in viral rebound in vitro, and showed persistent effectiveness against reactivated latently infected T lymphocytes from HIV-1 patients receiving combined antiretroviral therapy. The methods used in this study constitute an improvement over existing CD4-based CAR-T technology and offer a promising approach to HIV-1 immunotherapy.
Collapse
|