51
|
Gray ES, Madiga MC, Hermanus T, Moore PL, Wibmer CK, Tumba NL, Werner L, Mlisana K, Sibeko S, Williamson C, Abdool Karim SS, Morris L. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. J Virol 2011; 85:4828-40. [PMID: 21389135 PMCID: PMC3126191 DOI: 10.1128/jvi.00198-11] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/24/2011] [Indexed: 11/20/2022] Open
Abstract
An understanding of how broadly neutralizing activity develops in HIV-1-infected individuals is needed to guide vaccine design and immunization strategies. Here we used a large panel of 44 HIV-1 envelope variants (subtypes A, B, and C) to evaluate the presence of broadly neutralizing antibodies in serum samples obtained 3 years after seroconversion from 40 women enrolled in the CAPRISA 002 acute infection cohort. Seven of 40 participants had serum antibodies that neutralized more than 40% of viruses tested and were considered to have neutralization breadth. Among the samples with breadth, CAP257 serum neutralized 82% (36/44 variants) of the panel, while CAP256 serum neutralized 77% (33/43 variants) of the panel. Analysis of longitudinal samples showed that breadth developed gradually starting from year 2, with the number of viruses neutralized as well as the antibody titer increasing over time. Interestingly, neutralization breadth peaked at 4 years postinfection, with no increase thereafter. The extent of cross-neutralizing activity correlated with CD4(+) T cell decline, viral load, and CD4(+) T cell count at 6 months postinfection but not at later time points, suggesting that early events set the stage for the development of breadth. However, in a multivariate analysis, CD4 decline was the major driver of this association, as viral load was not an independent predictor of breadth. Mapping of the epitopes targeted by cross-neutralizing antibodies revealed that in one individual these antibodies recognized the membrane-proximal external region (MPER), while in two other individuals, cross-neutralizing activity was adsorbed by monomeric gp120 and targeted epitopes that involved the N-linked glycan at position 332 in the C3 region. Serum antibodies from the other four participants targeted quaternary epitopes, at least 2 of which were PG9/16-like and depended on the N160 and/or L165 residue in the V2 region. These data indicate that fewer than 20% of HIV-1 subtype C-infected individuals develop antibodies with cross-neutralizing activity after 3 years of infection and that these antibodies target different regions of the HIV-1 envelope, including as yet uncharacterized epitopes.
Collapse
Affiliation(s)
- Elin S. Gray
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maphuti C. Madiga
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Tandile Hermanus
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Penny L. Moore
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
- University of Witwatersrand, Johannesburg, South Africa
| | - Constantinos Kurt Wibmer
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
- University of Witwatersrand, Johannesburg, South Africa
| | - Nancy L. Tumba
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lise Werner
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Koleka Mlisana
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Sengeziwe Sibeko
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Lynn Morris
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
- University of Witwatersrand, Johannesburg, South Africa
| | - and the CAPRISA002 Study Team
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
- University of Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
52
|
Brinckmann S, da Costa K, van Gils MJ, Hallengärd D, Klein K, Madeira L, Mainetti L, Palma P, Raue K, Reinhart D, Reudelsterz M, Ruffin N, Seifried J, Schäfer K, Sheik-Khalil E, Sköld A, Uchtenhagen H, Vabret N, Ziglio S, Scarlatti G, Shattock R, Wahren B, Gotch F. Rational design of HIV vaccines and microbicides: report of the EUROPRISE network annual conference 2010. J Transl Med 2011; 9:40. [PMID: 21486446 PMCID: PMC3086860 DOI: 10.1186/1479-5876-9-40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/12/2011] [Indexed: 11/21/2022] Open
Abstract
Novel, exciting intervention strategies to prevent infection with HIV have been tested in the past year, and the field is rapidly evolving. EUROPRISE is a network of excellence sponsored by the European Commission and concerned with a wide range of activities including integrated developmental research on HIV vaccines and microbicides from discovery to early clinical trials. A central and timely theme of the network is the development of the unique concept of co-usage of vaccines and microbicides. This review, prepared by the PhD students of the network captures much of the research ongoing between the partners. The network is in its 5th year and involves over 50 institutions from 13 European countries together with 3 industrial partners; GSK, Novartis and Sanofi-Pasteur. EUROPRISE is involved in 31 separate world-wide trials of Vaccines and Microbicides including 6 in African countries (Tanzania, Mozambique, South Africa, Kenya, Malawi, Rwanda), and is directly supporting clinical trials including MABGEL, a gp140-hsp70 conjugate trial and HIVIS, vaccine trials in Europe and Africa.
Collapse
Affiliation(s)
- Sarah Brinckmann
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg, Stockholm, 171 77, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Haynes BF, Moody MA, Liao HX, Verkoczy L, Tomaras GD. B cell responses to HIV-1 infection and vaccination: pathways to preventing infection. Trends Mol Med 2011; 17:108-16. [PMID: 21112250 PMCID: PMC3053087 DOI: 10.1016/j.molmed.2010.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 12/22/2022]
Abstract
The B cell arm of the immune response becomes activated soon after HIV-1 transmission, yet the initial antibody response does not control HIV-1 replication, and it takes months for neutralizing antibodies to develop against the autologous virus. Antibodies that can be broadly protective are made only in a minority of subjects and take years to develop--too late to affect the course of disease. New studies of the earliest stages of HIV-1 infection, new techniques to probe the human B cell repertoire, the modest degree of efficacy in a vaccine trial and new studies of human monoclonal antibodies that represent the types of immune responses an HIV-1 vaccine should induce are collectively illuminating paths that a successful HIV-1 vaccine might take.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute and the Duke Center for AIDS Research, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
54
|
Potent and broad neutralization of HIV-1 subtype C by plasma antibodies targeting a quaternary epitope including residues in the V2 loop. J Virol 2011; 85:3128-41. [PMID: 21270156 DOI: 10.1128/jvi.02658-10] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The targets of broadly cross-neutralizing (BCN) antibodies are of great interest in the HIV vaccine field. We have identified a subtype C HIV-1-superinfected individual, CAP256, with high-level BCN activity, and characterized the antibody specificity mediating breadth. CAP256 developed potent BCN activity peaking at 3 years postinfection, neutralizing 32 (76%) of 42 heterologous viruses, with titers of antibodies against some viruses exceeding 1:10,000. CAP256 showed a subtype bias, preferentially neutralizing subtype C and A viruses over subtype B viruses. CAP256 BCN serum targeted a quaternary epitope which included the V1V2 region. Further mapping identified residues F159, N160, L165, R166, D167, K169, and K171 (forming the FN/LRD-K-K motif) in the V2 region as crucial to the CAP256 epitope. However, the fine specificity of the BCN response varied over time and, while consistently dependent on R166 and K169, became gradually less dependent on D167 and K171, possibly contributing to the incremental increase in breadth over 4 years. The presence of an intact FN/LRD-K-K motif in heterologous viruses was associated with sensitivity, although the length of the adjacent V1 loop modulated the degree of sensitivity, with a shorter V1 region significantly associated with higher titers. Repair of the FN/LRD-K-K motif in resistant heterologous viruses conferred sensitivity, with titers sometimes exceeding 1:10,000. Comparison of the CAP256 epitope with that of the PG9/PG16 monoclonal antibodies suggested that these epitopes overlapped, adding to the mounting evidence that this may represent a common neutralization target that should be further investigated as a potential vaccine candidate.
Collapse
|