51
|
Diamond MS. Mechanisms of evasion of the type I interferon antiviral response by flaviviruses. J Interferon Cytokine Res 2010; 29:521-30. [PMID: 19694536 DOI: 10.1089/jir.2009.0069] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Virus survival and the ability to cause disease in mammalian hosts depend on their ability to avoid recognition and control by the interferon signal transduction and effector pathways. Flaviviruses comprise a large family of nonsegmented positive sense enveloped cytoplasmic RNA viruses, many of which are globally important human pathogens. Although the mechanistic details are still being dissected, new insight has emerged as to how a flavivirus minimizes the antiviral activity of type I interferon (IFN) to establish productive and potentially lethal infection. This review will summarize our current understanding of how mammalian cells recognize flaviviruses to induce an inhibitory IFN response and the countermeasures this group of viruses has evolved to antagonize this response.
Collapse
Affiliation(s)
- Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
52
|
Avirutnan P, Fuchs A, Hauhart RE, Somnuke P, Youn S, Diamond MS, Atkinson JP. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. ACTA ACUST UNITED AC 2010; 207:793-806. [PMID: 20308361 PMCID: PMC2856034 DOI: 10.1084/jem.20092545] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complement system plays an essential protective role in the initial defense against many microorganisms. Flavivirus NS1 is a secreted nonstructural glycoprotein that accumulates in blood, is displayed on the surface of infected cells, and has been hypothesized to have immune evasion functions. Herein, we demonstrate that dengue virus (DENV), West Nile virus (WNV), and yellow fever virus (YFV) NS1 attenuate classical and lectin pathway activation by directly interacting with C4. Binding of NS1 to C4 reduced C4b deposition and C3 convertase (C4b2a) activity. Although NS1 bound C4b, it lacked intrinsic cofactor activity to degrade C4b, and did not block C3 convertase formation or accelerate decay of the C3 and C5 convertases. Instead, NS1 enhanced C4 cleavage by recruiting and activating the complement-specific protease C1s. By binding C1s and C4 in a complex, NS1 promotes efficient degradation of C4 to C4b. Through this mechanism, NS1 protects DENV from complement-dependent neutralization in solution. These studies define a novel immune evasion mechanism for restricting complement control of microbial infection.
Collapse
Affiliation(s)
- Panisadee Avirutnan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Muñoz-Jordán JL, Fredericksen BL. How flaviviruses activate and suppress the interferon response. Viruses 2010; 2:676-691. [PMID: 21994652 PMCID: PMC3185611 DOI: 10.3390/v2020676] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 12/12/2022] Open
Abstract
The flavivirus genus includes viruses with a remarkable ability to produce disease on a large scale. The expansion and increased endemicity of dengue and West Nile viruses in the Americas exemplifies their medical and epidemiological importance. The rapid detection of viral infection and induction of the innate antiviral response are crucial to determining the outcome of infection. The intracellular pathogen receptors RIG-I and MDA5 play a central role in detecting flavivirus infections and initiating a robust antiviral response. Yet, these viruses are still capable of producing acute illness in humans. It is now clear that flaviviruses utilize a variety of mechanisms to modulate the interferon response. The non-structural proteins of the various flaviviruses reduce expression of interferon dependent genes by blocking phosphorylation, enhancing degradation or down-regulating expression of major components of the JAK/STAT pathway. Recent studies indicate that interferon modulation is an important factor in the development of severe flaviviral illness. This suggests that an increased understanding of viral-host interactions will facilitate the development of novel therapeutics to treat these viral infections and improved biological models to study flavivirus pathogenesis.
Collapse
Affiliation(s)
- Jorge L. Muñoz-Jordán
- Molecular Diagnostics and Research Laboratory, Centers for Disease Control and Prevention, Division of Vector Borne Infectious Diseases, Dengue Branch, 1324 Calle Cañada, San Juan, PR 00920, Puerto Rico
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-787-2873728; Fax: +1-787-706-2496
| | - Brenda L. Fredericksen
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, MD 20742, USA; E-Mail:
| |
Collapse
|
54
|
NS1' of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol 2009; 84:1641-7. [PMID: 19906906 DOI: 10.1128/jvi.01979-09] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Flavivirus NS1 is a nonstructural protein involved in virus replication and regulation of the innate immune response. Interestingly, a larger NS1-related protein, NS1', is often detected during infection with the members of the Japanese encephalitis virus serogroup of flaviviruses. However, how NS1' is made and what role it performs in the viral life cycle have not been determined. Here we provide experimental evidence that NS1' is the product of a -1 ribosomal frameshift event that occurs at a conserved slippery heptanucleotide motif located near the beginning of the NS2A gene and is stimulated by a downstream RNA pseudoknot structure. Using site-directed mutagenesis of these sequence elements in an infectious clone of the Kunjin subtype of West Nile virus, we demonstrate that NS1' plays a role in viral neuroinvasiveness.
Collapse
|
55
|
Ashour J, Laurent-Rolle M, Shi PY, García-Sastre A. NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 2009; 83:5408-18. [PMID: 19279106 PMCID: PMC2681973 DOI: 10.1128/jvi.02188-08] [Citation(s) in RCA: 331] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 02/26/2009] [Indexed: 12/23/2022] Open
Abstract
The mammalian interferon (IFN) signaling pathway is a primary component of the innate antiviral response. As such, viral pathogens have devised multiple mechanisms to antagonize this pathway and thus facilitate infection. Dengue virus (DENV) encodes several proteins (NS2a, NS4a, and NS4b) that have been shown individually to inhibit the IFN response. In addition, DENV infection results in reduced levels of expression of STAT2, which is required for IFN signaling (M. Jones, A. Davidson, L. Hibbert, P. Gruenwald, J. Schlaak, S. Ball, G. R. Foster, and M. Jacobs, J. Virol. 79:5414-5420, 2005). Translation of the DENV genome results in a single polypeptide, which is processed by viral and host proteases into at least 10 separate proteins. To date, no single DENV protein has been implicated in the targeting of STAT2 for decreased levels of expression. We demonstrate here that the polymerase of the virus, NS5, binds to STAT2 and is necessary and sufficient for its reduced level of expression. The decrease in protein level observed requires ubiquitination and proteasome activity, strongly suggesting an active degradation process. Furthermore, we show that the degradation of but not binding to STAT2 is dependent on the expression of the polymerase in the context of a polyprotein that undergoes proteolytic processing for NS5 maturation. Thus, the mature form of NS5, when not expressed as a precursor, was able to bind to STAT2 but was unable to target it for degradation, establishing a unique role for viral polyprotein processing in providing an additional function to a viral polypeptide. Therefore, we have identified both a novel mechanism by which DENV evades the innate immune response and a potential target for antiviral therapeutics.
Collapse
Affiliation(s)
- Joseph Ashour
- Department of Microbiology, Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
56
|
Phosphorylation of yellow fever virus NS5 alters methyltransferase activity. Virology 2008; 380:276-84. [PMID: 18757072 DOI: 10.1016/j.virol.2008.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/09/2008] [Accepted: 07/15/2008] [Indexed: 12/31/2022]
Abstract
Serine/threonine phosphorylation of the nonstructural protein 5 (NS5) is conserved feature of flaviviruses, but the kinase(s) responsible and function(s) remain unknown. Mass spectrometry was used to characterize phosphorylated residues of yellow fever virus (YFV) NS5 expressed in mammalian cells. Multiple different phosphopeptides were detected. Mutational and additional mass spectrometry data implicated serine 56 (S56), a conserved residue near the active site in the NS5 methyltransferase domain, as one of the phosphorylation sites. Methyltransferase activity is required to form a methylated RNA cap structure and for translation of the YFV polyprotein. We show the 2'-O methylation reaction requires the hydroxyl side chain of S56, and replacement with a negative charge inhibits enzymatic activity. Furthermore mutational alteration of S56, S56A or S56D, prevents amplification in a viral replicon system. Collectively our data suggest phosphorylation of NS5 S56 may act to shut down capping in the viral life cycle.
Collapse
|
57
|
Abstract
The innate immune response is the first line of defense against foreign pathogens. The recognition of virus-associated molecular patterns, including double- and single-stranded RNA, by pattern recognition receptors initiates a cascade of signaling reactions. These result in the transcriptional upregulation and secretion of proinflammatory cytokines that induce an antiviral state. Many viruses have evolved mechanisms to antagonize these responses in order to help them establish a productive infection. We have previously shown that West Nile virus (WNV) is able to inhibit Toll-like receptor 3 (TLR3)-mediated activation of interferon (IFN) regulatory factor 3 (IRF3) (F. Scholle and P. W. Mason, Virology 342:77-87, 2005). In the present study, the WNV nonstructural (NS) proteins were analyzed individually for their ability to antagonize signal transduction mediated by TLR3. We report that expression of WNV NS1 inhibits TLR3-induced transcriptional activation of the IFN-beta promoter and of an NF-kappaB-responsive promoter. This inhibition was due to a failure of the TLR3 ligand poly(I:C) to induce nuclear translocation of IRF3 and NF-kappaB. Furthermore, NS1 expression also inhibited TLR3-dependent production of interleukin-6 and the establishment of an antiviral state. The function of NS1 in flavivirus infection is not well understood. NS1 is required for viral RNA replication and is also secreted from mammalian cells but not from insect cells. Here, we identify a previously unrecognized role for NS1 in the modulation of signaling pathways of the innate immune response to WNV infection.
Collapse
|
58
|
Dengue virus replicon expressing the nonstructural proteins suffices to enhance membrane expression of HLA class I and inhibit lysis by human NK cells. J Virol 2008; 82:7666-76. [PMID: 18508882 DOI: 10.1128/jvi.02274-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many viruses escape the cellular immune response by downregulating cell surface expression of major histocompatibility complex (MHC) class I molecules. However, infection of cells with flaviviruses can upregulate the expression of these molecules. In this study we analyzed the expression of MHC class I in K562 and THP-1 human cell lines that were stably transfected with self-replicating subgenomic dengue virus RNA (replicons) and express all the dengue virus nonstructural proteins together. We show that MHC class I expression is upregulated in the dengue virus replicon-expressing cells and that the binding of natural killer (NK) inhibitory receptors to these cells is augmented. This upregulation results in reduced susceptibility of the dengue virus replicon-expressing cells to NK lysis, indicating a possible mechanism for evasion of the dengue virus from NK cell recognition. Visualizing MHC class I expression in replicon-containing K562 and THP-1 cells by confocal microscopy demonstrated aggregation of MHC class I molecules on the cell surface. Finally, replicon-expressing K562 cells manifested increased TAP (transporter associated with antigen processing) and LMP (low-molecular-mass protein) gene transcription, while replicon-expressing THP-1 cells manifested increased NF-kappaB activity and MHC class I transcription. We suggest that expression of dengue virus nonstructural proteins is sufficient to induce MHC class I upregulation through both TAP-dependent and -independent mechanisms. Additionally, aggregation of MHC class I molecules on the cell membrane also contributes to significantly higher binding of low-affinity NK inhibitory receptors, resulting in lower sensitivity to lysis by NK cells.
Collapse
|
59
|
Abstract
Flavivirus nonstructural (NS) proteins are involved in RNA replication and modulation of the host antiviral response; however, evidence is mounting that some NS proteins also have essential roles in virus assembly. Kunjin virus (KUN) NS2A is a small, hydrophobic, transmembrane protein that is part of the replication complex and inhibits interferon induction. Previously, we have shown that an isoleucine (I)-to-asparagine (N) substitution at position 59 of the NS2A protein blocked the production of secreted virus particles in cells electroporated with viral RNA carrying this mutation. We now show that prolonged incubation of mutant KUN NS2A-I59N replicon RNA, in an inducible BHK-derived packaging cell line (expressing KUN structural proteins C, prM, and E), generated escape mutants that rescued the secretion of infectious virus-like particles. Sequencing identified three groups of revertants that included (i) reversions to wild-type, hydrophobic Ile, (ii) pseudorevertants to more hydrophobic residues (Ser, Thr, and Tyr) at codon 59, and (iii) pseudorevertants retaining Asn at NS2A codon 59 but containing a compensatory mutation (Thr-to-Pro) at NS2A codon 149. Engineering hydrophobic residues at NS2A position 59 or the compensatory T149P mutation into NS2A-I59N replicon RNA restored the assembly of secreted virus-like particles in packaging cells. T149P mutation also rescued virus production when introduced into the full-length KUN RNA containing an NS2A-I59N mutation. Immunofluorescence and electron microscopy analyses of NS2A-I59N replicon-expressing cells showed a distinct lack of virus-induced membranes normally present in cells expressing wild-type replicon RNA. The compensatory mutation NS2A-T149P restored the induction of membrane structures to a level similar to those observed during wild-type replication. The results further confirm the role of NS2A in virus assembly, demonstrate the importance of hydrophobic residues at codon 59 in this process, implicate the involvement of NS2A in the biogenesis of virus-induced membranes, and suggest a vital role for the virus-induced membranes in virus assembly.
Collapse
|
60
|
Chung KM, Diamond MS. Defining the levels of secreted non-structural protein NS1 after West Nile virus infection in cell culture and mice. J Med Virol 2008; 80:547-56. [PMID: 18205232 PMCID: PMC2696118 DOI: 10.1002/jmv.21091] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infection with West Nile virus (WNV) causes a febrile illness that can progress to meningitis or encephalitis, primarily in humans that are immunocompromised or elderly. For successful treatment of WNV infection, accurate and timely diagnosis is essential. Previous studies have suggested that the flavivirus non-structural protein NS1, a highly conserved and secreted glycoprotein, is a candidate protein for rapid diagnosis. Herein, we developed a capture enzyme-linked immunosorbent assay (ELISA) to detect WNV NS1 using two anti-NS1 monoclonal antibodies (mAbs) that map to distinct sites on the protein. The capture ELISA efficiently detected as little as 0.5 ng/ml of soluble NS1 and exhibited no cross-reactivity for yellow fever, Dengue, and St. Louis encephalitis virus NS1. The capture ELISA reliably detected NS1 in plasma at day 3 after WNV infection, prior to the development of clinical signs of disease. As the time course of infection continued, the levels of detectable NS1 diminished, presumably because of interference by newly generated anti-NS1 antibodies. Indeed, treatment of plasma with a solution that dissociated NS1 immune complexes extended the window of detection. Overall, the NS1-based capture ELISA is a sensitive readout of infection and could be an important tool for diagnosis or screening small molecule inhibitors of WNV infection.
Collapse
Affiliation(s)
- Kyung Min Chung
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Department of Microbiology, Chonbuk National University Medical School, Chonju, Chonbuk, Republic of Korea
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
61
|
Tajima S, Takasaki T, Kurane I. Characterization of Asn130-to-Ala mutant of dengue type 1 virus NS1 protein. Virus Genes 2008; 36:323-9. [PMID: 18288598 DOI: 10.1007/s11262-008-0211-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/28/2008] [Indexed: 11/26/2022]
Abstract
The nonstructural protein 1 (NS1) of flavivirus has two N-glycosylation sites that are thought to be important for viral replication. Effects of NS1 glycosylation site mutations on viral replication have been reported in several flaviviruses, but the results have differed. In this report, we examined the role of glycosylation site of NS1 on the replication of dengue type 1 virus (DENV-1). DENV-1 production was not detectable when full-length DENV-1 RNA, which has an N-glycosylation site Asn130-to-Ala (Asn130Ala) mutation in NS1, was transfected into mammalian and mosquito cells. However, replication and secretion of recombinant DENV-1 with the NS1 Asn130Ala mutation were recovered by exogenously expressed wild-type DENV-1 NS1. A growth kinetics experiment showed that propagation of wild-type DENV-1 was prevented by NS1 Asn130Ala mutant expression in trans. Our results suggest that Asn130 of the DENV-1 NS1 is important for viral replication in both mammalian and mosquito cells.
Collapse
Affiliation(s)
- Shigeru Tajima
- Laboratory of Vector Borne Viruses, Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | | | | |
Collapse
|
62
|
Hoenen A, Liu W, Kochs G, Khromykh AA, Mackenzie JM. West Nile virus-induced cytoplasmic membrane structures provide partial protection against the interferon-induced antiviral MxA protein. J Gen Virol 2007; 88:3013-3017. [PMID: 17947524 DOI: 10.1099/vir.0.83125-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human MxA protein is a type I and III interferon (IFN)-induced protein with proven antiviral activity against RNA viruses. In this study, we investigated the effect of MxA expression on the replication of West Nile Virus strain Kunjin (WNV(KUN)). Pretreatment of A549 cells with IFN-alpha lead to increased expression of MxA, which contributed to inhibition of WNV(KUN) replication and secretion. However, in Vero cells stably expressing the MxA protein, WNV(KUN) replication, maturation and secretion was not inhibited. Biochemical and subcellular localization studies of WNV(KUN) proteins and MxA suggest that the MxA activity was not compromised by a flavivirus-encoded antagonist. Instead, we show that characteristic membranous structures induced during WNV(KUN) replication provide partial protection from MxA, possibly by 'hiding' WNV(KUN) replication components. This distinct compartmentalization of viral replication and components of the cellular antiviral response may be an evolutionary mechanism by which flaviviruses can hide from host surveillance.
Collapse
Affiliation(s)
- Antje Hoenen
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Wenjun Liu
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Georg Kochs
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Alexander A Khromykh
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Jason M Mackenzie
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
63
|
Reimann I, Semmler I, Beer M. Packaged replicons of bovine viral diarrhea virus are capable of inducing a protective immune response. Virology 2007; 366:377-86. [PMID: 17544049 DOI: 10.1016/j.virol.2007.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/12/2007] [Accepted: 05/04/2007] [Indexed: 12/17/2022]
Abstract
Bovine viral diarrhea virus (BVDV) replicons with deletions within the capsid, E(RNS) or E1 encoding region were constructed and efficiently packaged with a helper cell line. High titres of packaged replicons were observed as early as 24 h after transfection, whereas no virus progeny could be detected after transfection of non-complementing cells. Infection of bovine cell cultures with rescued viruses resulted in one cycle of replication without release of infectious virus particles, and no genetic reversion of the generated viruses was detected. Packaged replicons with a deletion within the capsid-coding region were characterized in vivo in immunization and challenge trials. Following immunization of calves with the replication-deficient virus, neither virus shedding nor viremia was detected. After challenge infection with virulent BVDV, all vaccinates were completely protected from disease as measured by the absence of viremia and shedding of challenge virus, which indicated that a 'sterilizing immunity' could be induced with the generated replication-deficient packaged replicons.
Collapse
Affiliation(s)
- Ilona Reimann
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5a, 17493 Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
64
|
Malet H, Egloff MP, Selisko B, Butcher RE, Wright PJ, Roberts M, Gruez A, Sulzenbacher G, Vonrhein C, Bricogne G, Mackenzie JM, Khromykh AA, Davidson AD, Canard B. Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 2007; 282:10678-89. [PMID: 17287213 DOI: 10.1074/jbc.m607273200] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses of the family Flaviviridae are important human and animal pathogens. Among them, the Flaviviruses dengue (DENV) and West Nile (WNV) cause regular outbreaks with fatal outcomes. The RNA-dependent RNA polymerase (RdRp) activity of the non-structural protein 5 (NS5) is a key activity for viral RNA replication. In this study, crystal structures of enzymatically active and inactive WNV RdRp domains were determined at 3.0- and 2.35-A resolution, respectively. The determined structures were shown to be mostly similar to the RdRps of the Flaviviridae members hepatitis C and bovine viral diarrhea virus, although with unique elements characteristic for the WNV RdRp. Using a reverse genetic system, residues involved in putative interactions between the RNA-cap methyltransferase (MTase) and the RdRp domain of Flavivirus NS5 were identified. This allowed us to propose a model for the structure of the full-length WNV NS5 by in silico docking of the WNV MTase domain (modeled from our previously determined structure of the DENV MTase domain) onto the RdRp domain. The Flavivirus RdRp domain structure determined here should facilitate both the design of anti-Flavivirus drugs and structure-function studies of the Flavivirus replication complex in which the multifunctional NS5 protein plays a central role.
Collapse
Affiliation(s)
- Hélène Malet
- Architecture et Fonction des Macromolécules Biologiques, CNRS, and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Chung KM, Liszewski MK, Nybakken G, Davis AE, Townsend RR, Fremont DH, Atkinson JP, Diamond MS. West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci U S A 2006; 103:19111-6. [PMID: 17132743 PMCID: PMC1664712 DOI: 10.1073/pnas.0605668103] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complement system, by virtue of its dual effector and priming functions, is a major host defense against pathogens. Flavivirus nonstructural protein (NS)-1 has been speculated to have immune evasion activity, because it is a secreted glycoprotein, binds back to cell surfaces, and accumulates to high levels in the serum of infected patients. Herein, we demonstrate an immunomodulatory function of West Nile virus NS1. Soluble and cell-surface-associated NS1 binds to and recruits the complement regulatory protein factor H, resulting in decreased complement activation in solution and attenuated deposition of C3 fragments and C5b-9 membrane attack complexes on cell surfaces. Accordingly, extracellular NS1 may function to minimize immune system targeting of West Nile virus by decreasing complement recognition of infected cells.
Collapse
Affiliation(s)
| | | | | | - Alan E. Davis
- Departments of *Medicine
- Cell Biology and Physiology, and
| | | | | | - John P. Atkinson
- Departments of *Medicine
- Pathology and Immunology
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael S. Diamond
- Departments of *Medicine
- Pathology and Immunology
- Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
66
|
Samuel MA, Diamond MS. Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 2006; 80:9349-60. [PMID: 16973541 PMCID: PMC1617273 DOI: 10.1128/jvi.01122-06] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Melanie A Samuel
- Division of Infectious Diseases, Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
67
|
Pijlman GP, Kondratieva N, Khromykh AA. Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging. J Virol 2006; 80:11255-64. [PMID: 16971441 PMCID: PMC1642170 DOI: 10.1128/jvi.01559-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.
Collapse
Affiliation(s)
- Gorben P Pijlman
- School of Molecular and Microbial Sciences, University of Queensland, MBS Bldg. 76, Cooper Rd., St. Lucia, 4072 QLD, Australia
| | | | | |
Collapse
|
68
|
Pijlman GP, Suhrbier A, Khromykh AA. Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opin Biol Ther 2006; 6:135-45. [PMID: 16436039 DOI: 10.1517/14712598.6.2.135] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of viral vectors for gene expression and delivery is rapidly evolving, with several entering clinical trials. However, a number of issues, including safety, gene expression levels, cell selectivity and antivector immunity, are driving the search for new vector systems. A number of replicon-based vectors derived from positive-strand RNA viruses have recently been developed, and this paper reviews the current knowledge on the first flavivirus replicon system, which is based on the Australian flavivirus Kunjin (KUN). Like most replicon systems, KUN replicons can be delivered as DNA, RNA or virus-like particles, they replicate their RNA in the cytoplasm and direct prolonged high-level gene expression. However, unlike most alphavirus replicon systems, KUN replicons are non-cytopathic, with transfected cells able to divide, allowing the establishment of cell lines stably expressing replicon RNA and heterologous genes. As vaccine vectors KUN replicons can induce potent, long-lived, protective, immunogen-specific CD8+ T cell immunity, a feature potentially related to extended production of antigen and double-stranded RNA-induced 'danger signals'. The identification of KUN replicon mutants that induce increased levels of IFN-alpha/beta has also spawned investigation of KUN replicons for use in cancer gene therapy. The unique characteristics of KUN replicons may thus make them suitable for specific protein production, vaccine and gene therapy applications.
Collapse
Affiliation(s)
- Gorben P Pijlman
- University of Queensland, School of Molecular and Microbial Sciences, MBS Bld 76, St. Lucia, 4072 QLD, Australia
| | | | | |
Collapse
|
69
|
Chung KM, Nybakken GE, Thompson BS, Engle MJ, Marri A, Fremont DH, Diamond MS. Antibodies against West Nile Virus nonstructural protein NS1 prevent lethal infection through Fc gamma receptor-dependent and -independent mechanisms. J Virol 2006; 80:1340-51. [PMID: 16415011 PMCID: PMC1346945 DOI: 10.1128/jvi.80.3.1340-1351.2006] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 11/11/2005] [Indexed: 11/20/2022] Open
Abstract
The flavivirus nonstructural protein NS1 is a highly conserved secreted glycoprotein that does not package with the virion. Immunization with NS1 elicits a protective immune response against yellow fever, dengue, and tick-borne encephalitis flaviviruses through poorly defined mechanisms. In this study, we purified a recombinant, secreted form of West Nile virus (WNV) NS1 glycoprotein from baculovirus-infected insect cells and generated 22 new NS1-specific monoclonal antibodies (MAbs). By performing competitive binding assays and expressing truncated NS1 proteins on the surface of yeast (Saccharomyces cerevisiae) and in bacteria, we mapped 21 of the newly generated MAbs to three NS1 fragments. Prophylaxis of C57BL/6 mice with any of four MAbs (10NS1, 14NS1, 16NS1, and 17NS1) strongly protected against lethal WNV infection (75 to 95% survival, respectively) compared to saline-treated controls (17% survival). In contrast, other anti-NS1 MAbs of the same isotype provided no significant protection. Notably, 14NS1 and 16NS1 also demonstrated marked efficacy as postexposure therapy, even when administered as a single dose 4 days after infection. Virologic analysis showed that 17NS1 protects at an early stage in infection through a C1q-independent and Fc gamma receptor-dependent pathway. Interestingly, 14NS1, which maps to a distinct region on NS1, protected through a C1q- and Fc gamma receptor-independent mechanism. Overall, our data suggest that distinct regions of NS1 can elicit protective humoral immunity against WNV through different mechanisms.
Collapse
Affiliation(s)
- Kyung Min Chung
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Whitby K, Pierson TC, Geiss B, Lane K, Engle M, Zhou Y, Doms RW, Diamond MS. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol 2005; 79:8698-706. [PMID: 15994763 PMCID: PMC1168722 DOI: 10.1128/jvi.79.14.8698-8706.2005] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previous studies have suggested that alpha-glucosidase inhibitors such as castanospermine and deoxynojirimycin inhibit dengue virus type 1 infection by disrupting the folding of the structural proteins prM and E, a step crucial to viral secretion. We extend these studies by evaluating the inhibitory activity of castanospermine against a panel of clinically important flaviviruses including all four serotypes of dengue virus, yellow fever virus, and West Nile virus. Using in vitro assays we demonstrated that infections by all serotypes of dengue virus were inhibited by castanospermine. In contrast, yellow fever virus and West Nile virus were partially and almost completely resistant to the effects of the drug, respectively. Castanospermine inhibited dengue virus infection at the level of secretion and infectivity of viral particles. Importantly, castanospermine prevented mortality in a mouse model of dengue virus infection, with doses of 10, 50, and 250 mg/kg of body weight per day being highly effective at promoting survival (P < or = 0.0001). Correspondingly, castanospermine had no adverse or protective effect on West Nile virus mortality in an analogous mouse model. Overall, our data suggest that castanospermine has a strong antiviral effect on dengue virus infection and warrants further development as a possible treatment in humans.
Collapse
Affiliation(s)
- Kevin Whitby
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, Ball S, Foster GR, Jacobs M. Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 2005; 79:5414-20. [PMID: 15827155 PMCID: PMC1082737 DOI: 10.1128/jvi.79.9.5414-5420.2005] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alpha/beta interferon (IFN-alpha/beta) is a key mediator of innate antiviral responses but has little effect on the established replication of dengue viruses, which are mosquito-borne flaviviruses of immense global health importance. Understanding how the IFN system is inhibited in dengue virus-infected cells would provide critical insights into disease pathogenesis. In a recent study analyzing the ability of individual dengue virus-encoded proteins to antagonize the IFN response, nonstructural (NS) protein 4B and possibly NS2A and NS4A were identified as candidate IFN antagonists. In monkey cells, NS4B appeared to inhibit both the IFN-alpha/beta and IFN-gamma signal transduction pathways, which are distinct but overlapping (J. L. Munoz-Jordan, G. G. Sanchez-Burgos, M. Laurent-Rolle, and A. Garcia-Sastre, Proc. Natl. Acad. Sci. USA 100:14333-14338, 2003). For this study, we examined the effects of dengue virus on the human IFN system, using cell lines that were stably transfected with self-replicating subgenomic dengue virus RNA (replicons) and that expressed all of the dengue virus nonstructural proteins together. We show here that in replicon-containing cells dengue virus RNA replication and the replication of encephalomyocarditis virus, an IFN-sensitive virus, are resistant to the antiviral effects of IFN-alpha. The presence of dengue virus replicons reduces global IFN-alpha-stimulated gene expression and specifically inhibits IFN-alpha but not IFN-gamma signal transduction. In cells containing replicons or infected with dengue virus, we found reduced levels of signal transducer and activator of transcription 2 (STAT2), which is a key component of IFN-alpha but not IFN-gamma signaling. Collectively, these data show that dengue virus is capable of subverting the human IFN response by down-regulating STAT2 expression.
Collapse
Affiliation(s)
- Meleri Jones
- DDRC, Queen Mary's School of Medicine and Dentistry, Royal Free & University College Medical School, Rowland Hill St., London NW3 2PF, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Jones CT, Patkar CG, Kuhn RJ. Construction and applications of yellow fever virus replicons. Virology 2005; 331:247-59. [PMID: 15629769 DOI: 10.1016/j.virol.2004.10.034] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Revised: 06/28/2004] [Accepted: 10/01/2004] [Indexed: 11/18/2022]
Abstract
Subgenomic replicons of yellow fever virus (YFV) were constructed to allow expression of heterologous reporter genes in a replication-dependent manner. Expression of the antibiotic resistance gene neomycin phosphotransferase II (Neo) from one of these YFV replicons allowed selection of a stable population of cells (BHK-REP cells) in which the YFV replicon persistently replicated. BHK-REP cells were successfully used to trans-complement replication-defective YFV replicons harboring large internal deletions within either the NS1 or NS3 proteins. Although replicons with large deletions in either NS1 or NS3 were trans-complemented in BHK-REP, replicons that contained deletions of NS3 were trans-complemented at lower levels. In addition, replicons that retained the N-terminal protease domain of NS3 in cis were trans-complemented with higher efficiency than replicons in which both the protease and helicase domains of NS3 were deleted. To study packaging of YFV replicons, Sindbis replicons were constructed that expressed the YFV structural proteins in trans. Using these Sindbis replicons, both replication-competent and trans-complemented, replication-defective YFV replicons could be packaged into pseudo-infectious particles (PIPs). Although these results eliminate a potential role of either NS1 or full-length NS3 in cis for packaging and assembly of the flavivirus virion, they do not preclude the possibility that these proteins may act in trans during these processes.
Collapse
Affiliation(s)
- Christopher T Jones
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | |
Collapse
|
73
|
Appel N, Herian U, Bartenschlager R. Efficient rescue of hepatitis C virus RNA replication by trans-complementation with nonstructural protein 5A. J Virol 2005; 79:896-909. [PMID: 15613318 PMCID: PMC538567 DOI: 10.1128/jvi.79.2.896-909.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Studies of Hepatitis C virus (HCV) RNA replication have become possible with the development of subgenomic replicons. This system allows the functional analysis of the essential components of the viral replication complex, which so far are poorly defined. In the present study we wanted to investigate whether lethal mutations in HCV nonstructural genes can be rescued by trans-complementation. Therefore, a series of replicon RNAs carrying mutations in NS3, NS4B, NS5A, and NS5B that abolish replication were transfected into Huh-7 hepatoma cells harboring autonomously replicating helper RNAs. Similar to data described for the Bovine viral diarrhea virus (C. W. Grassmann, O. Isken, N. Tautz, and S. E. Behrens, J. Virol. 75:7791-7802, 2001), we found that only NS5A mutants could be efficiently rescued. There was no evidence for RNA recombination between helper and mutant RNAs, and we did not observe reversions in the transfected mutants. Furthermore, we established a transient complementation assay based on the cotransfection of helper and mutant RNAs. Using this assay, we extended our results and demonstrated that (i) inactivating NS5A mutations affecting the amino-terminal amphipathic helix cannot be complemented in trans; (ii) replication of the helper RNA is not necessary to allow efficient trans-complementation; and (iii) the minimal sequence required for trans-complementation of lethal NS5A mutations is NS3 to -5A, whereas NS5A expressed alone does not restore RNA replication. In summary, our results provide the first insight into the functional organization of the HCV replication complex.
Collapse
Affiliation(s)
- Nicole Appel
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
74
|
Liu WJ, Chen HB, Wang XJ, Huang H, Khromykh AA. Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J Virol 2004; 78:12225-35. [PMID: 15507609 PMCID: PMC525072 DOI: 10.1128/jvi.78.22.12225-12235.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent noncytopathic replication by replicon RNAs of a number of positive-strand RNA viruses usually leads to generation of adaptive mutations in nonstructural genes. Some of these adaptive mutations (e.g., in hepatitis C virus) increase the ability of RNA replication to resist the antiviral action of alpha/beta interferon (IFN-alpha/beta); others (e.g., in Sindbis virus) may also lead to more efficient IFN production. Using puromycin-selectable Kunjin virus (KUN) replicon RNA, we identified two adaptive mutations in the NS2A gene (producing Ala30-to-Pro and Asn101-to-Asp mutations in the gene product; for simplicity, these will be referred to hereafter as Ala30-to-Pro and Asn101-to-Asp mutations) that, when introduced individually or together into the original wild-type (wt) replicon RNA, resulted in approximately 15- to 50-fold more efficient establishment of persistent replication in hamster (BHK21) and human (HEK293 and HEp-2) cell lines. Transfection with a reporter plasmid carrying the luciferase gene under the control of the IFN-beta promoter resulted in approximately 6- to 7-fold-higher luciferase expression in HEp-2 cells stably expressing KUN replicon RNA with an Ala30-to-Pro mutation in the NS2A gene compared to that observed in HEp-2 cells stably expressing KUN replicon RNA with the wt NS2A gene. Moreover, cotransfection of plasmids expressing individual wt or Ala30-to-Pro-mutated NS2A genes with the IFN-beta promoter reporter plasmid, followed by infection with Semliki Forest virus to activate IFN-beta promoter-driven transcription, showed approximately 7-fold inhibition of luciferase expression by the wt but not by the Ala30-to-Pro-mutated NS2A protein. The results show for the first time a role for the flavivirus nonstructural protein NS2A in inhibition of IFN-beta promoter-driven transcription and identify a single-amino-acid mutation in NS2A that dramatically reduces this inhibitory activity. The findings determine a new function for NS2A in virus-host interactions, extend the range of KUN replicon vectors for noncytopathic gene expression, and identify NS2A as a new target for attenuation in the development of live flavivirus vaccines.
Collapse
Affiliation(s)
- Wen Jun Liu
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland 4029, Australia
| | | | | | | | | |
Collapse
|
75
|
Abstract
To investigate interactions between hepatitis C virus (HCV) RNA replication complexes, a system was developed to simultaneously select different HCV subgenomic replicons within the same cell. Transcomplementation of defective replicons was not observed, suggesting an isolated and independent nature of the HCV RNA replication complex. In contrast, a high level of competition between replicons was observed, such that the presence and increased fitness of one replicon reduced the capacity of a second one to stably replicate. These results suggest that at least one factor in Huh7 cells required for HCV RNA replication is limiting and saturable.
Collapse
Affiliation(s)
- Matthew J Evans
- Integrated Program in Cellular, Molecular, and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
76
|
Abstract
The Kunjin virus (KUNV) has provided a useful laboratory model for Flavivirus RNA replication. The synthesis of progeny RNA(+) strands occurs via asymmetric and semiconservative replication on a template of recycling double-stranded RNA (dsRna) or replicative form (RF). Kinetics of viral RNA synthesis indicated a cycle period of about 15 min during which, on average, a single nascent RNA (+) strand displaces the pre-existing RNA(+) strand in the replicative intermediate. Data on the composition of the replication complex (RC) in KUNV-infected cells were obtained from several sources, including analyses of the partially-purified still active RC, immunogold labeling of cryosections using monospecific antibodies to the nonstructural proteins and to the dsRNA, radioimmunoprecipitations of cell lysates using antibodies to dsRNA and to an RC-associated cell marker, and pull-down assays of cell lysates using fusion proteins GST-NS2A and GST-NS4A. These results yeilded a consensus composition of NS1, NS2A, NS3, NS4A, and NS5 strongly associated with the dsRNA template. The RC was located in induced membranes described as vesicle packets. The RNA-dependent RNA polymerase activity late in infection did not require continuing protein synthesis. Replication of genomic RNA was completely dependent on the presence of conserved complementary or cyclization sequences near the 5' and 3' ends. Assembly of the RC during translation in cis and the relationships, particularly those of NS1 and NS5 among the components, were deduced from an extensive set of complementation experiments in trans involving mutations/deletions in all the nonstructural proteins and use of KUN or alphahavirus replicons as helpers. The KUN replicon has found useful applications also as a noncytopathic vector for the continuing expression of foreign genes, delivered either as packaged RNA or as plasmid DNA.
Collapse
Affiliation(s)
- Edwin G Westaway
- Clinical Medical Virology Center-University of Queensland, Sir Albert Sakzewski Virus Research Center, Royal Children's Hospital, Herston, Brisbane, Australia
| | | | | |
Collapse
|
77
|
Affiliation(s)
- Brett D Lindenbach
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
78
|
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally also infects humans and horses. In recent years, the frequency of WNV outbreaks in humans has increased, and these outbreaks have been associated with a higher incidence of severe disease. In 1999, the geographical distribution of WNV expanded to the Western hemisphere. WNV has a positive strand RNA genome of about 11 kb that encodes a single polyprotein. WNV replicates in the cytoplasm of infected cells. Although there are still many questions to be answered, a large body of data on the molecular biology of WNV and other flaviviruses has already been obtained. Aspects of virion structure, the viral replication cycle, viral protein function, genome structure, conserved viral elements, host factors, virus-host interactions, and vaccines are discussed in this review.
Collapse
Affiliation(s)
- Margo A Brinton
- Department of Biology, Georgia State University, Atlanta 30303, USA.
| |
Collapse
|
79
|
dos Santos CND, Rocha CFS, Cordeiro M, Fragoso SP, Rey F, Deubel V, Desprès P. Genome analysis of dengue type-1 virus isolated between 1990 and 2001 in Brazil reveals a remarkable conservation of the structural proteins but amino acid differences in the non-structural proteins. Virus Res 2002; 90:197-205. [PMID: 12457974 DOI: 10.1016/s0168-1702(02)00180-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the genetic diversity of dengue type-1 (DEN-1) virus in Brazil. The full nucleotide sequences of three DEN-1 virus isolated from DEN fever (DF) and DEN hemorrhagic fever patients in northeastern Brazil in 1997 (BR/97) and one from a DF patient in the south of Brazil in 2001 (BR/01) were compared to that of the reference strain BR/90 obtained in the city of Rio de Janeiro in 1990. Sequence analysis showed that the structural proteins were remarkably conserved between all isolates. A total of 27 amino acid changes occurred throughout the non-structural proteins. Among them, nine amino acid substitutions were specific of BR/97 and BR/01 isolates, indicating that in situ evolution of these strains had occurred. Within the BR/97 and BR/01 samples, some amino acid substitutions have been previously identified in DEN-1 virus strains sequenced so far, suggesting that recombination events might have occurred.
Collapse
|
80
|
Liu WJ, Sedlak PL, Kondratieva N, Khromykh AA. Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J Virol 2002; 76:10766-75. [PMID: 12368319 PMCID: PMC136631 DOI: 10.1128/jvi.76.21.10766-10775.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported successful trans-complementation of defective Kunjin virus genomic RNAs with a range of large lethal deletions in the nonstructural genes NS1, NS3, and NS5 (A. A. Khromykh et al., J. Virol. 74:3253-3263, 2000). In this study we have mapped further the minimal region in the NS5 gene essential for efficient trans-complementation of genome-length RNAs in repBHK cells to the first 316 of the 905 codons. To allow amplification and easy detection of complemented defective RNAs with deletions apparently affecting virus assembly, we have developed a dual replicon complementation system. In this system defective replicon RNAs with a deletion(s) in the nonstructural genes also encoded the puromycin resistance gene (PAC gene) and the reporter gene for beta-galactosidase (beta-Gal). Complementation of these defective replicon RNAs in repBHK cells resulted in expression of PAC and beta-Gal which allowed establishment of cell lines stably producing replicating defective RNAs by selection with puromycin and comparison of replication efficiencies of complemented defective RNAs by beta-Gal assay. Using this system we demonstrated that deletions in the C-terminal 434 codons of NS3 (codons 178 to 611) were complemented for RNA replication, while any deletions in the first 178 codons were not. None of the genome-length RNAs containing deletions in NS3 shown to be complementable for RNA replication produced secreted defective viruses during complementation in repBHK cells. In contrast, structural proteins produced from these complemented defective RNAs were able to package helper replicon RNA. The results define minimal regions in the NS3 and NS5 genes essential for the formation of complementable replication complex and show a requirement of NS3 in cis for virus assembly.
Collapse
Affiliation(s)
- Wen Jun Liu
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, and Clinical Medical Virology Centre, University of Queensland, Brisbane, Queensland 4029, Australia
| | | | | | | |
Collapse
|
81
|
Ortego J, Escors D, Laude H, Enjuanes L. Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. J Virol 2002; 76:11518-29. [PMID: 12388713 PMCID: PMC136772 DOI: 10.1128/jvi.76.22.11518-11529.2002] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication-competent propagation-deficient virus vectors based on the transmissible gastroenteritis coronavirus (TGEV) genome that are deficient in the essential E gene have been developed by complementation within E(+) packaging cell lines. Cell lines expressing the TGEV E protein were established using the noncytopathic Sindbis virus replicon pSINrep21. In addition, cell lines stably expressing the E gene under the CMV promoter have been developed. The Sindbis replicon vector and the ectopic TGEV E protein did not interfere with the rescue of infectious TGEV from full-length cDNA. Recombinant TGEV deficient in the nonessential 3a and 3b genes and the essential E gene (rTGEV-Delta3abDeltaE) was successfully rescued in these cell lines. rTGEV-Delta3abDeltaE reached high titers (10(7) PFU/ml) in baby hamster kidney cells expressing porcine aminopeptidase N (BHK-pAPN), the cellular receptor for TGEV, using Sindbis replicon and reached titers up to 5 x 10(5) PFU/ml in cells stably expressing E protein under the control of the CMV promoter. The virus titers were proportional to the E protein expression level. The rTGEV-Delta3abDeltaE virions produced in the packaging cell line showed the same morphology and stability under different pHs and temperatures as virus derived from the full-length rTGEV genome, although a delay in virus assembly was observed by electron microscopy and virus titration in the complementation system in relation to the wild-type virus. These viruses were stably grown for >10 passages in the E(+) packaging cell lines. The availability of packaging cell lines will significantly facilitate the production of safe TGEV-derived vectors for vaccination and possibly gene therapy.
Collapse
Affiliation(s)
- Javier Ortego
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
82
|
Westaway EG, Mackenzie JM, Khromykh AA. Replication and gene function in Kunjin virus. Curr Top Microbiol Immunol 2002; 267:323-51. [PMID: 12082996 DOI: 10.1007/978-3-642-59403-8_16] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- E G Westaway
- Clinical Medical Virology Centre (University of Queensland), Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston Road, Herston, Queensland 4029, Australia
| | | | | |
Collapse
|
83
|
Blitvich BJ, Scanlon D, Shiell BJ, Mackenzie JS, Pham K, Hall RA. Determination of the intramolecular disulfide bond arrangement and biochemical identification of the glycosylation sites of the nonstructural protein NS1 of Murray Valley encephalitis virus. J Gen Virol 2001; 82:2251-2256. [PMID: 11514736 DOI: 10.1099/0022-1317-82-9-2251] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 12 cysteine residues in the flavivirus NS1 protein are strictly conserved, suggesting that they form disulfide bonds that are critical for folding the protein into a functional structure. In this study, we examined the intramolecular disulfide bond arrangement of NS1 of Murray Valley encephalitis virus and elucidated three of the six cysteine-pairing arrangements. Disulfide linkages were identified by separating tryptic-digested NS1 by reverse-phase high pressure liquid chromatography and analysing the resulting peptide peaks by protein sequencing, amino acid analysis and/or electrospray mass spectrometry. The pairing arrangements between the six amino-terminal cysteines were identified as follows: Cys(4)-Cys(15), Cys(55)-Cys(143) and Cys(179)-Cys(223). Although the pairing arrangements between the six carboxy-terminal cysteines were not determined, we were able to eliminate several cysteine-pairing combinations. Furthermore, we demonstrated that all three putative N-linked glycosylation sites of NS1 are utilized and that the Asn(207) glycosylation site contains a mannose-rich glycan.
Collapse
Affiliation(s)
- Bradley J Blitvich
- Department of Microbiology, The University of Western Australia, QE-II Medical Centre, Nedlands 6907, Australia1
| | - Denis Scanlon
- Protein Biochemistry, Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong 3220, Australia2
| | - Brian J Shiell
- Protein Biochemistry, Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong 3220, Australia2
| | - John S Mackenzie
- Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia3
- Department of Microbiology, The University of Western Australia, QE-II Medical Centre, Nedlands 6907, Australia1
| | - Kim Pham
- Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia3
| | - Roy A Hall
- Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia3
- Department of Microbiology, The University of Western Australia, QE-II Medical Centre, Nedlands 6907, Australia1
| |
Collapse
|
84
|
Hurrelbrink RJ, McMinn PC. Attenuation of Murray Valley encephalitis virus by site-directed mutagenesis of the hinge and putative receptor-binding regions of the envelope protein. J Virol 2001; 75:7692-702. [PMID: 11462041 PMCID: PMC115004 DOI: 10.1128/jvi.75.16.7692-7702.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2001] [Accepted: 05/16/2001] [Indexed: 11/20/2022] Open
Abstract
Molecular determinants of virulence in flaviviruses cluster in two regions on the three-dimensional structure of the envelope (E) protein; the base of domain II, believed to serve as a hinge during pH-dependent conformational change in the endosome, and the lateral face of domain III, which contains an integrin-binding motif Arg-Gly-Asp (RGD) in mosquito-borne flaviviruses and is believed to form the receptor-binding site of the protein. In an effort to better understand the nature of attenuation caused by mutations in these two regions, a full-length infectious cDNA clone of Murray Valley encephalitis virus prototype strain 1-51 (MVE-1-51) was employed to produce a panel of site-directed mutants with substitutions at amino acid positions 277 (E-277; hinge region) or 390 (E-390; RGD motif). Viruses with mutations at E-277 (Ser-->Ile, Ser-->Asn, Ser-->Val, and Ser-->Pro) showed various levels of in vitro and in vivo attenuation dependent on the level of hydrophobicity of the substituted amino acid. Altered hemagglutination activity observed for these viruses suggests that mutations in the hinge region may indirectly disrupt the receptor-ligand interaction, possibly by causing premature release of the virion from the endosomal membrane prior to fusion. Similarly, viruses with mutations at E-390 (Asp-->Asn, Asp-->Glu, and Asp-->Tyr) were also attenuated in vitro and in vivo; however, the absorption and penetration rates of these viruses were similar to those of wild-type virus. This, coupled with the fact that E-390 mutant viruses were only moderately inhibited by soluble heparin, suggests that RGD-dependent integrin binding is not essential for entry of MVE and that multiple and/or alternate receptors may be involved in cell entry.
Collapse
Affiliation(s)
- R J Hurrelbrink
- Department of Microbiology, University of Western Australia, Nedlands, Western Australia 6907, Australia.
| | | |
Collapse
|
85
|
Khromykh AA, Meka H, Guyatt KJ, Westaway EG. Essential role of cyclization sequences in flavivirus RNA replication. J Virol 2001; 75:6719-28. [PMID: 11413342 PMCID: PMC114398 DOI: 10.1128/jvi.75.14.6719-6728.2001] [Citation(s) in RCA: 300] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A possible role in RNA replication for interactions between conserved complementary (cyclization) sequences in the 5'- and 3'-terminal regions of Flavivirus RNA was previously suggested but never tested in vivo. Using the M-fold program for RNA secondary-structure predictions, we examined for the first time the base-pairing interactions between the covalently linked 5' genomic region (first ~160 nucleotides) and the 3' untranslated region (last ~115 nucleotides) for a range of mosquito-borne Flavivirus species. Base-pairing occurred as predicted for the previously proposed conserved cyclization sequences. In order to obtain experimental evidence of the predicted interactions, the putative cyclization sequences (5' or 3') in the replicon RNA of the mosquito-borne Kunjin virus were mutated either separately, to destroy base-pairing, or simultaneously, to restore the complementarity. None of the RNAs with separate mutations in only the 5' or only the 3' cyclization sequences was able to replicate after transfection into BHK cells, while replicon RNA with simultaneous compensatory mutations in both cyclization sequences was replication competent. This was detected by immunofluorescence for expression of the major nonstructural protein NS3 and by Northern blot analysis for amplification and accumulation of replicon RNA. We then used the M-fold program to analyze RNA secondary structure of the covalently linked 5'- and 3'-terminal regions of three tick-borne virus species and identified a previously undescribed additional pair of conserved complementary sequences in locations similar to those of the mosquito-borne species. They base-paired with DeltaG values of approximately -20 kcal, equivalent or greater in stability than those calculated for the originally proposed cyclization sequences. The results show that the base-pairing between 5' and 3' complementary sequences, rather than the nucleotide sequence per se, is essential for the replication of mosquito-borne Kunjin virus RNA and that more than one pair of cyclization sequences might be involved in the replication of the tick-borne Flavivirus species.
Collapse
Affiliation(s)
- A A Khromykh
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, University of Queensland, Herston Rd., Herston, Brisbane, QLD 4029, Australia.
| | | | | | | |
Collapse
|
86
|
Khromykh AA, Varnavski AN, Sedlak PL, Westaway EG. Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J Virol 2001; 75:4633-40. [PMID: 11312333 PMCID: PMC114216 DOI: 10.1128/jvi.75.10.4633-4640.2001] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In order to study whether flavivirus RNA packaging is dependent on RNA replication, we generated two DNA-based Kunjin virus constructs, pKUN1 and pKUN1dGDD, allowing continuous production of replicating (wild-type) and nonreplicating (with a deletion of the NS5 gene RNA-polymerase motif GDD) full-length Kunjin virus RNAs, respectively, via nuclear transcription by cellular RNA polymerase II. As expected, transfection of pKUN1 plasmid DNA into BHK cells resulted in the recovery of secreted infectious Kunjin virions. Transfection of pKUN1dGDD DNA into BHK cells, however, did not result in the recovery of any secreted virus particles containing encapsidated dGDD RNA, despite an apparent accumulation of this RNA in cells demonstrated by Northern blot analysis and its efficient translation demonstrated by detection of correctly processed labeled structural proteins (at least prM and E) both in cells and in the culture fluid using coimmunoprecipitation analysis with anti-E antibodies. In contrast, when dGDD RNA was produced even in much smaller amounts in pKUN1dGDD DNA-transfected repBHK cells (where it was replicated via complementation), it was packaged into secreted virus particles. Thus, packaging of defective Kunjin virus RNA could occur only when it was replicated. Our results with genome-length Kunjin virus RNA and the results with poliovirus replicon RNA (C. I. Nugent et al., J. Virol. 73:427-435, 1999), both demonstrating the necessity for the RNA to be replicated before it can be packaged, strongly suggest the existence of a common mechanism for minimizing amplification and transmission of defective RNAs among the quasispecies in positive-strand RNA viruses. This mechanism may thus help alleviate the high-copy error rate of RNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- A A Khromykh
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Australia.
| | | | | | | |
Collapse
|
87
|
Guyatt KJ, Westaway EG, Khromykh AA. Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. J Virol Methods 2001; 92:37-44. [PMID: 11164916 DOI: 10.1016/s0166-0934(00)00270-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The NS5 protein of the flavivirus Kunjin (KUN) contains conserved sequence motifs characteristic of RNA-dependent RNA polymerase (RdRp) activity. To investigate this activity in vitro, recombinant NS5 proteins with C-terminal (NS5CHis) and N-terminal (NS5NHis) hexahistidine tags were produced in baculovirus-infected insect cells and purified to near homogeneity by nickel affinity chromatography. Purified NS5CHis exhibited RdRp activity with both specific (9 kb KUN replicon) and non-specific (8.3 kb Semliki Forest virus replicon) RNA templates; this activity did not require the presence of additional viral and/or cellular cofactors. RdRp activity of purified NS5NHis protein was reduced in comparison to NS5CHis, while purified NS5NHis incorporating a GDD-->GVD mutation within the polymerase active site (NS5GVD) lacked RdRp activity. RNase A digestion of the RdRp reaction products indicated that they were double-stranded and of a similar size to the KUN replicative form produced in Vero cells, thus demonstrating that the KUN NS5 protein has an intrinsic, albeit low and non-specific RdRp activity in vitro, similar to that reported for recombinant RdRp of other flaviviruses. However, in contrast to RNA polymerases of other Flavivirus species, purified KUN NS5 polymerase produced a single, full-length replicon RNA product, thus demonstrating efficient processivity.
Collapse
Affiliation(s)
- K J Guyatt
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Australia
| | | | | |
Collapse
|
88
|
Mackenzie JM, Khromykh AA, Westaway EG. Stable expression of noncytopathic Kunjin replicons simulates both ultrastructural and biochemical characteristics observed during replication of Kunjin virus. Virology 2001; 279:161-72. [PMID: 11145899 DOI: 10.1006/viro.2000.0691] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This report focuses mainly on the characterization of a Vero cell line stably expressing the flavivirus Kunjin (KUN) replicon C20SDrep (C20SDrepVero). We showed by immunofluorescence and cryoimmunoelectron microscopy that unique flavivirus-induced membrane structures, termed convoluted membranes/paracrystalline structures, were induced in the C20SDrepVero cells. These induced cytoplasmic foci were immunolabeled with KUN virus anti-NS3 antibodies and with antibodies to the cellular markers ERGIC53 (for the intermediate compartment) and protein disulfide isomerase (for the rough endoplasmic reticulum). However, in contrast to the large perinuclear inclusions observed by immunofluorescence with anti-double-stranded (ds)RNA antibodies in KUN virus-infected cells, the dsRNA in C20SDrepVero cells was localized to small isolated foci scattered throughout the cytoplasm, which were coincident with small foci dual-labeled with the trans-Golgi specific marker GalT. Importantly, persistent expression of the KUN replicons in cells did not produce cytopathic effects, and the morphology of major host organelles (including Golgi, mitochondria, endoplasmic reticulum, and nucleus) was apparently unaffected. The amounts of plus- and minus-sense RNA synthesis in replicon cells were similar to those in KUN virus-infected cells until near the end of the latent period, but subsequently increases of about 10- and fourfold, respectively, occurred in infected cells. Virus-specified protein synthesis in C20SDrepVero cells was also about 10-fold greater than that in infected cells. When several KUN replicon cell lines were compared with respect to membrane induction, the relative efficiencies increased in parallel with increases in viral RNA and protein synthesis, consistent with the increases observed during the virus infectious cycle. Based on these observations, cell lines expressing less-efficient replicons may provide a useful tool to study early events in flavivirus RNA replication, which are difficult to assess in virus infections.
Collapse
Affiliation(s)
- J M Mackenzie
- Clinical Medical Virology Centre, University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia.
| | | | | |
Collapse
|
89
|
Duarte dos Santos CN, Frenkiel MP, Courageot MP, Rocha CF, Vazeille-Falcoz MC, Wien MW, Rey FA, Deubel V, Desprès P. Determinants in the envelope E protein and viral RNA helicase NS3 that influence the induction of apoptosis in response to infection with dengue type 1 virus. Virology 2000; 274:292-308. [PMID: 10964773 DOI: 10.1006/viro.2000.0457] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One mechanism by which dengue (DEN) virus may cause cell death is apoptosis. In this study, we investigated whether the genetic determinants responsible for acquisition by DEN type 1 (DEN-1) virus of mouse neurovirulence interfere with the induction of apoptosis. Neurovirulent variant FGA/NA d1d was generated during the adaptation of the human isolate of DEN-1 virus strain FGA/89 to grow in newborn mouse brains and mosquito cells in vitro [Desprès, P. Frenkiel, M. -P. Ceccaldi, P.-E. Duarte Dos Santos, C. and Deubel, V. (1998) J. Virol., 72: 823-829]. Genetic determinants possibly responsible for mouse neurovirulence were studied by sequencing the entire genomes of both DEN-1 viruses. Three amino acid differences in the envelope E protein and one in the nonstructural NS3 protein were found. The cytotoxicity of the mouse-neurovirulent DEN-1 variant was studied in different target cells in vitro and compared with the parental strain. FGA/NA d1d was more pathogenic for mouse neuroblastoma cells and attenuated for human hepatoma cells. Changes in virus replicative functions and virus assembly may account, in a large part, for the differences in the induction of apoptosis. Our data suggest that identified amino acid substitutions in the envelope E protein and viral RNA helicase NS3 may influence DEN-1 virus pathogenicity by altering viral growth.
Collapse
Affiliation(s)
- C N Duarte dos Santos
- Departmento de Bioquimica e Biologia Molecular, Laboratorio de Expressao e Regulaçao Genica, Rio de Janeiro, R.J., Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Most of the seven flavivirus nonstructural proteins (NS1 to NS5) encoded in the distal two-thirds of the RNA positive-sense genome are believed to be essential components of RNA replication complexes. To explore the functional relationships of these components in RNA replication, we used trans-complementation analysis of full-length infectious RNAs of Kunjin (KUN) virus with a range of lethal in-frame deletions in the nonstructural coding region, using as helper a repBHK cell line stably producing functional replication complexes from KUN replicon RNA. Recently we showed that replication of KUN RNAs with large carboxy-terminal deletions including the entire RNA polymerase region in the NS5 gene, representing 34 to 75% of the NS5 coding content, could be complemented after transfection into repBHK cells. In this study we have demonstrated that KUN RNAs with deletions of 84 to 97% of the NS1 gene, or of 13 to 63% of the NS3 gene including the entire helicase region, were also complemented in repBHK cells with variable efficiencies. In contrast, KUN RNAs with deletions in any of the other four nonstructural genes NS2A, NS2B, NS4A, and NS4B were not complemented. We have also demonstrated successful trans complementation of KUN RNAs containing either combined double deletions in the NS1 and NS5 genes or triple deletions in the NS1, NS3, and NS5 genes comprising as much as 38% of the entire nonstructural coding content. Based on these and our previous complementation results, we have generated a map of cis- and trans-acting elements in RNA replication for the nonstructural coding region of the flavivirus genome. These results are discussed in the context of our model on formation and composition of the flavivirus replication complex, and we suggest molecular mechanisms by which functions of some defective components of the replication complex can be complemented by their wild-type counterparts expressed from another (helper) RNA molecule.
Collapse
Affiliation(s)
- A A Khromykh
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland 4029, Australia.
| | | | | |
Collapse
|