51
|
Jones L, Black AP, Malavige GN, Ogg GS. Phenotypic analysis of human CD4+ T cells specific for immediate-early 63 protein of varicella-zoster virus. Eur J Immunol 2008; 37:3393-403. [PMID: 18034426 DOI: 10.1002/eji.200737648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Open reading frame 63 of varicella-zoster Virus (VZV) encodes an immediate early (IE) phosphoprotein (IE63) that is believed to be important for viral infectivity and establishing latency. Evidence suggests that VZV-specific T cells are crucial in the control of viral replication; however, data addressing the existence of IE63 protein-specific CD4+ T cells are limited. Using IFN-gamma immunosorbent assays, we identified high frequencies of responses to overlapping peptides spanning the IE63 protein both ex vivo and after in vitro restimulation in healthy VZV-seropositive individuals. We identified a commonly recognised epitope, restricted by HLA-DRB1*1501, which was naturally processed and presented by keratinocytes. We proceeded to investigate the frequency and phenotype of the epitope-specific CD4+ T cells using HLA class II tetrameric complexes. Epitope-specific CD4+ T cells were detectable ex vivo and showed a mixed central and effector-memory differentiation phenotype, with a significant proportion showing evidence of recent activation and rapid effector function. In summary these data implicate persistent low-level or recurrent VZV antigen exposure in healthy immune donors and are compatible with a role for IE63-specific CD4+ T cells in the control of viral reactivation.
Collapse
Affiliation(s)
- Louise Jones
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, and Department of Dermatology, Churchill Hospital, Oxford, UK.
| | | | | | | |
Collapse
|
52
|
|
53
|
|
54
|
Habran L, El Mjiyad N, Di Valentin E, Sadzot-Delvaux C, Bontems S, Piette J. The varicella-zoster virus immediate-early 63 protein affects chromatin-controlled gene transcription in a cell-type dependent manner. BMC Mol Biol 2007; 8:99. [PMID: 17971236 PMCID: PMC2176069 DOI: 10.1186/1471-2199-8-99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 10/30/2007] [Indexed: 01/15/2023] Open
Abstract
Background Varicella Zoster Virus Immediate Early 63 protein (IE63) has been shown to be essential for VZV replication, and critical for latency establishment. The activity of the protein as a transcriptional regulator is not fully clear yet. Using transient transfection assays, IE63 has been shown to repress viral and cellular promoters containing typical TATA boxes by interacting with general transcription factors. Results In this paper, IE63 regulation properties on endogenous gene expression were evaluated using an oligonucleotide-based micro-array approach. We found that IE63 modulates the transcription of only a few genes in HeLa cells including genes implicated in transcription or immunity. Furthermore, we showed that this effect is mediated by a modification of RNA POL II binding on the promoters tested and that IE63 phosphorylation was essential for these effects. In MeWo cells, the number of genes whose transcription was modified by IE63 was somewhat higher, including genes implicated in signal transduction, transcription, immunity, and heat-shock signalling. While IE63 did not modify the basal expression of several NF-κB dependent genes such as IL-8, ICAM-1, and IκBα, it modulates transcription of these genes upon TNFα induction. This effect was obviously correlated with the amount of p65 binding to the promoter of these genes and with histone H3 acetylation and HDAC-3 removal. Conclusion While IE63 only affected transcription of a small number of cellular genes, it interfered with the TNF-inducibility of several NF-κB dependent genes by the accelerated resynthesis of the inhibitor IκBα.
Collapse
Affiliation(s)
- Lionel Habran
- Virology & Immunology Unit, GIGA-Research, GIGA B34, University of Liège, B-4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
55
|
Zerboni L, Reichelt M, Jones CD, Zehnder JL, Ito H, Arvin AM. Aberrant infection and persistence of varicella-zoster virus in human dorsal root ganglia in vivo in the absence of glycoprotein I. Proc Natl Acad Sci U S A 2007; 104:14086-91. [PMID: 17709745 PMCID: PMC1955823 DOI: 10.1073/pnas.0706023104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Varicella-zoster virus (VZV) causes varicella, establishes latency in sensory ganglia, and reactivates as herpes zoster. Human dorsal root ganglia (DRGs) xenografts in immunodeficient mice provide a model for evaluating VZV neuropathogenesis. Our investigation of the role of glycoprotein I (gI), which is dispensable in vitro, examines the functions of a VZV gene product during infection of human neural cells in vivo. Whereas intact recombinant Oka (rOka) initiated a short replicative phase followed by persistence in DRGs, the gI deletion mutant, rOkaDeltagI, showed prolonged replication with no transition to persistence up to 70 days after infection. Only a few varicella-zoster nucleocapsids and cytoplasmic virions were observed in neurons, and the major VZV glycoprotein, gE, was retained in the rough endoplasmic reticulum in the absence of gI. VZV neurotropism was not disrupted when DRG xenografts were infected with rOka mutants lacking gI promoter elements that bind cellular transactivators, specificity factor 1 (Sp1) and upstream stimulatory factor (USF). Because gI is essential and Sp1 and USF contribute to VZV pathogenesis in skin and T cells in vivo, these DRG experiments indicate that the genetic requirements for VZV infection are less stringent in neural cells in vivo. The observations demonstrate that gI is important for VZV neurotropism and suggest that a strategy to reduce neurovirulence by deleting gI could prolong active infection in human DRGs.
Collapse
MESH Headings
- Animals
- Chickenpox/immunology
- Chickenpox/pathology
- DNA, Viral/genetics
- Ganglia, Spinal/pathology
- Ganglia, Spinal/transplantation
- Ganglia, Spinal/virology
- Gene Deletion
- Genome, Viral
- Herpesvirus 3, Human/enzymology
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/physiology
- Humans
- Mice
- Open Reading Frames
- Promoter Regions, Genetic
- Recombination, Genetic
- Transcription, Genetic
- Transplantation, Heterologous
- Viral Envelope Proteins/genetics
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Leigh Zerboni
- Departments of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Kyratsous CA, Silverstein SJ. BAG3, a host cochaperone, facilitates varicella-zoster virus replication. J Virol 2007; 81:7491-503. [PMID: 17475647 PMCID: PMC1933350 DOI: 10.1128/jvi.00442-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/25/2007] [Indexed: 12/29/2022] Open
Abstract
Varicella-zoster virus (VZV) establishes a lifelong latent infection in the dorsal root ganglia of the host. During latency, a subset of virus-encoded regulatory proteins is detected; however, they are excluded from the nucleus. ORF29p, a single-stranded DNA binding protein, is one of these latency-associated proteins. We searched for cell proteins that interact with ORF29p and identified BAG3. BAG3, Hsp70/Hsc70, and Hsp90 colocalize with ORF29p in nuclear transcription/replication factories during lytic replication of VZV. Pharmacological intercession of Hsp90 activity with ansamycin antibiotics or depletion of BAG3 by small interfering RNA results in inhibition of virus replication. Replication in BAG3-depleted cell lines is restored by complementation with exogenous BAG3. Alteration of host chaperone activity provides a novel means of regulating virus replication.
Collapse
Affiliation(s)
- Christos A Kyratsous
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | | |
Collapse
|
57
|
Ou Y, Davis KA, Traina-Dorge V, Gray WL. Simian varicella virus expresses a latency-associated transcript that is antisense to open reading frame 61 (ICP0) mRNA in neural ganglia of latently infected monkeys. J Virol 2007; 81:8149-56. [PMID: 17507490 PMCID: PMC1951321 DOI: 10.1128/jvi.00407-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Simian varicella virus (SVV) and varicella-zoster virus (VZV) are closely related alphaherpesviruses that cause varicella (chickenpox) in nonhuman primates and humans, respectively. After resolution of the primary disease, SVV and VZV establish latent infection of neural ganglia and may later reactivate to cause a secondary disease (herpes zoster). This study investigated SVV gene expression in neural ganglia derived from latently infected vervet monkeys. SVV transcripts were detected in neural ganglia, but not in liver or lung tissues, of latently infected animals. A transcript mapping to open reading frame (ORF) 61 (herpes simplex virus type 1 [HSV-1] ICP0 homolog) was consistently detected in latently infected trigeminal, cervical, and lumbar ganglia by reverse transcriptase PCR. Further analysis confirmed that this SVV latency-associated transcript (LAT) was oriented antisense to the gene 61 mRNA. SVV ORF 21 transcripts were also detected in 42% of neural ganglia during latency. In contrast, SVV ORF 28, 29, 31, 62, and 63 transcripts were not detected in ganglia, liver, or lung tissues of latently infected animals. The results demonstrate that viral gene expression is limited during SVV latency and that a LAT antisense to an ICP0 homolog is expressed. In this regard, SVV gene expression during latency is similar to that of HSV-1 and other neurotropic animal alphaherpesviruses but differs from that reported for VZV.
Collapse
Affiliation(s)
- Yang Ou
- Dept. of Microbiology and Immunology, Slot 511, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
58
|
Che X, Berarducci B, Sommer M, Ruyechan WT, Arvin AM. The ubiquitous cellular transcriptional factor USF targets the varicella-zoster virus open reading frame 10 promoter and determines virulence in human skin xenografts in SCIDhu mice in vivo. J Virol 2007; 81:3229-39. [PMID: 17251302 PMCID: PMC1866059 DOI: 10.1128/jvi.02537-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 01/19/2007] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 10 (ORF10) is a determinant of virulence in SCIDhu skin xenografts but not in human T cells in vivo. In this analysis of the regulation of ORF10 transcription, we have identified four ORF10-related transcripts, including a major 1.3-kb RNA spanning ORF10 only and three other read-through transcripts. Rapid-amplification-of-cDNA-ends experiments indicated that the 1.3-kb transcript of ORF10 has single initiation and termination sites. In transient expression assays, the ORF10 promoter was strongly stimulated by the major VZV transactivator, IE62. Deletion analyses revealed approximate boundaries for the full ORF10 promoter activity between -75 and -45 and between +5 and -8, relative to the ORF10 transcription start site. The recombinant virus POKA10-Deltapro, with the ORF10 promoter deletion, blocked transcription of ORF10 and also of ORF9A and ORF9 mRNAs, whereas expression of read-through ORF9A/9/10 and ORF9/10 transcripts was increased, compensating for the loss of the monocistronic mRNAs. The cellular factor USF bound specifically to its consensus site within the ORF10 promoter and was required for IE62 transactivation, whereas disrupting the predicted TATA boxes or Oct-1 binding elements had no effect. The USF binding site was disrupted in the recombinant virus, POKA10-proDeltaUSF, and no ORF10 protein was produced. Both ORF10 promoter mutants reduced VZV replication in SCIDhu skin xenografts. These observations provided further evidence of the contribution of the ORF10 protein to VZV pathogenesis in skin and demonstrated that VZV depends upon the cellular transcriptional factor USF to support its virulence in human skin in vivo.
Collapse
Affiliation(s)
- Xibing Che
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5208, USA.
| | | | | | | | | |
Collapse
|
59
|
Grinfeld E, Kennedy PGE. The pattern of viral persistence in monkeys intra-tracheally infected with Simian varicella virus. Virus Genes 2007; 35:289-92. [PMID: 17253123 DOI: 10.1007/s11262-007-0077-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
In situ PCR (ISPCR) and in situ hybridisation (ISH) was performed on 32 tissues from 10 monkeys, intra-tracheally (IT) infected with simian varicella virus (SVV) and 5 tissues from 3 uninfected control animals. The results showed persistence of SVV DNA up to 2 years post-infection (pi) and the localisation of SVV to be confined to neurons except at time points 9 and 10 months pi where SVV positive satellite cells were also detected. There was no evidence for transcription of SVV ORFs 63 and 21 in the ganglia of the one IT infected and 2 naturally infected monkeys investigated using RNA ISH.
Collapse
Affiliation(s)
- Esther Grinfeld
- Department of Neurology, Institute of Neurological Sciences, University of Glasgow, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF, Scotland, UK
| | | |
Collapse
|
60
|
Dworkin RH, Johnson RW, Breuer J, Gnann JW, Levin MJ, Backonja M, Betts RF, Gershon AA, Haanpaa ML, McKendrick MW, Nurmikko TJ, Oaklander AL, Oxman MN, Pavan-Langston D, Petersen KL, Rowbotham MC, Schmader KE, Stacey BR, Tyring SK, van Wijck AJM, Wallace MS, Wassilew SW, Whitley RJ. Recommendations for the management of herpes zoster. Clin Infect Dis 2007; 44 Suppl 1:S1-26. [PMID: 17143845 DOI: 10.1086/510206] [Citation(s) in RCA: 457] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this article is to provide evidence-based recommendations for the management of patients with herpes zoster (HZ) that take into account clinical efficacy, adverse effects, impact on quality of life, and costs of treatment. Systematic literature reviews, published randomized clinical trials, existing guidelines, and the authors' clinical and research experience relevant to the management of patients with HZ were reviewed at a consensus meeting. The results of controlled trials and the clinical experience of the authors support the use of acyclovir, brivudin (where available), famciclovir, and valacyclovir as first-line antiviral therapy for the treatment of patients with HZ. Specific recommendations for the use of these medications are provided. In addition, suggestions are made for treatments that, when used in combination with antiviral therapy, may further reduce pain and other complications of HZ.
Collapse
Affiliation(s)
- Robert H Dworkin
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Cohrs RJ, Gilden DH. Prevalence and abundance of latently transcribed varicella-zoster virus genes in human ganglia. J Virol 2006; 81:2950-6. [PMID: 17192313 PMCID: PMC1866015 DOI: 10.1128/jvi.02745-06] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In human ganglia latently infected with varicella-zoster virus (VZV), sequence analysis has revealed that five viral genes (VZV genes 21, 29, 62, 63, and 66) are transcribed. However, their comparative prevalence and abundance are unknown. Here, using real-time PCR, we analyzed 28 trigeminal ganglia from 14 humans for RNA corresponding to the five virus genes known to be transcribed in latently infected human ganglia. The most prevalent transcript found was VZV gene 63 (78%), followed by gene 66 (43%), gene 62 (36%), and gene 29 (21%). No gene 21 transcripts were detected in any of the 28 ganglia. VZV gene 63 RNA was also the most abundant (3,710 +/- 6,895 copies per 1 microg of mRNA) transcript detected in latently infected human ganglia, followed by VZV gene 29 (491 +/- 594), VZV gene 66 (117 +/- 85), and VZV gene 62 (64 +/- 38). Thus, the repeated detection and high abundance of VZV gene 63 transcripts in latently infected ganglia suggests that VZV gene 63 may be more important for the maintenance of virus latency than the less abundantly transcribed and randomly detected VZV genes 21, 29, 62, and 66.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- DNA, Complementary
- DNA, Viral/analysis
- DNA, Viral/isolation & purification
- Female
- Genes, Viral
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/physiology
- Humans
- Male
- Middle Aged
- Polymerase Chain Reaction
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Transcription, Genetic
- Trigeminal Ganglion/virology
- Virus Latency
Collapse
Affiliation(s)
- Randall J Cohrs
- Department of Neurology, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, Mail Stop B182, Denver, CO 80262, USA.
| | | |
Collapse
|
62
|
Cohen JI, Krogmann T, Pesnicak L, Ali MA. Absence or overexpression of the Varicella-Zoster Virus (VZV) ORF29 latency-associated protein impairs late gene expression and reduces VZV latency in a rodent model. J Virol 2006; 81:1586-91. [PMID: 17151102 PMCID: PMC1797561 DOI: 10.1128/jvi.01220-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) ORF29 encodes the viral single-stranded DNA binding protein and is expressed during latency in human ganglia. We constructed an ORF29 deletion mutant virus and showed that the virus could replicate only in cells expressing ORF29. An ORF29-repaired virus, in which ORF29 was driven by a cytomegalovirus promoter, grew to peak titers similar to those seen with the parental virus. The level of ORF29 protein in cells infected with the repaired virus was greater than that seen with parental virus. Infection of cells with either the ORF29 deletion or repaired virus resulted in similar levels of VZV immediate-early proteins but reduced levels of glycoprotein E compared to those observed with parental virus. Cotton rats infected with the ORF29 deletion mutant had a markedly reduced frequency of latent infection in dorsal root ganglia compared with those infected with parental virus (P < 0.00001). In contrast, infection of animals with the ORF29 deletion mutant resulted in a frequency of ganglionic infection at 3 days similar to that seen with the parental virus. Animals infected with the ORF29-repaired virus, which overexpresses ORF29, also had a reduced frequency of latent infection compared with those infected with parental virus (P = 0.0044). These studies indicate that regulation of ORF29 at appropriate levels is critical for VZV latency in a rodent model.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Clinical Infectious Diseases, Bldg. 10, Room 11N234, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
63
|
Grinfeld E, Goodwin R, Kennedy PGE. Varicella-Zoster virus gene expression at variable periods following death in a rat model of ganglionic infection. Virus Genes 2006; 35:29-32. [PMID: 17039406 DOI: 10.1007/s11262-006-0041-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 09/04/2006] [Indexed: 12/17/2022]
Abstract
We used a rat model of Varicella-Zoster virus (VZV) ganglionic infection, which mirrors some of the features of VZV latency in humans, to determine the temporal pattern of expression of a VZV immediate-early gene (63) and a VZV late gene (40) at 0, 24 and 48 h after death of the animal. The immediate-early VZV gene 63 is known to be abundantly expressed during human ganglionic latency, while the late VZV gene 40 is not expressed during human latency. Using both RNA in situ hybridisation (ISH) and nested RT-PCR, it was found that at all time points in both thoracic and lumbar ganglia, the number of ganglia positive for VZV gene 63 was higher than for gene 40. The expression of gene 40 did not increase with time postmortem (pm) These results provide indirect support for the hypothesis that patterns of expression of VZV genes detected in human tissue at even 48 h pm reflect the pattern of expression during human ganglionic latency.
Collapse
Affiliation(s)
- Esther Grinfeld
- Division of Clinical Neurosciences, Institute of Neurological Sciences, University of Glasgow, Southern General Hospital, Glasgow, G51 4TF, Scotland, UK
| | | | | |
Collapse
|
64
|
Cohrs RJ, Laguardia JJ, Gilden D. Distribution of latent herpes simplex virus type-1 and varicella zoster virus DNA in human trigeminal Ganglia. Virus Genes 2006; 31:223-7. [PMID: 16025248 DOI: 10.1007/s11262-005-1799-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
Trigeminal ganglia removed at autopsy from immunocompetent individuals without cutaneous signs of herpesvirus infection were fixed, cut into 5-microm sections, and screened at 100-microm intervals (20 adjacent sections) by PCR for latent herpes simplex type 1(HSV-1) and varicella zoster virus (VZV) DNA. Sections that contained >5 neurons with nuclei stained by hematoxylin/eosin revealed HSV-1 DNA in most samples and VZV DNA in approximately 50% of samples. HSV-1 and VZV DNA were distributed throughout each latently infected ganglion.
Collapse
Affiliation(s)
- Randall J Cohrs
- Departments of Neurology, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, Mail Stop B182, Denver, CO 80262, USA.
| | | | | |
Collapse
|
65
|
Abstract
VZV is a highly cell-associated member of the Herpesviridae family and one of the eight herpesviruses to infect humans. The virus is ubiquitous in most populations worldwide, primary infection with which causes varicella, more commonly known as chickenpox. Characteristic of members of the alphaherpesvirus sub-family, VZV is neurotropic and establishes latency in sensory neurones. Reactivation from latency, usually during periods of impaired cellular immunity, causes herpes zoster (shingles). Despite being one of the most genetically stable human herpesviruses, nucleotide alterations in the virus genome have been used to classify VZV strains from different geographical regions into distinct clades. Such studies have also provided evidence that, despite pre-existing immunity to VZV, subclinical reinfection and reactivation of reinfecting strains to cause zoster is also occurring. During both primary infection and reactivation, VZV infects several PBMC and skin cell lineages. Difficulties in studying the pathogenesis of VZV because of its high cell association and narrow host range have been overcome through the development of the VZV severe combined immunodeficient mouse model carrying human tissue implants. This model has provided a valuable tool for studying the importance of individual viral proteins during both the complex intracellular replication and assembly of new virions and for understanding the underlying mechanism of attenuation of the live varicella vaccine. In addition, a rat model has been developed and successfully used to uncover which viral proteins are important for both the establishment and maintenance of latent VZV infection.
Collapse
Affiliation(s)
- Mark Quinlivan
- Centre for Infectious Diseases, Institute for Cell and Molecular Science, 4 Newark Street, Whitechapel, London, E1 2AT, UK.
| | | |
Collapse
|
66
|
Docherty JJ, Sweet TJ, Bailey E, Faith SA, Booth T. Resveratrol inhibition of varicella-zoster virus replication in vitro. Antiviral Res 2006; 72:171-7. [PMID: 16899306 DOI: 10.1016/j.antiviral.2006.07.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 07/06/2006] [Accepted: 07/10/2006] [Indexed: 01/21/2023]
Abstract
Resveratrol was found to inhibit varicella-zoster virus (VZV) replication in a dose-dependent and reversible manner. This decrease in virus production in the presence of resveratrol was not caused by direct inactivation of VZV or inhibition of virus attachment to MRC-5 cells. The drug effectively limited VZV replication if added during the first 30 h of infection. Western blot analysis and real-time RT-PCR studies demonstrated that protein and mRNA levels of IE62, an essential immediate early viral protein, were reduced when compared to controls. These results demonstrate that VZV replication is adversely affected by resveratrol which is negatively impacting IE62 synthesis.
Collapse
Affiliation(s)
- John J Docherty
- Northeastern Ohio Universities College of Medicine, P.O. Box 95, Rootstown, OH 44272, USA.
| | | | | | | | | |
Collapse
|
67
|
Ou Y, Gray WL. Simian varicella virus gene 28 and 29 promoters share a common upstream stimulatory factor-binding site and are induced by IE62 transactivation. J Gen Virol 2006; 87:1501-1508. [PMID: 16690914 DOI: 10.1099/vir.0.81645-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simian varicella virus (SVV) is a neurotropic alphaherpesvirus that causes a natural, varicella-like disease in non-human primates. After resolution of the primary disease, SVV, like its human counterpart, varicella-zoster virus (VZV), establishes latent infection in the neural ganglia of the host. In this study, gene expression of SVV open reading frames (ORFs) 28 and 29, which encode the viral DNA polymerase and DNA-binding protein, respectively, was characterized during lytic infection of Vero cells. The results indicate that the intergenic region controlling gene 28 and 29 expression includes overlapping, divergent promoters. The ORF 28 and 29 promoters are active in SVV-infected Vero cells, but not in uninfected cells. The SVV immediate-early gene 62 (IE62) product transactivates ORF 28 and 29 expression, and a cellular upstream stimulatory factor-binding site is important for efficient IE62 induction of genes 28 and 29. DNA sequence analysis of the 185 bp intergenic region identified putative cellular transcription factor-binding sites. Transcriptional analysis mapped ORF 28 and 29 RNA start sites. A recombinant SVV was employed to demonstrate that the ORF 29 promoter can express a heterologous gene (green fluorescent protein) when inserted into a novel site (the ORF 12/13 intergenic region) within the SVV genome. The findings demonstrate similarities between SVV and VZV ORF 28/29 expression and indicate that the simian varicella model may be useful to investigate the differential regulation of viral genes during lytic and latent infection.
Collapse
Affiliation(s)
- Yang Ou
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | - Wayne L Gray
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| |
Collapse
|
68
|
Gary L, Gilden DH, Cohrs RJ. Epigenetic regulation of varicella-zoster virus open reading frames 62 and 63 in latently infected human trigeminal ganglia. J Virol 2006; 80:4921-6. [PMID: 16641283 PMCID: PMC1472082 DOI: 10.1128/jvi.80.10.4921-4926.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Open reading frames (ORFs) 21, 29, 62, 63, and 66 of varicella-zoster virus (VZV) are transcribed during latency in human ganglia. ORF 63 is the most frequently expressed gene, and ORF 62 encodes a transcriptional activator. The mechanisms regulating the expression of these genes are not well understood, although analyses of other alphaherpesviruses indicate a role for chromatin in virus gene regulation during latent infection. Using chromatin immunoprecipitation (ChIP) assays to analyze the euchromatic state of ORFs 62 and 63 compared to the centromere from human chromosome 4 (heterochromatic) and the human glyceraldehyde-3-phosphate dehydrogenase promoter (euchromatic), we show that the promoters of ORFs 62 and 63 are associated with the histone protein H3K9(Ac) and thus maintained in a euchromatic state during latency. Conversely, the promoters of ORF 36 (thymidine kinase) and ORF 14 (glycoprotein C), genes expressed during lytic but not latent infection, were not enriched in the fraction of latently infected ganglia that bound to anti-H3K9(Ac) antibody. A ChIP assay using productively infected MeWo cells revealed that VZV ORFs 62, 63, 36, and 14 are all euchromatic. Together, these data indicate that the expression of the two latency-related VZV genes, ORFs 62 and 63, is regulated epigenetically through chromatin structure.
Collapse
Affiliation(s)
- Lee Gary
- Department of Neurology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
69
|
Hoover SE, Cohrs RJ, Rangel ZG, Gilden DH, Munson P, Cohen JI. Downregulation of varicella-zoster virus (VZV) immediate-early ORF62 transcription by VZV ORF63 correlates with virus replication in vitro and with latency. J Virol 2006; 80:3459-68. [PMID: 16537613 PMCID: PMC1440367 DOI: 10.1128/jvi.80.7.3459-3468.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 63 (ORF63) protein is expressed during latency in human sensory ganglia. Deletion of ORF63 impairs virus replication in cell culture and establishment of latency in cotton rats. We found that cells infected with a VZV ORF63 deletion mutant yielded low titers of cell-free virus and produced very few enveloped virions detectable by electron microscopy compared with those infected with parental virus. Microarray analysis of cells infected with a recombinant adenovirus expressing ORF63 showed that transcription of few human genes was affected by ORF63; a heat shock 70-kDa protein gene was downregulated, and several histone genes were upregulated. In experiments using VZV transcription arrays, deletion of ORF63 from VZV resulted in a fourfold increase in expression of ORF62, the major viral transcriptional activator. A threefold increase in ORF62 protein was observed in cells infected with the ORF63 deletion mutant compared with those infected with parental virus. Cells infected with ORF63 mutants impaired for replication and latency (J. I. Cohen, T. Krogmann, S. Bontems, C. Sadzot-Delvaux, and L. Pesnicak, J. Virol. 79:5069-5077, 2005) showed an increase in ORF62 transcription compared with those infected with parental virus. In contrast, cells infected with an ORF63 mutant that is not impaired for replication or latency showed ORF62 RNA levels equivalent to those in cells infected with parental virus. The ability of ORF63 to downregulate ORF62 transcription may play an important role in virus replication and latency.
Collapse
Affiliation(s)
- Susan E Hoover
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
70
|
Jones JO, Sommer M, Stamatis S, Arvin AM. Mutational analysis of the varicella-zoster virus ORF62/63 intergenic region. J Virol 2006; 80:3116-21. [PMID: 16501125 PMCID: PMC1395429 DOI: 10.1128/jvi.80.6.3116-3121.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The varicella-zoster virus (VZV) ORF62/63 intergenic region was cloned between the Renilla and firefly luciferase genes, which acted as reporters of ORF62 and ORF63 transcription, and recombinant viruses were generated that carried these reporter cassettes along with the intact native sequences in the repeat regions of the VZV genome. In order to investigate the potential contributions of cellular transregulatory proteins to ORF62 and ORF63 transcription, recombinant reporter viruses with mutations of consensus binding sites for six proteins within the intergenic region were also created. The reporter viruses were used to evaluate ORF62 and ORF63 transcription during VZV replication in cultured fibroblasts and in skin xenografts in SCIDhu mice in vivo. Mutations in putative binding sites for heat shock factor 1 (HSF-1), nuclear factor 1 (NF-1), and one of two cyclic AMP-responsive elements (CRE) reduced ORF62 reporter transcription in fibroblasts, while mutations in binding sites for HSF-1, NF-1, and octamer binding proteins (Oct-1) increased ORF62 reporter transcription in skin. Mutations in one CRE and the NF-1 site altered ORF63 transcription in fibroblasts, while mutation of the Oct-1 binding site increased ORF63 reporter transcription in skin. The effect of each of these mutations implies that the intact binding site sequence regulates native ORF62 and ORF63 transcription. Mutation of the only NF-kappaB/Rel binding site had no effect on ORF62 or ORF63 transcription in vitro or in vivo. The segment of the ORF62/63 intergenic region proximal to ORF63 was most important for ORF63 transcription, but mutagenesis also altered ORF62 transcription, indicating that this region functions as a bidirectional promoter. This first analysis of the ORF62/63 intergenic region in the context of VZV replication indicates that it is a dual promoter and that cellular transregulatory factors affect the transcription of these key VZV regulatory genes.
Collapse
Affiliation(s)
- Jeremy O Jones
- Department of Pediatrics, Stanford University, Stanford, California, USA.
| | | | | | | |
Collapse
|
71
|
Abstract
Herpesviruses are among the most successful human pathogens. In healthy individuals, primary infection is most often inapparent. After primary infection, the virus becomes latent in ganglia or blood mononuclear cells. Three major subfamilies of herpesviruses have been identified based on similar growth characteristics, genomic structure, and tissue predilection. Each herpesvirus has evolved its own unique ecological niche within the host that allows the maintenance of latency over the life of the individual (e.g. the adaptation to specific cell types in establishing latent infection and the mechanisms, including expression of different sets of genes, by which the virus remains latent). Neurotropic alphaherpesviruses become latent in dorsal root ganglia and reactivate to produce epidermal ulceration, either localized (herpes simplex types 1 and 2) or spread over several dermatomes (varicalla-zoster virus). Human cytomegalovirus, the prototype betaherpesvirus, establishes latency in bone marrow-derived myeloid progenitor cells. Reactivation of latent virus is especially serious in transplant recipients and AIDS patients. Lymphotropic gammaherpesviruses (Epstein-Barr virus) reside latent in resting B cells and reactivate to produce various neurologic complications. This review highlights the alphaherpesvirus, specifically herpes simplex virus type 1 and varicella-zoster virus, and describes the characteristics of latent infection.
Collapse
Affiliation(s)
- R J Cohrs
- Department of Neurology, University of Colorado, Health Sciences Center, Denver 80262, USA.
| | | |
Collapse
|
72
|
Stallings CL, Duigou GJ, Gershon AA, Gershon MD, Silverstein SJ. The cellular localization pattern of Varicella-Zoster virus ORF29p is influenced by proteasome-mediated degradation. J Virol 2006; 80:1497-512. [PMID: 16415026 PMCID: PMC1346923 DOI: 10.1128/jvi.80.3.1497-1512.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 29 (ORF29) encodes a single-stranded DNA binding protein. During lytic infection, ORF29p is localized primarily to infected-cell nuclei, whereas during latency it appears in the cytoplasm of infected neurons. Following reactivation, ORF29p accumulates in the nucleus. In this report, we analyze the cellular localization patterns of ORF29p during VZV infection and during autonomous expression. Our results demonstrate that ORF29p is excluded from the nucleus in a cell-type-specific manner and that its cellular localization pattern may be altered by subsequent expression of VZV ORF61p or herpes simplex virus type 1 ICP0. In these cases, ORF61p and ICP0 induce nuclear accumulation of ORF29p in cell lines where it normally remains cytoplasmic. One cellular system utilized by ICP0 to influence protein abundance is the proteasome degradation pathway. Inhibition of the 26S proteasome, but not heat shock treatment, resulted in accumulation of ORF29p in the nucleus, similar to the effect of ICP0 expression. Immunofluorescence microscopy and pulse-chase experiments reveal that stabilization of ORF29p correlates with its nuclear accumulation and is dependent on a functional nuclear localization signal. ORF29p nuclear translocation in cultured enteric neurons and cells derived from an astrocytoma is reversible, as the protein's distribution and stability revert to the previous states when the proteasomal activity is restored. Thus, stabilization of ORF29p leads to its nuclear accumulation. Although proteasome inhibition induces ORF29p nuclear accumulation, this is not sufficient to reactivate latent VZV or target the immediate-early protein ORF62p to the nucleus in cultured guinea pig enteric neurons.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enteric Nervous System/metabolism
- Enteric Nervous System/virology
- Exons
- Guinea Pigs
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/metabolism
- Herpesvirus 3, Human/pathogenicity
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Leupeptins/pharmacology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Open Reading Frames
- Protease Inhibitors/pharmacology
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Subcellular Fractions/metabolism
- Subcellular Fractions/virology
- Tissue Culture Techniques
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Christina L Stallings
- Integrated Program in Cellular, Molecular and Biophysical Studies, and Department of Microbiology, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
73
|
Vossen MTM, Gent MR, Peters KMC, Wertheim-van Dillen PME, Dolman KM, van Breda A, van Lier RAW, Kuijpers TW. Persistent detection of varicella-zoster virus DNA in a previously healthy child after severe chickenpox. J Clin Microbiol 2005; 43:5614-21. [PMID: 16272494 PMCID: PMC1287842 DOI: 10.1128/jcm.43.11.5614-5621.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In immunocompetent children with primary varicella-zoster virus (VZV) infection, peak viral loads are detected in peripheral blood near the onset of the vesicular rash. VZV DNA concentrations normally diminish and become undetectable within 3 weeks after the appearance of the exanthem. Here, we present a previously healthy, human immunodeficiency virus-negative, 4-year-old boy admitted with severe varicella. High viral loads (>340,000 copies/ml) were found in his blood, and the viral loads remained high for at least 1.5 years. Clinical recovery preceded complete clearance of the virus. General and VZV-specific immune reactivity were intact. NK cells and CD8(+) T cells were activated during acute infection, and VZV-specific CD4(+) T cells were detected at high frequencies. VZV DNA was initially detected in B cells, NK cells, and both CD4(+) and CD8(+) T cells. In contrast, during the persistent phase of VZV DNA detection, the viral DNA was primarily located in CD8(+) T cells. For the first time, we describe the persistent detection of VZV DNA in a previously healthy child.
Collapse
Affiliation(s)
- Mireille T M Vossen
- Academic Medical Center, Emma Children's Hospital, Room G8-205, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Kennedy PGE, Grinfeld E, Craigon M, Vierlinger K, Roy D, Forster T, Ghazal P. Transcriptomal analysis of varicella-zoster virus infection using long oligonucleotide-based microarrays. J Gen Virol 2005; 86:2673-2684. [PMID: 16186220 DOI: 10.1099/vir.0.80946-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Varicella-zoster virus (VZV) is a human herpes virus that causes varicella as a primary infection and herpes zoster following reactivation of the virus from a latent state in trigeminal and spinal ganglia. In order to study the global pattern of VZV gene transcription, VZV microarrays using 75-base oligomers to 71 VZV open reading frames (ORFs) were designed and validated. The long-oligonucleotide approach maximizes the stringency of detection and polarity of gene expression. To optimize sensitivity, microarrays were hybridized to target RNA and the extent of hybridization measured using resonance light scattering. Microarray data were normalized to a subset of invariant ranked host-encoded positive-control genes and the data subjected to robust formal statistical analysis. The programme of viral gene expression was determined for VZV (Dumas strain)-infected MeWo cells and SVG cells (an immortalized human astrocyte cell line) 72 h post-infection. Marked quantitative and qualitative differences in the viral transcriptome were observed between the two different cell types using the Dumas laboratory-adapted strain. Oligonucleotide-based VZV arrays have considerable promise as a valuable tool in the analysis of viral gene transcription during both lytic and latent infections, and the observed heterogeneity in the global pattern of viral gene transcription may also have diagnostic potential.
Collapse
Affiliation(s)
- Peter G E Kennedy
- Glasgow University Department of Neurology, Southern General Hospital, Institute of Neurological Sciences, Glasgow G51 4TF, UK
| | - Esther Grinfeld
- Glasgow University Department of Neurology, Southern General Hospital, Institute of Neurological Sciences, Glasgow G51 4TF, UK
| | - Marie Craigon
- Scottish Centre for Genomic Technology and Informatics, Medical School, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Klemens Vierlinger
- Scottish Centre for Genomic Technology and Informatics, Medical School, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Douglas Roy
- Scottish Centre for Genomic Technology and Informatics, Medical School, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Thorsten Forster
- Scottish Centre for Genomic Technology and Informatics, Medical School, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Peter Ghazal
- Scottish Centre for Genomic Technology and Informatics, Medical School, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
75
|
Stallings CL, Silverstein S. Dissection of a novel nuclear localization signal in open reading frame 29 of varicella-zoster virus. J Virol 2005; 79:13070-81. [PMID: 16189009 PMCID: PMC1235848 DOI: 10.1128/jvi.79.20.13070-13081.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Open reading frame 29 (ORF29) of varicella-zoster virus (VZV) encodes a 120-kDa single-stranded DNA binding protein (ORF29p) that is not packaged in the virion and is expressed during latency. During lytic infection, ORF29p is localized primarily to infected cell nuclei. In contrast, ORF29p is found exclusively in the cytoplasm in neurons of the dorsal root ganglia obtained at autopsy from seropositive latently infected patients. ORF29p accumulates in the nuclei of neurons in dorsal root ganglia obtained at autopsy from patients with active zoster. The localization of this protein is, therefore, tightly correlated with the proposed VZV lytic/latent switch. In this report, we have investigated the nuclear import mechanism of ORF29p. We identified a novel nuclear targeting domain bounded by amino acids 9 to 154 of ORF29p that functions independent of other VZV-encoded factors. In vitro import assays in digitonin-permeabilized HeLa cells reveal that ORF29p is transported into the nucleus by a Ran-, karyopherin alpha- and beta-dependent mechanism. These data are further supported by the demonstration that a glutathione S-transferase-karyopherin alpha fusion interacts with ORF29p, but not with a protein containing a point mutation in its nuclear localization signal (NLS). Therefore, the region of ORF29p responsible for its nuclear targeting is also involved in the association with karyopherin alpha. As a result of this interaction, this noncanonical NLS appears to hijack the classical cellular nuclear import machinery. Elucidation of the mechanisms governing ORF29p nuclear targeting could shed light on the VZV reactivation process.
Collapse
Affiliation(s)
- Christina L Stallings
- Integrated Program in Cellular, Molecular and Biophysical Studies and the Department of Microbiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
76
|
Garry EM, Delaney A, Anderson HA, Sirinathsinghji EC, Clapp RH, Martin WJ, Kinchington PR, Krah DL, Abbadie C, Fleetwood-Walker SM. Varicella zoster virus induces neuropathic changes in rat dorsal root ganglia and behavioral reflex sensitisation that is attenuated by gabapentin or sodium channel blocking drugs. Pain 2005; 118:97-111. [PMID: 16213091 DOI: 10.1016/j.pain.2005.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 07/22/2005] [Accepted: 08/01/2005] [Indexed: 11/25/2022]
Abstract
Reactivation of latent varicella zoster virus (VZV) within sensory trigeminal and dorsal root ganglia (DRG) neurons produces shingles (zoster), often accompanied by a chronic neuropathic pain state, post-herpetic neuralgia (PHN). PHN persists despite latency of the virus within human sensory ganglia and is often unresponsive to current analgesic or antiviral agents. To study the basis of varicella zoster-induced pain, we have utilised a recently developed model of chronic VZV infection in rodents. Immunohistochemical analysis of DRG following VZV infection showed the presence of a viral immediate early gene protein (IE62) co-expressed with markers of A- (neurofilament-200; NF-200) and C- (peripherin) afferent sensory neurons. There was increased expression of neuropeptide Y (NPY) in neurons co-expressing NF-200. In addition, there was an increased expression of alpha2delta1 calcium channel, Na(v)1.3 and Na(v)1.8 sodium channels, the neuropeptide galanin and the nerve injury marker, Activating Transcription Factor-3 (ATF-3) as determined by Western blotting in DRG of VZV-infected rats. VZV infection induced increased behavioral reflex responsiveness to both noxious thermal and mechanical stimuli ipsilateral to injection (lasting up to 10 weeks post-infection) that is mediated by spinal NMDA receptors. These changes were reversed by systemic administration of gabapentin or the sodium channel blockers, mexiletine and lamotrigine, but not by the non-steroidal anti-inflammatory agent, diclofenac. This is the first time that the profile of VZV infection-induced phenotypic changes in DRG has been shown in rodents and reveals that this profile appears to be broadly similar (but not identical) to changes in other neuropathic pain models.
Collapse
MESH Headings
- Amines/pharmacology
- Amines/therapeutic use
- Animals
- Anticonvulsants/pharmacology
- Anticonvulsants/therapeutic use
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cyclohexanecarboxylic Acids/pharmacology
- Cyclohexanecarboxylic Acids/therapeutic use
- Disease Models, Animal
- Fluorescent Antibody Technique
- Gabapentin
- Galanin/metabolism
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiopathology
- Ganglia, Spinal/virology
- Herpes Zoster/metabolism
- Herpes Zoster/prevention & control
- Herpes Zoster/virology
- Herpesvirus 3, Human/drug effects
- Herpesvirus 3, Human/physiology
- Immediate-Early Proteins/metabolism
- Immunohistochemistry
- Lamotrigine
- Mexiletine/pharmacology
- Mexiletine/therapeutic use
- Neuralgia/etiology
- Neuralgia/prevention & control
- Neuralgia, Postherpetic/prevention & control
- Neuralgia, Postherpetic/virology
- Neurons, Afferent/metabolism
- Neuropeptide Y/metabolism
- Rats
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Reflex/drug effects
- Reflex/physiology
- Sodium Channels/drug effects
- Sodium Channels/metabolism
- Trans-Activators/metabolism
- Triazines/pharmacology
- Triazines/therapeutic use
- Viral Envelope Proteins/metabolism
- Virus Latency/physiology
- gamma-Aminobutyric Acid/pharmacology
- gamma-Aminobutyric Acid/therapeutic use
Collapse
Affiliation(s)
- Emer M Garry
- Division of Veterinary Biomedical Sciences, Centre for Neuroscience Research, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Di Valentin E, Bontems S, Habran L, Jolois O, Markine-Goriaynoff N, Vanderplasschen A, Sadzot-Delvaux C, Piette J. Varicella-zoster virus IE63 protein represses the basal transcription machinery by disorganizing the pre-initiation complex. Biol Chem 2005; 386:255-67. [PMID: 15843171 DOI: 10.1515/bc.2005.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using transient transfection assays, regulation properties of varicella-zoster virus (VZV)-encoded IE63 protein were analyzed on several VZV immediate early (ORF4), early (ORF28) and late (ORF67) promoters. IE63 was shown to repress the basal activity of most of the promoters tested in epithelial (Vero) and neuronal (ND7) cells to various extents. Trans-repressing activities were also observed on heterologous viral and cellular promoters. Since a construct carrying only a TATA box sequence and a series of wild-type or mutated interleukin (IL)-8 promoters was also repressed by IE63, the role of upstream regulatory elements was ruled out. Importantly, the basal activity of a TATA-less promoter was not affected by IE63. Using a series of IE63 deletion constructs, amino acids 151-213 were shown to be essential to the trans-repressing activity in Vero cells, while in ND7 cells the essential region extended to a much larger carboxy-terminal part of the protein. We also demonstrate that IE63 is capable of disrupting the transcriptional pre-initiation complex and of interacting with several general transcription factors. The central and carboxy-terminal domains of IE63 are important for these effects. Altogether, these results demonstrate that IE63 protein is a transcriptional repressor whose activity is directed towards general transcription factors.
Collapse
Affiliation(s)
- Emmanuel Di Valentin
- Laboratory of Virology and Immunology, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Habran L, Bontems S, Di Valentin E, Sadzot-Delvaux C, Piette J. Varicella-zoster virus IE63 protein phosphorylation by roscovitine-sensitive cyclin-dependent kinases modulates its cellular localization and activity. J Biol Chem 2005; 280:29135-43. [PMID: 15955820 DOI: 10.1074/jbc.m503312200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the first stage of Varicella-Zoster virus (VZV) infection, IE63 (immediate early 63 protein) is mostly expressed in the nucleus and also slightly in the cytoplasm, and during latency, IE63 localizes in the cytoplasm quite exclusively. Because phosphorylation is known to regulate various cellular mechanisms, we investigated the impact of phosphorylation by roscovitine-sensitive cyclin-dependent kinase (RSC) on the localization and functional properties of IE63. We demonstrated first that IE63 was phosphorylated on Ser-224 in vitro by CDK1 and CDK5 but not by CDK2, CDK7, or CDK9. Furthermore, by using roscovitine and CDK1 inhibitor III (CiIII), we showed that CDK1 phosphorylated IE63 on Ser-224 in vivo. By mutagenesis and the use of inhibitors, we demonstrated that phosphorylation on Ser-224 was important for the correct localization of the protein. Indeed, the substitution of these residues by alanine led to an exclusive nuclear localization of the protein, whereas mutations into glutamic acid did not modify its subcellular distribution. When transfected or VZV-infected cells were treated with roscovitine or CiIII, an exclusive nuclear localization of IE63 was also observed. By using a transfection assay, we also showed that phosphorylation on Ser-224 and Thr-222 was essential for the down-regulation of the basal activity of the VZV DNA polymerase gene promoter. Similarly, roscovitine and CiIII impaired these properties of the wild-type form of IE63. These observations clearly demonstrated the importance of CDK1-mediated IE63 phosphorylation for a correct distribution of IE63 between both cellular compartments and for its repressive activity toward the promoter tested.
Collapse
Affiliation(s)
- Lionel Habran
- Laboratory of Virology and Immunology, Center for Biomedical Genoproteomics, Institute of Pathology B23, University of Liège, B-4000, Liège, Belgium
| | | | | | | | | |
Collapse
|
79
|
Cohen JI, Krogmann T, Bontems S, Sadzot-Delvaux C, Pesnicak L. Regions of the varicella-zoster virus open reading frame 63 latency-associated protein important for replication in vitro are also critical for efficient establishment of latency. J Virol 2005; 79:5069-77. [PMID: 15795292 PMCID: PMC1069579 DOI: 10.1128/jvi.79.8.5069-5077.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 63 (ORF63) is one of the most abundant transcripts expressed during VZV latency in humans, and ORF63 protein has been detected in human ganglia by several laboratories. Deletion of over 90% of the ORF63 gene showed that the protein is required for efficient establishment of latency in rodents. We have constructed viruses with a series of mutations in ORF63. While prior experiments showed that transfection of cells with a plasmid expressing ORF63 but lacking the putative nuclear localization signal of the protein resulted in increased expression of the protein in the cytoplasm, we found that ORF63 protein remained in the nucleus in cells infected with a VZV ORF63 nuclear localization signal deletion mutant. This mutant was not impaired for growth in cell culture or for latency in rodents. Replacement of five serine or threonine phosphorylation sites in ORF63 with alanines resulted in a virus that was impaired for replication in vitro and for latency. A series of ORF63 carboxy-terminal mutants showed that the last 70 amino acids do not affect replication in vitro or latency in rodents; however, the last 108 amino acids are important for replication and latency. Thus, regions of ORF63 that are important for replication in vitro are also required for efficient establishment of latency.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Clinical Infectious Diseases, Bldg. 10, Room 11N228, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
80
|
Zerboni L, Ku CC, Jones CD, Zehnder JL, Arvin AM. Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc Natl Acad Sci U S A 2005; 102:6490-5. [PMID: 15851670 PMCID: PMC1088374 DOI: 10.1073/pnas.0501045102] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Varicella-zoster virus (VZV) causes varicella and establishes latency in sensory ganglia. VZV reactivation results in herpes zoster. We developed a model using human dorsal root ganglion (DRG) xenografts in severe combined immunodeficient (SCID) mice to investigate VZV infection of differentiated neurons and satellite cells in vivo. DRG engrafted under the kidney capsule and contained neurons and satellite cells within a typical DRG architecture. VZV clinical isolates infected the neurons within DRG. At 14 days postinfection, VZ virions were detected by electron microscopy in neuronal cell nuclei and cytoplasm but not in satellite cells. The VZV genome copy number was 7.1 x 10(7) to 8.0 x 10(8) copies per 10(5) cells, and infectious virus was recovered. This initial phase of viral replication was followed within 4-8 weeks by a transition to VZV latency, characterized by the absence of infectious virus release, the cessation of virion assembly, and a reduction in VZV genome copies to 3.7 x 10(5) to 4.7 x 10(6) per 10(5) cells. VZV persistence in DRG was achieved without any requirement for VZV-specific adaptive immunity and was associated with continued transcription of the ORF63 regulatory gene. The live attenuated varicella vaccine virus exhibited the same pattern of short-term replication, persistence of viral DNA, and prominent ORF63 transcription as the clinical isolates. VZV-infected T cells transferred virus from the circulation into DRG, suggesting that VZV lymphotropism facilitates its neurotropism. DRG xenografts may be useful for investigating neuropathogenic mechanisms of other human viruses.
Collapse
MESH Headings
- Animals
- Chickenpox/pathology
- DNA Primers
- Ganglia, Spinal/pathology
- Ganglia, Spinal/transplantation
- Ganglia, Spinal/virology
- Genome, Viral
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/physiology
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Mice, SCID
- Microscopy, Electron, Transmission
- Neurons/ultrastructure
- Neurons/virology
- Reverse Transcriptase Polymerase Chain Reaction
- Satellite Cells, Perineuronal/ultrastructure
- Satellite Cells, Perineuronal/virology
- T-Lymphocytes/virology
- Transplantation, Heterologous
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
- Virion/physiology
- Virion/ultrastructure
- Virus Replication/physiology
Collapse
Affiliation(s)
- Leigh Zerboni
- Department of Pediatrics,Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
81
|
Sauerbrei A, Rubtcova E, Wutzler P, Schmid DS, Loparev VN. Genetic profile of an Oka varicella vaccine virus variant isolated from an infant with zoster. J Clin Microbiol 2005; 42:5604-8. [PMID: 15583288 PMCID: PMC535228 DOI: 10.1128/jcm.42.12.5604-5608.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella virus vaccine strain Oka (V-Oka) has in rare cases caused zoster in vaccinated people. Despite broad usage of V-Oka, little is known about varicella-zoster virus genomic sequence variation of strains in vaccine and isolates from patients with vaccine adverse events. Direct sequencing of 20 regions of V-Oka-GSK was compared to the sequences of the original V-Oka-Biken, GlaxoSmithKline Oka vaccine (V-Oka-GSK), and Oka-parental (P-Oka) strains. We analyzed single nucleotide polymorphisms (SNP) differentiating the Oka parental and Oka vaccine strains identified in open reading frames (ORFs) 6, 9A, 10, 21, 31, 39, 50, 51, 52, 54, 55, and 59 and eight base substitutions within ORF 62. Sixteen of these SNP impose an amino acid change in the corresponding gene product. The genotypic analysis revealed that (i) both V-Oka-GSK and V-Oka-Biken comprise mixtures of strains represented in variable proportion from lot to lot; (ii) V-Oka-GSK/zoster isolated from the zoster patient had six wild-type SNP in ORF 9A, 10, 21, 52, 55, and 62 (mutation 108838); (iii) none of the six revertant SNP would reliably discriminate Oka vaccine from the wild type; and (iv) the genomic variation found in V-Oka/zoster might be associated with changes in the biological behavior of the virus. Further studies will be needed to identify potential virulence factors in variant vaccine strains.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, Friedrich-Schiller University, Jena, Germany
| | | | | | | | | |
Collapse
|
82
|
Grinfeld E, Kennedy PGE. Translation of Varicella-Zoster Virus Genes During Human Ganglionic Latency. Virus Genes 2004; 29:317-9. [PMID: 15550771 DOI: 10.1007/s11262-004-7434-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Immunohistochemical analysis of fixed tissue sections of human trigeminal ganglia (TG) and dorsal root ganglia (DRG) revealed the neuronal expression of proteins encoded by Varicella-zoster virus (VZV) genes 21, 29, 62 and 63. These proteins were detected mainly in the neuronal cytoplasm, are likely to be present in low abundance during VZV latency, and mirror the profile of VZV gene transcription.
Collapse
Affiliation(s)
- Esther Grinfeld
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Scotland, UK
| | | |
Collapse
|
83
|
Yang M, Hay J, Ruyechan WT. The DNA element controlling expression of the varicella-zoster virus open reading frame 28 and 29 genes consists of two divergent unidirectional promoters which have a common USF site. J Virol 2004; 78:10939-52. [PMID: 15452214 PMCID: PMC521831 DOI: 10.1128/jvi.78.20.10939-10952.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of the divergent expression of the varicella-zoster virus (VZV) ORF 28 and ORF 29 genes from a common intergenic DNA element, the ORF 28/29 promoter, is of interest based on the observation that both genes are expressed during VZV lytic infection but only the ORF 29 gene is expressed in latently infected neurons. In the work presented here, expression driven by the ORF 28/29 intergenic region was examined. We found that the promoter activity towards the ORF 29 direction is more responsive to activation by the major viral transactivator IE62 than that towards the ORF 28 direction in the context of our experimental system. Analysis of the functional DNA elements involved in IE62 activation of the bidirectional ORF 28/29 regulatory element revealed that in both transfected and VZV-superinfected cells it is a fusion of two unidirectional promoters overlapping an essential USF binding site but with distinct TATA elements. A single TATA element directs expression in the ORF 28 direction, whereas the two TATA elements directing ORF 29 gene expression are alternatively and differentially utilized for transcription initiation. We also identified an Sp1 site localized proximal to the ORF 28 gene which functions as an activator element for expression in both directions. These results indicate that the ORF 28 and ORF 29 genes can be expressed either coordinately or independently and that the observed expression of only the ORF 29 gene during VZV latency may involve neuron-specific cellular factors and/or structural aspects of the latent viral genome.
Collapse
Affiliation(s)
- Min Yang
- Department of Microbiology and Immunology, 138 Farber Hall, University at Buffalo, Buffalo, NY 14214-3000, USA
| | | | | |
Collapse
|
84
|
Dalziel RG, Bingham S, Sutton D, Grant D, Champion JM, Dennis SA, Quinn JP, Bountra C, Mark MA. Allodynia in rats infected with varicella zoster virus—a small animal model for post-herpetic neuralgia. ACTA ACUST UNITED AC 2004; 46:234-42. [PMID: 15464211 DOI: 10.1016/j.brainresrev.2004.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2004] [Indexed: 10/26/2022]
Abstract
The most common complication of herpes zoster is post-herpetic neuralgia (PHN), which has been defined as severe pain occurring 1 month after rash onset or persisting for greater than 3 months. PHN is classed as a neuropathic pain that is associated with mechanical allodynia where normally innocuous tactile stimuli are perceived as painful. The development of therapies to treat PHN has been hampered by the lack of animal models, which mimic the clinical situation. We have previously reported that varicella zoster virus (VZV) infection in the rat results in mechanical allodynia and thermal hyperalgesia. Here, we report that following VZV infection of the left footpad rats develop a chronic mechanical allodynia, which is present for longer than 60 days post-infection and which resolves by 100 days PI. The model is robust and reproducible with animals consistently developing allodynia by 3 days PI and continuing to present with symptoms for at least 30 days. The reproducible nature of the induction and course of the allodynia allows the use of this model to determine the effect of various compounds on, and to investigate the pathogenic mechanisms underlying the development of VZV-induced allodynia. Comparative studies using HSV-1 show that the induction of the chronic allodynia is VZV-specific and is not a result is of virus replication-induced tissue damage or accompanying inflammation. Therefore, we propose that the rat VZV infection model could prove useful in studying the mechanisms underlying post-herpetic neuralgia.
Collapse
Affiliation(s)
- Robert G Dalziel
- Center for Infectious Disease, School of Veterinary Medicine, Division of Veterinary Biomedical Sciences, University of Edinburgh, Edinburgh EH9 1QH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Grinfeld E, Sadzot-Delvaux C, Kennedy PGE. Varicella-Zoster virus proteins encoded by open reading frames 14 and 67 are both dispensable for the establishment of latency in a rat model. Virology 2004; 323:85-90. [PMID: 15165821 DOI: 10.1016/j.virol.2004.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 02/17/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
A rat model of Varicella-Zoster virus (VZV) provides a system in which to investigate the molecular determinants of viral latency in dorsal root ganglia (DRG). In this study, we determined whether the VZV glycoproteins gC and gI, corresponding to VZV open reading frames (ORFs) 14 and 67, respectively, were required for the establishment of latency in this model. A VZV gI deletion mutant (DeltagI) derived from a recombinant Oka (rOka) cosmid and a gC null mutant obtained from a clinical isolate were inoculated into the footpads of 6-week-old rats, and the presence of viral DNA and eight different VZV RNA transcripts corresponding to the three classes of genes was investigated by in situ RT-PCR amplification and in situ hybridization (ISH) in the DRG at 1 week, 1 month, and 18-24 months after infection. VZV DNA and restricted RNA expression was established with both deletion mutants as well as the parental rOka virus. Both VZV DNA and RNA were detected in neurons and non-neuronal cells. The pattern of viral RNA expression detected with both gC and gI mutants was restricted with transcripts for VZV genes 62 and 63 most frequently expressed 18-24 months after infection. Transcripts for VZV genes 18, 28, and 29 were also detected at these time points but at a slightly lower frequency. Transcripts for the late gene 40 were never detected. We conclude that VZV ORFs 14 and 67 are dispensable for the establishment of a latent infection in this model.
Collapse
Affiliation(s)
- Esther Grinfeld
- Department of Neurology, Division of Clinical Neurosciences, Institute of Neurological Sciences, Southern General Hospital, Glasgow, Scotland, UK
| | | | | |
Collapse
|
86
|
Mehta SK, Cohrs RJ, Forghani B, Zerbe G, Gilden DH, Pierson DL. Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J Med Virol 2004; 72:174-9. [PMID: 14635028 DOI: 10.1002/jmv.10555] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Varicella zoster virus (VZV) becomes latent in human ganglia after primary infection. VZV reactivation occurs primarily in elderly individuals, organ transplant recipients, and patients with cancer and AIDS, correlating with a specific decline in cell-mediated immunity to the virus. VZV can also reactivate after surgical stress. The unexpected occurrence of thoracic zoster 2 days before space flight in a 47-year-old healthy astronaut from a pool of 81 physically fit astronauts prompted our search for VZV reactivation during times of stress to determine whether VZV can also reactivate after non-surgical stress. We examined total DNA extracted from 312 saliva samples of eight astronauts before, during, and after space flight for VZV DNA by polymerase chain reaction: 112 samples were obtained 234-265 days before flight, 84 samples on days 2 through 13 of space flight, and 116 samples on days 1 through 15 after flight. Before space flight, only one of the 112 saliva samples from a single astronaut was positive for VZV DNA. In contrast, during and after space flight, 61 of 200 (30%) saliva samples were positive in all eight astronauts. No VZV DNA was detected in any of 88 saliva samples from 10 healthy control subjects. These results indicate that VZV can reactivate subclinically in healthy individuals after non-surgical stress.
Collapse
Affiliation(s)
- Satish K Mehta
- Enterprise Advisory Services Inc., Lyndon B. Johnson Space Center, Houston, Texas
| | | | | | | | | | | |
Collapse
|
87
|
Gilden DH, Cohrs RJ, Mahalingam R. Clinical and molecular pathogenesis of varicella virus infection. Viral Immunol 2004; 16:243-58. [PMID: 14583142 DOI: 10.1089/088282403322396073] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Varicella zoster virus (VZV) is a neurotropic human herpesvirus that infects nearly all humans and causes chickenpox (varicella). After chickenpox, VZV becomes latent in cranial nerve, dorsal root, and autonomic nervous system ganglia along the entire neuraxis. Virus reactivation produces shingles (zoster), characterized by pain and rash usually restricted to 1-3 dermatomes. Zoster is often complicated by postherpetic neuralgia (PHN), pain that persists for months to years after rash resolves. Virus may also spread to the spinal cord and blood vessels of the brain, producing a unifocal or multifocal vasculopathy, particularly in immunocompromised individuals. The increased incidence of zoster in elderly and immunocompromised individuals appears to be due to a VZV-specific host immunodeficiency. PHN may reflect a chronic VZV ganglionitis, and VZV vasculopathy is due to productive virus infection in cerebral arteries. Strategies that might boost host cell-mediated immunity to VZV are discussed, as well as the physical state of viral nucleic acid during latency and the possible mechanisms by which herpesvirus latency is maintained and virus is reactivated. A current summary of varicella latency and pathogenesis produced by simian varicella virus (SVV), the counterpart of human VZV, points to the usefulness of a primate model of natural infection to study varicella latency, as well as the experimental model of intratracheal inoculation to study the effectiveness of antiviral agents in driving persistent varicella virus into a latent state.
Collapse
Affiliation(s)
- Donald H Gilden
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
88
|
Theil D, Paripovic I, Derfuss T, Herberger S, Strupp M, Arbusow V, Brandt T. Dually infected (HSV-1/VZV) single neurons in human trigeminal ganglia. Ann Neurol 2003; 54:678-82. [PMID: 14595659 DOI: 10.1002/ana.10746] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human trigeminal ganglia were tested by double fluorescence in situ hybridization for the presence and distribution of herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV) latency. Latency transcripts of both viruses were detected in common areas within the ganglia. Also, a few single neurons were shown to harbor HSV-1 and VZV together.
Collapse
Affiliation(s)
- Diethilde Theil
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians University, Marchioninistrasse 23, 81377 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
89
|
Cohrs RJ, Hurley MP, Gilden DH. Array analysis of viral gene transcription during lytic infection of cells in tissue culture with Varicella-Zoster virus. J Virol 2003; 77:11718-32. [PMID: 14557657 PMCID: PMC229365 DOI: 10.1128/jvi.77.21.11718-11732.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Varicella-zoster virus (VZV), a neurotropic alphaherpesvirus, causes childhood chickenpox (varicella), becomes latent in dorsal root and autonomic ganglia, and reactivates decades later to cause shingles (zoster) and other neurologic complications. Although the sequence and configuration of VZV DNA have been determined, relatively little is known about viral gene expression in productively infected cells. This is in part because VZV is highly cell associated, and sufficient titers of cell-free virus for use in synchronizing infection do not develop. PCR-based transcriptional arrays were constructed to simultaneously determine the relative abundance of the approximately 70 predicted VZV open reading frames (ORFs). Fragments (250 to 600 bp) from the 5' and 3' end of each ORF were PCR amplified and inserted into plasmid vectors. The virus DNA inserts were amplified, quantitated, and spotted onto nylon membranes. Probing the arrays with radiolabeled cDNA synthesized from VZV-infected cells revealed an increase in the magnitude of the expressed VZV genes from days 1 to 3 after low-multiplicity virus infection but little change in their relative abundance. The most abundant VZV transcripts mapped to ORFs 9/9A, 64, 33/33A, and 49, of which only ORF 9 corresponded to a previously identified structural gene. Array analysis also mapped transcripts to three large intergenic regions previously thought to be transcriptionally silent, results subsequently confirmed by Northern blot and reverse transcription-PCR analysis. Array analysis provides a formidable tool to analyze transcription of an important ubiquitous human pathogen.
Collapse
Affiliation(s)
- Randall J Cohrs
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
90
|
Hood C, Cunningham AL, Slobedman B, Boadle RA, Abendroth A. Varicella-zoster virus-infected human sensory neurons are resistant to apoptosis, yet human foreskin fibroblasts are susceptible: evidence for a cell-type-specific apoptotic response. J Virol 2003; 77:12852-64. [PMID: 14610206 PMCID: PMC262578 DOI: 10.1128/jvi.77.23.12852-12864.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 08/20/2003] [Indexed: 12/20/2022] Open
Abstract
The induction of apoptosis or programmed cell death in virus-infected cells is an important antiviral defense mechanism of the host, and some herpesviruses have evolved strategies to modulate apoptosis in order to enhance their survival and spread. In this study, we examined the ability of varicella-zoster virus (VZV) to induce apoptosis in primary human dorsal root ganglion neurons and primary human foreskin fibroblasts (HFFs). Three independent methods (annexin V, TUNEL [terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling] staining, and electron microscopy) were used to assess apoptosis in these cells on days 1, 2, and 4 postinoculation. By all three methods, apoptosis was readily detected in VZV-infected HFFs. In stark contrast, apoptosis was not detected during productive VZV infection of neurons. The low-passage clinical isolate Schenke and the tissue culture-adapted ROka strain both induced apoptosis in HFFs but not in neurons, suggesting that this cell-type-specific apoptotic phenotype was not VZV strain specific. These data show that the regulation of apoptosis differs markedly between HFFs and neurons during productive VZV infection. Inhibition of apoptosis during infection of neurons may play a significant role in the establishment, maintenance, and reactivation of latent infection by promoting survival of these postmitotic cells.
Collapse
Affiliation(s)
- C Hood
- Centre for Virus Research, Westmead Millennium Institute and University of Sydney, Westmead Millennium Institute and Institute of Clinical Pathology and Medical Research, Westmead Hospital, New South Wales 2145, Australia
| | | | | | | | | |
Collapse
|
91
|
Sato H, Pesnicak L, Cohen JI. Varicella-zoster virus ORF47 protein kinase, which is required for replication in human T cells, and ORF66 protein kinase, which is expressed during latency, are dispensable for establishment of latency. J Virol 2003; 77:11180-5. [PMID: 14512565 PMCID: PMC225004 DOI: 10.1128/jvi.77.20.11180-11185.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) results in a lifelong latent infection in human sensory and cranial nerve ganglia after primary infection. VZV open reading frame 47 (ORF47) and ORF66 encode protein kinases that phosphorylate several viral proteins, including VZV glycoprotein gE and ORF32, ORF62, and ORF63 proteins. Here we show that the ORF47 protein kinase also phosphorylates gI. While ORF47 is essential for virus replication in human T cells and skin, we found the gene to be dispensable for establishment of latent infection in dorsal root ganglia of rodents. ORF66 protein is expressed during latency. Rodents infected with VZV unable to express ORF66 developed latent infection at a rate similar to that for the parental virus. ORF63 transcripts, a hallmark of VZV latency, were also detected in similar numbers of animals infected with the ORF47 and ORF66 mutants and with the parental virus. VZV mutants unable to express four of the six genes that do not have herpes simplex virus (HSV) homologs (ORFs 1, 13, 32, 57) were also unimpaired for establishment of latency. While a truncated HSV VP16 mutant was previously reported to be unable to establish latency in a mouse model, we found that VZV with a deletion of ORF10, the homolog of HSV VP16, was dispensable for establishment of latency. Thus, seven genes, including one expressed during latency, are dispensable for establishing latent VZV infection.
Collapse
Affiliation(s)
- Hitoshi Sato
- Medical Virology Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-1888, USA
| | | | | |
Collapse
|
92
|
Sato H, Pesnicak L, Cohen JI. Use of a rodent model to show that varicella-zoster virus ORF61 is dispensable for establishment of latency. J Med Virol 2003; 70 Suppl 1:S79-81. [PMID: 12627493 DOI: 10.1002/jmv.10326] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Varicella-zoster virus (VZV) results in a latent infection in humans after primary infection. Latency has also been established in guinea pigs and rats after inoculation with the virus. It was found that infection of cotton rats with the Oka vaccine strain of VZV results in a latent infection. To begin to identify which genes are required for latency, we infected cotton rats with VZV strain Oka that is deleted for ORF61. ORF61 protein transactivates certain VZV promoters and enhances the infectivity of viral DNA in transient transfections. Deletion of ORF61 results in abnormal syncytia and impairs the growth of VZV in vitro. Inoculation of cotton rats with ORF61-deleted Oka virus resulted in latent VZV infection in the nervous system similar to that seen for animals infected with parental virus. Thus, the cotton rat can be used to study the ability of mutants in the Oka vaccine strain of VZV to establish latent infection.
Collapse
Affiliation(s)
- Hitoshi Sato
- Medical Virology Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases/NIH, Building 10, Room 11N228, 10 Center Drive, Bethesda, MD 20892-1888, USA
| | | | | |
Collapse
|
93
|
Levin MJ, Cai GY, Manchak MD, Pizer LI. Varicella-zoster virus DNA in cells isolated from human trigeminal ganglia. J Virol 2003; 77:6979-87. [PMID: 12768016 PMCID: PMC156183 DOI: 10.1128/jvi.77.12.6979-6987.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To determine the type of cell(s) that contain latent varicella-zoster virus (VZV) DNA, we prepared pure populations of neurons and satellite cells from trigeminal ganglia of 18 humans who had previously had a VZV infection. VZV DNA was present in 34 of 2,226 neurons (1.5%) and in none of 20,700 satellite cells. There was an average of 4.7 (range of 2 to 9) copies of VZV DNA per latently infected neuron. Latent VZV DNA was primarily present in large neurons, whereas the size distribution of herpes simplex virus DNA was markedly different.
Collapse
Affiliation(s)
- Myron J Levin
- Section of Pediatric Infectious Diseases, School of Medicine, University of Colorado, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
94
|
Cohrs RJ, Gilden DH, Kinchington PR, Grinfeld E, Kennedy PGE. Varicella-zoster virus gene 66 transcription and translation in latently infected human Ganglia. J Virol 2003; 77:6660-5. [PMID: 12767985 PMCID: PMC156202 DOI: 10.1128/jvi.77.12.6660-6665.2003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Accepted: 03/24/2003] [Indexed: 11/20/2022] Open
Abstract
Latent infection with varicella-zoster virus (VZV) is characterized by restricted virus gene expression and the absence of virus production. Of the approximately 70 predicted VZV genes, only five (genes 4, 21, 29, 62, and 63) have been shown by multiple techniques to be transcribed during latency. IE62, the protein product of VZV gene 62, is the major immediate-early (IE) virus-encoded transactivator of viral gene transcription and plays a pivotal role in transactivating viral genes during lytic infection. The protein kinase (66-pk) encoded by VZV gene 66 phosphorylates IE62, resulting in cytoplasmic accumulation of IE62 that mitigates nuclear IE62-induced gene activation. Analysis of latently infected human trigeminal ganglia for 66-pk expression by reverse transcriptase-dependent nested PCR, including DNA sequence analysis, in situ hybridization, and immunohistochemistry, revealed VZV open reading frame 66 to be a previously unrecognized latently expressed virus gene and suggests that prevention of IE62 import to the nucleus by VZV 66-pk phosphorylation is one possible mechanism by which VZV latency is maintained.
Collapse
Affiliation(s)
- Randall J Cohrs
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
95
|
Arvin AM, Sharp M, Moir M, Kinchington PR, Sadeghi-Zadeh M, Ruyechan WT, Hay J. Memory cytotoxic T cell responses to viral tegument and regulatory proteins encoded by open reading frames 4, 10, 29, and 62 of varicella-zoster virus. Viral Immunol 2003; 15:507-16. [PMID: 12479399 DOI: 10.1089/088282402760312377] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytotoxic T cell recognition of tegument and regulatory proteins encoded by open reading frames (ORFs) 4, 10, 29, and 62 of varicella-zoster virus (VZV) was evaluated using limiting dilution conditions to estimate the precursor frequencies of memory T cells specific for these proteins in immune subjects. Responder cell frequencies for ORFs 4, 10, and 62 gene products, which are virion tegument components and function as immediate early viral transactivating proteins, were equivalent. CTLp recognition of VZV proteins made in latently infected cells, which include ORF4 and ORF62 proteins, was not maintained preferentially when compared to ORF10 protein, which has not been shown to be expressed during latency. T cell recognition of ORF29 protein, the major DNA binding protein, which is expressed during replication but not incorporated into the virion tegument, was less common than responses to ORFs 4, 10, and 62 gene products. Older individuals had diminished numbers of memory CTLp that lysed autologous targets expressing IE62 protein; these responses were increased after immunization with live attenuated varicella vaccine to the range observed in younger adults. Adaptive immunity to VZV is characterized by a broad repertoire of memory CTL responses to proteins that comprise the virion tegument and regulate viral gene expression in infected cells.
Collapse
Affiliation(s)
- Ann M Arvin
- Department of Pediatrics Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
96
|
Mitchell BM, Bloom DC, Cohrs RJ, Gilden DH, Kennedy PGE. Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. J Neurovirol 2003; 9:194-204. [PMID: 12707850 DOI: 10.1080/13550280390194000] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Revised: 11/11/2002] [Accepted: 11/13/2002] [Indexed: 01/07/2023]
Abstract
Two human alpha-herpesviruses, herpes simplex virus (HSV)-1 and varicella zoster virus (VZV), account for the most frequent and serious neurologic disease caused by any of the eight human herpesviruses. Both HSV-1 and VZV become latent in ganglia. In this review, the authors describe features of latency for these viruses, such as distribution, prevalence, abundance, and configuration of viral DNA in latently infected human ganglia, as well as transcription, translation, and cell type infected. Studies of viral latency in animal models are also discussed. For each virus, remaining questions and future studies to understand the mechanism of latency are discussed with respect to prevention of serious cutaneous, ocular, and neurologic disease produced by virus reactivation.
Collapse
Affiliation(s)
- Bradley M Mitchell
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
97
|
Xia D, Srinivas S, Sato H, Pesnicak L, Straus SE, Cohen JI. Varicella-zoster virus open reading frame 21, which is expressed during latency, is essential for virus replication but dispensable for establishment of latency. J Virol 2003; 77:1211-8. [PMID: 12502838 PMCID: PMC140846 DOI: 10.1128/jvi.77.2.1211-1218.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 21 (ORF21) is one of at least five VZV genes expressed in latently infected human and rodent ganglia. To determine whether ORF21 is required for latent and lytic infection, we deleted 99% of ORF21 from the viral genome. The ORF21 deletion mutant virus could be propagated only in a cell line expressing the ORF21 protein. Insertion of the herpes simplex virus type 1 (HSV-1) homolog of VZV ORF21, HSV-1 UL37, into the ORF21 deletion mutant failed to complement the mutant for growth in cell culture. Inoculation of cotton rats with the ORF21 deletion virus resulted in latent infection in numbers of animals similar to those infected after inoculation with the parental virus. The mean numbers of latent VZV genomes were similar in animals infected with parental and ORF21 deletion viruses. Transcription of ORF63, another latency-associated gene, was detected in ganglia from similar numbers of animals infected with the mutant and parental viruses. Thus, ORF21 is the first VZV gene expressed during latency that has been shown to be dispensable for the establishment of latent infection.
Collapse
Affiliation(s)
- Dongxiang Xia
- Medical Virology Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
98
|
Lynch JM, Kenyon TK, Grose C, Hay J, Ruyechan WT. Physical and functional interaction between the varicella zoster virus IE63 and IE62 proteins. Virology 2002; 302:71-82. [PMID: 12429517 DOI: 10.1006/viro.2002.1555] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The varicella zoster virus (VZV) IE63 protein is required for growth of the virus in cell culture and is expressed during both lytic and latent phases of VZV infection. We have investigated the physical and functional interaction of this protein with the major VZV transactivating protein IE62. The region of the IE63 protein required for interaction with the IE62 protein has been identified and encompasses the N-terminal 142 amino acids. We have found that the interaction is stable at physiological ionic strength. We have also shown that a portion of the IE63 and IE62 proteins colocalize in VZV-infected cells at both 15 and 48 h postinfection. IE63 was found to have no transcriptional activating or repressing activity within the context of a minimal VZV glycoprotein promoter. The presence of the IE63, however, upmodulated the IE62 transactivation of this promoter. Finally, we show that the IE63 protein can be coimmunoprecipitated with the cellular RNA polymerase II from infected cell extracts, indicating that it is present in a complex with that enzyme.
Collapse
Affiliation(s)
- Jennifer M Lynch
- Department of Microbiology and Witebsky Center for Mirobial Pathogenesis and Immunology, University at Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
99
|
Abstract
Varicella-zoster virus (VZV) is a human herpesvirus which causes varicella (chickenpox) as a primary infection, and, following a variable period during which it remains in latent form in trigeminal and dorsal root ganglia, reactivates in later life to cause herpes zoster (shingles). VZV is a significant cause of neurological disease including post-herpetic neuralgia which may be persistent and highly resistant to treatment, and small and large vessel encephalitis. VZV infections are more frequent with advancing age and in immunocompromised individuals. An understanding of the mechanisms of latency is crucial in developing effective therapies for VZV infections of the nervous system. Such studies have been hampered by the difficulties in working with the virus and also the lack of a good animal model of VZV latency. It is known that the ganglionic VZV burden during latency is low. Two of the key questions that have been addressed are the cellular site of latent VZV and the identity of the viral genes which are transcribed during latency. There is now a consensus that latent VZV resides predominantly in ganglionic neurons with less frequent infection of non-neuronal satellite cells. There is considerable evidence to show that at least five viral genes are transcribed during latency. Unlike herpes simplex virus-1 latency, viral protein expression has been demonstrated during VZV latency. A precise knowledge of which viral genes are expressed is crucial in devising novel antiviral therapy using expressed genes as therapeutic targets. Whether gene expression at both the transcriptional and translational levels is more extensive than currently reported will require much more work and probably new molecular technology.
Collapse
Affiliation(s)
- Peter G E Kennedy
- Glasgow University Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF, Scotland, UK.
| |
Collapse
|
100
|
Mahalingam R, Traina-Dorge V, Wellish M, Smith J, Gilden DH. Naturally acquired simian varicella virus infection in African green monkeys. J Virol 2002; 76:8548-50. [PMID: 12163574 PMCID: PMC136991 DOI: 10.1128/jvi.76.17.8548-8550.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian varicella virus (SVV) infection of primates shares clinical, pathological, immunological, and virological features with varicella-zoster virus infection of humans. Natural varicella infection was simulated by exposing four SVV-seronegative monkeys to monkeys inoculated intratracheally with SVV, in which viral DNA and RNA persist in multiple tissues for more than 1 year (T. M. White, R. Mahalingam, V. Traina-Dorge, and D. H. Gilden, J. Neurovirol. 8:191-205, 2002). The four naturally exposed monkeys developed mild varicella 10 to 14 days later, and skin scrapings taken at the time of the rash contained SVV DNA. Analysis of multiple ganglia, liver, and lung tissues from the four naturally exposed monkeys sacrificed 6 to 8 weeks after resolution of the rash revealed SVV DNA in ganglia at multiple levels of the neuraxis but not in the lung or liver tissue of any of the four monkeys. This animal model provides an experimental system to gain information about varicella latency with direct relevance to the human disease.
Collapse
Affiliation(s)
- Ravi Mahalingam
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|