51
|
Abstract
Worldwide outbreaks of influenza (pandemics) are caused by influenza A viruses to which persons lack protective immune responses. Currently, we are unable to predict which influenza virus strains may cause a pandemic. In this article, we summarize some of the information that will be needed to better assess the pandemic potential of influenza viruses, and we discuss our current gaps in knowledge.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| |
Collapse
|
52
|
Park MS, Kim JI, Bae JY, Park MS. Animal models for the risk assessment of viral pandemic potential. Lab Anim Res 2020; 36:11. [PMID: 32337177 PMCID: PMC7175453 DOI: 10.1186/s42826-020-00040-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pandemics affect human lives severely and globally. Experience predicts that there will be a pandemic for sure although the time is unknown. When a viral epidemic breaks out, assessing its pandemic risk is an important part of the process that characterizes genomic property, viral pathogenicity, transmission in animal model, and so forth. In this review, we intend to figure out how a pandemic may occur by looking into the past influenza pandemic events. We discuss interpretations of the experimental evidences resulted from animal model studies and extend implications of viral pandemic potentials and ingredients to emerging viral epidemics. Focusing on the pandemic potential of viral infectious diseases, we suggest what should be assessed to prevent global catastrophes from influenza virus, Middle East respiratory syndrome coronavirus, dengue and Zika viruses.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| |
Collapse
|
53
|
Diverse and Unexpected Roles of Human Monocytes/Macrophages in the Immune Response to Influenza Virus. Viruses 2020; 12:v12040379. [PMID: 32244278 PMCID: PMC7232416 DOI: 10.3390/v12040379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Human monocytes/macrophages play a central role in the immune response and defense of the host from influenza virus infection. They classically act as antigen-presenting cells for lymphocytes in the context of an immune cell cluster. In that setting, however, monocytes/macrophages exhibit additional, unexpected, roles. They are required for influenza virus infection of the lymphocytes in the cluster, and they are responsible for lymphocyte apoptosis via their synthesis and expression of the viral neuraminidase. Surprisingly, human alveolar macrophages, expected to be among the first cells to encounter the virus, are not susceptible to direct infection by a human influenza virus but can be infected when the virus is complexed with an antibody. Such monocyte/macrophage responses to influenza virus challenge should be considered part of a very complex but quite effective defense, since the common outcome is recovery of the host with development of immunity to the challenging strain of virus.
Collapse
|
54
|
Chua Vi Long K, Sayed A, Karki P, Acharya Y. Convalescent Blood Products in COVID-19: A Narrative Review. Ther Adv Infect Dis 2020; 7:2049936120960646. [PMID: 33014364 PMCID: PMC7513012 DOI: 10.1177/2049936120960646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has left the world in a state of desolation with overburdening public health systems in a short period. Finding possible preventative and therapeutic measures to counter severe respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has been the priority. A possible solution is convalescent blood products (CBP), primarily convalescent plasma (CP) and immunoglobulins, as an adjunctive therapy. CBP has been tried on the previous coronavirus epidemics with severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Therefore, we reviewed the clinical utility of CBP and available evidence in COVID-19. We found some of the current anecdotal studies demonstrate promising therapeutic potential, but many of these studies do not meet the academic rigours to substantiate its use with confidence. However, the compassionate use of CBP in critically ill COVID-19 patients can be an option while we await a definitive answer from ongoing randomised clinical trials.
Collapse
Affiliation(s)
| | - Abida Sayed
- Medicine Department, Avalon University School of
Medicine, Willemstad, Curacao, Netherlands Antilles
| | - Priyanka Karki
- Nobel Medical College Teaching Hospital,
Kanchanbari, Biratnagar, Morang, Nepal
| | - Yogesh Acharya
- Research Fellow, Vascular and Endovascular
Department, Western Vascular Institute, National University of Ireland,
Galway, Ireland
| |
Collapse
|
55
|
Imai M, Yamashita M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Kiso M, Murakami J, Yasuhara A, Takada K, Ito M, Nakajima N, Takahashi K, Lopes TJS, Dutta J, Khan Z, Kriti D, van Bakel H, Tokita A, Hagiwara H, Izumida N, Kuroki H, Nishino T, Wada N, Koga M, Adachi E, Jubishi D, Hasegawa H, Kawaoka Y. Influenza A variants with reduced susceptibility to baloxavir isolated from Japanese patients are fit and transmit through respiratory droplets. Nat Microbiol 2020; 5:27-33. [PMID: 31768027 DOI: 10.1038/s41564-019-0609-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/11/2019] [Indexed: 11/09/2022]
Abstract
Here we report the isolation of the influenza A/H1N1 2009 pandemic (A/H1N1pdm) and A/H3N2 viruses carrying an I38T mutation in the polymerase acidic protein-a mutation that confers reduced susceptibility to baloxavir marboxil-from patients before and after treatment with baloxavir marboxil in Japan. These variants showed replicative abilities and pathogenicity that is similar to those of wild-type isolates in hamsters; they also transmitted efficiently between ferrets by respiratory droplets.
Collapse
Affiliation(s)
- Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jurika Murakami
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kosuke Takada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tiago J S Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Akifumi Tokita
- Clinic Bambini, Tokyo, Japan
- Members of the Tokyo Pediatric Association Public Health Committee, Tokyo, Japan
| | - Haruhisa Hagiwara
- Members of the Tokyo Pediatric Association Public Health Committee, Tokyo, Japan
- Hagiwara Clinic, Tokyo, Japan
| | - Naomi Izumida
- Members of the Tokyo Pediatric Association Public Health Committee, Tokyo, Japan
- Akebonocho Clinic, Tokyo, Japan
| | | | - Tamon Nishino
- Members of the Tokyo Pediatric Association Public Health Committee, Tokyo, Japan
- Alpaca Kids Ent Clinic, Tokyo, Japan
| | - Noriyuki Wada
- Members of the Tokyo Pediatric Association Public Health Committee, Tokyo, Japan
- Wada Pediatric Clinic, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of the Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Jubishi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Nezu Clinic, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.
| |
Collapse
|
56
|
Krammer F, Weir JP, Engelhardt O, Katz JM, Cox RJ. Meeting report and review: Immunological assays and correlates of protection for next-generation influenza vaccines. Influenza Other Respir Viruses 2019; 14:237-243. [PMID: 31837101 PMCID: PMC7040967 DOI: 10.1111/irv.12706] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This report summarizes the discussions and conclusions from the "Immunological Assays and Correlates of Protection for Next-Generation Influenza Vaccines" meeting which took place in Siena, Italy, from March 31, 2019, to April 2, 2019. CONCLUSIONS Furthermore, we review current correlates of protection against influenza virus infection and disease and their usefulness for the development of next generation broadly protective and universal influenza virus vaccines.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jerry P Weir
- Division of Viral Products, Food and Drug Administration, Bethesda, MD, USA
| | - Othmar Engelhardt
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Jacqueline M Katz
- Formerly Influenza Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Rebecca Jane Cox
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
57
|
Miao J, Chard LS, Wang Z, Wang Y. Syrian Hamster as an Animal Model for the Study on Infectious Diseases. Front Immunol 2019; 10:2329. [PMID: 31632404 PMCID: PMC6781508 DOI: 10.3389/fimmu.2019.02329] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases still remain one of the biggest challenges for human health. In order to gain a better understanding of the pathogenesis of infectious diseases and develop effective diagnostic tools, therapeutic agents, and preventive vaccines, a suitable animal model which can represent the characteristics of infectious is required. The Syrian hamster immune responses to infectious pathogens are similar to humans and as such, this model is advantageous for studying pathogenesis of infection including post-bacterial, viral and parasitic pathogens, along with assessing the efficacy and interactions of medications and vaccines for those pathogens. This review summarizes the current status of Syrian hamster models and their use for understanding the underlying mechanisms of pathogen infection, in addition to their use as a drug discovery platform and provides a strong rationale for the selection of Syrian hamster as animal models in biomedical research. The challenges of using Syrian hamster as an alternative animal model for the research of infectious diseases are also addressed.
Collapse
Affiliation(s)
- Jinxin Miao
- Department of Science and Technology, Henan University of Chinese Medicine, Zhengzhou, China
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhimin Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
58
|
Gautam A, Park BK, Kim TH, Akauliya M, Kim D, Maharjan S, Park J, Kim J, Lee H, Park MS, Lee Y, Kwon HJ. Peritoneal Cells Mediate Immune Responses and Cross-Protection Against Influenza A Virus. Front Immunol 2019; 10:1160. [PMID: 31191534 PMCID: PMC6546726 DOI: 10.3389/fimmu.2019.01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/08/2019] [Indexed: 01/01/2023] Open
Abstract
Intraperitoneal inoculation with live influenza A virus confers protection against intranasal infections in mice and ferrets. However, the responses of peritoneal cells to influenza A virus have not been investigated. Here we show that intraperitoneal inoculation with A/WSN/1933 (H1N1) virus induced virus-reactive IgG production in the peritoneal cavity in mice. The infection resulted in substantial but transient B cell and macrophage depletion along with massive neutrophil infiltration, but virus growth was not detected. Influenza A viruses bound to α-2,6-linked sialic acids of B cells and macrophages and induced apoptotic death of peritoneal cavity cells. However, re-infection with A/WSN/1933 virus did not have adverse effects on immune cells most likely because of the neutralizing antibodies produced in response to the first exposure. Infection of BALB/c mice with A/WSN/1933 induced cross-protection against an otherwise lethal intraperitoneal dose of A/Hongkong/4801/2014 (H3N2) virus. This information suggests that immunological responses in the peritoneal cavity can induce effective defense against future virus infection. Considering the unexpected potent immunoregulatory activity of the peritoneal cells against influenza viruses, we suggest that comparative studies on various immune reactions after infection through different routes may contribute to better selection of vaccination routes in development of efficacious influenza vaccines.
Collapse
Affiliation(s)
- Avishekh Gautam
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Byoung Kwon Park
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Te Ha Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Madhav Akauliya
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Dongbum Kim
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Sony Maharjan
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Joongwon Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hanseul Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, South Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
59
|
Predicting Host Immune Cell Dynamics and Key Disease-Associated Genes Using Tissue Transcriptional Profiles. Processes (Basel) 2019. [DOI: 10.3390/pr7050301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Motivation: Immune cell dynamics is a critical factor of disease-associated pathology (immunopathology) that also impacts the levels of mRNAs in diseased tissue. Deconvolution algorithms attempt to infer cell quantities in a tissue/organ sample based on gene expression profiles and are often evaluated using artificial, non-complex samples. Their accuracy on estimating cell counts given temporal tissue gene expression data remains not well characterized and has never been characterized when using diseased lung. Further, how to remove the effects of cell migration on transcript counts to improve discovery of disease factors is an open question. Results: Four cell count inference (i.e., deconvolution) tools are evaluated using microarray data from influenza-infected lung sampled at several time points post-infection. The analysis finds that inferred cell quantities are accurate only for select cell types and there is a tendency for algorithms to have a good relative fit (R 2 ) but a poor absolute fit (normalized mean squared error; NMSE), which suggests systemic biases exist. Nonetheless, using cell fraction estimates to adjust gene expression data, we show that genes associated with influenza virus replication and increased infection pathology are more likely to be identified as significant than when applying traditional statistical tests.
Collapse
|
60
|
Dutta S, Sengupta P. Age of Laboratory Hamster and Human: Drawing the Connexion. ACTA ACUST UNITED AC 2019. [DOI: 10.13005/bpj/1612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hamsters have unique physiological characteristics rendering them well-suited for biomedical research as experimental model. They match beneficial traits of both smaller rodents and larger mammals that make them suitable for laboratory use, such as availability, breeding ease, greater tissue proportions and the like. In experimental design, it is inevitable to select laboratory animals of accurate age that can mimic the target human age in a specific research. In this article, we have calculated that one human year equals 13.67 hamster days, considering their entire lifespan. This simplistic calculation may not find universal relevance in biomedical research, given the accelerated non-uniform life stages of hamsters when matched with human. To resolve this issue, this is the first ever article where we have provided a concise perception of hamster days in human years by correlating their age at every major life stage. This article will aid precision in biomedical research via selection of laboratory hamster of accurate age corresponding to human age, which is the most primary and essential criteria in animal based research.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, Malaysia
| |
Collapse
|
61
|
Abstract
INTRODUCTION Influenza continues to be a major public health concern. Antivirals play an important role in limiting the burden of disease and preventing infection and/or transmission. The developments of such agents are heavily dependent on pre-clinical evaluation where animal models are used to answer questions that cannot be easily addressed in human clinical trials. There are numerous animal models available to study the potential benefits of influenza antivirals but each animal model has its own pros and cons. Areas covered: In this review, the authors describe the advantages and disadvantages of using mice, ferrets, guinea pigs, cotton rats, golden hamsters and non-human primates to evaluate influenza therapeutics. Expert opinion: Animals used for evaluating influenza therapeutics differ in their susceptibility to influenza virus infection, their ability to display clinical signs of illness following viral infection and in their practical requirements such as housing. Therefore, defining the scientific question being asked and the data output required will assist in selecting the most appropriate animal model.
Collapse
Affiliation(s)
- Edin J Mifsud
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Celeste Mk Tai
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Aeron C Hurt
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b Department of Microbiology and Immunology , University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
62
|
Kolpe A, Schepens B, Ye L, Staeheli P, Saelens X. Passively transferred M2e-specific monoclonal antibody reduces influenza A virus transmission in mice. Antiviral Res 2018; 158:244-254. [PMID: 30179634 DOI: 10.1016/j.antiviral.2018.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
Influenza represents a global public health threat. Currently available influenza vaccines are effective against strain-matched influenza A and B viruses but do not protect against novel pandemic viruses. Vaccine candidates that target conserved B or T cell epitopes of influenza viruses could circumvent this shortcoming. The conserved extracellular domain of matrix protein 2 (M2e) of influenza A is an example of such a broadly protective vaccine candidate. Protection by M2e-based vaccine candidates largely depends on M2e-specific IgG antibodies. Here we show that the M2e-specific IgG2a monoclonal antibody 65 (MAb 65) can reduce influenza A/Udorn/72 (H3N2) and A/Hong Kong/68 (H3N2) virus plaque formation. This effect was not observed with other influenza A virus strains tested. We further show that passive transfer of MAb 65 to mice can reduce viral loads in the upper and lower airways, which results in reduced transmission of A/Udorn/72 and A/Hong Kong/68 viruses to cohoused, unimmunized contact mice. Virus restriction by passively transferred Mab 65 was significantly less pronounced in Fcgr1-/-Fcgr3-/- mutant mice compared with wild type controls, suggesting that in vivo protection provided by MAb 65 depends on Fcγ receptor-mediated antibody effector mechanisms. We conclude that M2e-based antibody immune therapy has the potential to diminish influenza A virus replication in the immunized host as well as in exposed naïve contacts.
Collapse
Affiliation(s)
- Annasaheb Kolpe
- VIB Center for Medical Biotechnology, VIB, Technologiepark 927, Ghent, B-9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - Bert Schepens
- VIB Center for Medical Biotechnology, VIB, Technologiepark 927, Ghent, B-9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - Liang Ye
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Technologiepark 927, Ghent, B-9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium.
| |
Collapse
|