51
|
Pogan R, Dülfer J, Uetrecht C. Norovirus assembly and stability. Curr Opin Virol 2018; 31:59-65. [DOI: 10.1016/j.coviro.2018.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/05/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
|
52
|
Han J, Wu X, Chen L, Fu Y, Xu D, Zhang P, Ji L. Emergence of norovirus GII.P16-GII.2 strains in patients with acute gastroenteritis in Huzhou, China, 2016-2017. BMC Infect Dis 2018; 18:342. [PMID: 30041612 PMCID: PMC6056945 DOI: 10.1186/s12879-018-3259-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/17/2018] [Indexed: 11/17/2022] Open
Abstract
Background In late 2016, an uncommon recombinant NoV genotype called GII.P16-GII.2 caused a sharp increase in outbreaks of acute gastroenteritis in different countries of Asia and Europe, including China. However, we did not observe a drastic increase in sporadic norovirus cases in the winter of 2016 in Huzhou. Therefore, we investigate the prevalence and genetic diversity of NoVs in the sporadic acute gastroenteritis (AGE) cases from January 2016 to December 2017 in Huzhou City, Zhejiang, China. Methods From January 2016 to December 2017, a total of 1001 specimens collected from patients with AGE were screened for NoV by real-time RT-PCR. Partial sequences of the RNA-dependent RNA polymerase (RdRp) and capsid gene of the positive samples were amplified by RT-PCR and sequenced. Genotypes of NoV were confirmed by online NoV typing tool and phylogenetic analysis. Complete VP1 sequences of GII.P16-GII.2 strains detected in this study were further obtained and subjected into sequence analysis. Results In total, 204 (20.4%) specimens were identified as NoV-positive. GII genogroup accounted for most of the NoV-infected cases (98.0%, 200/204). NoV infection was found in all age groups tested (< 5, 5–15, 16–20, 21–30, 31–40, 41–50, 51–60, and >60 years), with the 5–15 year age group having the highest detection rate (17/49, 34.7%). Higher activity of NoV infection could be seen in winter-spring season. The predominant NoV genotypes have changed from GII.Pe-GII.4 Sydney2012 and GII.P17-GII.17 in 2016 to GII.P16-GII.2, GII.Pe-GII.4 Sydney2012 and GII.P17-GII.17 in 2017. Phylogenetic analyses revealed that 2016–2017 GII.P16-GII.2 strains were most closely related to Japan 2010–2012 cluster in VP1 region and no common mutations were found in the amino acids of the HBGA-binding sites and the predicted epitopes. Conclusions We report the emergence of GII.P16-GII.2 strains and characterize the molecular epidemiological patterns NoV infection between January 2016 and December 2017 in Huzhou. The predominant genotypes of NoV during our study period are diverse. VP1 amino acid sequences of 2016–2017 GII.P16-GII.2 strains remain static after one year of circulation. Electronic supplementary material The online version of this article (10.1186/s12879-018-3259-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiankang Han
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Yun Fu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China.
| |
Collapse
|
53
|
Free-Chlorine Disinfection as a Selection Pressure on Norovirus. Appl Environ Microbiol 2018; 84:AEM.00244-18. [PMID: 29703740 PMCID: PMC6007107 DOI: 10.1128/aem.00244-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are excreted in feces from infected individuals and included in wastewater. It is critical to remove/inactivate them in wastewater treatment processes, particularly in the disinfection step, before release to aquatic environments. However, the high mutation rates of human noroviruses raise concerns about the emergence of strains that are less susceptible to disinfectants and can survive even after wastewater treatment. This study aimed to demonstrate the strain-dependent susceptibility of norovirus to free chlorine. A population originated from the murine norovirus strain S7-PP3, a surrogate for human noroviruses in environmental testing, was exposed to free chlorine and then propagated in a host cell. This cycle of free chlorine exposure followed by propagation in cells was repeated 10 times, and populations with lower susceptibility to free chlorine were obtained from two independent trials of chlorine exposure cycles. Open reading frame 2 (ORF2) and ORF3 of the murine norovirus genome were analyzed by next-generation sequencing, and a unique nonsynonymous mutation (corresponding to a change from phenylalanine to serine) at nucleotide (nt) 7280 in ORF3, which encodes the minor capsid protein VP2, was found in chlorine-exposed populations from both trials. It was confirmed that all of the clones from the chlorine-treated population had lower susceptibility to free chlorine than those from the control population. These results indicate that exposure to free chlorine and dilution exert different driving forces to form murine norovirus (MNV) quasispecies, and that there is a selective force to form MNV quasispecies under free chlorine exposure.IMPORTANCE This study showed that free chlorine disinfection exerted a selection pressure for murine norovirus (MNV). The strain-dependent viral susceptibility to the disinfectant elucidated in this study highlights the importance of employing less susceptible strains as representative viruses in disinfection tests, because the disinfection rate values obtained from more susceptible strains would be less useful in predicting the virus inactivation efficiency of circulating strains under practical disinfection conditions.
Collapse
|
54
|
Mohamed FF, Ktob GKF, Ismaeil MEA, Ali AAH, Goyal SM. Phylogeny of bovine norovirus in Egypt based on VP2 gene. Int J Vet Sci Med 2018; 6:48-52. [PMID: 30255078 PMCID: PMC6147391 DOI: 10.1016/j.ijvsm.2018.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/07/2022] Open
Abstract
Bovine norovirus (BNoV) has emerged as a viral pathogen that causes a gastrointestinal illness and diarrhea in cattle. Despite its worldwide distribution, very little information is known about BNoV in Africa. In this study, BNoV was detected in 27.6% (8/29) of tested fecal materials, collected from sporadic cases of diarrheic calves, using the reverse transcription-polymerase chain reaction (RT-PCR) and primers that target RNA dependent RNA polymerase gene. Additionally, one primer pair was designed to flank the BNoV-VP2 (small capsid protein) gene for molecular analysis. Study VP2 sequences were phylogenetically-related to BNoV-GIII.2 (Newbury2-like) genotype, which is highly prevalent all over the world. However, they were separated within the cluster and one strain (41FR) grouped with recombinant GIII.P1/GIII.2 strains. Compared to reference VP2 sequences, 14 amino acid substitution mutations were found to be unique to our strains. The study confirms that BNoV is currently circulating among diarrheic calves of Egypt and also characterizes its ORF3 (VP2) genetically. The status of BNoV should be continuously evaluated in Egypt for effective prevention and control.
Collapse
Affiliation(s)
- Fakry F Mohamed
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt.,Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Gamelat K F Ktob
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Mohamed E A Ismaeil
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Ahmed A H Ali
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Sagar M Goyal
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, Minnesota 55108, USA
| |
Collapse
|
55
|
Pogan R, Schneider C, Reimer R, Hansman G, Uetrecht C. Norovirus-like VP1 particles exhibit isolate dependent stability profiles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:064006. [PMID: 29282349 PMCID: PMC7104913 DOI: 10.1088/1361-648x/aaa43b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 05/08/2023]
Abstract
Noroviruses are the main cause of viral gastroenteritis with new variants emerging frequently. There are three norovirus genogroups infecting humans. These genogroups are divided based on the sequence of their major capsid protein, which is able to form virus-like particles (VLPs) when expressed recombinantly. VLPs of the prototypical GI.1 Norwalk virus are known to disassemble into specific capsid protein oligomers upon alkaline treatment. Here, native mass spectrometry and electron microscopy on variants of GI.1 and of GII.17 were performed, revealing differences in terms of stability between these groups. Beyond that, these experiments indicate differences even between variants within a genotype. The capsid stability was monitored in different ammonium acetate solutions varying both in ionic strength and pH. The investigated GI.1 West Chester isolate showed comparable disassembly profiles to the previously studied GI.1 Norwalk virus isolate. However, differences were observed with the West Chester being more sensitive to alkaline pH. In stark contrast to that, capsids of the variant belonging to the currently prevalent genogroup GII were stable in all tested conditions. Both variants formed smaller capsid particles already at neutral pH. Certain amino acid substitutions in the S domain of West Chester relative to the Norwalk virus potentially result in the formation of these T = 1 capsids.
Collapse
Affiliation(s)
- Ronja Pogan
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Rudolph Reimer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Grant Hansman
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- European XFEL, Schenefeld, Germany
| |
Collapse
|
56
|
Almand EA, Moore MD, Jaykus LA. Norovirus Binding to Ligands Beyond Histo-Blood Group Antigens. Front Microbiol 2017; 8:2549. [PMID: 29312233 PMCID: PMC5742575 DOI: 10.3389/fmicb.2017.02549] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/08/2017] [Indexed: 12/02/2022] Open
Abstract
Histo-blood group antigens (HBGAs) are commonly accepted as the cellular receptors for human norovirus. However, some human noroviruses have been found not to bind any HBGA ligand, suggesting potential additional co-factors. Some ligands have been found to bind noroviruses and have the potential to be additional cellular receptors/attachment factors for human norovirus or inhibitors of the HBGA interaction. The studies identifying these mostly characterize different chemical, human, food, or bacterial components and their effect on norovirus binding and infection, although the mechanism of interaction is unknown in many cases. This review seeks to supplement the already well-covered HBGA-norovirus literature by covering non-HBGA human norovirus ligands and inhibitors to provide investigators with a more comprehensive view of norovirus ligands.
Collapse
Affiliation(s)
- Erin A Almand
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Matthew D Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
57
|
Xue L, Wu Q, Dong R, Cai W, Wu H, Chen M, Chen G, Wang J, Zhang J. Comparative phylogenetic analyses of recombinant noroviruses based on different protein-encoding regions show the recombination-associated evolution pattern. Sci Rep 2017; 7:4976. [PMID: 28694427 PMCID: PMC5504017 DOI: 10.1038/s41598-017-01640-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/31/2017] [Indexed: 11/08/2022] Open
Abstract
Noroviruses are the major cause of acute gastroenteritis worldwide, and recombination is recognized as the important mechanism for its continuous emergence. In this study, for the common GII.P12 and GII.3 recombinants, phylogenetic relationships based on different proteins in three ORFs were comparatively analyzed, focusing on the influence of intergenic recombination. By using newly designed primers, genomes of two GII.P12/GII.3 Guangzhou recombinants were firstly amplified. Combined with other reported sequences of GII.P12_ORF1 (n = 20), GII.3_ORF2 (n = 131), GII.3_ORF3 (n = 36), all GII.P12 and GII.3 strains could be divided into 6, 8, and 7 clusters based on different ORFs, which showed an obvious recombination-associated and temporally sequential evolution pattern (with the exception of GII.P12/GII.13 recombinants). Based on multiple alignments, 126 informative sites were identified in three ORFs (44, 54, and 28), and four proteins (p48, p22, VP1, and VP2) were found under positive selection. Furthermore, by using homology modeling, predicted epitopes were mapped on the P proteins of seven GII.3 representative strains, without one (Epi: 353-361) specific to the GII.4 VA387 strain. In summary, via the genome analyses, phylogenetic relationships of GII.P12 and GII.3 recombinants based on the different proteins presented a special temporally sequential evolution process associated with their recombinant types.
Collapse
Affiliation(s)
- Liang Xue
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China.
| | - Ruimin Dong
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Weicheng Cai
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| | - Haoming Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| | - Moutong Chen
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| | - Gang Chen
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, P. R. China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| |
Collapse
|
58
|
Timurkan MÖ, Aydin H, Aktaş O. Frequency and molecular characterization of human norovirus in Erzurum, Turkey. Turk J Med Sci 2017; 47:960-966. [PMID: 28618751 DOI: 10.3906/sag-1509-87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/29/2016] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM There are limited studies on genotyping and phylogenetic analysis of norovirus in Turkey, and this has not previously been studied in the Eastern Anatolia region. The aim of the present study was to determine the norovirus profile in this region with genotyping and phylogenetic analysis. MATERIALS AND METHODS Included in the study were stool samples obtained from 427 people from different age groups in Eastern Anatolia. The nucleic acid samples isolated by the automatic system and nucleic acid sequence reactions and phylogenetic analyses were performed on RNA samples. RESULTS The presence of norovirus was detected in 86 (20.1%) of the 427 stool samples by RT-PCR analysis. Twenty-six samples selected randomly from norovirus-RNA positive samples were subjected to the sequence reaction. In 24 of the 26 samples, genogroup GII was determined, as well as one each from GI and GIV in sequence reactions. Four different genotypes were detected in genogroup GII, which were determined to be the dominant types. These were GII.1, GII.4, GII.16, and GII.21. The GI.6 and GIV.1 genotypes were determined in genogroups GI and GIV, respectively. CONCLUSION The high frequency and genetic diversity of these infections are risk factors for disease and so vaccine studies should be undertaken in consideration of this situation.
Collapse
Affiliation(s)
- Mehmet Özkan Timurkan
- Department of Virology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Hakan Aydin
- Department of Virology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Osman Aktaş
- Department of Medical Microbiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
59
|
Phylogenetic Analyses Suggest that Factors Other Than the Capsid Protein Play a Role in the Epidemic Potential of GII.2 Norovirus. mSphere 2017; 2:mSphere00187-17. [PMID: 28529975 PMCID: PMC5437133 DOI: 10.1128/mspheredirect.00187-17] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/20/2022] Open
Abstract
Norovirus is the leading cause of acute gastroenteritis worldwide. For over two decades, a single genotype (GII.4) has been responsible for most norovirus-associated cases. However, during the winter of 2014 to 2015, the GII.4 strains were displaced by a rarely detected genotype (GII.17) in several countries of the Asian continent. Moreover, during the winter of 2016 to 2017, the GII.2 strain reemerged as predominant in different countries worldwide. This reemerging GII.2 strain is a recombinant virus that presents a GII.P16 polymerase genotype. In this study, we investigated the evolutionary dynamics of GII.2 to determine the mechanism of this sudden emergence in the human population. The phylogenetic analyses indicated strong linear evolution of the VP1-encoding sequence, albeit with minor changes in the amino acid sequence over time. Without major genetic differences among the strains, a clustering based on the polymerase genotype was observed in the tree. This association did not affect the substitution rate of the VP1. Phylogenetic analyses of the polymerase region showed that reemerging GII.P16-GII.2 strains diverged into a new cluster, with a small number of amino acid substitutions detected on the surface of the associated polymerase. Thus, besides recombination or antigenic shift, point mutations in nonstructural proteins could also lead to novel properties with epidemic potential in different norovirus genotypes. IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide. Currently, there is no vaccine or specific antiviral available to treat norovirus disease. Multiple norovirus strains infect humans, but a single genotype (GII.4) has been regarded as the most important cause of viral gastroenteritis outbreaks worldwide. Its persistence and predominance have been explained by the continuous replacement of variants that present new antigenic properties on their capsid protein, thus evading the herd immunity acquired to the previous variants. Over the last three seasons, minor genotypes have displaced the GII.4 viruses as the predominant strains. One of these genotypes, GII.2, reemerged as predominant during 2016 to 2017. Here we show that factors such as minor changes in the polymerase may have driven the reemergence of GII.2 during the last season. A better understanding of norovirus diversity is important for the development of effective treatments against noroviruses.
Collapse
|
60
|
Nasheri N, Petronella N, Ronholm J, Bidawid S, Corneau N. Characterization of the Genomic Diversity of Norovirus in Linked Patients Using a Metagenomic Deep Sequencing Approach. Front Microbiol 2017; 8:73. [PMID: 28197136 PMCID: PMC5282449 DOI: 10.3389/fmicb.2017.00073] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
Norovirus (NoV) is the leading cause of gastroenteritis worldwide. A robust cell culture system does not exist for NoV and therefore detailed characterization of outbreak and sporadic strains relies on molecular techniques. In this study, we employed a metagenomic approach that uses non-specific amplification followed by next-generation sequencing to whole genome sequence NoV genomes directly from clinical samples obtained from 8 linked patients. Enough sequencing depth was obtained for each sample to use a de novo assembly of near-complete genome sequences. The resultant consensus sequences were then used to identify inter-host nucleotide variations that occur after direct transmission, analyze amino acid variations in the major capsid protein, and provide evidence of recombination events. The analysis of intra-host quasispecies diversity was possible due to high coverage-depth. We also observed a linear relationship between NoV viral load in the clinical sample and the number of sequence reads that could be attributed to NoV. The method demonstrated here has the potential for future use in whole genome sequence analyses of other RNA viruses isolated from clinical, environmental, and food specimens.
Collapse
Affiliation(s)
- Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada Ottawa, ON, Canada
| | - Nicholas Petronella
- Biostatistics and Modeling Division, Bureau of Food Surveillance and Science Integration, Food Directorate, Health Canada Ottawa, ON, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill UniversityMontreal, QC, Canada; Department of Animal Science, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill UniversityMontreal, QC, Canada
| | - Sabah Bidawid
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada Ottawa, ON, Canada
| | - Nathalie Corneau
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada Ottawa, ON, Canada
| |
Collapse
|
61
|
|
62
|
Structure(s), function(s), and inhibition of the RNA-dependent RNA polymerase of noroviruses. Virus Res 2016; 234:21-33. [PMID: 28041960 PMCID: PMC7114559 DOI: 10.1016/j.virusres.2016.12.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/17/2022]
Abstract
This review summarizes current knowledge on the norovirus RdRp. Multiple X-ray structures of norovirus RdRp show important conformational changes. Norovirus RdRp recognizes specific promotor sequences to initiate RNA synthesis. Anti-HCV nucleoside analogs such as 2CM-C also inhibit Norovirus RdRp. Suramin and its analogs act as allosteric non-nucleoside polymerase inhibitors.
Noroviruses belong to the Caliciviridae family of single-stranded positive-sense RNA viruses. The genus Norovirus includes seven genogroups (designated GI-GVII), of which GI, GII and GIV infect humans. Human noroviruses are responsible for widespread outbreaks of acute gastroenteritis and represent one of the most common causes of foodborne illness. No vaccine or antiviral treatment options are available for norovirus infection. The RNA-dependent RNA polymerase (RdRp) of noroviruses is a key enzyme responsible for transcription and replication of the viral genome. Here, we review the progress made in understanding the structures and functions of norovirus RdRp and its use as a target for small molecule inhibitors. Crystal structures of the RdRp at different stages of substrate interaction have been determined, which shed light on its multi-step catalytic cycle. The in vitro assays and in vivo animal models that have been developed to identify and characterize inhibitors of norovirus RdRp are also summarized, followed by an update on the current antiviral research targeting different regions of norovirus RdRp. In the future, structure-based drug design and rational optimization of known nucleoside and non-nucleoside inhibitors of norovirus RdRp may pave the way towards the next generation of direct-acting antivirals.
Collapse
|
63
|
Wang X, Du X, Yong W, Qiao M, He M, Shi L, Guo B, Hong L, Jiang Y, Xie G, Ding J. Genetic characterization of emergent GII.17 norovirus variants from 2013 to 2015 in Nanjing, China. J Med Microbiol 2016; 65:1274-1280. [DOI: 10.1099/jmm.0.000363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xuan Wang
- Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, Zizhulin 2, Nanjing 210003, PR China
| | - Xuefei Du
- Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, Zizhulin 2, Nanjing 210003, PR China
| | - Wei Yong
- Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, Zizhulin 2, Nanjing 210003, PR China
| | - Mengkai Qiao
- Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, Zizhulin 2, Nanjing 210003, PR China
| | - Min He
- Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, Zizhulin 2, Nanjing 210003, PR China
| | - Limin Shi
- Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, Zizhulin 2, Nanjing 210003, PR China
| | - Baofu Guo
- Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, Zizhulin 2, Nanjing 210003, PR China
| | - Lei Hong
- Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, Zizhulin 2, Nanjing 210003, PR China
| | - Yun Jiang
- Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, Zizhulin 2, Nanjing 210003, PR China
| | - Guoxiang Xie
- Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, Zizhulin 2, Nanjing 210003, PR China
| | - Jie Ding
- Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, Zizhulin 2, Nanjing 210003, PR China
| |
Collapse
|
64
|
Rocha-Pereira J, Van Dycke J, Neyts J. Norovirus genetic diversity and evolution: implications for antiviral therapy. Curr Opin Virol 2016; 20:92-98. [PMID: 27736665 DOI: 10.1016/j.coviro.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
Human noroviruses are the leading cause of foodborne illness causing both acute and chronic gastroenteritis. In recent years, a number of vaccine candidates entered (pre-) clinical development and the first efforts to develop antiviral therapy have been made. We here discuss aspects of norovirus genetic evolution, persistence in immunocompromised patients as well as the risk and potential consequences of resistance development toward future antiviral drugs.
Collapse
Affiliation(s)
- Joana Rocha-Pereira
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Jana Van Dycke
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| |
Collapse
|
65
|
Qu L, Murakami K, Broughman JR, Lay MK, Guix S, Tenge VR, Atmar RL, Estes MK. Replication of Human Norovirus RNA in Mammalian Cells Reveals Lack of Interferon Response. J Virol 2016; 90:8906-23. [PMID: 27466422 PMCID: PMC5021416 DOI: 10.1128/jvi.01425-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Human noroviruses (HuNoVs), named after the prototype strain Norwalk virus (NV), are a leading cause of acute gastroenteritis outbreaks worldwide. Studies on the related murine norovirus (MNV) have demonstrated the importance of an interferon (IFN) response in host control of virus replication, but this remains unclear for HuNoVs. Despite the lack of an efficient cell culture infection system, transfection of stool-isolated NV RNA into mammalian cells leads to viral RNA replication and virus production. Using this system, we show here that NV RNA replication is sensitive to type I (α/β) and III (interleukin-29 [IL-29]) IFN treatment. However, in cells capable of a strong IFN response to Sendai virus (SeV) and poly(I·C), NV RNA replicates efficiently and generates double-stranded RNA without inducing a detectable IFN response. Replication of HuNoV genogroup GII.3 strain U201 RNA, generated from a reverse genetics system, also does not induce an IFN response. Consistent with a lack of IFN induction, NV RNA replication is enhanced neither by neutralization of type I/III IFNs through neutralizing antibodies or the soluble IFN decoy receptor B18R nor by short hairpin RNA (shRNA) knockdown of mitochondrial antiviral signaling protein (MAVS) or interferon regulatory factor 3 (IRF3) in the IFN induction pathways. In contrast to other positive-strand RNA viruses that block IFN induction by targeting MAVS for degradation, MAVS is not degraded in NV RNA-replicating cells, and an SeV-induced IFN response is not blocked. Together, these results indicate that HuNoV RNA replication in mammalian cells does not induce an IFN response, suggesting that the epithelial IFN response may play a limited role in host restriction of HuNoV replication. IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of epidemic gastroenteritis worldwide. Due to lack of an efficient cell culture system and robust small-animal model, little is known about the innate host defense to these viruses. Studies on murine norovirus (MNV) have shown the importance of an interferon (IFN) response in host control of MNV replication, but this remains unclear for HuNoVs. Here, we investigated the IFN response to HuNoV RNA replication in mammalian cells using Norwalk virus stool RNA transfection, a reverse genetics system, IFN neutralization reagents, and shRNA knockdown methods. Our results show that HuNoV RNA replication in mammalian epithelial cells does not induce an IFN response, nor can it be enhanced by blocking the IFN response. These results suggest a limited role of the epithelial IFN response in host control of HuNoV RNA replication, providing important insights into our understanding of the host defense to HuNoVs that differs from that to MNV.
Collapse
Affiliation(s)
- Lin Qu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kosuke Murakami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James R Broughman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Margarita K Lay
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Susana Guix
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L Atmar
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
66
|
Sadanandan SA, Ekström JO, Jonna VR, Hofer A, Hultmark D. VP3 is crucial for the stability of Nora virus virions. Virus Res 2016; 223:20-7. [PMID: 27329665 DOI: 10.1016/j.virusres.2016.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Nora virus is an enteric virus that causes persistent, non-pathological infection in Drosophila melanogaster. It replicates in the fly gut and is transmitted via the fecal-oral route. Nora virus has a single-stranded positive-sense RNA genome, which is translated in four open reading frames. Reading frame three encodes the VP3 protein, the structure and function of which we have investigated in this work. We have shown that VP3 is a trimer that has an α-helical secondary structure, with a functionally important coiled-coil domain. In order to identify the role of VP3 in the Nora virus life cycle, we constructed VP3-mutants using the cDNA clone of the virus. Our results show that VP3 does not have a role in the actual assembly of the virus particles, but virions that lack VP3 or harbor VP3 with a disrupted coiled coil domain are incapable of transmission via the fecal-oral route. Removing the region downstream of the putative coiled coil appears to have an effect on the fitness of the virus but does not hamper its replication or transmission. We also found that the VP3 protein and particularly the coiled coil domain are crucial for the stability of Nora virus virions when exposed to heat or proteases. Hence, we propose that VP3 is imperative to Nora virus virions as it confers stability to the viral capsid.
Collapse
Affiliation(s)
| | - Jens-Ola Ekström
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; Institute of Biomedical Technology, University of Tampere, FI-33520 Tampere, Finland
| | - Venkateswara Rao Jonna
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; Institute of Biomedical Technology, University of Tampere, FI-33520 Tampere, Finland.
| |
Collapse
|
67
|
Characterization of a Novel Conformational GII.4 Norovirus Epitope: Implications for Norovirus-Host Interactions. J Virol 2016; 90:7703-14. [PMID: 27307569 DOI: 10.1128/jvi.01023-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Human noroviruses (NoVs) are the main etiological agents of acute gastroenteritis worldwide. While NoVs are highly diverse (more than 30 genotypes have been detected in humans), during the last 40 years most outbreaks and epidemics have been caused by GII.4 genotype strains, raising questions about their persistence in the population. Among other potential explanations, immune evasion is considered to be a main driver of their success. In order to study antibody recognition and evasion in detail, we analyzed a conformational epitope recognized by a monoclonal antibody (3C3G3) by phage display, site-directed mutagenesis, and surface plasmon resonance. Our results show that the predicted epitope is composed of 11 amino acids within the P domain: P245, E247, I389, Q390, R397, R435, G443, Y444, P445, N446, and D448. Only two of them, R397 and D448, differ from the homologous variant (GII.4 Den-Haag_2006b) and from a previous variant (GII.4 VA387_1996) that is not recognized by the antibody. A double mutant derived from the VA387_1996 variant containing both changes, Q396R and N447D, is recognized by the 3C3G3 monoclonal antibody, confirming the participation of the two sites in the epitope recognized by the antibody. Furthermore, a single change, Q396R, is able to modify the histo-blood group antigen (HBGA) recognition pattern. These results provide evidence that the epitope recognized by the 3C3G3 antibody is involved in the virus-host interactions, both at the immunological and at the receptor levels. IMPORTANCE Human noroviruses are the main cause of viral diarrhea worldwide in people of all ages. Noroviruses can infect individuals who had been previously exposed to the same or different norovirus genotypes. Norovirus genotype GII.4 has been reported to be most prevalent during the last 40 years. In the present study, we describe a novel viral epitope identified by a monoclonal antibody and located within the highly diverse P domain of the capsid protein. The evolution of this epitope along with sequential GII.4 variants has allowed noroviruses to evade previously elicited antibodies, thus explaining how the GII.4 genotype can persist over long periods, reinfecting the population. Our results also show that the epitope participates in the recognition of host receptors that have evolved over time, as well.
Collapse
|
68
|
Karandikar UC, Crawford SE, Ajami NJ, Murakami K, Kou B, Ettayebi K, Papanicolaou GA, Jongwutiwes U, Perales MA, Shia J, Mercer D, Finegold MJ, Vinjé J, Atmar RL, Estes MK. Detection of human norovirus in intestinal biopsies from immunocompromised transplant patients. J Gen Virol 2016; 97:2291-2300. [PMID: 27412790 DOI: 10.1099/jgv.0.000545] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses (HuNoVs) can often cause chronic infections in solid organ and haematopoietic stem cell transplant (HSCT) patients. Based on histopathological changes observed during HuNoV infections, the intestine is the presumed site of virus replication in patients; however, the cell types infected by HuNoVs remain unknown. The objective of this study was to characterize histopathological changes during HuNoV infection and to determine the cell types that may be permissive for HuNoV replication in transplant patients. We analysed biopsies from HuNoV-infected and non-infected (control) transplant patients to assess histopathological changes in conjunction with detection of HuNoV antigens to identify the infected cell types. HuNoV infection in immunocompromised patients was associated with histopathological changes such as disorganization and flattening of the intestinal epithelium. The HuNoV major capsid protein, VP1, was detected in all segments of the small intestine, in areas of biopsies that showed histopathological changes. Specifically, VP1 was detected in enterocytes, macrophages, T cells and dendritic cells. HuNoV replication was investigated by detecting the non-structural proteins, RdRp and VPg. We detected RdRp and VPg along with VP1 in duodenal and jejunal enterocytes. These results provide critical insights into histological changes due to HuNoV infection in immunocompromised patients and propose human enterocytes as a physiologically relevant cell type for HuNoV cultivation.
Collapse
Affiliation(s)
- Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nadim J Ajami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kosuke Murakami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Baijun Kou
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Genovefa A Papanicolaou
- Infectious Disease and Adult Bone Marrow Transplant Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ubonvan Jongwutiwes
- Infectious Disease and Adult Bone Marrow Transplant Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY , USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Mercer
- Department of Surgery, University for Nebraska Medical Centre, Omaha, NE 68198, USA
| | - Milton J Finegold
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
69
|
Hasing ME, Hazes B, Lee BE, Preiksaitis JK, Pang XL. A next generation sequencing-based method to study the intra-host genetic diversity of norovirus in patients with acute and chronic infection. BMC Genomics 2016; 17:480. [PMID: 27363999 PMCID: PMC4929757 DOI: 10.1186/s12864-016-2831-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background Immunocompromised individuals with chronic norovirus (NoV) infection and elderly patients are hypothesized to be reservoirs where NoV might accumulate mutations and evolve into pandemic strains. Next generation sequencing (NGS) methods can monitor the intra-host diversity of NoV and its evolution but low abundance of viral RNA results in sub-optimal efficiency. In this study, we: 1) established a next generation sequencing-based method for NoV using bacterial rRNA depletion as a viral RNA enrichment strategy, and 2) measured the intra-host genetic diversity of NoV in specimens of patients with acute NoV infection (n = 4) and in longitudinal specimens of an immunocompromised patient with chronic NoV infection (n = 2). Results A single Illumina MiSeq dataset resulted in near full-length genome sequences for 5 out of 6 multiplexed samples. Experimental depletion of bacterial rRNA in stool RNA provided up to 1.9 % of NoV reads. The intra-host viral population in patients with acute NoV infection was homogenous and no single nucleotide variants (SNVs) were detected. In contrast, the NoV population from the immunocompromised patient was highly diverse and accumulated SNVs over time (51 SNVs in the first sample and 122 SNVs in the second sample collected 4 months later). The percentages of SNVs causing non-synonymous mutations were 27.5 % and 20.5 % for the first and second samples, respectively. The majority of non-synonymous mutations occurred, in increasing order of frequency, in p22, the major capsid (VP1) and minor capsid (VP2) genes. Conclusions The results provide data useful for the selection and improvement of NoV RNA enrichment strategies for NGS. Whole genome analysis using next generation sequencing confirmed that the within-host population of NoV in an immunocompromised individual with chronic NoV infection was more diverse compared to that in individuals with acute infection. We also observed an accumulation of non-synonymous mutations at the minor capsid gene that has not been reported in previous studies and might have a role in NoV adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2831-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria E Hasing
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Bart Hazes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Bonita E Lee
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Jutta K Preiksaitis
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Xiaoli L Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2B7, Canada. .,Provincial Laboratory for Public Health (ProvLab), Edmonton, AB, T6G 2 J2, Canada.
| |
Collapse
|
70
|
de Graaf M, van Beek J, Koopmans MPG. Human norovirus transmission and evolution in a changing world. Nat Rev Microbiol 2016; 14:421-33. [DOI: 10.1038/nrmicro.2016.48] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
71
|
Motomura K, Boonchan M, Noda M, Tanaka T, Takeda N. Norovirus epidemics caused by new GII.2 chimera viruses in 2012-2014 in Japan. INFECTION GENETICS AND EVOLUTION 2016; 42:49-52. [PMID: 27112386 DOI: 10.1016/j.meegid.2016.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
The new GII.2 variant collected from May 2012-March 2014 consisted of GII.15 and GII.2 genomes, in which the putative recombination points found in the boundary region between ORF1 and ORF2. These findings suggested that the swapping of structural and non-structural proteins is a common mechanism for generating new epidemic variants in nature.
Collapse
Affiliation(s)
| | | | - Mamoru Noda
- National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Tomoyuki Tanaka
- Sakai City Institute of Public Health, Osaka 590-0953, Japan; Hidaka General Hospital, Wakayama 644-0002, Japan
| | | | | |
Collapse
|
72
|
Infection models of human norovirus: challenges and recent progress. Arch Virol 2016; 161:779-88. [PMID: 26780772 DOI: 10.1007/s00705-016-2748-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
Abstract
Human norovirus (hNoV) infections cause acute gastroenteritis, accounting for millions of disease cases and more than 200,000 deaths annually. However, the lack of in vitro infection models and robust small-animal models has posed barriers to the development of virus-specific therapies and preventive vaccines. Promising recent progress in the development of a norovirus infection model is reviewed in this article, as well as attempts and efforts made since the discovery of hNoV more than 40 years ago. Because suitable experimental animal models for human norovirus are lacking, attractive alternatives are also discussed.
Collapse
|
73
|
Roth AN, Karst SM. Norovirus mechanisms of immune antagonism. Curr Opin Virol 2015; 16:24-30. [PMID: 26673810 DOI: 10.1016/j.coviro.2015.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 01/01/2023]
Abstract
Noroviruses are a leading cause of gastroenteritis outbreaks globally. Several lines of evidence indicate that noroviruses can antagonize or evade host immune responses, including the absence of long-lasting immunity elicited during a primary norovirus exposure and the ability of noroviruses to establish prolonged infections that are associated with protracted viral shedding. Specific norovirus proteins possessing immune antagonist activity have been described in recent years although mechanistic insight in most cases is limited. In this review, we discuss these emerging strategies used by noroviruses to subvert the immune response, including the actions of two nonstructural proteins (p48 and p22) to impair cellular protein trafficking and secretory pathways; the ability of the VF1 protein to inhibit cytokine induction; and the ability of the minor structural protein VP2 to regulate antigen presentation. We also discuss the current state of the understanding of host and viral factors regulating the establishment of persistent norovirus infections along the gastrointestinal tract. A more detailed understanding of immune antagonism by pathogenic viruses will inform prevention and treatment of disease.
Collapse
Affiliation(s)
- Alexa N Roth
- College of Medicine, Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Stephanie M Karst
- College of Medicine, Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
74
|
Chan MCW, Lee N, Hung TN, Kwok K, Cheung K, Tin EKY, Lai RWM, Nelson EAS, Leung TF, Chan PKS. Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014. Nat Commun 2015; 6:10061. [PMID: 26625712 PMCID: PMC4686777 DOI: 10.1038/ncomms10061] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022] Open
Abstract
Norovirus genogroup II genotype 4 (GII.4) has been the predominant cause of viral gastroenteritis since 1996. Here we show that during the winter of 2014-2015, an emergent variant of a previously rare norovirus GII.17 genotype, Kawasaki 2014, predominated in Hong Kong and outcompeted contemporary GII.4 Sydney 2012 in hospitalized cases. GII.17 cases were significantly older than GII.4 cases. Root-to-tip and Bayesian BEAST analyses estimate GII.17 viral protein 1 (VP1) evolves one order of magnitude faster than GII.4 VP1. Residue substitutions and insertion occur in four of five inferred antigenic epitopes, suggesting immune evasion. Sequential GII.4-GII.17 infections are noted, implicating a lack of cross-protection. Virus bound to saliva of secretor histo-blood groups A, B and O, indicating broad susceptibility. This fast-evolving, broadly recognizing and probably immune-escaped emergent GII.17 variant causes severe gastroenteritis and hospitalization across all age groups, including populations who were previously less vulnerable to GII.4 variants; therefore, the global spread of GII.17 Kawasaki 2014 needs to be monitored.
Collapse
Affiliation(s)
- Martin C W Chan
- Department of Microbiology, Faculty of Medicine, 1/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Nelson Lee
- Department of Medicine and Therapeutics, Faculty of Medicine, 9/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Tin-Nok Hung
- Department of Microbiology, Faculty of Medicine, 1/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Kirsty Kwok
- Department of Microbiology, Faculty of Medicine, 1/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Kelton Cheung
- Department of Microbiology, Faculty of Medicine, 1/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Edith K Y Tin
- Department of Microbiology, Faculty of Medicine, 1/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Raymond W M Lai
- Department of Microbiology, Faculty of Medicine, 1/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - E Anthony S Nelson
- Department of Paediatrics, Faculty of Medicine, 6/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Ting F Leung
- Department of Paediatrics, Faculty of Medicine, 6/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Department of Microbiology, Faculty of Medicine, 1/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
75
|
Abstract
Noroviruses (NoVs) are highly prevalent, positive-sense RNA viruses that infect a range of mammals, including humans and mice. Murine noroviruses (MuNoVs) are the most prevalent pathogens in biomedical research colonies, and they have been used extensively as a model system for human noroviruses (HuNoVs). Despite recent successes in culturing HuNoVs in the laboratory and a small animal host, studies of human viruses have inherent limitations. Thus, owing to its versatility, the MuNoV system-with its native host, reverse genetics, and cell culture systems-will continue to provide important insights into NoV and enteric virus biology. In the current review, we summarize recent findings from MuNoVs that increase our understanding of enteric virus pathogenesis and highlight similarities between human and murine NoVs that underscore the value of MuNoVs to inform studies of HuNoV biology. We also discuss the potential of endemic MuNoV infections to impact other disease models.
Collapse
Affiliation(s)
- Stephanie M Karst
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610;
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| |
Collapse
|
76
|
Di Felice E, Mauroy A, Pozzo FD, Thiry D, Ceci C, Di Martino B, Marsilio F, Thiry E. Bovine noroviruses: A missing component of calf diarrhoea diagnosis. Vet J 2015; 207:53-62. [PMID: 26631944 PMCID: PMC7110452 DOI: 10.1016/j.tvjl.2015.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/27/2015] [Accepted: 10/08/2015] [Indexed: 01/05/2023]
Abstract
Noroviruses are RNA viruses that belong to the Genus Norovirus, Family Caliciviridae, and infect human beings and several animal species, including cattle. Bovine norovirus infections have been detected in cattle of a range of different ages throughout the world. Currently there is no suitable cell culture system for these viruses and information on their pathogenesis is limited. Molecular and serological tests have been developed, but are complicated by the high genetic and antigenic diversity of bovine noroviruses. Bovine noroviruses can be detected frequently in faecal samples of diarrhoeic calves, either alone or in association with other common enteric pathogens, suggesting a role for these viruses in the aetiology of calf enteritis.
Collapse
Affiliation(s)
| | - Axel Mauroy
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium.
| | - Fabiana Dal Pozzo
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| | - Damien Thiry
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| | - Chiara Ceci
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Etienne Thiry
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
77
|
Lamounier TADC, de Oliveira LM, de Camargo BR, Rodrigues KB, Noronha EF, Ribeiro BM, Nagata T. Production of Brazilian human norovirus VLPs and comparison of purification methods. Braz J Microbiol 2015; 46:1265-8. [PMID: 26691489 PMCID: PMC4704647 DOI: 10.1590/s1517-838246420140925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/12/2015] [Indexed: 11/22/2022] Open
Abstract
Noroviruses (NVs) are responsible for most cases of human nonbacterial
gastroenteritis worldwide. Some parameters for the purification of NV virus-like
particles (VLPs) such as ease of production and yield were studied for future
development of vaccines and diagnostic tools. In this study, VLPs were produced by
the expression of the VP1 and VP2 gene cassette of the Brazilian NV isolate, and two
purification methods were compared: cesium chloride (CsCl) gradient centrifugation
and ion-exchange chromatography (IEC). IEC produced more and purer VLPs of NV
compared to CsCl gradient centrifugation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tatsuya Nagata
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
78
|
Boyd KJ, Bansal P, Feng J, May ER. Stability of Norwalk Virus Capsid Protein Interfaces Evaluated by in Silico Nanoindentation. Front Bioeng Biotechnol 2015; 3:103. [PMID: 26284238 PMCID: PMC4520240 DOI: 10.3389/fbioe.2015.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/10/2015] [Indexed: 01/17/2023] Open
Abstract
Norwalk virus causes severe gastroenteritis for which there is currently no specific anti-viral therapy. A stage of the infection process is uncoating of the protein capsid to expose the viral genome and allow for viral replication. A mechanical characterization of the Norwalk virus may provide important information relating to the mechanism of uncoating. The mechanical strength of the Norwalk virus has previously been investigated using atomic force microscopy (AFM) nanoindentation experiments. Those experiments cannot resolve specific molecular interactions, and therefore, we have employed a molecular modeling approach to gain insights into the potential uncoating mechanism of the Norwalk capsid. In this study, we perform simulated nanoindentation using a coarse-grained structure-based model, which provides an estimate of the spring constant in good agreement with the experimentally determined value. We further analyze the fracture mechanisms and determine weak interfaces in the capsid structure, which are potential sites to inhibit uncoating by stabilization of these weak interfaces. We conclude by identifying potential target sites at the junction of a weak protein–protein interface.
Collapse
Affiliation(s)
- Kevin J Boyd
- Department of Molecular and Cell Biology, University of Connecticut , Storrs, CT , USA
| | - Prakhar Bansal
- Department of Molecular and Cell Biology, University of Connecticut , Storrs, CT , USA
| | - Jun Feng
- Department of Chemistry, West Virginia University , Morgantown, WV , USA
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut , Storrs, CT , USA
| |
Collapse
|
79
|
Phumpholsup T, Chieochansin T, Vongpunsawad S, Vuthitanachot V, Payungporn S, Poovorawan Y. Human norovirus genogroup II recombinants in Thailand, 2009-2014. Arch Virol 2015. [PMID: 26215446 DOI: 10.1007/s00705-015-2545-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Norovirus (NoV) is a major cause of nonbacterial acute gastroenteritis worldwide. New strains emerge partly due to viral recombination. In Thailand, there is a lack of data on NoV recombinants among clinical isolates. We screened stool samples from pediatric diarrheal patients for norovirus by RT-PCR and found GII.4 to be the most prevalent genotype. Phylogenetic and SimPlot analyses detected seven intra-genogroup recombinant strains: three GII.21/GII.3, two GII.12/GII.3, and two GII.12/GII.1 recombinants. Maximum chi-square analysis indicated that all had similar breakpoints near the ORF1/ORF2 junction (p < 0.001), either slightly upstream within the C-terminus of RdRp or downstream within the N-terminal domain of VP1.
Collapse
Affiliation(s)
- Tikumporn Phumpholsup
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaweesak Chieochansin
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330, Thailand.,Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Mahidol University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
80
|
Kocher J, Yuan L. Norovirus vaccines and potential antinorovirus drugs: recent advances and future perspectives. Future Virol 2015; 10:899-913. [PMID: 26568768 DOI: 10.2217/fvl.15.57] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute, nonbacterial gastroenteritis worldwide. The lack of a cell culture system and smaller animal model has delayed the development and commercial availability of vaccines and antiviral drugs. Current vaccines rely on recombinant capsid proteins, such as P particles and virus-like particles (VLPs), which have been promising in clinical trials. Anti-HuNoV drug development is another area of extensive research, including currently available antiviral drugs for other viral pathogens. This review will provide an overview of recent advances in vaccine and antiviral development. The implication of recent advances in HuNoV cell culture for improving vaccine and antiviral development is also discussed.
Collapse
Affiliation(s)
- Jacob Kocher
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| |
Collapse
|
81
|
Kim SH, Chen S, Jiang X, Green KY, Samal SK. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein. Virology 2015; 484:163-169. [PMID: 26099695 DOI: 10.1016/j.virol.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
Abstract
Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans.
Collapse
Affiliation(s)
- Shin-Hee Kim
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Shun Chen
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Xi Jiang
- Division of Infectious Disease, Cincinnati Children׳s Hospital Medical Center, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Kim Y Green
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, DHHS, Bethesda, MD, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
82
|
Moore MD, Escudero-Abarca BI, Suh SH, Jaykus LA. Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain. J Biotechnol 2015; 209:41-9. [PMID: 26080079 DOI: 10.1016/j.jbiotec.2015.06.389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
Human noroviruses (NoV) are the leading cause of acute viral gastroenteritis worldwide. Significant antigenic diversity of NoV strains has limited the availability of broadly reactive ligands for design of detection assays. The purpose of this work was to produce and characterize single stranded (ss)DNA aptamers with binding specificity to human NoV using an easily produced NoV target-the P domain protein. Aptamer selection was done using SELEX (Systematic Evolution of Ligands by EXponential enrichment) directed against an Escherichia coli-expressed and purified epidemic NoV GII.4 strain P domain. Two of six unique aptamers (designated M1 and M6-2) were chosen for characterization. Inclusivity testing using an enzyme-linked aptamer sorbent assay (ELASA) against a panel of 14 virus-like particles (VLPs) showed these aptamers had broad reactivity and exhibited strong binding to GI.7, GII.2, two GII.4 strains, and GII.7 VLPs. Aptamer M6-2 exhibited at least low to moderate binding to all VLPs tested. Aptamers significantly (p<0.05) bound virus in partially purified GII.4 New Orleans outbreak stool specimens as demonstrated by ELASA and aptamer magnetic capture (AMC) followed by RT-qPCR. This is the first demonstration of human NoV P domain protein as a functional target for the selection of nucleic acid aptamers that specifically bind and broadly recognize diverse human NoV strains.
Collapse
Affiliation(s)
- Matthew D Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA.
| | - Blanca I Escudero-Abarca
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Soo Hwan Suh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
83
|
Abstract
Sapoviruses cause acute gastroenteritis in humans and animals. They belong to the genus Sapovirus within the family Caliciviridae. They infect and cause disease in humans of all ages, in both sporadic cases and outbreaks. The clinical symptoms of sapovirus gastroenteritis are indistinguishable from those caused by noroviruses, so laboratory diagnosis is essential to identify the pathogen. Sapoviruses are highly diverse genetically and antigenically. Currently, reverse transcription-PCR (RT-PCR) assays are widely used for sapovirus detection from clinical specimens due to their high sensitivity and broad reactivity as well as the lack of sensitive assays for antigen detection or cell culture systems for the detection of infectious viruses. Sapoviruses were first discovered in 1976 by electron microscopy in diarrheic samples of humans. To date, sapoviruses have also been detected from several animals: pigs, mink, dogs, sea lions, and bats. In this review, we focus on genomic and antigenic features, molecular typing/classification, detection methods, and clinical and epidemiological profiles of human sapoviruses.
Collapse
|
84
|
Karst SM. Identification of a novel cellular target and a co-factor for norovirus infection - B cells & commensal bacteria. Gut Microbes 2015; 6:266-71. [PMID: 25997033 PMCID: PMC4615308 DOI: 10.1080/19490976.2015.1052211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human noroviruses are a leading cause of gastroenteritis worldwide but research on these important enteric pathogens has long been restricted by their uncultivability. Extensive efforts to infect intestinal epithelial cells with murine and human noroviruses in vitro have been thus far unsuccessful while murine noroviruses efficiently and lytically infect innate immune cells including macrophages and dendritic cells. We have recently discovered that murine and human noroviruses infect B cells in vitro. The nature of B cell infection was distinct from innate immune cell infection in that mature B cells were infected noncytopathically in contrast to the lytic infection of macrophages and dendritic cells. Human norovirus infection of B cells was facilitated by commensal bacteria expressing an appropriate histo-blood group antigen. Importantly, we used the mouse model of norovirus infection to confirm that Peyer's patch B cells are infected, and that commensal bacteria stimulate infection, in vivo.
Collapse
Affiliation(s)
- Stephanie M Karst
- Molecular Genetics & Microbiology; University of Florida; Gainesville, FL USA,Correspondence to: Stephanie M Karst;
| |
Collapse
|
85
|
Lin Y, Fengling L, Lianzhu W, Yuxiu Z, Yanhua J. Function of VP2 protein in the stability of the secondary structure of virus-like particles of genogroup II norovirus at different pH levels: function of VP2 protein in the stability of NoV VLPs. J Microbiol 2014; 52:970-5. [PMID: 25277406 DOI: 10.1007/s12275-014-4323-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022]
Abstract
VP2 is the minor structural protein of noroviruses (NoV) and may function in NoV particle stability. To determine the function of VP2 in the stability of the NoV particle, we constructed and purified two kinds of virus-like particles (VLPs), namely, VLPs (VP1) and VLPs (VP1+VP2), from Sf9 cells infected with recombinant baculoviruses by using a Bac-to-Bac® baculovirus expression system. The two kinds of VLPs were treated with different phosphate buffers (pH 2 to pH 8); the secondary structure was then analyzed by far UV circular dichroism (CD) spectroscopy. Results showed that significant disruptions of the secondary structure of proteins were not observed at pH 2 to pH 7. At pH 8, the percentages of a-helix, β-sheet, and β-turn in VLPs (VP1) were decreased from 11% to 8%, from 37% to 32%, and from 20% to 16%, respectively. The percentage of coil was increased from 32% to 44%. By contrast, the percentages of α-helix, β-sheet, and β-turn in VLPs (VP1+VP2) were decreased from 11% to 10%, from 37% to 35%, and from 20% to 19%, respectively. The percentage of coil was increased from 32% to 36%. VLPs (VP1+VP2) was likely more stable than VLPs (VP1), as indicated by the percentage of the secondary structures analyzed by CD. These results suggested that VP2 could stabilize the secondary structure of VLPs under alkaline pH conditions. This study provided novel insights into the molecular mechanism of the function of VP2 in the stability of NoV particles.
Collapse
Affiliation(s)
- Yao Lin
- Key Laboratory of Test and Evaluation on Quality and Safety of Aquatic Products, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China
| | | | | | | | | |
Collapse
|
86
|
Hasing ME, Hazes B, Lee BE, Preiksaitis JK, Pang XL. Detection and analysis of recombination in GII.4 norovirus strains causing gastroenteritis outbreaks in Alberta. INFECTION GENETICS AND EVOLUTION 2014; 27:181-92. [DOI: 10.1016/j.meegid.2014.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/25/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
|
87
|
Cotten M, Petrova V, Phan MVT, Rabaa MA, Watson SJ, Ong SH, Kellam P, Baker S. Deep sequencing of norovirus genomes defines evolutionary patterns in an urban tropical setting. J Virol 2014; 88:11056-69. [PMID: 25056894 PMCID: PMC4178781 DOI: 10.1128/jvi.01333-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/10/2014] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Norovirus is a highly transmissible infectious agent that causes epidemic gastroenteritis in susceptible children and adults. Norovirus infections can be severe and can be initiated from an exceptionally small number of viral particles. Detailed genome sequence data are useful for tracking norovirus transmission and evolution. To address this need, we have developed a whole-genome deep-sequencing method that generates entire genome sequences from small amounts of clinical specimens. This novel approach employs an algorithm for reverse transcription and PCR amplification primer design using all of the publically available norovirus sequence data. Deep sequencing and de novo assembly were used to generate norovirus genomes from a large set of diarrheal patients attending three hospitals in Ho Chi Minh City, Vietnam, over a 2.5-year period. Positive-selection analysis and direct examination of protein changes in the virus over time identified codons in the regions encoding proteins VP1, p48 (NS1-2), and p22 (NS4) under positive selection and expands the known targets of norovirus evolutionary pressure. IMPORTANCE The high transmissibility and rapid evolutionary rate of norovirus, combined with a short-lived host immune responses, are thought to be the reasons why the virus causes the majority of pediatric viral diarrhea cases. The evolutionary patterns of this RNA virus have been described in detail for only a portion of the virus genome and never for a virus from a detailed urban tropical setting. We provide a detailed sequence description of the noroviruses circulating in three Ho Chi Minh City hospitals over a 2.5-year period. This study identified patterns of virus change in known sites of host immune response and identified three additional regions of the virus genome under selection that were not previously recognized. In addition, the method described here provides a robust full-genome sequencing platform for community-based virus surveillance.
Collapse
Affiliation(s)
- Matthew Cotten
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - My V T Phan
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Maia A Rabaa
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon J Watson
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Swee Hoe Ong
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Paul Kellam
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom Division of Infection & Immunity, University College London, London, United Kingdom
| | - Stephen Baker
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam The London School of Hygiene and Tropical Medicine, London, United Kingdom Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
88
|
Jia LP, Qian Y, Zhang Y, Deng L, Liu LY, Zhu RN, Zhao LQ, Huang H, Zheng CG, Dong HJ. Prevalence and genetic diversity of noroviruses in outpatient pediatric clinics in Beijing, China 2010-2012. INFECTION GENETICS AND EVOLUTION 2014; 28:71-7. [PMID: 25218087 DOI: 10.1016/j.meegid.2014.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/11/2014] [Accepted: 09/03/2014] [Indexed: 12/28/2022]
Abstract
Norovirus is a major cause of diarrheal disease with epidemic, outbreak or sporadic patterns in humans of all ages worldwide. This study aimed to determine the genotypic characteristics of noroviruses from infants and children in Beijing. Stool samples (n=1128) were collected from patients with symptoms of acute gastroenteritis in the past 3 years from 2010 to 2012. The norovirus positivity rate was 16.1% (182/1128) by using RT-PCR, including 122 with primer set covering polymerase region, 177 with primer set covering capsid region, and 117 with both polymerase and capsid regions. By sequence analysis for capsid genes, all the noroviruses identified were belonging to genogroup II (GII). Among these positive samples, GII.4 (61.0%) was the most common genotype detected, followed by GII.3 (35.0%). The new variant GII.4 Sydney_2012 strains emerged in this study in September and became the predominant genotype later. Those 117 from 182 RT-PCR positive samplers were able to be genotyped based on the sequences of both polymerase and capsid genes. The result was interesting that 59 out of these 117 positive specimens (50.4%) had mismatched genotypes between polymerase and capsid genes, including 7 suspected recombinants patterns. Among them, GII.P12/GII.3 was the most common combination which accounts for 54.2% (32/59), followed by GII.Pe/GII.4 Sydney_2012 which was 23.7% (14/59). Two novel recombinants, GII.P22/GII.5 and GII.21/GII.3 were first detected in this study. In summary, this study provides a detailed description based on laboratory data of the genetic diversity of norovirus in young children with acute gastroenteritis in Beijing. Moreover the data revealed that in the evolution of norovirus, new variant and novel recombination emerged frequently.
Collapse
Affiliation(s)
- Li-ping Jia
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yuan Qian
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing 100020, China.
| | - You Zhang
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Li Deng
- Department of Infectious Diseases, The Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, China
| | - Li-ying Liu
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ru-nan Zhu
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lin-qing Zhao
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hui Huang
- Department of Infectious Diseases, The Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, China
| | - Chong-guang Zheng
- Department of Infectious Diseases, The Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, China
| | - Hui-jin Dong
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
89
|
Tomé-Amat J, Fleischer L, Parker SA, Bardliving CL, Batt CA. Secreted production of assembled Norovirus virus-like particles from Pichia pastoris. Microb Cell Fact 2014; 13:134. [PMID: 25201129 PMCID: PMC4174286 DOI: 10.1186/s12934-014-0134-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Norovirus virus-like particles (NoV VLPs) have recently been explored as potential vaccine platforms due to their ability to produce an effective immune response. Expression of the main structural protein, VP1, leads to formation of self-assembled particles with similar characteristics to the original virus. These NoV VLPs have been expressed in Escherichia coli, yeast and insect cells. Expression in E. coli and insect cells share downstream processing issues due to the presence of inclusion bodies or the need for numerous purification steps. NoV VLPs have also been produced in the yeast P. pastoris; however the protein was only expressed intracellularly. RESULTS We have successfully expressed and secreted the VP1 protein in the novel P. pastoris strain, Bg11, using the methanol inducible pJ912 expression vector, containing the cDNA of NoV VP1. Expression of the VP1 protein in Bg11 was carried out in a 1.5 L bioreactor resulting in a total yield of NoV VLPs greater than 0.6 g/L. NoV VLPs obtained from the culture supernatant were purified via ion-exchange chromatography, resulting in particles with a purity over 90%. The average size of the particles after purification was 40 nm. Transmission electron microscopy was used to visualize the morphology of the particles and saliva-binding assay confirmed that the NoV VLPs bind to Histo-Blood Group Antigens (HBGA). CONCLUSIONS In this study we describe the expression and characterization of fully assembled Norovirus virus-like particles obtained from P. pastoris. The particles are similar in size, morphology and binding capacity, as previously described, for the original NoV. Our results detail the successful expression and secretion of VLPs in P. pastoris, improving their candidacy as a vaccine platform.
Collapse
|
90
|
Development of a Gaussia luciferase-based human norovirus protease reporter system: cell type-specific profile of Norwalk virus protease precursors and evaluation of inhibitors. J Virol 2014; 88:10312-26. [PMID: 25008934 DOI: 10.1128/jvi.01111-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Norwalk virus (NV) is the prototype strain of human noroviruses (HuNoVs), a group of positive-strand RNA viruses in the Caliciviridae family and the leading cause of epidemic gastroenteritis worldwide. Investigation of HuNoV replication and development of antiviral therapeutics in cell culture remain challenging tasks. Here, we present NoroGLuc, a HuNoV protease reporter system based on a fusion of NV p41 protein with a naturally secreted Gaussia luciferase (GLuc), linked by the p41/p22 cleavage site for NV protease (Pro). trans cleavage of NoroGLuc by NV Pro or Pro precursors results in release and secretion of an active GLuc. Using this system, we observed a cell type-specific activity profile of NV Pro and Pro precursors, suggesting that the activity of NV Pro is modulated by other viral proteins in the precursor forms and strongly influenced by cellular factors. NoroGLuc was also cleaved by Pro and Pro precursors generated from replication of NV stool RNA in transfected cells, resulting in a measurable increase of secreted GLuc. Truncation analysis revealed that the N-terminal membrane association domain of NV p41 is critical for NoroGLuc activity. Although designed for NV, a genogroup GI.1 norovirus, NoroGLuc also efficiently detects Pro activities from GII.3 and GII.4 noroviruses. At noncytotoxic concentrations, protease inhibitors ZnCl2 and Nα-p-tosyl-l-lysine chloromethyl ketone (TLCK) exhibited dose-dependent inhibitory effects on a GII.4 Pro by NoroGLuc assay. These results establish NoroGLuc as a pan-genogroup HuNoV protease reporter system that can be used for the study of HuNoV proteases and precursors, monitoring of viral RNA replication, and evaluation of antiviral agents. IMPORTANCE Human noroviruses are the leading cause of epidemic gastroenteritis worldwide. Currently, there are no vaccines or antiviral drugs available to counter these highly contagious viruses. These viruses are currently noncultivatable in cell culture. Here, we report the development of a novel cell-based reporter system called NoroGLuc that can be used for studying norovirus replication and also for screening/evaluation of antiviral agents. This system is based on the fusion between viral protein p41 and a naturally secreted Gaussia luciferase (GLuc) with a cleavage site that can be recognized by the viral protease. Cleavage of this fusion protein by the viral protease results in the release and secretion of an active GLuc. Using NoroGLuc, we demonstrated a cell type-specific activity profile of the viral protease and its precursors and dose-dependent inhibitory effects of two protease inhibitors. This novel reporter system should be useful in probing norovirus replication and evaluating antiviral agents.
Collapse
|
91
|
Haß M, Luttermann C, Meyers G. Feline calicivirus can tolerate gross changes of its minor capsid protein expression levels induced by changing translation reinitiation frequency or use of a separate VP2-coding mRNA. PLoS One 2014; 9:e102254. [PMID: 25007260 PMCID: PMC4090194 DOI: 10.1371/journal.pone.0102254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/16/2014] [Indexed: 12/31/2022] Open
Abstract
Caliciviruses use reinitiation of translation governed by a ‘termination upstream ribosomal binding site’ (TURBS) for expression of their minor capsid protein VP2. Mutation analysis allowed to identify sequences surrounding the translational start/stop site of the feline calicivirus (FCV) that fine tune reinitiation frequency. A selection of these changes was introduced into the infectious FCV cDNA clone to check the influence of altered VP2 levels on virus replication. In addition, full length constructs were established that displayed a conformation, in which VP2 expression occurred under control of a duplicated subgenomic promoter. Viable viruses recovered from such constructs revealed a rather broad range of VP2 expression levels but comparable growth kinetics showing that caliciviruses can tolerate gross changes of the VP2 expression level.
Collapse
Affiliation(s)
- Maria Haß
- Institut für Immunologie, Friedrich-Loeffler-Institut, Tübingen, Germany
| | | | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Tübingen, Germany
- * E-mail:
| |
Collapse
|
92
|
Abstract
Human noroviruses are the leading cause of epidemic and sporadic gastroenteritis across all age groups. Although the disease is usually self-limiting, in the United States norovirus gastroenteritis causes an estimated 56,000 to 71,000 hospitalizations and 570 to 800 deaths each year. This minireview describes the latest data on laboratory methods (molecular, immunological) for norovirus detection, including real-time reverse transcription-quantitative PCR (RT-qPCR) and commercially available immunological assays as well as the latest FDA-cleared multi-gastrointestinal-pathogen platforms. In addition, an overview is provided on the latest nomenclature and molecular epidemiology of human noroviruses.
Collapse
|
93
|
Newcastle disease virus vector producing human norovirus-like particles induces serum, cellular, and mucosal immune responses in mice. J Virol 2014; 88:9718-27. [PMID: 24920815 DOI: 10.1128/jvi.01570-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human norovirus infection is the most common cause of viral gastroenteritis worldwide. Development of an effective vaccine is required for reducing norovirus outbreaks. The inability to grow human norovirus in cell culture has hindered the development of live-attenuated vaccines. To overcome this obstacle, we generated a recombinant Newcastle disease virus (rNDV)-vectored experimental norovirus vaccine by expressing the capsid protein (VP1) of norovirus strain VA387. We compared two different NDV vectors, a conventional rNDV vector and a modified rNDV vector, for their efficiencies in expressing VP1 protein. Our results showed that the modified vector replicated to higher titers and expressed higher levels of VP1 protein in DF1 cells and in allantoic fluid of embryonated chicken eggs than did the conventional vector. We further demonstrated that the VP1 protein produced by rNDVs was able to self-assemble into virus-like particles (VLPs) that are morphologically similar to baculovirus-expressed VLPs. Evaluation of their immunogenicity in mice showed that the modified rNDV vector induced a higher level of IgG response than those induced by the conventional vector and by the baculovirus-expressed VLPs. The rNDV vectors predominantly induced IgG2a subclass antibody for the Th1 response, and specifically, high levels of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-2 (IL-2) were detected in splenocytes. In addition, the modified rNDV vector induced a higher level of fecal IgA response in mice than did baculovirus-expressed VLPs. Our findings suggest that the rNDV vector is an efficient system to produce cost-effective VLPs in embryonated chicken eggs and has the potential to be used as a live-attenuated vaccine in humans. IMPORTANCE Noroviruses are the major cause of viral gastroenteritis worldwide. Currently, effective vaccines against norovirus infection are not available. In this study, we have evaluated Newcastle disease virus (NDV) as a vaccine vector for norovirus. Our results suggest that NDV can be used not only as a cost-effective method for large-scale production of norovirus-like particle vaccines but also as a live-attenuated vectored vaccine.
Collapse
|
94
|
Rocha-Pereira J, Neyts J, Jochmans D. Norovirus: targets and tools in antiviral drug discovery. Biochem Pharmacol 2014; 91:1-11. [PMID: 24893351 PMCID: PMC7111065 DOI: 10.1016/j.bcp.2014.05.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/29/2022]
Abstract
The development of antiviral strategies to treat or prevent norovirus infections is a pressing matter. Noroviruses are the number 1 cause of acute gastroenteritis, of foodborne illness, of sporadic gastroenteritis in all age groups and of severe acute gastroenteritis in children less than 5 years old seeking medical assistance [USA/CDC]. In developing countries, noroviruses are linked to significant mortality (~200,000 children <5 years old). Noroviruses are a major culprit for the closure of hospital wards, and associated with increased hospitalization and mortality among the elderly. Transplant patients have significant risk of acquiring persistent norovirus gastroenteritis. Control and prevention strategies are limited to the use of disinfectants and hand sanitizers, whose efficacy is frequently insufficient. Hence, there is an ample need for antiviral treatment and prophylaxis of norovirus infections. The fact that only a handful of inhibitors of norovirus replication have been reported can largely be attributable to the hampering inability to cultivate human noroviruses in cell culture. The Norwalk replicon-bearing cells and the murine norovirus-infected cell lines are the available models to assess in vitro antiviral activity of compounds. Human noroviruses have been shown to replicate (to some extent) in mice, calves, gnotobiotic pigs, and chimpanzees. Infection of interferon-deficient mice with the murine norovirus results in virus-induced diarrhea. Here we review recent developments in understanding which norovirus proteins or host cell factors may serve as targets for inhibition of viral replication. Given the recent advances, significant progress in the search for antiviral strategies against norovirus infections is expected in the upcoming years.
Collapse
Affiliation(s)
- Joana Rocha-Pereira
- Rega Institute for Medical Research, KU Leuven - University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven - University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Dirk Jochmans
- Rega Institute for Medical Research, KU Leuven - University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
95
|
Valles SM, Bell S, Firth AE. Solenopsis invicta virus 3: mapping of structural proteins, ribosomal frameshifting, and similarities to Acyrthosiphon pisum virus and Kelp fly virus. PLoS One 2014; 9:e93497. [PMID: 24686475 PMCID: PMC3970965 DOI: 10.1371/journal.pone.0093497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 03/06/2014] [Indexed: 01/09/2023] Open
Abstract
Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the structural proteins map to both ORF2 and the 3' end of ORF1, downstream of the sequence that encodes the RNA-dependent RNA polymerase. The genome organization and structural protein expression strategy resemble those of Acyrthosiphon pisum virus (APV), an aphid virus. The capsid protein that is encoded by the 3' end of ORF1 in SINV-3 and APV is predicted to have a jelly-roll fold similar to the capsid proteins of picornaviruses and caliciviruses. The capsid-extension protein that is produced by frameshifting, includes the jelly-roll fold domain encoded by ORF1 as its N-terminus, while the C-terminus encoded by the 5' half of ORF2 has no clear homology with other viral structural proteins. A third protein, encoded by the 3' half of ORF2, is associated with purified virions at sub-stoichiometric ratios. Although the structural proteins can be translated from the genomic RNA, we show that SINV-3 also produces a subgenomic RNA encoding the structural proteins. Circumstantial evidence suggests that APV may also produce such a subgenomic RNA. Both SINV-3 and APV are unclassified picorna-like viruses distantly related to members of the order Picornavirales and the family Caliciviridae. Within this grouping, features of the genome organization and capsid domain structure of SINV-3 and APV appear more similar to caliciviruses, perhaps suggesting the basis for a "Calicivirales" order.
Collapse
Affiliation(s)
- Steven M. Valles
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Gainesville, Florida, United States of America
| | - Susanne Bell
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
96
|
Herod MR, Salim O, Skilton RJ, Prince CA, Ward VK, Lambden PR, Clarke IN. Expression of the murine norovirus (MNV) ORF1 polyprotein is sufficient to induce apoptosis in a virus-free cell model. PLoS One 2014; 9:e90679. [PMID: 24599381 PMCID: PMC3944349 DOI: 10.1371/journal.pone.0090679] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/04/2014] [Indexed: 12/13/2022] Open
Abstract
Investigations into human norovirus infection, replication and pathogenesis, as well as the development of potential antiviral agents, have been restricted by the lack of a cell culture system for human norovirus. To date, the optimal cell culture surrogate virus model for studying human norovirus biology is the murine norovirus (MNV). In this report we generate a tetracycline-regulated, inducible eukaryotic cell system expressing the entire MNV ORF1 polyprotein. Once induced, the MNV ORF1 polyprotein was faithfully processed to the six mature non-structural proteins that predominately located to a discrete perinuclear region, as has been observed in active MNV infection. Furthermore, we found that expression of the ORF1 polyprotein alone was sufficient to induce apoptosis, characterised by caspase-9 activation and survivin down-regulation. This cell line provides a valuable new tool for studying MNV ORF1 non-structural protein function, screening for potential antiviral agents and acts as a proof-of-principle for such systems to be developed for human noroviruses.
Collapse
Affiliation(s)
- Morgan R. Herod
- Molecular Microbiology Group, University of Southampton, Southampton, United Kingdom
| | - Omar Salim
- Molecular Microbiology Group, University of Southampton, Southampton, United Kingdom
| | - Rachel J. Skilton
- Molecular Microbiology Group, University of Southampton, Southampton, United Kingdom
| | - Cynthia A. Prince
- Molecular Microbiology Group, University of Southampton, Southampton, United Kingdom
| | - Vernon K. Ward
- Otago School of Medical Sciences, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul R. Lambden
- Molecular Microbiology Group, University of Southampton, Southampton, United Kingdom
| | - Ian N. Clarke
- Molecular Microbiology Group, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
97
|
Abstract
ABSTRACT: The Caliciviridae includes small positive-sense, ssRNA viruses, which infect both animals and humans and cause a wide range of diseases. Human caliciviruses are considered the leading cause of outbreaks and sporadic cases of viral gastroenteritis worldwide. Caliciviruses are nonenveloped with a positive-sense, ssRNA genome. As with other positive-sense, ssRNA viruses, they require interactions between viral components and host-cellular factors at different steps along the viral life cycle. Although knowledge about the role of host-cell proteins in the Caliciviridae life cycle remains modest, evidence on this topic is rapidly emerging. This article compiles and discusses the information regarding the involvement of host-cellular factors in the various stages of the calicivirus replication process, emphasizing factors that might be involved in viral translation and/or RNA replication.
Collapse
Affiliation(s)
- Ana Lorena Gutiérrez-Escolano
- *Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
98
|
Identification and characterization of antibody-binding epitopes on the norovirus GII.3 capsid. J Virol 2013; 88:1942-52. [PMID: 24284328 DOI: 10.1128/jvi.02992-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genotype II.3 (GII.3) noroviruses are a major cause of sporadic gastroenteritis, particularly in children. The greater incidence of GII.3 noroviruses in the pediatric population compared to the adult demographic suggests development of herd immunity to this genotype, possibly as a consequence of limited evolution of immune epitopes. This study aimed to identify and characterize immune epitopes on the GII.3 capsid protein and to determine the level of immune cross-reactivity within the genotype. A panel of seven GII.3 virus-like particles (VLPs), representing norovirus strains isolated during 1975 to 2008, was tested by enzyme-linked immunosorbent assay (ELISA) for reactivity with human sera and a rabbit anti-GII.3 strain-specific polyclonal serum generated against the 2008 GII.3 VLP. Immunoprecipitation of protease-digested GII.3 VLPs and sequencing of bound peptides via mass spectrometry were used to locate epitopes on the capsid. Two epitopes were investigated further using Mimotopes technology. Serum binding studies demonstrated complete intragenotype GII.3 cross-reactivity using both human and rabbit serum. Six immunoreactive regions containing epitopes were located on the GII.3 capsid protein, two within each capsid domain. Epitopes in the S and P1 domains were highly conserved within GII.3 noroviruses. P2 domain epitopes were variable and contained evolutionarily important residues and histo-blood group antigen (HBGA) binding residues. In conclusion, anti-GII.3 antibody-binding epitopes are highly cross-reactive and mostly conserved within GII.3 strains. This may account for the limited GII.3 prevalence in adults and suggests that a GII.3 strain may be a valuable inclusion in a multivalent pediatric targeted VLP vaccine. Exploration of norovirus immune epitopes is vital for effective vaccine design. IMPORTANCE This study represents an important contribution to the understanding of norovirus immunology in a pediatric genotype. The high cross-reactivity and conservation of GII.3 epitopes suggest development of herd immunity against GII.3 and indicate that a GII.3 strain would be a valuable inclusion in a pediatric targeted multivalent vaccine. Immunological understanding of pediatric norovirus strains is important since norovirus vaccines will likely target high-risk groups such as the pediatric population.
Collapse
|
99
|
Abstract
Noroviruses are small, positive-sense RNA viruses within the family Caliciviridae, and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.
Collapse
Affiliation(s)
- Lucy G Thorne
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
100
|
Genotypic and epidemiologic trends of norovirus outbreaks in the United States, 2009 to 2013. J Clin Microbiol 2013; 52:147-55. [PMID: 24172151 DOI: 10.1128/jcm.02680-13] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Noroviruses are the leading cause of epidemic acute gastroenteritis in the United States. From September 2009 through August 2013, 3,960 norovirus outbreaks were reported to CaliciNet. Of the 2,895 outbreaks with a known transmission route, person-to-person and food-borne transmissions were reported for 2,425 (83.7%) and 465 (16.1%) of the outbreaks, respectively. A total of 2,475 outbreaks (62.5%) occurred in long-term care facilities (LTCF), 389 (9.8%) in restaurants, and 227 (5.7%) in schools. A total of 435 outbreaks (11%) were typed as genogroup I (GI) and 3,525 (89%) as GII noroviruses. GII.4 viruses caused 2,853 (72%) of all outbreaks, of which 94% typed as either GII.4 New Orleans or GII.4 Sydney. In addition, three non-GII.4 viruses, i.e., GII.12, GII.1, and GI.6, caused 528 (13%) of all outbreaks. Several non-GII.4 genotypes (GI.3, GI.6, GI.7, GII.3, GII.6, and GII.12) were significantly more associated with food-borne transmission (odds ratio, 1.9 to 7.1; P < 0.05). Patients in LTCF and people ≥65 years of age were at higher risk for GII.4 infections than those in other settings and with other genotypes (P < 0.05). Phylogeographic analysis identified three major dispersions from two geographic locations that were responsible for the GI.6 outbreaks from 2011 to 2013. In conclusion, our data demonstrate the cyclic emergence of new (non-GII.4) norovirus strains, and several genotypes are more often associated with food-borne outbreaks. These surveillance data can be used to improve viral food-borne surveillance and to help guide studies to develop and evaluate targeted prevention methods such as norovirus vaccines, antivirals, and environmental decontamination methods.
Collapse
|