51
|
Shutoff of Host Gene Expression in Influenza A Virus and Herpesviruses: Similar Mechanisms and Common Themes. Viruses 2016; 8:102. [PMID: 27092522 PMCID: PMC4848596 DOI: 10.3390/v8040102] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/04/2016] [Accepted: 04/09/2016] [Indexed: 12/14/2022] Open
Abstract
The ability to shut off host gene expression is a shared feature of many viral infections, and it is thought to promote viral replication by freeing host cell machinery and blocking immune responses. Despite the molecular differences between viruses, an emerging theme in the study of host shutoff is that divergent viruses use similar mechanisms to enact host shutoff. Moreover, even viruses that encode few proteins often have multiple mechanisms to affect host gene expression, and we are only starting to understand how these mechanisms are integrated. In this review we discuss the multiplicity of host shutoff mechanisms used by the orthomyxovirus influenza A virus and members of the alpha- and gamma-herpesvirus subfamilies. We highlight the surprising similarities in their mechanisms of host shutoff and discuss how the different mechanisms they use may play a coordinated role in gene regulation.
Collapse
|
52
|
Shi S, Chen S, Han W, Wu B, Zhang X, Tang Y, Wang X, Zhu Y, Peng D, Liu X. Cross-clade protective immune responses of NS1-truncated live attenuated H5N1 avian influenza vaccines. Vaccine 2015; 34:350-7. [PMID: 26638027 DOI: 10.1016/j.vaccine.2015.11.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND H5N1 highly pathogenic avian influenza (HPAI) has raised global concern for causing huge economic losses in poultry industry, and an effective vaccine against HPAI is highly desirable. Live attenuated influenza vaccine with trunctated NS1 protein as a potential strategy will be extremely useful for improving immune efficacy. METHODS A series of H5N1 avian influenza virus reassortants harboring amino-terminal 48, 70, 73, and 99 aa in NS1 proteins, along with a modified low pathogenic HA protein was generated, and named as S-HALo/NS48, S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, respectively. In addition, their biological and immunological characteristics were further analyzed. RESULTS The viruses S-HALo/NS70, S-HALo/NS73, and S-HALo/NS99, but not S-HALo/NS48, had a comparable growth property with the full-length NS1 virus, S-HALo/NSFu. Mice and chickens studies demonstrated that the viruses with truncated NS1 protein were further attenuated when compared to the virus S-HALo/NSFu. Vaccination with the virus S-HALo/NS73 in chickens induced significant cross-protection against homologous clade 2.3.4 H5 virus and heterologous clade 7.2, 2.3.2.1, and 2.3.4.4 H5 viruses. CONCLUSION A 70-aa amino-terminal fragment of NS1 protein may be long enough for viral replication. The recombinant virus S-HALo/NS73 is a broad-spectrum live attenuated H5N1 avian influenza vaccine candidate in chickens.
Collapse
Affiliation(s)
- Shaohua Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China; Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, PR China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Weizhou Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Bai Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Xiaojian Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Ying Tang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Xiao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Yinbiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China; Jiangsu Research Center of Engineering and Technology for the Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| |
Collapse
|
53
|
Killip MJ, Fodor E, Randall RE. Influenza virus activation of the interferon system. Virus Res 2015; 209:11-22. [PMID: 25678267 PMCID: PMC4638190 DOI: 10.1016/j.virusres.2015.02.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 12/24/2022]
Abstract
The host interferon (IFN) response represents one of the first barriers that influenza viruses must surmount in order to establish an infection. Many advances have been made in recent years in understanding the interactions between influenza viruses and the interferon system. In this review, we summarise recent work regarding activation of the type I IFN response by influenza viruses, including attempts to identify the viral RNA responsible for IFN induction, the stage of the virus life cycle at which it is generated and the role of defective viruses in this process.
Collapse
Affiliation(s)
- Marian J Killip
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Richard E Randall
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
54
|
Interleukin-24 inhibits influenza A virus replication in vitro through induction of toll-like receptor 3 dependent apoptosis. Antiviral Res 2015; 123:93-104. [DOI: 10.1016/j.antiviral.2015.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 11/22/2022]
|
55
|
Kiselev OI, Vasin AV, Shevyryova MP, Deeva EG, Sivak KV, Egorov VV, Tsvetkov VB, Egorov AY, Romanovskaya-Romanko EA, Stepanova LA, Komissarov AB, Tsybalova LM, Ignatjev GM. Ebola hemorrhagic fever: Properties of the pathogen and development of vaccines and chemotherapeutic agents. Mol Biol 2015; 49:480-493. [PMID: 32214474 PMCID: PMC7089462 DOI: 10.1134/s002689331504007x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/16/2015] [Indexed: 11/22/2022]
Abstract
Ebola hemorrhagic fever (EHF) epidemic currently ongoing in West Africa is not the first among numerous epidemics in the continent. Yet it seems to be the worst EHF epidemic outbreak caused by Ebola virus Zaire since 1976 as regards its extremely large scale and rapid spread in the population. Experiments to study the agent have continued for more than 20 years. The EHF virus has a relatively simple genome with seven genes and additional reading frame resulting from RNA editing. While being of a relatively low genetic capacity, the virus can be ranked as a standard for pathogenicity with the ability to evade the host immune response in uttermost perfection. The EHF virus has similarities with retroviruses, but belongs to (-)RNA viruses of a nonretroviral origin. Genetic elements of the virus, NIRV, were detected in animal and human genomes. EHF virus glycoprotein (GP) is a class I fusion protein and shows more similarities than distinctions in tertiary structure with SIV and HIV gp41 proteins and even influenza virus hemagglutinin. EHF is an unusual infectious disease, and studying the molecular basis of its pathogenesis may contribute to new findings in therapy of severe conditions leading to a fatal outcome.
Collapse
Affiliation(s)
- O. I. Kiselev
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - A. V. Vasin
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
- St. Petersburg State Polytechnic University, St. Petersburg, 195251 Russia
| | - M. P. Shevyryova
- Ministry of Health of the Russian Federation, Moscow, 127994 Russia
| | - E. G. Deeva
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - K. V. Sivak
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - V. V. Egorov
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - V. B. Tsvetkov
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
- Topchiev Institute of Petrochemical Synthesis, Moscow, 119991 Russia
| | - A. Yu. Egorov
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | | | - L. A. Stepanova
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - A. B. Komissarov
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - L. M. Tsybalova
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| | - G. M. Ignatjev
- Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, 197376 Russia
| |
Collapse
|
56
|
Isakova-Sivak I, Rudenko L. Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev Vaccines 2015; 14:1313-29. [PMID: 26289975 DOI: 10.1586/14760584.2015.1075883] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Live attenuated influenza vaccines (LAIVs) are believed to be immunologically superior to inactivated influenza vaccines, because they can induce a variety of adaptive immune responses, including serum antibodies, mucosal and cell-mediated immunity. In addition to the licensed cold-adapted LAIV backbones, a number of alternative LAIV approaches are currently being developed and evaluated in preclinical and clinical studies. This review summarizes recent progress in the development and evaluation of LAIVs, with special attention to their safety, immunogenicity and infectivity for humans, and discusses their perspectives for the future.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- a Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, Saint Petersburg, Russia
| | | |
Collapse
|
57
|
An A14U Substitution in the 3' Noncoding Region of the M Segment of Viral RNA Supports Replication of Influenza Virus with an NS1 Deletion by Modulating Alternative Splicing of M Segment mRNAs. J Virol 2015. [PMID: 26223635 PMCID: PMC4580205 DOI: 10.1128/jvi.00919-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The NS1 protein of influenza virus has multiple functions and is a determinant of virulence. Influenza viruses with NS1 deletions (DelNS1 influenza viruses) are a useful tool for studying virus replication and can serve as effective live attenuated vaccines, but deletion of NS1 severely diminishes virus replication, hampering functional studies and vaccine production. We found that WSN-DelNS1 viruses passaged in cells consistently adapted to gain an A14U substitution in the 3′ noncoding region of the M segment of viral RNA (vRNA) which restored replicative ability. DelNS1-M-A14U viruses cannot inhibit interferon expression in virus infected-cells, providing an essential model for studying virus replication in the absence of the NS1 protein. Characterization of DelNS1-M-A14U virus showed that the lack of NS1 has no apparent effect on expression of other viral proteins, with the exception of M mRNAs. Expression of the M transcripts, M1, M2, mRNA3, and mRNA4, is regulated by alternative splicing. The A14U substitution changes the splicing donor site consensus sequence of mRNA3, altering expression of M transcripts, with M2 expression significantly increased and mRNA3 markedly suppressed in DelNS1-M-A14U, but not DelNS1-M-WT, virus-infected cells. Further analysis revealed that the A14U substitution also affects promoter function during replication of the viral genome. The M-A14U mutation increases M vRNA synthesis in DelNS1 virus infection and enhances alternative splicing of M2 mRNA in the absence of other viral proteins. The findings demonstrate that NS1 is directly involved in influenza virus replication through modulation of alternative splicing of M transcripts and provide strategic information important to construction of vaccine strains with NS1 deletions. IMPORTANCE Nonstructural protein (NS1) of influenza virus has multiple functions. Besides its role in antagonizing host antiviral activity, NS1 is also believed to be involved in regulating virus replication, but mechanistic details are not clear. The NS1 protein is a virulence determinant which inhibits both innate and adaptive immunity and live attenuated viruses with NS1 deletions show promise as effective vaccines. However, deletion of NS1 causes severe attenuation of virus replication during infection, impeding functional studies and vaccine development. We characterized a replication-competent DelNS1 virus which carries an A14U substitution in the 3′ noncoding region of the vRNA M segment. We found that M-A14U mutation supports virus replication through modulation of alternative splicing of mRNAs transcribed from the M segment. Our findings give insight into the role of NS1 in influenza virus replication and provide an approach for constructing replication-competent strains with NS1 deletions for use in functional and vaccine studies.
Collapse
|
58
|
Abstract
The non-structural protein 1 of influenza virus (NS1) is a relatively small polypeptide with an outstanding number of ascribed functions. NS1 is the main viral antagonist of the innate immune response during influenza virus infection, chiefly by inhibiting the type I interferon system at multiple steps. As such, its role is critical to overcome the first barrier the host presents to halt the viral infection. However, the pro-viral activities of this well-studied protein go far beyond and include regulation of viral RNA and protein synthesis, and disruption of the host cell homeostasis by dramatically affecting general gene expression while tweaking the PI3K signaling network. Because of all of this, NS1 is a key virulence factor that impacts influenza pathogenesis, and adaptation to new hosts, making it an attractive target for control strategies. Here, we will overview the many roles that have been ascribed to the NS1 protein, and give insights into the sequence features and structural properties that make them possible, highlighting the need to understand how NS1 can actually perform all of these functions during viral infection.
Collapse
Affiliation(s)
- Juan Ayllon
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
59
|
Guo H, Baker SF, Martínez-Sobrido L, Topham DJ. Induction of CD8 T cell heterologous protection by a single dose of single-cycle infectious influenza virus. J Virol 2014; 88:12006-16. [PMID: 25100831 PMCID: PMC4178714 DOI: 10.1128/jvi.01847-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/01/2014] [Indexed: 12/13/2022] Open
Abstract
The effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, new approaches for influenza vaccines that can trigger effective CD8 T cell responses have not been extensively explored. We report here the generation of single-cycle infectious influenza virus that lacks a functional hemagglutinin (HA) gene on an X31 genetic background and demonstrate its potential for triggering protective CD8 T cell immunity against heterologous influenza virus challenge. In vitro, X31-sciIV can infect MDCK cells, but infectious virions are not produced unless HA is transcomplemented. In vivo, intranasal immunization with X31-sciIV does not cause any clinical symptoms in mice but generates influenza-specific CD8 T cells in lymphoid (mediastinal lymph nodes and spleen) and nonlymphoid tissues, including lung and bronchoalveolar lavage fluid, as measured by H2-Db NP366 and PA224 tetramer staining. In addition, a significant proportion of X31-sciIV-induced antigen-specific respiratory CD8 T cells expressed VLA-1, a marker that is associated with heterologous influenza protection. Further, these influenza-specific CD8 T cells produce antiviral cytokines when stimulated with NP366 and PA224 peptides, indicating that CD8 T cells triggered by X31-sciIV are functional. When challenged with a lethal dose of heterologous PR8 virus, X31-sciIV-primed mice were fully protected from death. However, when CD8 T cells were depleted after priming or before priming, mice could not effectively control virus replication or survive the lethal challenge, indicating that X31-sciIV-induced memory CD8 T cells mediate the heterologous protection. Thus, our results demonstrate the potential for sciIV as a CD8 T cell-inducing vaccine. Importance: One of the challenges for influenza prevention is the existence of multiple influenza virus subtypes and variants and the fact that new strains can emerge yearly. Numerous studies have indicated that the effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, influenza vaccines that can trigger effective CD8 T cell responses for heterologous protection have not been developed. We report here the generation of an X31 (H3N2) virus-derived single-cycle infectious influenza virus, X31-sciIV. A one-dose immunization with X31-sciIV is capable of inducing functional influenza virus-specific CD8 T cells that can be recruited into respiratory tissues and provide protection against lethal heterologous challenge. Without these cells, protection against lethal challenge was essentially lost. Our data indicate that an influenza vaccine that primarily relies on CD8 T cells for protection could be developed.
Collapse
Affiliation(s)
- Hailong Guo
- Center for Infectious Diseases and Vaccine Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, New York, USA
| |
Collapse
|
60
|
Marc D. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J Gen Virol 2014; 95:2594-2611. [PMID: 25182164 DOI: 10.1099/vir.0.069542-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most viruses express one or several proteins that counter the antiviral defences of the host cell. This is the task of non-structural protein NS1 in influenza viruses. Absent in the viral particle, but highly expressed in the infected cell, NS1 dramatically inhibits cellular gene expression and prevents the activation of key players in the IFN system. In addition, NS1 selectively enhances the translation of viral mRNAs and may regulate the synthesis of viral RNAs. Our knowledge of the virus and of NS1 has increased dramatically during the last 15 years. The atomic structure of NS1 has been determined, many cellular partners have been identified and its multiple activities have been studied in depth. This review presents our current knowledge, and attempts to establish relationships between the RNA sequence, the structure of the protein, its ligands, its activities and the pathogenicity of the virus. A better understanding of NS1 could help in elaborating novel antiviral strategies, based on either live vaccines with altered NS1 or on small-compound inhibitors of NS1.
Collapse
Affiliation(s)
- Daniel Marc
- Université François Rabelais, UMR1282 Infectiologie et Santé Publique, 37000 Tours, France.,Pathologie et Immunologie Aviaire, INRA, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| |
Collapse
|
61
|
Hrincius ER, Liedmann S, Anhlan D, Wolff T, Ludwig S, Ehrhardt C. Avian influenza viruses inhibit the major cellular signalling integrator c-Abl. Cell Microbiol 2014; 16:1854-74. [PMID: 25052580 DOI: 10.1111/cmi.12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022]
Abstract
The non-structural protein 1 (NS1) of influenza A viruses (IAV) encodes several src homology (SH) binding motifs (bm) (one SH2bm, up to two SH3bm), which mediate interactions with host cell proteins. In contrast to NS1 of human IAV, NS1 of avian strains possess the second SH3bm (SH3(II)bm) consensus sequence. Since our former studies demonstrated an NS1-CRK interaction, mediated by this motif, here, we addressed the regulatory properties of this SH3bm for cellular signalling. Initially, we observed a reduced basal CRK phosphorylation upon infection with avian IAV harbouring an NS1 with an SH3(II)bm in contrast to human IAV. Reduced activity of the tyrosine kinase c-Abl was identified to be responsible for reduced CRK phosphorylation. Further, binding of NS1 to c-Abl was determined, and mutational manipulation of the SH3(II)bm illustrated the necessity of this motif for c-Abl inhibition. Interestingly, Abl kinase inhibition resulted in impaired avian IAV propagation and pathogenicity and mutational analysis linked the pronounced inhibition of c-Abl to cytopathogenic cell alterations upon avian IAV infections. Taken together, NS1 proteins of avian IAV interfere with the kinase activity of c-Abl, a major cellular signalling integrator that controls multiple signalling processes and cell fate regulations apparently including IAV infections.
Collapse
Affiliation(s)
- Eike R Hrincius
- Institute of Molecular Virology (IMV), Center of Molecular Biology of Inflammation (ZMBE), University of Muenster, Von Esmarch-Str. 56, D-48149, Muenster, Germany; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | | | | | | | | | | |
Collapse
|
62
|
Jang YH, Seong BL. Options and obstacles for designing a universal influenza vaccine. Viruses 2014; 6:3159-80. [PMID: 25196381 PMCID: PMC4147691 DOI: 10.3390/v6083159] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of antibodies specific to a highly conserved stalk region of the influenza virus hemagglutinin (HA), eliciting such antibodies has been considered the key to developing a universal influenza vaccine that confers broad-spectrum protection against various influenza subtypes. To achieve this goal, a prime/boost immunization strategy has been heralded to redirect host immune responses from the variable globular head domain to the conserved stalk domain of HA. While this approach has been successful in eliciting cross-reactive antibodies against the HA stalk domain, protective efficacy remains relatively poor due to the low immunogenicity of the domain, and the cross-reactivity was only within the same group, rather than among different groups. Additionally, concerns are raised on the possibility of vaccine-associated enhancement of viral infection and whether multiple boost immunization protocols would be considered practical from a clinical standpoint. Live attenuated vaccine hitherto remains unexplored, but is expected to serve as an alternative approach, considering its superior cross-reactivity. This review summarizes recent advancements in the HA stalk-based universal influenza vaccines, discusses the pros and cons of these approaches with respect to the potentially beneficial and harmful effects of neutralizing and non-neutralizing antibodies, and suggests future guidelines towards the design of a truly protective universal influenza vaccine.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| |
Collapse
|
63
|
Tawaratsumida K, Phan V, Hrincius ER, High AA, Webby R, Redecke V, Häcker H. Quantitative proteomic analysis of the influenza A virus nonstructural proteins NS1 and NS2 during natural cell infection identifies PACT as an NS1 target protein and antiviral host factor. J Virol 2014; 88:9038-48. [PMID: 24899174 PMCID: PMC4136281 DOI: 10.1128/jvi.00830-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/24/2014] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Influenza A virus (IAV) replication depends on the interaction of virus proteins with host factors. The viral nonstructural protein 1 (NS1) is essential in this process by targeting diverse cellular functions, including mRNA splicing and translation, cell survival, and immune defense, in particular the type I interferon (IFN-I) response. In order to identify host proteins targeted by NS1, we established a replication-competent recombinant IAV that expresses epitope-tagged forms of NS1 and NS2, which are encoded by the same gene segment, allowing purification of NS proteins during natural cell infection and analysis of interacting proteins by quantitative mass spectrometry. We identified known NS1- and NS2-interacting proteins but also uncharacterized proteins, including PACT, an important cofactor for the IFN-I response triggered by the viral RNA-sensor RIG-I. We show here that NS1 binds PACT during virus replication and blocks PACT/RIG-I-mediated activation of IFN-I, which represents a critical event for the host defense. Protein interaction and interference with IFN-I activation depended on the functional integrity of the highly conserved RNA binding domain of NS1. A mutant virus with deletion of NS1 induced high levels of IFN-I in control cells, as expected; in contrast, shRNA-mediated knockdown of PACT compromised IFN-I activation by the mutant virus, but not wild-type virus, a finding consistent with the interpretation that PACT (i) is essential for IAV recognition and (ii) is functionally compromised by NS1. Together, our data describe a novel approach to identify virus-host protein interactions and demonstrate that NS1 interferes with PACT, whose function is critical for robust IFN-I production. IMPORTANCE Influenza A virus (IAV) is an important human pathogen that is responsible for annual epidemics and occasional devastating pandemics. Viral replication and pathogenicity depends on the interference of viral factors with components of the host defense system, particularly the type I interferon (IFN-I) response. The viral NS1 protein is known to counteract virus recognition and IFN-I production, but the molecular mechanism is only partially defined. We used a novel proteomic approach to identify host proteins that are bound by NS1 during virus replication and identified the protein PACT, which had previously been shown to be involved in virus-mediated IFN-I activation. We find that NS1 prevents PACT from interacting with an essential component of the virus recognition pathway, RIG-I, thereby disabling efficient IFN-I production. These observations provide an important piece of information on how IAV efficiently counteracts the host immune defense.
Collapse
Affiliation(s)
- Kazuki Tawaratsumida
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Van Phan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Eike R Hrincius
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anthony A High
- Proteomics Core Facility, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Vanessa Redecke
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
64
|
Trapp S, Soubieux D, Marty H, Esnault E, Hoffmann TW, Chandenier M, Lion A, Kut E, Quéré P, Larcher T, Ledevin M, Munier S, Naffakh N, Marc D. Shortening the unstructured, interdomain region of the non-structural protein NS1 of an avian H1N1 influenza virus increases its replication and pathogenicity in chickens. J Gen Virol 2014; 95:1233-1243. [DOI: 10.1099/vir.0.063776-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Currently circulating H5N1 influenza viruses have undergone a complex evolution since the appearance of their progenitor A/Goose/Guangdong/1/96 in 1996. After the eradication of the H5N1 viruses that emerged in Hong Kong in 1997 (HK/97 viruses), new genotypes of H5N1 viruses emerged in the same region in 2000 that were more pathogenic for both chickens and mice than HK/97 viruses. These, as well as virtually all highly pathogenic H5N1 viruses since 2000, harbour a deletion of aa 80–84 in the unstructured region of the non-structural (NS) protein NS1 linking its RNA-binding domain to its effector domain. NS segments harbouring this mutation have since been found in non-H5N1 viruses and we asked whether this 5 aa deletion could have a general effect not limited to the NS1 of H5N1 viruses. We genetically engineered this deletion in the NS segment of a duck-origin avian H1N1 virus, and compared the in vivo and in vitro properties of the WT and NSdel8084 viruses. In experimentally infected chickens, the NSdel8084 virus showed both an increased replication potential and an increased pathogenicity. This in vivo phenotype was correlated with a higher replicative efficiency in vitro, both in embryonated eggs and in a chicken lung epithelial cell line. Our data demonstrated that the increased replicative potential conferred by this small deletion was a general feature not restricted to NS1 from H5N1 viruses and suggested that viruses acquiring this mutation may be selected positively in the future.
Collapse
Affiliation(s)
- Sascha Trapp
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Denis Soubieux
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Hélène Marty
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Evelyne Esnault
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Thomas W. Hoffmann
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
| | - Margaux Chandenier
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
| | - Adrien Lion
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Emmanuel Kut
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Pascale Quéré
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Thibaut Larcher
- LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), 44307 Nantes, France
- INRA UMR 703, APEX, Oniris-La Chantrerie, 44307 Nantes, France
| | - Mireille Ledevin
- LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), 44307 Nantes, France
- INRA UMR 703, APEX, Oniris-La Chantrerie, 44307 Nantes, France
| | - Sandie Munier
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, 75015 Paris, France
- CNRS, UMR3569, 75015 Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, 75015 Paris, France
| | - Nadia Naffakh
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, 75015 Paris, France
- CNRS, UMR3569, 75015 Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, 75015 Paris, France
| | - Daniel Marc
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| |
Collapse
|
65
|
Banjac M, Roethl E, Gelhart F, Kramberger P, Jarc BL, Jarc M, Štrancar A, Muster T, Peterka M. Purification of Vero cell derived live replication deficient influenza A and B virus by ion exchange monolith chromatography. Vaccine 2014; 32:2487-92. [DOI: 10.1016/j.vaccine.2014.02.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022]
|
66
|
Li Y, Chen S, Zhang X, Fu Q, Zhang Z, Shi S, Zhu Y, Gu M, Peng D, Liu X. A 20-amino-acid deletion in the neuraminidase stalk and a five-amino-acid deletion in the NS1 protein both contribute to the pathogenicity of H5N1 avian influenza viruses in mallard ducks. PLoS One 2014; 9:e95539. [PMID: 24743258 PMCID: PMC3990698 DOI: 10.1371/journal.pone.0095539] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/28/2014] [Indexed: 01/21/2023] Open
Abstract
Since 2003, H5N1-subtype avian influenza viruses (AIVs) with both a deletion of 20 amino acids in the stalk of the neuraminidase (NA) glycoprotein (A−) and a deletion of five amino acids at positions 80 to 84 in the non-structural protein NS1 (S−) have become predominant. To understand the influence of these double deletions in the NA and NS1 proteins on the pathogenicity of H5N1-subtype AIVs, we selected A/mallard/Huadong/S/2005 as a parental strain to generate rescued wild-type A−S− and three variants (A−S+ with a five-amino-acid insertion in the NS1 protein, A+S− with a 20-amino-acid insertion in the NA stalk, and A+S+ with insertions in both NA and NS1 proteins) and evaluated their biological characteristics and virulence. The titers of the AIVs with A− and/or S− replicated in DEF cells were higher than that of A+S+, and the A−S− virus exhibited a replication predominance when co-infected with the other variants in DEF cells. In addition, A−S− induced a more significant increase in the expression of immune-related genes in peripheral blood mononuclear cells of mallard ducks in vitro compared with the other variants. Furthermore, an insertion in the NA and/or NS1 proteins of AIVs resulted in a notable decrease in virulence in ducks, as determined by intravenous pathogenicity index, and the two insertions exerted a synergistic effect on the attenuation of pathogenicity in ducks. In addition, compared with A+S+ and A+S−, the A−S+ and A−S− viruses that were introduced via the intranasal inoculation route exhibited a faster replication ability in the lungs of ducks. These data indicate that both the deletions in the NA stalk and the NS1 protein contribute to the high pathogenicity of H5N1 AIVs in ducks.
Collapse
Affiliation(s)
- Yanfang Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Xiaojian Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Qiang Fu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Zhiye Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Shaohua Shi
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Yinbiao Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- * E-mail: (DP); (XL)
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- * E-mail: (DP); (XL)
| |
Collapse
|
67
|
Tabynov K, Sansyzbay A, Kydyrbayev Z, Yespembetov B, Ryskeldinova S, Zinina N, Assanzhanova N, Sultankulova K, Sandybayev N, Khairullin B, Kuznetsova I, Ferko B, Egorov A. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection. Virol J 2014; 11:69. [PMID: 24716528 PMCID: PMC3997475 DOI: 10.1186/1743-422x-11-69] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/04/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND We generated novel, effective candidate vaccine against Brucella abortus based on recombinant influenza viruses expressing the Brucella ribosomal protein L7/L12 or outer membrane protein (Omp)-16 from the NS1 open reading frame. The main purpose of this work was to evaluate the safety, immunogenicity and protectiveness of vaccine candidate in laboratory animals. METHODS AND RESULTS Four recombinant influenza A viral constructs of the subtypes Н5N1 or H1N1 expressing the Brucella proteins L7/L12 or Omp16 were obtained by a reverse genetics method: Flu-NS1-124-L7/L12-H5N1, Flu-NS1-124-Omp16-H5N1, Flu-NS1-124-L7/L12-H1N1 and Flu-NS1-124-Omp16-H1N1. Despite of substantial modification of NS1 gene, all constructs replicated well and were retain their Brucella inserts over five passages in embryonated chicken eggs (CE). Administration of the mono- or bivalent vaccine formulation via prime-boost intranasal (i.n.), conjunctival (c.) or subcutaneous (s.c.) immunization was safe in mice; no deaths, body weight loss or pathomorphological changes were observed over 56 days. Moreover, guinea pigs vaccinated i.n. with vaccine vectors did not shed the vaccine viruses through their upper respiratory tract after the prime and booster vaccination. These findings confirmed the replication-deficient phenotype of viral vectors. The highest antibody response to Brucella antigen was obtained with constructs expressing L7/L12 (ELISA, GMT 242.5-735.0); whereas the highest T-cell immune response- with construct expressing Omp16 (ELISPOT, 337 ± 52-651 ± 45 spots/4×105cells), which was comparable (P > 0.05) to the response induced by the commercial vaccine B. abortus 19. Interestingly, c. immunization appeared to be optimal for eliciting T-cell immune response. In guinea pigs, the highest protective efficacy after challenge with B. abortus 544 was achieved with Omp16 expressing constructs in both monovalent or bivalent vaccine formulations; protective efficacy was comparable to those induced by a commercial live B. abortus 19 vaccine. CONCLUSION Thus, influenza vectors expressing Brucella protective antigens can be developed as novel influenza vectored vaccine against B. abortus infection.
Collapse
Affiliation(s)
- Kaissar Tabynov
- The Research Institute for Biological Safety Problems, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Republic of Kazakhstan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Vasin AV, Temkina OA, Egorov VV, Klotchenko SA, Plotnikova MA, Kiselev OI. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res 2014; 185:53-63. [PMID: 24675275 DOI: 10.1016/j.virusres.2014.03.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/19/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022]
Abstract
Influenza A virus is one of the major human pathogens. Despite numerous efforts to produce absolutely effective anti-influenza drugs or vaccines, no such agent has been developed yet. One of the main reasons for this complication is the high mutation rate and the specific structure of influenza A viruses genome. For more than 25 years since the first mapping of the viral genome, it was believed that its 8 genome segments encode 10 proteins. However, the proteome of influenza A viruses has turned out to be much more complex than previously thought. In 2001, the first accessory protein, PB1-F2, translated from the alternative open reading frame, was discovered. Subsequently, six more proteins, PB1-N40, PA-X, PA-N155, PA-N182, M42, and NS3, have been found. It is important to pay close attention to these novel proteins in order to evaluate their role in the pathogenesis of influenza, especially in the case of outbreaks of human infections with new avian viruses, such as H5N1 or H7N9. In this review we summarize the data on the molecular mechanisms used by influenza A viruses to expand their proteome and on the possible functions of the recently discovered viral proteins.
Collapse
Affiliation(s)
- A V Vasin
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia.
| | - O A Temkina
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - V V Egorov
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - S A Klotchenko
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - M A Plotnikova
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - O I Kiselev
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| |
Collapse
|
69
|
Abstract
Reverse genetics systems allow artificial generation of non-segmented and segmented negative-sense RNA viruses, like influenza viruses, entirely from cloned cDNA. Since the introduction of reverse genetics systems over a decade ago, the ability to generate ‘designer’ influenza viruses in the laboratory has advanced both basic and applied research, providing a powerful tool to investigate and characterise host–pathogen interactions and advance the development of novel therapeutic strategies. The list of applications for reverse genetics has expanded vastly in recent years. In this review, we discuss the development and implications of this technique, including the recent controversy surrounding the generation of a transmissible H5N1 influenza virus. We will focus on research involving the identification of viral protein function, development of live-attenuated influenza virus vaccines, host–pathogen interactions, immunity and the generation of recombinant influenza virus vaccine vectors for the prevention and treatment of infectious diseases and cancer.
Collapse
|
70
|
Abstract
UNLABELLED NS1 of influenza A virus is a potent antagonist of host antiviral interferon responses. This multifunctional protein with two distinctive domains, an RNA-binding domain (RBD) and an effector domain (ED) separated by a linker region (LR), is implicated in replication, pathogenesis, and host range. Although the structures of individual domains of NS1 from different strains of influenza viruses have been reported, the only structure of full-length NS1 available to date is from an H5N1 strain (A/Vietnam/1203/2004). By carrying out crystallographic analyses of full-length H6N6-NS1 (A/blue-winged teal/MN/993/1980) and an LR deletion mutant, combined with mutational analysis, we show here that these full-length NS1 structures provide an exquisite structural sampling of various conformational states of NS1 that based on the orientation of the ED with respect to RBD can be summarized as "open," "semi-open," and "closed" conformations. Our studies show that preference for these states is clearly dictated by determinants such as linker length, residue composition at position 71, and a mechanical hinge, providing a structural basis for strain-dependent functional variations in NS1. Because of the flexibility inherent in the LR, any particular NS1 could sample the conformational space around these states to engage ED in different quaternary interactions so that it may participate in specific protein-protein or protein-RNA interactions to allow for the known multifunctionality of NS1. We propose that such conformational plasticity provides a mechanism for autoregulating NS1 functions, depending on its temporal distribution, posttranslational modifications, and nuclear or cellular localization, during the course of virus infection. IMPORTANCE NS1 of influenza A virus is a multifunctional protein associated with numerous strain-specific regulatory functions during viral infection, including conferring resistance to antiviral interferon induction, replication, pathogenesis, virulence, and host range. NS1 has two domains, an RNA-binding domain and an effector domain separated by a linker. To date, the only full-length NS1 structure available is that from an H5N1 strain (A/Vietnam/1203/2004). Here, we determined crystal structures of the wild type and a linker region mutant of the H6N6 NS1 (A/blue-winged teal/MN/993/1980), which together with the previously determined H5N1 NS1 structure show that NS1 exhibits significant strain-dependent structural polymorphism due to variations in linker length, residue composition at position 71, and a mechanical hinge. Such a structural polymorphism may be the basis for strain-specific functions associated with NS1.
Collapse
|
71
|
Kawaoka Y, Neumann G. Reverse Genetics Approaches for Rational Design of Inactivated and Live Attenuated Influenza Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014:3-32. [DOI: 10.1007/978-3-7091-1818-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
72
|
Mössler C, Groiss F, Wolzt M, Wolschek M, Seipelt J, Muster T. Phase I/II trial of a replication-deficient trivalent influenza virus vaccine lacking NS1. Vaccine 2013; 31:6194-200. [DOI: 10.1016/j.vaccine.2013.10.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/13/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
|
73
|
Park SJ, Lee EH, Choi EH, Pascua PNQ, Kwon HI, Kim EH, Lim GJ, Decano A, Kim SM, Choi YK. Avian-derived NS gene segments alter pathogenicity of the A/Puerto Rico/8/34 virus. Virus Res 2013; 179:64-72. [PMID: 24269912 DOI: 10.1016/j.virusres.2013.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 02/02/2023]
Abstract
While the effect of the influenza A virus non-structural protein (NS) on cytokine production during viral infection is well known, inconsistent results have been observed with some other influenza A virus backbone studied. In this study, in order to focus on the impact of the avian NS gene segments on viral virulence, the NS genes encoded by different strains of avian influenza A viruses were incorporated into an identical [A/Puerto Rico/8/1934(H1N1), PR8] virus background to generate various NS recombinant viruses. Thus, PR8NS, PR8×[A/Hong Kong/483/97(H5N1) 483NS, PR8×[A/Ck/Korea/150/03(H9N2) 150NS, and PR8×[A/EM/Korea/W149/06(H5N1) W149NS were constructed utilizing reverse genetics. Here, we show the effects of each of these recombinant viruses upon viral pathogenesis and cytokine production during viral replication in vivo. In this regard, we found that infection of mice with the PR8×150NS recombinant virus resulted in the lowest pathogenicity (6.0×10(4)MLD50), yet elicited the highest levels of TNF-α production in bronchoalveolar lavage (BAL) fluid compared to infection with the other recombinant influenza viruses. In contrast, infection with the PR8 virus showed the highest pathogenicity (1.0×10(2)MLD50) as well as relatively high cytokine levels (IL-1α, IL-1β, IL-17, and eotaxin) in mouse BAL fluid. In addition, the PR8 and PR8×483NS viruses induced severe and extensive inflammation in infected lungs compared with that of PR8×150 NS recombinant virus-infected mice. These results clearly demonstrate that the NS genes of diverse influenza A strains can variable impact pathogenicity, histopathology, and cytokine production in mice even when expressed in an identical genetic background.
Collapse
Affiliation(s)
- Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Eun Ho Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Eun Hye Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Philippe Noriel Q Pascua
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Hyeok-Il Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Gyo-Jin Lim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Arun Decano
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Se Mi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea.
| |
Collapse
|
74
|
Kuznetsova I, Shurygina AP, Wolf B, Wolschek M, Enzmann F, Sansyzbay A, Khairullin B, Sandybayev N, Stukova M, Kiselev O, Egorov A, Bergmann M. Adaptive mutation in nuclear export protein allows stable transgene expression in a chimaeric influenza A virus vector. J Gen Virol 2013; 95:337-349. [PMID: 24222196 DOI: 10.1099/vir.0.056036-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of influenza virus vectors with long insertions of foreign sequences remains difficult due to the small size and instable nature of the virus. Here, we used the influenza virus inherent property of self-optimization to generate a vector stably expressing long transgenes from the NS1 protein ORF. This was achieved by continuous selection of bright fluorescent plaques of a GFP-expressing vector during multiple passages in mouse B16f1 cells. The newly generated vector acquired stability in IFN-competent cell lines and in vivo in murine lungs. Although improved vector fitness was associated with the appearance of four coding mutations in the polymerase (PB2), haemagglutinin and non-structural (NS) segments, the stability of the transgene expression was dependent primarily on the single mutation Q20R in the nuclear export protein (NEP). Importantly, a longer insert, such as a cassette of 1299 nt encoding two Mycobacterium tuberculosis Esat6 and Ag85A proteins, could substitute for the GFP transgene. Thus, the inherent property of the influenza virus to adapt can also be used to adjust a vector backbone to give stable expression of long transgenes.
Collapse
Affiliation(s)
- Irina Kuznetsova
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Anna-Polina Shurygina
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Brigitte Wolf
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Markus Wolschek
- Avir Green Hills Biotechnology AG, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Florian Enzmann
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Abylay Sansyzbay
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Berik Khairullin
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Nurlan Sandybayev
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Marina Stukova
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Oleg Kiselev
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Andrej Egorov
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Michael Bergmann
- Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
75
|
Zinzula L, Tramontano E. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antiviral Res 2013; 100:615-35. [PMID: 24129118 PMCID: PMC7113674 DOI: 10.1016/j.antiviral.2013.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 12/24/2022]
Abstract
dsRNA species are byproducts of RNA virus replication and/or transcription. Prompt detection of dsRNA by RIG-I like receptors (RLRs) is a hallmark of the innate immune response. RLRs activation triggers production of the type I interferon (IFN)-based antiviral response. Highly pathogenic RNA viruses encode proteins that block the RLRs pathway. Hide, mask and hit are 3 strategies of RNA viruses to avoid immune system activation.
Double-stranded RNA (dsRNA) is synthesized during the course of infection by RNA viruses as a byproduct of replication and transcription and acts as a potent trigger of the host innate antiviral response. In the cytoplasm of the infected cell, recognition of the presence of viral dsRNA as a signature of “non-self” nucleic acid is carried out by RIG-I-like receptors (RLRs), a set of dedicated helicases whose activation leads to the production of type I interferon α/β (IFN-α/β). To overcome the innate antiviral response, RNA viruses encode suppressors of IFN-α/β induction, which block RLRs recognition of dsRNA by means of different mechanisms that can be categorized into: (i) dsRNA binding and/or shielding (“hide”), (ii) dsRNA termini processing (“mask”) and (iii) direct interaction with components of the RLRs pathway (“hit”). In light of recent functional, biochemical and structural findings, we review the inhibition mechanisms of RLRs recognition of dsRNA displayed by a number of highly pathogenic RNA viruses with different disease phenotypes such as haemorrhagic fever (Ebola, Marburg, Lassa fever, Lujo, Machupo, Junin, Guanarito, Crimean-Congo, Rift Valley fever, dengue), severe respiratory disease (influenza, SARS, Hendra, Hantaan, Sin Nombre, Andes) and encephalitis (Nipah, West Nile).
Collapse
Affiliation(s)
- Luca Zinzula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato, SS554, 09042 Monserrato (Cagliari), Italy.
| | | |
Collapse
|
76
|
Woo HM, Kim KS, Lee JM, Shim HS, Cho SJ, Lee WK, Ko HW, Keum YS, Kim SY, Pathinayake P, Kim CJ, Jeong YJ. Single-stranded DNA aptamer that specifically binds to the influenza virus NS1 protein suppresses interferon antagonism. Antiviral Res 2013; 100:337-45. [PMID: 24055449 DOI: 10.1016/j.antiviral.2013.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 12/24/2022]
Abstract
Non-structural protein 1 (NS1) of the influenza A virus (IAV) inhibits the host's innate immune response by suppressing the induction of interferons (IFNs). Therefore, blocking NS1 activity can be a potential strategy in the development of antiviral agents against IAV infection. In the present study, we selected a single-stranded DNA aptamer specific to the IAV NS1 protein after 15 cycles of systematic evolution of ligands by exponential enrichment (SELEX) procedure and examined the ability of the selected aptamer to inhibit the function of NS1. The selected aptamer binds to NS1 with a Kd of 18.91±3.95nM and RNA binding domain of NS1 is determined to be critical for the aptamer binding. The aptamer has a G-rich sequence in the random sequence region and forms a G-quadruplex structure. The localization of the aptamer bound to NS1 in cells was determined by confocal images, and flow cytometry analysis further demonstrated that the selected aptamer binds specifically to NS1. In addition, luciferase reporter gene assay, quantitative RT-PCR, and enzyme-linked immunosorbent assay (ELISA) experiments demonstrated that the selected aptamer had the ability to induce IFN-β by suppressing the function of NS1. Importantly, we also found that the selected aptamer was able to inhibit the viral replication without affecting cell viability. These results indicate that the selected ssDNA aptamer has strong potential to be further developed as a therapeutic agent against IAV.
Collapse
Affiliation(s)
- Hye-Min Woo
- Department of Bio and Nanochemistry, Kookmin University, Seoul 136-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Interleukin-24 (IL-24), a member of the IL-10 cytokine family whose physiological function remains largely unknown, has been shown to induce apoptosis when expressed in an adenoviral background. It is yet little understood, why IL-24 alone induced apoptosis only in a limited number of tumor cell lines. Analyzing an influenza A virus vector expressing IL-24 for its oncolytic potential revealed enhanced pro-apoptotic activity of the chimeric virus compared with virus or IL-24 alone. Interestingly, IL-24-mediated enhancement of influenza-A-induced apoptosis did not require viral replication but critically depended on toll-like receptor 3 (TLR3) and caspase-8. Immunoprecipitation of TLR3 showed that infection by influenza A virus induced formation of a TLR3-associated signaling complex containing TRIF, RIP1, FADD, cFLIP and pro-caspase-8. Co-administration of IL-24 decreased the presence of cFLIP in the TLR3-associated complex, converting it into an atypical, TLR3-associated death-inducing signaling complex (TLR3 DISC) that induced apoptosis by enabling caspase-8 activation at this complex. The sensitizing effect of IL-24 on TLR3-induced apoptosis, mediated by influenza A virus or the TLR3-specific agonist poly(I:C), was also evident on tumor spheroids. In conclusion, rather than acting as an apoptosis inducer itself, IL-24 sensitizes cancer cells to TLR-mediated apoptosis by enabling the formation of an atypical DISC which, in the case of influenza A virus or poly(I:C), is associated with TLR3.
Collapse
|
78
|
Morokutti A, Redlberger-Fritz M, Nakowitsch S, Krenn BM, Wressnigg N, Jungbauer A, Romanova J, Muster T, Popow-Kraupp T, Ferko B. Validation of the modified hemagglutination inhibition assay (mHAI), a robust and sensitive serological test for analysis of influenza virus-specific immune response. J Clin Virol 2013; 56:323-30. [PMID: 23375739 DOI: 10.1016/j.jcv.2012.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND The hemagglutination inhibition assay (HAI) is universally regarded as the gold standard in influenza virus serology. Nevertheless, difficulties in titre readouts are common and interlaboratory variations are frequently reported. OBJECTIVE We developed and validated the modified HAI to facilitate reliable, accurate and reproducible analysis of sera derived from influenza vaccination studies. STUDY DESIGN Clinical and preclinical serum samples, NIBSC reference sera and seasonal influenza virus type A (H1N1 and H3N2) and type B antigens were employed to validate the mHAI. Moreover, pandemic virus strains (H5N1 and H1N1pdm09) were used to prove assay robustness. RESULTS Utilisation of a 0.08% solution of stabilised human erythrocytes, assay buffer containing bovine serum albumin and microscopical plate readout are the major differences between the modified and standard HAI assay protocols. Validation experiments revealed that the mHAI is linear, specific and up to eightfold more sensitive than the standard HAI. In 95.6% of all measurements mHAI titres were precisely measured irrespective of the assay day, run or operator. Moreover, 96.4% (H1N1) or 95.2% (H3N2 and B), respectively, of all serum samples were determined within one dilution step of the nominal values for spiked samples. Finally, the mHAI results remained unaffected by variations in virus antigens, erythrocytes, reagents, laboratory location, sample storage conditions or matrix components. CONCLUSION The modified HAI is easy to analyse, requires only a single source of erythrocytes and allows utilisation of numerous influenza virus antigens, also including virus strains which are difficult to handle by the standard HAI (e.g. H3N2, H5N1 and H1N1pdm09).
Collapse
Affiliation(s)
- A Morokutti
- AVIR Green Hills Biotechnology AG, Forsthausgasse 11, A-1200 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Chua MA, Schmid S, Perez JT, Langlois RA, Tenoever BR. Influenza A virus utilizes suboptimal splicing to coordinate the timing of infection. Cell Rep 2013; 3:23-9. [PMID: 23333274 DOI: 10.1016/j.celrep.2012.12.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/05/2012] [Accepted: 12/14/2012] [Indexed: 02/04/2023] Open
Abstract
Influenza A virus is unique as an RNA virus in that it replicates in the nucleus and undergoes splicing. With only ten major proteins, the virus must gain nuclear access, replicate, assemble progeny virions in the cytoplasm, and then egress. In an effort to elucidate the coordination of these events, we manipulated the transcript levels from the bicistronic nonstructural segment that encodes the spliced virus product responsible for genomic nuclear export. We find that utilization of an erroneous splice site ensures the slow accumulation of the viral nuclear export protein (NEP) while generating excessive levels of an antagonist that inhibits the cellular response to infection. Modulation of this simple transcriptional event results in improperly timed export and loss of virus infection. Together, these data demonstrate that coordination of the influenza A virus life cycle is set by a "molecular timer" that operates on the inefficient splicing of a virus transcript.
Collapse
Affiliation(s)
- Mark A Chua
- Microbiology Graduate School Training Program, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
80
|
Rahim MN, Selman M, Sauder PJ, Forbes NE, Stecho W, Xu W, Lebar M, Brown EG, Coombs KM. Generation and characterization of a new panel of broadly reactive anti-NS1 mAbs for detection of influenza A virus. J Gen Virol 2012; 94:593-605. [PMID: 23223621 DOI: 10.1099/vir.0.046649-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus (IAV) non-structural protein 1 (NS1) has multiple functions, is essential for virus replication and may be a good target for IAV diagnosis. To generate broadly cross-reactive NS1-specific mAbs, mice were immunized with A/Hong Kong/1/1968 (H3N2) 6×His-tagged NS1 and hybridomas were screened with glutathione S-transferase-conjugated NS1 of A/Puerto Rico/8/1934 (H1N1). mAbs were isotyped and numerous IgG-type clones were characterized further. Most clones specifically recognized NS1 from various H1N1 and H3N2 IAV types by both immunoblot and immunofluorescence microscopy in mouse M1, canine Madin-Darby canine kidney and human A549 cells. mAb epitopes were mapped by overlapping peptides and selective reactivity to the newly described viral NS3 protein. These mAbs detected NS1 in both the cytoplasm and nucleus by immunostaining, and some detected NS1 as early as 5 h post-infection, suggesting their potential diagnostic use for tracking productive IAV replication and characterizing NS1 structure and function. It was also demonstrated that the newly identified NS3 protein is localized in the cytoplasm to high levels.
Collapse
Affiliation(s)
- Md Niaz Rahim
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Mohammed Selman
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patricia J Sauder
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Nicole E Forbes
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - William Stecho
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wanhong Xu
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Mark Lebar
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Earl G Brown
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kevin M Coombs
- Manitoba Institute of Child Health, Room 513, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| |
Collapse
|
81
|
Lohr V, Genzel Y, Jordan I, Katinger D, Mahr S, Sandig V, Reichl U. Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells. BMC Biotechnol 2012; 12:79. [PMID: 23110398 PMCID: PMC3505166 DOI: 10.1186/1472-6750-12-79] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Current influenza vaccines are trivalent or quadrivalent inactivated split or subunit vaccines administered intramuscularly, or live attenuated influenza vaccines (LAIV) adapted to replicate at temperatures below body temperature and administered intranasally. Both vaccines are considered safe and efficient, but due to differences in specific properties may complement each other to ensure reliable vaccine coverage. By now, licensed LAIV are produced in embryonated chicken eggs. In the near future influenza vaccines for human use will also be available from adherent MDCK or Vero cell cultures, but a scalable suspension process may facilitate production and supply with vaccines. RESULTS We evaluated the production of cold-adapted human influenza virus strains in the duck suspension cell line AGE1.CR.pIX using a chemically-defined medium. One cold-adapted A (H1N1) and one cold-adapted B virus strain was tested, as well as the reference strain A/PR/8/34 (H1N1). It is shown that a medium exchange is not required for infection and that maximum virus titers are obtained for 1 × 10⁻⁶ trypsin units per cell. 1 L bioreactor cultivations showed that 4 × 10⁶ cells/mL can be infected without a cell density effect achieving titers of 1 × 10⁸ virions/mL after 24 h. CONCLUSIONS Overall, this study demonstrates that AGE1.CR.pIX cells support replication of LAIV strains in a chemically-defined medium using a simple process without medium exchanges. Moreover, the process is fast with peak titers obtained 24 h post infection and easily scalable to industrial volumes as neither microcarriers nor medium replacements are required.
Collapse
Affiliation(s)
- Verena Lohr
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Ingo Jordan
- ProBioGen AG, Goethestr. 54, 13086, Berlin, Germany
| | - Dietmar Katinger
- Polymun Scientific GmbH, Donaustr. 99, 3400, Klosterneuburg, Austria
| | - Stefan Mahr
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- University for Applied Sciences, Robert-Gerwig-Platz 1, 78120, Furtwangen, Germany
| | | | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
82
|
Marc D, Barbachou S, Soubieux D. The RNA-binding domain of influenzavirus non-structural protein-1 cooperatively binds to virus-specific RNA sequences in a structure-dependent manner. Nucleic Acids Res 2012; 41:434-49. [PMID: 23093596 PMCID: PMC3592425 DOI: 10.1093/nar/gks979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenzavirus non-structural protein NS1 is involved in several steps of the virus replication cycle. It counteracts the interferon response, and also exhibits other activities towards viral and cellular RNAs. NS1 is known to bind non-specifically to double-stranded RNA (dsRNA) as well as to viral and cellular RNAs. We set out to search whether NS1 could preferentially bind sequence-specific RNA patterns, and performed an in vitro selection (SELEX) to isolate NS1-specific aptamers from a pool of 80-nucleotide(nt)-long RNAs. Among the 63 aptamers characterized, two families were found to harbour a sequence that is strictly conserved at the 5' terminus of all positive-strand RNAs of influenzaviruses A. We found a second virus-specific motif, a 9 nucleotide sequence located 15 nucleotides downstream from NS1's stop codon. In addition, a majority of aptamers had one or two symmetrically positioned copies of the 5'-GUAAC / 3'-CUUAG double-stranded motif, which closely resembles the canonical 5'-splice site. Through an in-depth analysis of the interaction combining fluorimetry and gel-shift assays, we showed that NS1's RNA-binding domain (RBD) specifically recognizes sequence patterns in a structure-dependent manner, resulting in an intimate interaction with high affinity (low nanomolar to subnanomolar K(D) values) that leads to oligomerization of the RBD on its RNA ligands.
Collapse
Affiliation(s)
- Daniel Marc
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, Nouzilly F-37380, France.
| | | | | |
Collapse
|
83
|
Soubies SM, Hoffmann TW, Croville G, Larcher T, Ledevin M, Soubieux D, Quéré P, Guérin JL, Marc D, Volmer R. Deletion of the C-terminal ESEV domain of NS1 does not affect the replication of a low-pathogenic avian influenza virus H7N1 in ducks and chickens. J Gen Virol 2012; 94:50-58. [PMID: 23052391 DOI: 10.1099/vir.0.045153-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H7N1 viruses caused a series of epizootics in Italy between 1999 and 2001. The emergence of these HPAI viruses coincided with the deletion of the six amino acids R(225)VESEV(230) at the C terminus of NS1. In order to assess how the truncation of NS1 affected virus replication, we used reverse genetics to generate a wild-type low-pathogenic avian influenza (LPAI) H7N1 virus with a 230aa NS1 (H7N1(230)) and a mutant virus with a truncated NS1 (H7N1(224)). The 6aa truncation had no impact on virus replication in duck or chicken cells in vitro. The H7N1(230) and H7N1(224) viruses also replicated to similar levels and induced similar immune responses in ducks or chickens. No significant histological lesions were detected in infected ducks, regardless of the virus inoculated. However, in chickens, the H7N1(230) virus induced a more severe interstitial pneumonia than did the H7N1(224) virus. These findings indicate that the C-terminal extremity of NS1, including the PDZ-binding motif ESEV, is dispensable for efficient replication of an LPAI virus in ducks and chickens, even though it may increase virulence in chickens, as revealed by the intensity of the histological lesions.
Collapse
Affiliation(s)
- Sébastien M Soubies
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Thomas W Hoffmann
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Guillaume Croville
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Thibaut Larcher
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307 Nantes, France
| | - Mireille Ledevin
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307 Nantes, France
| | - Denis Soubieux
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Pascale Quéré
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France.,Equipe PIA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France
| | - Jean-Luc Guérin
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Daniel Marc
- Equipe BioVA, INRA UMR1282, Infectiologie et Santé Publique, ISP, F-37380 Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Romain Volmer
- INRA, UMR 1225, Ecole nationale vétérinaire de Toulouse, F-31076 Toulouse, France.,Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| |
Collapse
|
84
|
The NS1 protein of influenza A virus interacts with cellular processing bodies and stress granules through RNA-associated protein 55 (RAP55) during virus infection. J Virol 2012; 86:12695-707. [PMID: 22973032 DOI: 10.1128/jvi.00647-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nonstructural protein (NS1) of influenza A virus performs multiple functions in the virus life cycle. Proteomic screening for cellular proteins which interact with NS1 identified the cellular protein RAP55, which is one of the components of cellular processing bodies (P-bodies) and stress granules. To verify whether NS1 interacts with cellular P-bodies, interactions between NS1, RAP55, and other P-body-associated proteins (Ago1, Ago2, and DCP1a) were confirmed using coimmunoprecipitation and cellular colocalization assays. Overexpression of RAP55 induced RAP55-associated stress granule formation and suppressed virus replication. Knockdown of RAP55 with small interfering RNA (siRNA) or expression of a dominant-negative mutant RAP55 protein with defective interaction with P-bodies blocked NS1 colocalization to P-bodies in cells. Expression of NS1 inhibited RAP55 expression and formation of RAP55-associated P-bodies/stress granules. The viral nucleoprotein (NP) was found to be targeted to stress granules in the absence of NS1 but localized to P-bodies when NS1 was coexpressed. Restriction of virus replication via P-bodies occurred in the early phases of infection, as the number of RAP55-associated P-bodies in cells diminished over the course of virus infection. NS1 interaction with RAP55-associated P-bodies/stress granules was associated with RNA binding and mediated via a protein kinase R (PKR)-interacting viral element. Mutations introduced into either RNA binding sites (R38 and K41) or PKR interaction sites (I123, M124, K126, and N127) caused NS1 proteins to lose the ability to interact with RAP55 and to inhibit stress granules. These results reveal an interplay between virus and host during virus replication in which NP is targeted to P-bodies/stress granules while NS1 counteracts this host restriction mechanism.
Collapse
|
85
|
Mutations in the M-gene segment can substantially increase replication efficiency of NS1 deletion influenza A virus in MDCK cells. J Virol 2012; 86:12341-50. [PMID: 22951840 DOI: 10.1128/jvi.01725-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses unable to express NS1 protein (delNS1) replicate poorly and induce large amounts of interferon (IFN). They are therefore considered candidate viruses for live-attenuated influenza vaccines. Their attenuated replication is generally assumed to result from the inability to counter the antiviral host response, as delNS1 viruses replicate efficiently in Vero cells, which lack IFN expression. In this study, delNS1 virus was parallel passaged on IFN-competent MDCK cells, which resulted in two strains that were able to replicate to high virus titers in MDCK cells due to adaptive mutations especially in the M-gene segment but also in the NP and NS gene segments. Most notable were clustered U-to-C mutations in the M segment of both strains and clustered A-to-G mutations in the NS segment of one strain, which presumably resulted from host cell-mediated RNA editing. The M segment mutations in both strains changed the ratio of M1 to M2 expression, probably by affecting splicing efficiency. In one virus, 2 amino acid substitutions in M1 additionally enhanced virus replication, possibly through changes in the M1 distribution between the nucleus and the cytoplasm. Both adapted viruses induced levels of IFN equal to that of the original delNS1 virus. These results show that the increased replication of the adapted viruses is not primarily due to altered IFN induction but rather is related to changes in M1 expression or localization. The mutations identified in this paper may be used to enhance delNS1 virus replication for vaccine production.
Collapse
|
86
|
Jang YH, Seong BL. Principles underlying rational design of live attenuated influenza vaccines. Clin Exp Vaccine Res 2012; 1:35-49. [PMID: 23596576 PMCID: PMC3623510 DOI: 10.7774/cevr.2012.1.1.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 05/23/2012] [Accepted: 06/10/2012] [Indexed: 12/18/2022] Open
Abstract
Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | |
Collapse
|
87
|
Park HJ, Ferko B, Byun YH, Song JH, Han GY, Roethl E, Egorov A, Muster T, Seong B, Kweon MN, Song M, Czerkinsky C, Nguyen HH. Sublingual immunization with a live attenuated influenza a virus lacking the nonstructural protein 1 induces broad protective immunity in mice. PLoS One 2012; 7:e39921. [PMID: 22761928 PMCID: PMC3384633 DOI: 10.1371/journal.pone.0039921] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/29/2012] [Indexed: 11/18/2022] Open
Abstract
The nonstructural protein 1 (NS1) of influenza A virus (IAV) enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL) immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments. Here we demonstrate that SL immunization with NS1 deleted IAV (DeltaNS1 H1N1 or DeltaNS1 H5N1) induced protection against challenge with homologous as well as heterosubtypic influenza viruses. Protection was comparable with that induced by intranasal (IN) immunization and was associated with high levels of virus-specific antibodies (Abs). SL immunization with DeltaNS1 virus induced broad Ab responses in mucosal and systemic compartments and stimulated immune cells in mucosa-associated and systemic lymphoid organs. Thus, SL immunization with DeltaNS1 offers a novel potential vaccination strategy for the control of influenza outbreaks including pandemics.
Collapse
Affiliation(s)
| | - Boris Ferko
- AVIR Green Hills Biotechnology AG, Vienna, Austria
| | - Young-Ho Byun
- Department of Biotechnology and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| | | | | | | | | | | | - Baiklin Seong
- Department of Biotechnology and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| | - Mi-Na Kweon
- International Vaccine Institute, Seoul, Korea
| | - Manki Song
- International Vaccine Institute, Seoul, Korea
| | | | | |
Collapse
|
88
|
Hrincius ER, Hennecke AK, Gensler L, Nordhoff C, Anhlan D, Vogel P, McCullers JA, Ludwig S, Ehrhardt C. A Single Point Mutation (Y89F) within the Non-Structural Protein 1 of Influenza A Viruses Limits Epithelial Cell Tropism and Virulence in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2361-74. [DOI: 10.1016/j.ajpath.2012.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/22/2012] [Accepted: 02/28/2012] [Indexed: 12/15/2022]
|
89
|
van Rikxoort M, Michaelis M, Wolschek M, Muster T, Egorov A, Seipelt J, Doerr HW, Cinatl J. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS One 2012; 7:e36506. [PMID: 22563505 PMCID: PMC3341362 DOI: 10.1371/journal.pone.0036506] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/02/2012] [Indexed: 11/24/2022] Open
Abstract
Oncolytic influenza A viruses with deleted NS1 gene (delNS1) replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15) coding sequence into the viral NS gene segment (delNS1-IL-15). DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1) infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected) melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.
Collapse
Affiliation(s)
- Marijke van Rikxoort
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | - Hans Wilhelm Doerr
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
90
|
Khaperskyy DA, Hatchette TF, McCormick C. Influenza A virus inhibits cytoplasmic stress granule formation. FASEB J 2011; 26:1629-39. [PMID: 22202676 DOI: 10.1096/fj.11-196915] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An important component of the mammalian stress response is the reprogramming of translation. A variety of stresses trigger abrupt polysome disassembly and the accumulation of stalled translation preinitiation complexes. These complexes nucleate cytoplasmic stress granules (SGs), sites of mRNA triage in which mRNAs from disassembling polysomes are sorted and the fates of individual transcripts are determined. Here, we demonstrate that influenza A virus (IAV) actively suppresses SG formation during infection, thereby allowing translation of viral mRNAs. Complete inhibition of SG formation is dependent on the function of the viral nonstructural protein 1 (NS1); at late times postinfection, cells infected with NS1-mutant viruses formed SGs in a double-stranded RNA-activated protein kinase (PKR)-dependent fashion. In these cells, SG formation correlated with inhibited viral protein synthesis. Together, these experiments demonstrate the antiviral potential of SGs and reveal a viral countermeasure that limits SG formation.
Collapse
Affiliation(s)
- Denys A Khaperskyy
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax NS, Canada
| | | | | |
Collapse
|
91
|
Brooks MJ, Burtseva EI, Ellery PJ, Marsh GA, Lew AM, Slepushkin AN, Crowe SM, Tannock GA. Antiviral activity of arbidol, a broad-spectrum drug for use against respiratory viruses, varies according to test conditions. J Med Virol 2011; 84:170-81. [PMID: 22028179 DOI: 10.1002/jmv.22234] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2011] [Indexed: 12/24/2022]
Affiliation(s)
- Megan J Brooks
- Department of Biotechnology and Environmental Biology, RMIT University, Bundoora, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Seitz C, Isken B, Heynisch B, Rettkowski M, Frensing T, Reichl U. Trypsin promotes efficient influenza vaccine production in MDCK cells by interfering with the antiviral host response. Appl Microbiol Biotechnol 2011; 93:601-11. [PMID: 21915610 DOI: 10.1007/s00253-011-3569-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/12/2011] [Accepted: 08/29/2011] [Indexed: 12/24/2022]
Abstract
Trypsin is commonly used in Madin-Darby canine kidney (MDCK) cell culture-based influenza vaccine production to facilitate virus infection by proteolytic activation of viral haemagglutinin, which enables multi-cycle replication. In this study, we were able to demonstrate that trypsin also interferes with pathogen defence mechanisms of host cells. In particular, a trypsin concentration of 5 BAEE U/mL (4.5 μg/mL porcine trypsin) used in vaccine manufacturing strongly inhibited interferon (IFN) signalling by proteolytic degradation of secreted IFN. Consequently, absence of trypsin during infection resulted in a considerably stronger induction of IFN signalling and apoptosis, which significantly reduced virus yields. Under this condition, multi-cycle virus replication in MDCK cells was not prevented but clearly delayed. Therefore, incomplete infection can be ruled out as the reason for the lower virus titres. However, suppression of IFN signalling by overexpression of viral IFN antagonists (influenza virus PR8-NS1, rabies virus phosphoprotein) partially rescued virus titres in the absence of trypsin. In addition, virus yields could be almost restored by using the influenza strain A/WSN/33 in combination with fetal calf serum (FCS). For this strain, FCS enabled trypsin-independent fast propagation of virus infection, probably outrunning cellular defence mechanisms and apoptosis induction in the absence of trypsin. Overall, addition of trypsin provided optimal conditions for high yield vaccine production in MDCK cells by two means. On the one hand, proteolytic degradation of IFN keeps cellular defence at a low level. On the other hand, enhanced virus spreading enables viruses to replicate before the cellular response becomes fully activated.
Collapse
Affiliation(s)
- Claudius Seitz
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
93
|
MDCK cell line with inducible allele B NS1 expression propagates delNS1 influenza virus to high titres. Vaccine 2011; 29:6976-85. [PMID: 21787829 DOI: 10.1016/j.vaccine.2011.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 12/17/2022]
|
94
|
Zhang W, Xue T, Wu X, Zhang P, Zhao G, Peng D, Hu S, Wang X, Liu X, Liu W, Liu X. Increase in viral yield in eggs and MDCK cells of reassortant H5N1 vaccine candidate viruses caused by insertion of 38 amino acids into the NA stalk. Vaccine 2011; 29:8032-41. [PMID: 21864614 DOI: 10.1016/j.vaccine.2011.08.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND The H5N1 subtype of highly pathogenic avian influenza viruses has spread to over 63 countries in Asia, Europe, and Africa and has become endemic in poultry. Since 2004, vaccination against H5N1 influenza has become common in domestic poultry operations in China. Most influenza vaccines have been produced in embryonated chicken eggs. High yield is the essential feature of a good vaccine candidate virus. OBJECTIVE Therefore, the large-scale manufacture of such a vaccine requires that the viral yield of H5N1 reassortant vaccine viruses in eggs and MDCK cells be increased. METHODS We generated two sets of reassortant H5N1 viruses based on backbone viruses A/Chicken/F/98 (H9N2) and A/Puerto Rico/8/34 (H1N1) using reverse genetics. The HAs and NAs of the reassortants were derived from the three epidemic H5N1 strains found in China. We compared the replication properties of these recombinant H5N1 viruses in embryonated chicken eggs and MDCK cells after inserting either 20 or 38 amino acids into their NA stalks. RESULTS In this study, we demonstrated that inserting 38 amino acids into the NA stalks can significantly increase the viral yield of H5N1 reassortant viruses in both embryonated chicken eggs and MDCK cells, while inserting only 20 amino acids into the same NA stalks does not. Hemagglutinin inhibition testing and protection assays indicated that recombinant H5N1 viruses with 38 aa inserted into their NA stalks had the same antigenicity as the viruses with wt-NA. CONCLUSION These results suggest that the generation of an H5N1 recombinant vaccine seed by the insertion of 38 aa into the NA stalk may be a suitable and more economical strategy for the increase in viral yield in both eggs and MDCK cells for the purposes of vaccine production.
Collapse
Affiliation(s)
- Wenjun Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu 225009, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Chen A, Poh SL, Dietzsch C, Roethl E, Yan ML, Ng SK. Serum-free microcarrier based production of replication deficient influenza vaccine candidate virus lacking NS1 using Vero cells. BMC Biotechnol 2011; 11:81. [PMID: 21835017 PMCID: PMC3163541 DOI: 10.1186/1472-6750-11-81] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1) gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described. RESULTS Five commercially available animal-component free, serum-free media (SFM) were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved. CONCLUSIONS We describe for the first time the production of Influenza viruses using Vero cells in commercially available animal-component free, serum-free medium. This work can be used as a basis for efficient production of attenuated as well as wild type Influenza virus for research and vaccine production.
Collapse
Affiliation(s)
- Allen Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore
| | | | | | | | | | | |
Collapse
|
96
|
Patel JR, Vora KP, Tripathi S, Zeng H, Tumpey TM, Katz JM, Sambhara S, Gangappa S. Infection of lung epithelial cells with pandemic 2009 A(H1N1) influenza viruses reveals isolate-specific differences in infectivity and host cellular responses. Viral Immunol 2011; 24:89-99. [PMID: 21449719 DOI: 10.1089/vim.2010.0122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To better understand the early virus-host interactions of the pandemic 2009 A(H1N1) viruses in humans, we examined early host responses following infection of human epithelial cell cultures with three 2009 A(H1N1) viruses (A/California/08/2009, A/Mexico/4108/2009, and A/Texas/15/2009), or a seasonal H1N1 vaccine strain (A/Solomon Islands/3/2006). We report here that infection with pandemic A/California/08/2009 and A/Mexico/4108/2009 viruses resulted in differences in virus infectivity compared to either pandemic A/Texas/15/2009 or the seasonal H1N1 vaccine strain. In addition, IFN-β levels were decreased in cell cultures infected with either the A/California/08/2009 or the A/Mexico/4108/2009 virus. Furthermore, infection with A/California/08/2009 and A/Mexico/4108/2009 viruses resulted in lower expression of four key proinflammatory markers (IL-6, RANTES, IP-10, and MIP-1β) compared with infection with either A/Texas/15/2009 or A/Solomon Islands/3/2006. Taken together, our results demonstrate that 2009 A(H1N1) viruses isolated during the Spring wave induced varying degrees of early host antiviral and inflammatory responses in human respiratory epithelial cells, highlighting the strain-specific nature of these responses, which play a role in clinical disease.
Collapse
Affiliation(s)
- Jenish R Patel
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Miranda E, Forafonov F, Tavassoli A. Deciphering interactions used by the influenza virus NS1 protein to silence the host antiviral sensor protein RIG-I using a bacterial reverse two-hybrid system. MOLECULAR BIOSYSTEMS 2011; 7:1042-5. [PMID: 21264376 DOI: 10.1039/c0mb00318b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The majority of biological processes are controlled and regulated by an intricate network of thousands of interacting proteins. Identifying and understanding the key components of these protein networks, especially those that play a critical role in disease, is a challenge that promises to dramatically alter our current approach to healthcare. To facilitate this process, we have developed a method for the rapid construction of a chromosomally integrated, bacterial reverse two-hybrid system (RTHS) that enables the identification of interacting protein partners. Chromosomal integration of the RTHS enables stable protein expression, free of plasmid copy-number effects, as well as eliminating false positives arising from plasmid ejection. We have utilized this approach to identify the interactions used by the influenza virus NS1 protein to silence the host's antiviral defences.
Collapse
Affiliation(s)
- Elena Miranda
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | | | | |
Collapse
|
98
|
Nakowitsch S, Wolschek M, Morokutti A, Ruthsatz T, Krenn BM, Ferko B, Ferstl N, Triendl A, Muster T, Egorov A, Romanova J. Mutations affecting the stability of the haemagglutinin molecule impair the immunogenicity of live attenuated H3N2 intranasal influenza vaccine candidates lacking NS1. Vaccine 2011; 29:3517-24. [PMID: 21406268 DOI: 10.1016/j.vaccine.2011.02.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/18/2011] [Accepted: 02/28/2011] [Indexed: 12/20/2022]
Abstract
The isolation and cultivation of human influenza viruses in embryonated hen eggs or cell lines often leads to amino acid substitutions in the haemagglutinin (HA) molecule. We found that the propagation of influenza A H3N2 viruses on Vero cells may trigger the appearance of HA destabilising mutations, affecting viral resistance to low pH or high temperature treatment. Two ΔNS1 reassortants, containing the HA sequences identical to the original human H3N2 influenza virus isolates were constructed. Passages of these viruses on Vero cells led to the appearance of single mutations in the HA(1) L194P or HA(2) G75R subunits that impaired virus stability. The original HA sequences and the stable phenotypes of the primary isolates were preserved if reassortants were passaged by infection at pH 5.6 and cultivation in medium at pH 6.5. Corresponding ΔNS1 reassortants were compared for their immunogenicity in ferrets upon intranasal immunisation. Vaccine candidates containing HA mutations demonstrated significantly lower immunogenicity compared to those without mutations. Thus, the retaining of the original HA sequences of human viruses during vaccine production might be crucial for the efficacy of live attenuated influenza vaccines.
Collapse
Affiliation(s)
- Sabine Nakowitsch
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, A-1200 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Yángüez E, Nieto A. So similar, yet so different: selective translation of capped and polyadenylated viral mRNAs in the influenza virus infected cell. Virus Res 2010; 156:1-12. [PMID: 21195735 DOI: 10.1016/j.virusres.2010.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 02/05/2023]
Abstract
Influenza virus is included among the Orthomyxoviridae family and it is a major public health problem causing annual mortality worldwide. Viral mRNAs bear short capped oligonucleotide sequences at their 5'-ends, acquired from host cell pre-mRNAs during viral transcription, and are polyadenylated at their 3'-end. Therefore, viral and cellular mRNAs are undistinguishable from a structural point of view. However, selective translation of viral proteins occurs upon infection, while initiation and elongation steps of cellular mRNA translation are efficiently inhibited. Viruses do not possess the complex machinery required to translate their mRNAs and are then obliged to compete for host-cell factors and manipulate the translation apparatus to their own benefit. Thus, the understanding of the processes that govern viral translation could facilitate the finding of possible targets for anti viral interventions. In the present review, we will point out the mechanisms by which influenza virus takes control of the host-cell protein synthesis machinery to ensure the production of new viral particles. First, we will discuss the mechanisms by which the virus counteracts the anti viral translation repression induced in the infected cell. Next, we will focus on the shut-off of cellular protein synthesis and the specific requirements for the eIF4F complex on influenza mRNA translation. Finally, we will discuss the role of different cellular and viral proteins in the selective translation of viral messengers in the infected cell and we will summarize the proposed mechanisms for the recruitment of cellular translational machinery to the viral mRNAs.
Collapse
Affiliation(s)
- Emilio Yángüez
- Centro Nacional de Biotecnología, C.S.I.C., Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
100
|
Establishment of a chimeric, replication-deficient influenza A virus vector by modulation of splicing efficiency. J Virol 2010; 85:2469-73. [PMID: 21177819 DOI: 10.1128/jvi.01650-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Segment 8 of the influenza A virus codes for two proteins (NS1 and NS2/NEP) via splicing. Here, we developed a viral vector expressing a cytokine or chemokine instead of the interferon antagonist NS1. To achieve both the desired genetic stability and high transgene expression levels, NS2/NEP mRNA splicing efficacy had to be fine-tuned by modification of splicing elements. Expression levels of secreted foreign proteins could be further enhanced by fusing the N-terminal 13 amino acids of NS1 with an IgK-derived secretion signal peptide. Thus, the first start codon was used for translation initiation of both NS2/NEP and the foreign protein.
Collapse
|