51
|
Zhang B, Morace G, Gauss-Müller V, Kusov Y. Poly(A) binding protein, C-terminally truncated by the hepatitis A virus proteinase 3C, inhibits viral translation. Nucleic Acids Res 2007; 35:5975-84. [PMID: 17726047 PMCID: PMC2034478 DOI: 10.1093/nar/gkm645] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 12/30/2022] Open
Abstract
Proteolytic cleavage of translation initiation factors is a means to interfere with mRNA circularization and to induce translation arrest during picornaviral replication or apoptosis. It was shown that the regulated cleavages of eukaryotic initiation factor (eIF) 4G and poly(A)-binding protein (PABP) by viral proteinases correlated with early and late arrest of host cap-dependent and viral internal ribosome entry site (IRES)-dependent translation, respectively. Here we show that in contrast to coxsackievirus, eIF4G is not a substrate of proteinase 3C of hepatitis A virus (HAV 3C(pro)). However, PABP is cleaved by HAV 3C(pro) in vitro and in vivo, separating the N-terminal RNA-binding domain (NTD) of PABP from the C-terminal protein-interaction domain. In vitro, NTD has a dominant negative effect on HAV IRES-dependent translation and an enhanced binding affinity to the RNA structural element pY1 in the 5' nontranslated region of the HAV RNA that is essential for viral genome replication. The results point to a regulatory role of PABP cleavage in RNA template switching of viral translation to RNA synthesis.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Medical Molecular Biology, University of Lübeck, Germany and Istituto Superiore di Sanita, Rome, Italy
| | - Graziella Morace
- Institute of Medical Molecular Biology, University of Lübeck, Germany and Istituto Superiore di Sanita, Rome, Italy
| | - Verena Gauss-Müller
- Institute of Medical Molecular Biology, University of Lübeck, Germany and Istituto Superiore di Sanita, Rome, Italy
| | - Yuri Kusov
- Institute of Medical Molecular Biology, University of Lübeck, Germany and Istituto Superiore di Sanita, Rome, Italy
| |
Collapse
|
52
|
Kim S, Lee J, Kim J. Regulation of oncogenic transcription factor hTAF(II)68-TEC activity by human glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem J 2007; 404:197-206. [PMID: 17302560 PMCID: PMC1868794 DOI: 10.1042/bj20061297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumour-specific chromosomal rearrangements are known to create chimaeric products with the ability to generate many human cancers. hTAF(II)68-TEC (where hTAF(II)68 is human TATA-binding protein-associated factor II 68 and TEC is translocated in extraskeletal chondrosarcoma) is such a fusion product, resulting from a t(9;17) chromosomal translocation found in extraskeletal myxoid chondrosarcomas, where the hTAF(II)68 NTD (N-terminal domain) is fused to TEC protein. To identify proteins that control hTAF(II)68-TEC function, we used affinity chromatography on immobilized hTAF(II)68 (NTD) and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS and isolated a novel hTAF(II)68-TEC-interacting protein, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). GAPDH is a glycolytic enzyme that is also involved in the early steps of apoptosis, nuclear tRNA export, DNA replication, DNA repair and transcription. hTAF(II)68-TEC and GAPDH were co-immunoprecipitated from cell extracts, and glutathione S-transferase pull-down assays revealed that the C-terminus of hTAF(II)68 (NTD) was required for interaction with GAPDH. In addition, three independent regions of GAPDH (amino acids 1-66, 67-160 and 160-248) were involved in binding to hTAF(II)68 (NTD). hTAF(II)68-TEC-dependent transcription was enhanced by GAPDH, but not by a GAPDH mutant defective in hTAF(II)68-TEC binding. Moreover, a fusion of GAPDH with the GAL4 DNA-binding domain increased the promoter activity of a reporter containing GAL4 DNA-binding sites, demonstrating the presence of a transactivation domain(s) in GAPDH. The results of the present study suggest that the transactivation potential of the hTAF(II)68-TEC oncogene product is positively modulated by GAPDH.
Collapse
Affiliation(s)
- Sol Kim
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jungwoon Lee
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jungho Kim
- Department of Life Science, Sogang University, Seoul 121-742, Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
53
|
Biological targets for isatin and its analogues: Implications for therapy. Biologics 2007; 1:151-62. [PMID: 19707325 PMCID: PMC2721300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Isatin and its metabolites are constituents of many natural substances. They are also components of many synthetic compounds exhibiting a wide range of effects, including antiviral activity, antitumor and antiangiogenic activity, antibacterial, antitubercular, antifungal, antiaptotic, anticonvulsant and anxyolytic activities. Isatin itself is an endogenous oxidized indole with a wide spectrum of behavioral and metabolic effects. It has a distinct and discontinuous distribution in the brain, peripheral tissues and body fluids and isatin binding sites are widely distributed also. Its output is increased during stress. Its most potent known in vitro actions are as an antagonist of atrial natriuretic peptide (ANP) function and NO signaling. As we understand more about its function and sites of action we may be able to develop new pharmacological agents to mimic or counteract its activity. We consider here the most promising biological targets for various isatin analogues and/or metabolites, which are employed for the development of various groups of therapeutics. It is also possible that the level of endogenous isatin may influence the in vivo pharmacological activity of compounds possessing the isatin moiety.
Collapse
|
54
|
Medvedev A, Buneeva O, Gnedenko O, Fedchenko V, Medvedeva M, Ivanov Y, Glover V, Sandler M. Isatin interaction with glyceraldehyde-3-phosphate dehydrogenase, a putative target of neuroprotective drugs: partial agonism with deprenyl. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:97-103. [PMID: 17447420 DOI: 10.1007/978-3-211-33328-0_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is evidence that the binding of deprenyl, a monoamine oxidase (MAO) B inhibitor, and other propargylamines to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is primarily responsible for their neuroprotective and antiapoptotic effects. Thus, GAPDH may be a target for other neuroprotective drugs. Using two independent approaches, radioligand analysis and an optical biosensor technique, we demonstrate here that GAPDH also interacts with the endogenous, reversible MAO B inhibitor, isatin. Deprenyl inhibited both [3H]isatin binding to GAPDH, and the binding of this enzyme to an isatin analogue, 5-aminoisatin, immobilized on to an optical biosensor cell. Another MAO inhibitor, tranylcypromine, was ineffective. Both deprenyl and isatin inhibited GAPDH-mediated cleavage of E. coli tRNA, and their effects were not additive. We suggest that isatin may be an endogenous partial functional agonist of deprenyl in its effect on GAPDH and GAPDH-mediated RNA cleavage. Changes in level of endogenous isatin may influence the neuroprotective effect of deprenyl in vivo.
Collapse
Affiliation(s)
- A Medvedev
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Carujo S, Estanyol JM, Ejarque A, Agell N, Bachs O, Pujol MJ. Glyceraldehyde 3-phosphate dehydrogenase is a SET-binding protein and regulates cyclin B-cdk1 activity. Oncogene 2006; 25:4033-42. [PMID: 16474839 DOI: 10.1038/sj.onc.1209433] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts in vitro and in vivo with the protein SET. This interaction is performed through the acidic domain of SET located at the carboxy terminal region. On analysing the functional relevance of SET-GAPDH interaction, we observed that GAPDH reverses in a dose-dependent manner, the inhibition of cyclin B-cdk1 activity produced by SET. Similarly to SET, GAPDH associates with cyclin B, suggesting that the regulation of cyclin B-cdk1 activity might be mediated not only by the interaction of GAPDH with SET but also with cyclin B. To analyse the putative role of GAPDH on cell cycle progression, HCT116 cells were transfected with a GAPDH expression vector. Results indicate that overexpression of GAPDH does not affect the timing of DNA replication but induces an increase in the number of mitosis, an advancement of the peak of cyclin B-cdk1 activity and an acceleration of cell cycle progression. All these results suggest that GAPDH might be involved in cell cycle regulation by modulating cyclin B-cdk1 activity.
Collapse
Affiliation(s)
- S Carujo
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
56
|
|
57
|
Jang SK. Internal initiation: IRES elements of picornaviruses and hepatitis c virus. Virus Res 2005; 119:2-15. [PMID: 16377015 DOI: 10.1016/j.virusres.2005.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 08/29/2005] [Accepted: 11/02/2005] [Indexed: 02/08/2023]
Abstract
The scanning hypothesis provides an explanation for events preceding the first peptide bond formation during the translation of the vast majority of eukaryotic mRNAs. However, this hypothesis does not explain the translation of eukaryotic mRNAs lacking the cap structure required for scanning. The existence of a group of positive sense RNA viruses lacking cap structures (e.g. picornaviruses) indicates that host cells also contain a 5' cap-independent translation mechanism. This review discusses the translation mechanisms of atypical viral mRNAs such as picornaviruses and hepatitis c virus, and uses these mechanisms to propose a general theme for all translation, including that of both eukaryotic and prokaryotic mRNAs.
Collapse
Affiliation(s)
- Sung Key Jang
- NRL, PBC, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.
| |
Collapse
|
58
|
Schepens B, Tinton SA, Bruynooghe Y, Beyaert R, Cornelis S. The polypyrimidine tract-binding protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. Nucleic Acids Res 2005; 33:6884-94. [PMID: 16396835 PMCID: PMC1310900 DOI: 10.1093/nar/gki1000] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 11/16/2005] [Indexed: 01/12/2023] Open
Abstract
When oxygen supply is restricted, protein synthesis is rapidly abrogated owing to inhibition of global translation. However, HIF-1alpha protein expression can persist during hypoxia, owing to an internal ribosome entry site (IRES) in the 5'-untranslated region of its mRNA. Here, we report on the molecular mechanism of HIF-1alpha IRES-mediated translation during oxygen deprivation. Using RNA affinity chromatography and UV-crosslinking experiments, we show that the polypyrimidine tract binding protein (PTB) can specifically interact with the HIF-1alpha IRES, and that this interaction is enhanced in hypoxic conditions. Overexpression of PTB enhanced HIF-1alpha IRES activity, whereas RNA interference-mediated downregula-tion of PTB protein expression inhibited HIF-1alpha IRES activity. Furthermore, hypoxia-induced stimulation of the HIF-1alpha IRES was reduced in cells in which PTB function was downregulated. In agreement with these results, the IRES activity of HIF-1alpha IRES deletion mutants that are deficient in PTB-binding could not be stimulated by oxygen deprivation. All together, our data suggest that PTB plays a stimulatory role in the IRES-mediated translation of HIF-1alpha when oxygen supply is limited.
Collapse
Affiliation(s)
- Bert Schepens
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Sandrine A. Tinton
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Yanik Bruynooghe
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Rudi Beyaert
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Sigrid Cornelis
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| |
Collapse
|
59
|
Kanda T, Yokosuka O, Imazeki F, Fujiwara K, Nagao K, Saisho H. Amantadine inhibits hepatitis A virus internal ribosomal entry site-mediated translation in human hepatoma cells. Biochem Biophys Res Commun 2005; 331:621-9. [PMID: 15850805 DOI: 10.1016/j.bbrc.2005.03.212] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Indexed: 12/30/2022]
Abstract
The effect of six drugs (amantadine, glycyrrhizin, ribavirin, ursodeoxycholic acid, alcohol, and IFN) on HAV RNA translation from the HAV internal ribosomal entry site (IRES) was investigated using a bicistronic reporter construct containing HAV IRES as intragenic spacer. Huh-7 cells and derivatives were transfected with in vitro transcripts, and the reporter gene activity was determined. IFN suppressed both cap-dependent and HAV IRES-dependent translation, while amantadine specifically inhibited HAV IRES-dependent translation. In contrast to IFN, by reporter assay, amantadine did not activate the interferon-stimulated response element (ISRE) or interferon gamma-activated sequence (GAS)-associated pathways. Immunoblot analysis revealed that amantadine had no effect on PKR and on IFN-regulatory factor-1 (IRF-1) expression. These findings demonstrated a novel antiviral effect of amantadine against HAV with or without HCV infection.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Safety and Health Organization, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | |
Collapse
|
60
|
Kanda T, Zhang B, Kusov Y, Yokosuka O, Gauss-Müller V. Suppression of hepatitis A virus genome translation and replication by siRNAs targeting the internal ribosomal entry site. Biochem Biophys Res Commun 2005; 330:1217-23. [PMID: 15823573 DOI: 10.1016/j.bbrc.2005.03.105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Indexed: 12/30/2022]
Abstract
Small interfering RNAs (siRNAs) targeting the coding region of hepatitis A virus (HAV) were shown to specifically inhibit viral genome replication. Compared to the coding region, the HAV internal ribosomal entry site (IRES) in the 5' non-coding region is highly sequence-conserved and folds into stable secondary structures. Here, we report efficient and sustained RNA interference mediated by both RNase III-prepared siRNA (esiRNA) and vector-derived short hairpin RNAs (shRNAs) that are targeted to various domains of the HAV IRES. Using reporter constructs, and the DNA-based HAV replicon system, we found that shRNAs targeting the HAV IRES domains IIIc and V sustainably suppressed genome translation and replication whereas the IRES domains IIIa and IV were resistant to RNA interference. Our study suggests that some HAV IRES domains might be used as a universal and effective target for specific inhibition of HAV infection.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | | | | | | | | |
Collapse
|
61
|
Ikegami T, Peters CJ, Makino S. Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system. J Virol 2005; 79:5606-15. [PMID: 15827175 PMCID: PMC1082746 DOI: 10.1128/jvi.79.9.5606-5615.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-alpha/beta) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-alpha/beta production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis.
Collapse
Affiliation(s)
- Tetsuro Ikegami
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | | | | |
Collapse
|
62
|
Chuang DM, Hough C, Senatorov VV. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2005; 45:269-90. [PMID: 15822178 DOI: 10.1146/annurev.pharmtox.45.120403.095902] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increasing evidence supports the notion that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a protein with multiple functions, including its surprising role in apoptosis. GAPDH is overexpressed and accumulates in the nucleus during apoptosis induced by a variety of insults in diverse cell types. Knockdown of GAPDH using an antisense strategy demonstrates its involvement in the apoptotic cascade in which GAPDH nuclear translocation appears essential. Knowledge concerning the mechanisms underlying GAPDH nuclear translocation and subsequent cell death is growing. Additional evidence suggests that GAPDH may be an intracellular sensor of oxidative stress during early apoptosis. Abnormal expression, nuclear accumulation, changes in physical properties, and loss of glycolytic activity of GAPDH have been found in cellular and transgenic models as well as postmortem tissues of several neurodegenerative diseases. The interaction of GAPDH with disease-related proteins as well as drugs used to treat these diseases suggests that it is a potential molecular target for drug development.
Collapse
Affiliation(s)
- De-Maw Chuang
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1363, USA.
| | | | | |
Collapse
|
63
|
Vazquez-Pianzola P, Urlaub H, Rivera-Pomar R. Proteomic analysis of reaper 5' untranslated region-interacting factors isolated by tobramycin affinity-selection reveals a role for La antigen in reaper mRNA translation. Proteomics 2005; 5:1645-55. [PMID: 15789343 DOI: 10.1002/pmic.200401045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Translational control is a key step in gene expression regulation during apoptosis. To understand the mechanisms of mRNA translation of a pro-apoptotic gene, reaper (rpr), we adapted the tobramycin-aptamer technique described by Hartmuth et al. (Proc. Natl. Acad. Sci. USA 2002, 99, 16719-16724) for the analysis of proteins interacting with rpr 5' untranslated region (UTR). We assembled ribonucleoprotein complexes in vitro using translation extracts derived from Drosophila embryos and purified the RNA-protein complexes for mas spectrometry analysis. We identified the proteins bound to the 5' UTR of rpr. One of them, the La antigen, was validated by RNA-crosslinking experiments using recombinant protein and by the translation efficiency of reporter mRNAs in Drosophila cells after RNAinterference experiments. Our data provide evidence of the involvement of La antigen in the translation of rpr and set a protocol for purification of tagged-RNA-protein complexes from cytoplasmic extracts.
Collapse
Affiliation(s)
- Paula Vazquez-Pianzola
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
64
|
Angenstein F, Evans AM, Ling SC, Settlage RE, Ficarro S, Carrero-Martinez FA, Shabanowitz J, Hunt DF, Greenough WT. Proteomic Characterization of Messenger Ribonucleoprotein Complexes Bound to Nontranslated or Translated Poly(A) mRNAs in the Rat Cerebral Cortex. J Biol Chem 2005; 280:6496-503. [PMID: 15596439 DOI: 10.1074/jbc.m412742200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Receptor-triggered control of local postsynaptic protein synthesis plays a crucial role for enabling long lasting changes in synaptic functions, but signaling pathways that link receptor stimulation with translational control remain poorly known. Among the putative regulatory factors are mRNA-binding proteins (messenger ribonucleoprotein, mRNP), which control the fate of cytosolic localized mRNAs. Based on the assumption that a subset of mRNA is maintained in an inactive state, mRNP-mRNA complexes were separated into polysome-bound (translated) and polysome-free (nontranslated) fractions by sucrose density centrifugation. Poly(A) mRNA-mRNP complexes were purified from a postmitochondrial extract of rat cerebral cortex by oligo(dT)-cellulose affinity chromatography. The mRNA processing proteins were characterized, from solution, by a nanoflow reverse phase-high pressure liquid chromatography-mu-electrospray ionization mass spectrometry. The majority of detected mRNA-binding proteins was found in both fractions. However, a small number of proteins appeared to be fraction-specific. This subset of proteins is by far the most interesting because the proteins are potentially involved in controlling an activity-dependent onset of translation. They include transducer proteins, kinases, and anchor proteins. This study of the mRNP proteome is the first step in allowing future experimentation to characterize individual proteins responsible for mRNA processing and translation in dendrites.
Collapse
Affiliation(s)
- Frank Angenstein
- Beckman Institute/Neuronal Pattern Analysis, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Group II introns are autocatalytic RNAs which self-splice in vitro. However, in vivo additional protein factors might be involved in the splicing process. We used an affinity chromatography method called 'StreptoTag' to identify group II intron binding proteins from Saccharomyces cerevisiae. This method uses a hybrid RNA consisting of a streptomycin-binding affinity tag and the RNA of interest, which is bound to a streptomycin column and incubated with yeast protein extract. After several washing steps the bound RNPs are eluted by addition of streptomycin. The eluted RNPs are separated and the proteins identified by mass-spectrometric analysis. Using crude extract from yeast in combination with a substructure of the bl1 group II intron (domains IV-VI) we were able to identify four glycolytic enzymes; glucose-6-phosphate isomerase (GPI), 3-phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase (TPI). From these proteins GAPDH increases in vitro splicing of the bl1 group II intron by up to three times. However, in vivo GAPDH is not a group II intron-splicing factor, since it is not localised in yeast mitochondria. Therefore, the observed activity reflects an unexpected property of GAPDH. Band shift experiments and UV cross linking demonstrated the interaction of GAPDH with the group II intron RNA. This novel activity expands the reaction repertoire of GAPDH to a new RNA species.
Collapse
Affiliation(s)
- Petra Böck-Taferner
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Genetics, Vienna Biocenter, Dr. Bohrgasse 9/4, A-1030 Vienna, Austria
| | | |
Collapse
|
66
|
Goswami BB, Kulka M, Ngo D, Cebula TA. Apoptosis induced by a cytopathic hepatitis A virus is dependent on caspase activation following ribosomal RNA degradation but occurs in the absence of 2'-5' oligoadenylate synthetase. Antiviral Res 2004; 63:153-66. [PMID: 15451183 PMCID: PMC7127220 DOI: 10.1016/j.antiviral.2004.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 02/23/2004] [Indexed: 12/26/2022]
Abstract
We have presented previously evidence that the cytopathogenic 18f strain of hepatitis A virus (HAV) induced degradation of ribosomal RNA (rRNA) in infected cells [Arch. Virol. 148 (2003) 1275–1300]. In contrast, the non-cytopathogenic parent virus HM175 clone 1 had no effect on rRNA integrity. We present here data showing that rRNA degradation is followed by apoptosis accompanied by characteristic DNA laddering in the cytoplasm of 18f infected cells. The DNA laddering coincided with the detection of caspase 3 and PARP-1 cleavage and was dependent upon activation of the caspase pathway, since treatment with Z-VAD-FMK, a pan-caspase inhibitor, inhibited both events. RNase L mRNA was present in both virus-infected and uninfected cells. Messenger RNA for the interferon inducible enzyme 2′–5′ oligoadenylate synthetase (2′–5′ OAS), which polymerizes ATP into 2′–5′ oligo adenylate (2–5A, the activator of RNase L) in the presence of double-stranded RNA, was not detected following virus infection. 2′–5′ OAS mRNA was induced by treatment of the cells with interferon-β (IFN-β). IFN-β mRNA was marginally induced following infection. However, phosphorylated STAT 1, a key regulator of interferon-stimulated gene transcription was not detected in virus infected cells. STAT 1 phosphorylation in response to IFN treatment was lower in virus-infected cells, compared to uninfected cells treated with interferon, suggesting that 18f virus infection interferes with interferon signaling. The results suggest that 18f infection causes the induction of a 2–5A independent RNase L like activity.
Collapse
Affiliation(s)
- Biswendu B Goswami
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Food and Drug Administration, HFS-025, OARSA, FDA, 8301 Muirkirk Road, Laurel, MD 20708, USA,
| | | | | | | |
Collapse
|
67
|
Maines TR, Young M, Dinh NNN, Brinton MA. Two cellular proteins that interact with a stem loop in the simian hemorrhagic fever virus 3'(+)NCR RNA. Virus Res 2004; 109:109-24. [PMID: 15763141 PMCID: PMC7126611 DOI: 10.1016/j.virusres.2004.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 11/02/2004] [Accepted: 11/04/2004] [Indexed: 02/05/2023]
Abstract
Both full-length and subgenomic negative-strand RNAs are initiated at the 3′ terminus of the positive-strand genomic RNA of the arterivirus, simian hemorrhagic fever virus (SHFV). The SHFV 3′(+) non-coding region (NCR) is 76 nts in length and forms a stem loop (SL) structure that was confirmed by ribonuclease structure probing. Two cell proteins, p56 and p42, bound specifically to a probe consisting of the SHFV 3′(+)NCR RNA. The 3′(+)NCR RNAs of two additional members of the arterivirus genus specifically interacted with two cell proteins of the same size. p56 was identified as polypyrimidine tract-binding protein (PTB) and p42 was identified as fructose bisphosphate aldolase A. PTB binding sites were mapped to a terminal loop and to a bulged region of the SHFV 3′SL structure. Deletion of either of the PTB binding sites in the viral RNA significantly reduced PTB binding activity, suggesting that both sites are required for efficient binding of this protein. Changes in the top portion of the SHFV 3′SL structure eliminated aldolase binding, suggesting that the binding site for this protein is located near the top of the SL. These cell proteins may play roles in regulating the functions of the genomic 3′ NCR.
Collapse
Affiliation(s)
- Taronna R. Maines
- Georgia State University, Department of Biology, Atlanta, GA 30302, USA
| | - Mary Young
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Nikita Nhu-Nguyen Dinh
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Margo A. Brinton
- Georgia State University, Department of Biology, Atlanta, GA 30302, USA
- Corresponding author. Tel.: +1 404 651 3113; fax: +1 404 651 2509.
| |
Collapse
|
68
|
Jang GM, Leong LEC, Hoang LT, Wang PH, Gutman GA, Semler BL. Structurally distinct elements mediate internal ribosome entry within the 5'-noncoding region of a voltage-gated potassium channel mRNA. J Biol Chem 2004; 279:47419-30. [PMID: 15339906 DOI: 10.1074/jbc.m405885200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The approximately 1.2-kb 5'-noncoding region (5'-NCR) of mRNA species encoding mouse Kv1.4, a member of the Shaker-related subfamily of voltage-gated potassium channels, was shown to mediate internal ribosome entry in cells derived from brain, heart, and skeletal muscle, tissues known to express Kv1.4 mRNA species. We also show that the upstream approximately 1.0 kb and the downstream approximately 0.2 kb of the Kv1.4 5'-NCR independently mediated internal ribosome entry; however, separately, these sequences were less efficient in mediating internal ribosome entry than when together in the complete (and contiguous) 5'-NCR. Using enzymatic structure probing, the 3'-most approximately 0.2 kb was predicted to form three distinct stem-loop structures (stem-loops X, Y, and Z) and two defined single-stranded regions (loops Psi and Omega) in the presence and absence of the upstream approximately 1.0 kb. Although the systematic deletion of sequences within the 3'-most approximately 0.2 kb resulted in distinct changes in expression, enzymatic structure probing indicated that local RNA folding was not completely altered. Structure probing analysis strongly suggested an interaction between stem-loop X and a downstream polypyrimidine tract; however, opposing changes in activity were observed when sequences within these two regions were independently deleted. Moreover, deletions correlating with positive as well as negative changes in expression altered RNase cleavage within stem-loop X, indicating that this structure may be an integral element. Therefore, these findings indicate that Kv1.4 expression is mediated through a complex interplay between many distinct RNA regions.
Collapse
Affiliation(s)
- Gwendolyn M Jang
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
69
|
Venkatramana M, Ray PS, Chadda A, Das S. A 25 kDa cleavage product of polypyrimidine tract binding protein (PTB) present in mouse tissues prevents PTB binding to the 5' untranslated region and inhibits translation of hepatitis A virus RNA. Virus Res 2004; 98:141-9. [PMID: 14659561 DOI: 10.1016/j.virusres.2003.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 5' untranslated region (5'UTR) of the hepatitis A virus (HAV) genomic RNA contains an internal ribosome entry site (IRES) which interacts with various cellular proteins and facilitates cap-independent translation. We report the interaction of a 25kDa protein (p25), present in certain murine tissues and most abundantly in mouse kidney, with the HAV 5'UTR. This protein was found to be a cleavage product of the polypyrimidine tract-binding protein (PTB) and competed with it for binding to the HAV 5'UTR RNA. The binding site of p25 overlapped with the reported binding site of PTB. Exogenous addition of partially purified p25 to in vitro translation reactions resulted in the inhibition of HAV IRES-mediated translation, which could be rescued by the addition of purified PTB. These results suggest that p25 is a cleavage product of PTB which binds to the HAV IRES and antagonizes the translation-stimulating activity of PTB. The presence of the 25kDa cleavage product of PTB may therefore play a role in the inhibition of HAV IRES-mediated translation in mouse tissues.
Collapse
Affiliation(s)
- Musturi Venkatramana
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | | | | | | |
Collapse
|
70
|
Abstract
The flavivirus genome is a capped, positive-sense RNA approximately 10.5 kb in length. It contains a single long open reading frame (ORF), flanked by a 5´ noncoding regions (NCR), which is about 100 nucleotides in length, and a 3´ NCR ranging in size from about 400 to 800 nucleotides in length. The conserved structural and nucleotide sequence elements of these NCRs and their function in RNA replication and translation are the subjects of this chapter. The 5´ and 3´ NCRs play a role in the initiation of negative-strand synthesis on virus RNA released from entering virions, switching from negative-strand synthesis to synthesis of progeny plus strand RNA at late times after infection, and possibly in the initiation of translation and in the packaging of virus plus strand RNA into particles. The presence of conserved and nonconserved complementary nucleotide sequences near the 5´ and 3´ termini of flavivirus genomes suggests that ‘‘panhandle’’ or circular RNA structures are formed transiently by hydrogen bonding at some stage during RNA replication.
Collapse
Affiliation(s)
- Lewis Markoff
- Laboratory of Vector-Borne Virus Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| |
Collapse
|
71
|
Sundararaj KP, Wood RE, Ponnusamy S, Salas AM, Szulc Z, Bielawska A, Obeid LM, Hannun YA, Ogretmen B. Rapid Shortening of Telomere Length in Response to Ceramide Involves the Inhibition of Telomere Binding Activity of Nuclear Glyceraldehyde-3-phosphate Dehydrogenase. J Biol Chem 2004; 279:6152-62. [PMID: 14630908 DOI: 10.1074/jbc.m310549200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ceramide has been demonstrated as one of the upstream regulators of telomerase activity. However, the role for ceramide in the control of telomere length remains unknown. It is shown here that treatment of the A549 human lung adenocarcinoma cells with C(6)-ceramide results in rapid shortening of telomere length. During the examination of ceramide-regulated telomere-binding proteins, nuclear glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified to associate with both single- and double-stranded telomeric DNA with high specificity in vitro. The association of nuclear GAPDH with telomeres in interphase nuclei was also demonstrated by co-fluorescence in situ hybridization and chromatin immunoprecipitation analysis. Further data demonstrated that the nuclear localization of GAPDH is regulated by ceramide in a cell cycle-dependent manner parallel with the inhibition of its telomere binding activity in response to ceramide. In addition, the results revealed that nuclear GAPDH is distinct from its cytoplasmic isoform and that telomere binding function of nuclear GAPDH is strikingly higher than the cytoplasmic isoform. More importantly, the functional role for nuclear GAPDH in the maintenance and/or protection of telomeric DNA was identified by partial inhibition of the expression of GAPDH using small interfering RNA, which resulted in rapid shortening of telomeres. In contrast, overexpression of nuclear GAPDH resulted in the protection of telomeric DNA in response to exogenous ceramide as well as in response to anticancer drugs, which have been shown to induce endogenous ceramide levels. Therefore, these results demonstrate a novel function for nuclear GAPDH in the maintenance and/or protection of telomeres and also show that mechanisms of the rapid degradation of telomeres in response to ceramide involve the inhibition of the telomere binding activity of nuclear GAPDH.
Collapse
Affiliation(s)
- Kamala P Sundararaj
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Arutyunova EI, Danshina PV, Domnina LV, Pleten AP, Muronetz VI. Oxidation of glyceraldehyde-3-phosphate dehydrogenase enhances its binding to nucleic acids. Biochem Biophys Res Commun 2003; 307:547-52. [PMID: 12893257 DOI: 10.1016/s0006-291x(03)01222-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a protein with various activities far from its enzymatic function. Here, we showed that the oxidation of SH-groups of the active site of GAPDH enhanced its binding with total transfer RNA or with total DNA. Both NAD and NADH-the cofactors of GAPDH-inhibited the GAPDH-RNA (DNA) interaction, though NAD was much less effective than NADH in the case of oxidized GAPDH. Oxidation of GAPDH strongly decreased its affinity to NAD but not to NADH. Immobilized tetramers of GAPDH dissociated into dimers during the incubation with total RNA but not DNA. The staining of HeLa cells with monoclonal antibodies specific to dimers, monomers or the denatured form of GAPDH revealed the condensation of non-native forms of GAPDH in the nucleus. The role of oxidation of GAPDH in the regulation of the quaternary structure of the enzyme and in its interaction with nucleic acids is discussed.
Collapse
Affiliation(s)
- Elena I Arutyunova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 19992, Russia
| | | | | | | | | |
Collapse
|
73
|
Mazzola JL, Sirover MA. Subcellular localization of human glyceraldehyde-3-phosphate dehydrogenase is independent of its glycolytic function. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1622:50-6. [PMID: 12829261 DOI: 10.1016/s0304-4165(03)00117-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was considered a classical glycolytic protein involved exclusively in cytosolic energy production. However, recent evidence suggests that it is a multifunctional protein displaying diverse activities distinct from its conventional metabolic role. These new roles for GAPDH may be dependent on its subcellular localization, oligomeric state or on the proliferative state of the cell. GAPDH is encoded by a single gene without alternate splicing. The regulatory mechanisms are unknown through which an individual GAPDH molecule fulfills its non-glycolytic functions or is targeted to a specific intracellular localization. Accordingly, as a first step to elucidate these subcellular regulatory mechanisms, we examined the interrelationship between the intracellular expression of the GAPDH protein and its glycolytic function in normal human fetal and senior cells. GAPDH localization was determined by immunoblot analysis. Enzyme activity was quantitated by in vitro biochemical assay. We now report that the subcellular expression of GAPDH was independent of its classical glycolytic function. In particular, in both fetal and senior cells, considerable GADPH protein was present in intracellular domains characterized by significantly reduced catalysis. Gradient analysis indicated that this lower activity was not due to the dissociation of tetrameric GAPDH. These results suggest that human cells contain significant intracellular levels of enzymatically inactive GAPDH which is age-independent. The possibility is considered that the functional diversity of GAPDH may be mediated either by posttranslational alteration or by subcellular protein:protein and/or protein:nucleic acid interactions.
Collapse
Affiliation(s)
- Jennifer L Mazzola
- Department of Pharmacology, Temple University School of Medicine, 3420 N. Broad Street, Philadelphia, PA 19140, USA
| | | |
Collapse
|
74
|
Losick VP, Schlax PE, Emmons RA, Lawson TG. Signals in hepatitis A virus P3 region proteins recognized by the ubiquitin-mediated proteolytic system. Virology 2003; 309:306-19. [PMID: 12758177 DOI: 10.1016/s0042-6822(03)00071-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The hepatitis A virus 3C protease and 3D RNA polymerase are present in low concentrations in infected cells. The 3C protease was previously shown to be rapidly degraded by the ubiquitin/26S proteasome system and we present evidence here that the 3D polymerase is also subject to ubiquitination-mediated proteolysis. Our results show that the sequence (32)LGVKDDWLLV(41) in the 3C protease serves as a protein destruction signal recognized by the ubiquitin-protein ligase E3alpha and that the destruction signal for the RNA polymerase does not require the carboxyl-terminal 137 amino acids. Both the viral 3ABCD polyprotein and the 3CD diprotein were also found to be substrates for ubiquitin-mediated proteolysis. Attempts to determine if the 3C protease or the 3D polymerase destruction signals trigger the ubiquitination and degradation of these precursors yielded evidence suggesting, but not unequivocally proving, that the recognition of the 3D polymerase by the ubiquitin system is responsible.
Collapse
Affiliation(s)
- Vicki P Losick
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | | | | | | |
Collapse
|
75
|
Dollenmaier G, Weitz M. Interaction of glyceraldehyde-3-phosphate dehydrogenase with secondary and tertiary RNA structural elements of the hepatitis A virus 3' translated and non-translated regions. J Gen Virol 2003; 84:403-414. [PMID: 12560573 DOI: 10.1099/vir.0.18501-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins interacting with RNA structures at the 3' non-translated region (3'NTR) of picornaviruses are probably important during viral RNA replication. We have shown previously that a dominant cellular cytoplasmic protein of 38 kDa (p38) interacts with the 3'NTR and upstream regions of the hepatitis A virus (HAV) RNA (Kusov et al., J Virol 70, 1890-1897, 1996). Immunological and biochemical analyses of p38 have indicated that it is identical to GAPDH, which has previously been described as modulating translational regulation of the HAV RNA by interacting with the 5'NTR (Schultz et al., J Biol Chem 271, 14134-14142, 1996). Three separate binding regions for GAPDH in the 3'NTR and in the upstream 3D polymerase-coding region were identified. Structural analysis of these RNA regions by computer modelling and direct enzymatic cleavage suggested the presence of several AU-rich stem-loop structures having the potential for tertiary interactions. Binding of GAPDH to these structures was confirmed by RNA footprint analysis and resulted in the loss of double-stranded RNA regions. A different panel of RNA binding proteins (p28, p41 and p65) was detected in the ribosomal fractions of several cell lines (BSC-1, FRhK-4 and HeLa), whereas RNA binding of the GAPDH that was also present in these fractions was only marginal or absent.
Collapse
Affiliation(s)
- Günter Dollenmaier
- Institute of Clinical Microbiology and Immunology, Frohbergstrasse 3, 9001 St Gallen, Switzerland
| | - Manfred Weitz
- Institute of Clinical Microbiology and Immunology, Frohbergstrasse 3, 9001 St Gallen, Switzerland
| |
Collapse
|
76
|
Cheung P, Zhang M, Yuan J, Chau D, Yanagawa B, McManus B, Yang D. Specific interactions of HeLa cell proteins with Coxsackievirus B3 RNA: La autoantigen binds differentially to multiple sites within the 5' untranslated region. Virus Res 2002; 90:23-36. [PMID: 12457960 DOI: 10.1016/s0168-1702(02)00138-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Translation initiation of the coxsackievirus B3 (CVB3) RNA occurs by internal ribosomal entry. The internal ribosomal entry site (IRES) of the virus has been mapped to the 5' untranslated region (5' UTR) of the genome. As well, the 5' UTR has been suggested to play roles in determining the tissue tropism and infectivity of the virus. In this study, we investigated interactions between HeLa cell protein extracts and radiolabeled RNA of CVB3 5' UTR by competitive UV cross-linking. We have observed a number of proteins that specifically interact with the three sub-cloned regions of the 5' UTR. In particular, the molecular weights of five of these proteins resemble those of the eukaryotic translation initiation factors 4A, 4B and 4G, as well as the La autoantigen and the polypyrimidine tract binding protein. Based on this data, we focused on the interaction of the 5' UTR with the La autoantigen, which was purified by the glutathione-S-transferase affinity method. We have confirmed the highly specific interaction of the La autoantigen with the 5' UTR sequence nt 210-529. The core IRES (nt 530-630) and nt 1-209 also appear to bind to the La protein at moderate and weak affinities, respectively. A functional role of the La autoantigen in translation initiation is suggested.
Collapse
Affiliation(s)
- Paul Cheung
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
77
|
Evguenieva-Hackenberg E, Schiltz E, Klug G. Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 2002; 277:46145-50. [PMID: 12359717 DOI: 10.1074/jbc.m208717200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specific interactions of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with RNA have been reported both in vitro and in vivo. We show that eukaryotic and bacterial GAPDH and two proteins from the hyperthermophilic archaeon Sulfolobus solfataricus, which are annotated as dehydrogenases, cleave RNA producing similar degradation patterns. RNA cleavage is most efficient at 60 degrees C, at MgCl(2) concentrations up to 5 mm, and takes place between pyrimidine and adenosine. The RNase active center of the putative aspartate semialdehyde dehydrogenase from S. solfataricus is located within the N-terminal 73 amino acids, which comprise the first mononucleotide-binding site of the predicted Rossmann fold. Thus, RNA cleavage has to be taken into account in the ongoing discussion of the possible biological function of RNA binding by dehydrogenases.
Collapse
Affiliation(s)
- Elena Evguenieva-Hackenberg
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | | | | |
Collapse
|
78
|
Back SH, Shin S, Jang SK. Polypyrimidine tract-binding proteins are cleaved by caspase-3 during apoptosis. J Biol Chem 2002; 277:27200-9. [PMID: 12004072 DOI: 10.1074/jbc.m203887200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polypyrimidine tract-binding protein (PTB), an RNA-binding protein, is required for efficient translation of some mRNAs containing internal ribosomal entry sites (IRESs). Here we provide evidence that the addition of apoptosis-inducing agents to cells results in the cleavage of PTB isoforms 1, 2, and 4 by caspase-3. This cleavage of PTB separated the N-terminal region, containing NLS-RRM1, from the C-terminal region, containing RRM2-3-4. Our data indicate that there are three noncanonical caspase-3 target sites in PTBs, namely Ile-Val-Pro-Asp(7)Ile, Leu-Tyr-Thr-Asp(139)Ser, and Ala-Ala-Val-Asp(172)Ala. The C-terminal PTB fragments localized to the cytoplasm, as opposed to the nucleus where most intact PTBs are found. Moreover, these C-terminal PTB fragments inhibited translation of polioviral mRNA, which contains an IRES element requiring PTB for its activation. This suggests that translation of some IRES-containing mRNAs is regulated by proteolytic cleavage of PTB during apoptosis.
Collapse
Affiliation(s)
- Sung Hoon Back
- National Research Laboratory, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea
| | | | | |
Collapse
|
79
|
Yi M, Lemon SM. Replication of subgenomic hepatitis A virus RNAs expressing firefly luciferase is enhanced by mutations associated with adaptation of virus to growth in cultured cells. J Virol 2002; 76:1171-80. [PMID: 11773393 PMCID: PMC135777 DOI: 10.1128/jvi.76.3.1171-1180.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Replication of hepatitis A virus (HAV) in cultured cells is inefficient and difficult to study due to its protracted and generally noncytopathic cycle. To gain a better understanding of the mechanisms involved, we constructed a subgenomic HAV replicon by replacing most of the P1 capsid-coding sequence from an infectious cDNA copy of the cell culture-adapted HM175/18f virus genome with sequence encoding firefly luciferase. Replication of this RNA in transfected Huh-7 cells (derived from a human hepatocellular carcinoma) led to increased expression of luciferase relative to that in cells transfected with similar RNA transcripts containing a lethal premature termination mutation in 3D(pol) (RNA polymerase). However, replication could not be confirmed in either FrhK4 cells or BSC-1 cells, cells that are typically used for propagation of HAV. Replication was substantially slower than that observed with replicons derived from other picornaviruses, as the basal luciferase activity produced by translation of input RNA did not begin to increase until 24 to 48 h after transfection. Replication of the RNA was reversibly inhibited by guanidine. The inclusion of VP4 sequence downstream of the viral internal ribosomal entry site had no effect on the basal level of luciferase or subsequent increases in luciferase related to its amplification. Thus, in this system this sequence does not contribute to viral translation or replication, as suggested previously. Amplification of the replicon RNA was profoundly enhanced by the inclusion of P2 (but not 5' noncoding sequence or P3) segment mutations associated with adaptation of wild-type virus to growth in cell culture. These results provide a simple reporter system for monitoring the translation and replication of HAV RNA and show that critical mutations that enhance the growth of virus in cultured cells do so by promoting replication of viral RNA in the absence of encapsidation, packaging, and cellular export of the viral genome.
Collapse
Affiliation(s)
- MinKyung Yi
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1019, USA
| | | |
Collapse
|
80
|
Izumi RE, Valdez B, Banerjee R, Srivastava M, Dasgupta A. Nucleolin stimulates viral internal ribosome entry site-mediated translation. Virus Res 2001; 76:17-29. [PMID: 11376843 DOI: 10.1016/s0168-1702(01)00240-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous results from our laboratory have identified a small (60 nt) RNA from the yeast S. cerevisiae that specifically inhibits internal ribosome entry site (IRES)-mediated translation programmed by poliovirus (PV) and hepatitis C virus (HCV) 5'-untranslated region (5'UTR). The yeast inhibitor RNA (called IRNA) was found to efficiently compete with viral 5'UTR for binding of several cellular polypeptides that presumably play important roles in IRES-mediated translation. One such IRNA (and 5'UTR)-binding protein has previously been identified as the La autoantigen. In this report, we have identified a 110-kDa IRNA-binding protein (which also interacts with viral 5'UTR) as nucleolin, a nucleolar RNA binding protein that was previously shown to translocate into the cytoplasm following infection of cells with poliovirus. We demonstrate that nucleolin (called C23) stimulates viral IRES-mediated translation both in vitro and in vivo. We also show that nucleolin mutants containing the carboxy-terminal RNA binding domains but lacking the amino terminal domain inhibit IRES-mediated translation in vitro. The translation inhibitory activity of these mutants correlates with their ability to bind the 5'UTR sequence. These results suggest a role of nucleolin/C23 in viral IRES-mediated translation.
Collapse
Affiliation(s)
- R E Izumi
- Department of Microbiology Immunology and Molecular Genetics, UCLA School of Medicine, 10833 Le Conte Avenue, 90095, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
81
|
Frings W, Dotzauer A. Adaptation of primate cell-adapted hepatitis A virus strain HM175 to growth in guinea pig cells is independent of mutations in the 5' nontranslated region. J Gen Virol 2001; 82:597-602. [PMID: 11172101 DOI: 10.1099/0022-1317-82-3-597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies of hepatitis A virus (HAV) genotypes after adaptation of wild-type virus to growth in cell cultures of primate origin identified determinants for growth in cell culture in the viral 2B and 2C protein-coding regions of the genome and demonstrated that an increased growth efficiency in a particular cell line was achieved by subsequent mutations in the 5' nontranslated region (5'NTR). The results reported in this study demonstrate that the passage of HAV adapted to primate BS-C-1 cells in guinea pig cells resulted in increased growth efficiency in the rodent cells and decreased growth efficiency in BS-C-1 cells. This adaptation occurred without mutation in the 5'NTR, but the viral 2B and 2C proteins seem to play a role during adaptation to the new environment, as one mutation occurred in each protein. Although the data presented here do not clearly identify which region of the viral genome underwent mutations to improve the interaction of the viruses with guinea pig proteins, they do confirm that the 5'NTR is not the only region responsible for providing host cell-specific information.
Collapse
Affiliation(s)
- Werner Frings
- Department of Virology, University of Bremen, Leobener Straße/UFT, D-28359 Bremen, Germany1
| | - Andreas Dotzauer
- Department of Virology, University of Bremen, Leobener Straße/UFT, D-28359 Bremen, Germany1
| |
Collapse
|
82
|
Abstract
Picornaviruses are small animal viruses with positive-strand genomic RNA, which is translated using cap-independent internal translation initiation. The key role in this is played by ciselements of the 5"-untranslated region (5"-UTR) and, in particular, by the internal ribosome entry site (IRES). The function of translational ciselements requires both canonical translation initiation factors (eIFs) and additional IRES trans-acting factors (ITAFs). All known ITAFs are cell RNA-binding proteins which play a variety of functions in noninfected cells. Specific features of translational ciselements substantially affect the phenotype and, in particular, tissue tropism and pathogenic properties of picornaviruses. It is clear that, in some cases, the molecular mechanism involved is a change in interactions between viral ciselements and ITAFs. The properties and tissue distribution of ITAFs may determine the biological properties of other viruses that also use the IRES-dependent translation initiation. Since this mechanism is also involved in translation of several cell mRNAs, ITAF may contribute to the regulation of the most important aspects of the living activity in noninfected cells.
Collapse
Affiliation(s)
- V. I. Agol
- Chumakov Institute of Poliomyelitis and Virus Encephalites, Russian Academy of Medical Sciences, and, Moscow State University, Moscow, Russia
| |
Collapse
|
83
|
Lerat H, Shimizu YK, Lemon SM. Cell type-specific enhancement of hepatitis C virus internal ribosome entry site-directed translation due to 5' nontranslated region substitutions selected during passage of virus in lymphoblastoid cells. J Virol 2000; 74:7024-31. [PMID: 10888641 PMCID: PMC112219 DOI: 10.1128/jvi.74.15.7024-7031.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Low-level replication of hepatitis C virus (HCV) in cultured lymphoblastoid cells inoculated with H77 serum inoculum led to the appearance of new virus variants containing identical substitutions at three sites within the viral 5' nontranslated RNA (5'NTR): G(107)-->A, C(204)-->A, and G(243)-->A (N. Nakajima, M. Hijikata, H. Yoshikura, and Y. K. Shimizu, J. Virol. 70:3325-3329, 1996). These results suggest that virus with this 5'NTR sequence may have a greater capacity for replication in such cells, possibly due to more efficient cap-independent translation, since these nucleotide substitutions reside within the viral internal ribosome entry site (IRES). To test this hypothesis, we examined the translation of dicistronic RNAs containing upstream and downstream reporter sequences (Renilla and firefly luciferases, respectively) separated by IRES sequences containing different combinations of these substitutions. The activity of the IRES was assessed by determining the relative firefly and Renilla luciferase activities expressed in transfected cells. Compared with the IRES present in the dominant H77 quasispecies, an IRES containing all three nucleotide substitutions had significantly greater translational activity in three of five human lymphoblastoid cell lines (Raji, Bjab, and Molt4 but not Jurkat or HPBMa10-2 cells). In contrast, these substitutions did not enhance IRES activity in cell lines derived from monocytes or granulocytes (HL-60, KG-1, or THP-1) or hepatocytes (Huh-7) or in cell-free translation assays carried out with rabbit reticulocyte lysates. Each of the three substitutions was required for maximally increased translational activity in the lymphoblastoid cells. The 2- to 2.5-fold increase in translation observed with the modified IRES sequence may facilitate the replication of HCV, possibly accounting for differences in quasispecies variants recovered from liver tissue and peripheral blood mononuclear cells of the same patient.
Collapse
Affiliation(s)
- H Lerat
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1019, USA
| | | | | |
Collapse
|