51
|
A spiroketal-enol ether derivative from Tanacetum vulgare selectively inhibits HSV-1 and HSV-2 glycoprotein accumulation in Vero cells. Antiviral Res 2015; 119:8-18. [PMID: 25882624 DOI: 10.1016/j.antiviral.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 01/03/2023]
Abstract
The inhibitory effects of Tanacetum vulgare rhizome extracts on HSV-1 and HSV-2 in vitro replication were assessed. Unlike extracts obtained from the aerial parts, adsorption inhibition and virucidal activities seemed not to be relevant for the observed antiviral action of tansy rhizome extracts. Instead, the most significant effects were the inhibition of virus penetration and a novel mechanism consisting of the specific arrest of viral gene expression and consequently the decrease of viral protein accumulation within infected cells. Through a bioactivity-guided fractionation protocol we isolated and identified the spiroketal-enol ether derivative (E)-2-(2,4-hexadiynyliden)-1,6-dioxaspiro[4.5]dec-3-ene as the active compound responsible for this inhibitory effect.
Collapse
|
52
|
Abstract
Coronaviruses are enveloped RNA viruses that have evolved complex relationships with their host cells, and modulate their lipid composition, lipid synthesis and signalling. Lipid rafts, enriched in sphingolipids, cholesterol and associated proteins, are special plasma membrane microdomains involved in several processes in viral infections. The extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to lipid rafts. Because cholesterol-rich microdomains appear to be a general feature of the entry mechanism of non-eneveloped viruses and of several coronaviruses, the purpose of this study was to analyse the contribution of lipids to the infectivity of canine coronavirus (CCoV). The CCoV life cycle is closely connected to plasma membrane cholesterol, from cell entry to viral particle production. The methyl-β-cyclodextrin (MβCD) was employed to remove cholesterol and to disrupt the lipid rafts. Cholesterol depletion from the cell membrane resulted in a dose-dependent reduction, but not abolishment, of virus infectivity, and at a concentration of 15 mM, the reduction in the infection rate was about 68 %. MβCD treatment was used to verify if cholesterol in the envelope was required for CCoV infection. This resulted in a dose-dependent inhibitory effect, and at a concentration of 9 mM MβCD, infectivity was reduced by about 73 %. Since viral entry would constitute a target for antiviral strategies, inhibitory molecules interacting with viral and/or cell membranes, or interfering with lipid metabolism, may have strong antiviral potential. It will be interesting in the future to analyse the membrane microdomains in the CCoV envelope.
Collapse
Affiliation(s)
| | - Valeriana Colao
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
53
|
Interaction of KSHV with host cell surface receptors and cell entry. Viruses 2014; 6:4024-46. [PMID: 25341665 PMCID: PMC4213576 DOI: 10.3390/v6104024] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 12/13/2022] Open
Abstract
Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.
Collapse
|
54
|
Abstract
Herpes simplex virus 1 (HSV-1) required cholesterol or desmosterol for virion-induced membrane fusion. HSV successfully entered DHCR24(-/-) cells, which lack a desmosterol-to-cholesterol conversion enzyme, indicating that entry can occur independently of cholesterol. Depletion of desmosterol from these cells resulted in diminished HSV-1 entry, suggesting a general sterol requirement for HSV-1 entry and that desmosterol can operate in virus entry. Cholesterol functioned more effectively than desmosterol, suggesting that the hydrocarbon tail of cholesterol influences viral entry.
Collapse
|
55
|
Dumas F, Preira P, Salomé L. Membrane organization of virus and target cell plays a role in HIV entry. Biochimie 2014; 107 Pt A:22-7. [PMID: 25193376 PMCID: PMC7126522 DOI: 10.1016/j.biochi.2014.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023]
Abstract
The initial steps of the Human Immunodeficiency Virus (HIV) replication cycle play a crucial role that arbitrates viral tropism and infection efficiency. Before the release of its genome into the host cell cytoplasm, viruses operate a complex sequence of events that take place at the plasma membrane of the target cell. The first step is the binding of the HIV protein envelope (Env) to the cellular receptor CD4. This triggers conformational changes of the gp120 viral protein that allow its interaction with a co-receptor that can be either CCR5 or CXCR4, defining the tropism of the virus entering the cell. This sequential interaction finally drives the fusion of the viral and host cell membrane or to the endocytosis of the viruses. Here, we discuss how the membrane composition and organization of both the virus and the target cell can affect these steps and thus influence the capability of the viruses to infect cells. An overview of lipid role in HIV infection is proposed. We discuss the influence of lipid composition on HIV early steps of infection. We discuss the role of membrane organization an dynamics in HIV entry.
Collapse
Affiliation(s)
- Fabrice Dumas
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France.
| | - Pascal Preira
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France
| | - Laurence Salomé
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France.
| |
Collapse
|
56
|
Dissection of the antibody response against herpes simplex virus glycoproteins in naturally infected humans. J Virol 2014; 88:12612-22. [PMID: 25142599 DOI: 10.1128/jvi.01930-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Relatively little is known about the extent of the polyclonal antibody (PAb) repertoire elicited by herpes simplex virus (HSV) glycoproteins during natural infection and how these antibodies affect virus neutralization. Here, we examined IgGs from 10 HSV-seropositive individuals originally classified as high or low virus shedders. All PAbs neutralized virus to various extents. We determined which HSV entry glycoproteins these PAbs were directed against: glycoproteins gB, gD, and gC were recognized by all sera, but fewer sera reacted against gH/gL. We previously characterized multiple mouse monoclonal antibodies (MAbs) and mapped those with high neutralizing activity to the crystal structures of gD, gB, and gH/gL. We used a biosensor competition assay to determine whether there were corresponding human antibodies to those epitopes. All 10 samples had neutralizing IgGs to gD epitopes, but there were variations in which epitopes were seen in individual samples. Surprisingly, only three samples contained neutralizing IgGs to gB epitopes. To further dissect the nature of these IgGs, we developed a method to select out gD- and gB-specific IgGs from four representative sera via affinity chromatography, allowing us to determine the contribution of antibodies against each glycoprotein to the overall neutralization capacity of the serum. In two cases, gD and gB accounted for all of the neutralizing activity against HSV-2, with a modest amount of HSV-1 neutralization directed against gC. In the other two samples, the dominant response was to gD. IMPORTANCE Antibodies targeting functional epitopes on HSV entry glycoproteins mediate HSV neutralization. Virus-neutralizing epitopes have been defined and characterized using murine monoclonal antibodies. However, it is largely unknown whether these same epitopes are targeted by the humoral response to HSV infection in humans. We have shown that during natural infection, virus-neutralizing antibodies are principally directed against gD, gB, and, to a lesser extent, gC. While several key HSV-neutralizing epitopes within gD and gB are commonly targeted by human serum IgG, others fail to induce consistent responses. These data are particularly relevant to the design of future HSV vaccines.
Collapse
|
57
|
Taveira A, Ponroy N, Mueller NJ, Millard AL. Entry of human cytomegalovirus into porcine endothelial cells depends on both the cellular vascular origin and the viral strain. Xenotransplantation 2014; 21:324-40. [PMID: 24712388 DOI: 10.1111/xen.12097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/14/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Primary infection and reactivation of human cytomegalovirus (HCMV) is associated with allograft rejection. Pig-to-human xenotransplantation is regarded as an alternative to circumvent donor organ shortage and inevitably, porcine endothelial cells (pEC) will be exposed to human pathogens, among them HCMV. Infection of pEC with HCMV induces apoptosis and entry is sufficient to induce phenotypic alterations, which have the potential to result in rejection and vasculopathy. We investigated the mechanisms used by HCMV to enter pEC from different anatomical origins and compared them with the entry mechanisms used to enter human endothelial cells (hEC). METHODS Immortalized porcine aortic (PEDSV.15) and porcine microvascular bone marrow derived EC (2A2) as well as primary human aortic (HAEC) and microvascular EC (HMVEC) were inoculated with the endotheliotropic (TB40/E) or the fibroblast propagated (TB40/F) HCMV strains at multiplicity of infection (MOI) ranging from 0.3 to 5. EC were analyzed for receptor expression and their involvement in HCMV entry. The role of endocytosis was evaluated by treating EC with specific inhibitors, and the involvement of the endolysosomal pathway was investigated by confocal microscopy. RESULTS Silencing of platelet-derived growth factor receptor alpha resulted in a reduced expression of viral immediate early (IE) antigen only in pEC infected with either TB40/E or TB40/F whereas silencing of β1 integrins reduced expression of IE proteins in all EC except for TB40/F-infected microvascular pEC. TB40/E enters hEC and pEC by a similar mechanism dependent on dynamin-2, lipid rafts, actin and pH, whereas entry of TB40/F in pEC occurs mainly by a dynamin-2-dependent, clathrin-, lipid rafts-independent mechanism and in a pH-dispensable manner. When actin polymerization was prevented, TB40/F could enter pEC in an actin-independent fashion. Disturbance of the microtubule cytoskeleton resulted in an inhibition of infection of TB40/E-infected EC, whereas infection of TB40/F-infected pEC was not modified. Finally, viral particles located in vesicles of the endolysosomal pathway, suggesting that HCMV uses this pathway for intracellular trafficking following entry. CONCLUSIONS Our findings demonstrate that HCMV uses a variety of entry mechanisms that are dependent on the strain and on the vascular origin of the cells. Given the profound effect of pEC infection with HCMV, prevention of such an infection will be crucial for clinical application of xenotransplantation. A potential avenue is to render porcine grafts resistant to HCMV infection by blocking viral entry and propagation.
Collapse
Affiliation(s)
- Aline Taveira
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital, Zürich, Switzerland
| | | | | | | |
Collapse
|
58
|
Patrone M, Carinhas N, Sousa MQ, Peixoto C, Ciferri C, Carfì A, Alves PM. Enhanced expression of full-length human cytomegalovirus fusion protein in non-swelling baculovirus-infected cells with a minimal fed-batch strategy. PLoS One 2014; 9:e90753. [PMID: 24595278 PMCID: PMC3942479 DOI: 10.1371/journal.pone.0090753] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/03/2014] [Indexed: 01/22/2023] Open
Abstract
Human cytomegalovirus congenital infection represents an unmet medical issue and attempts are ongoing to develop an effective vaccine. The virion fusion players of this enveloped virus are the natural targets to achieve this goal and to develop novel anti-viral therapies. The secreted ectodomain of the viral fusion factor glycoprotein B (gB) has been exploited so far as an alternative to the cumbersome expression of the wild type trans-membrane protein. In the soluble form, gB showed encouraging but limited potential as antigen candidate calling for further efforts. Here, the exhaustive evaluation of the Baculovirus/insect cell expression system has been coupled to an orthogonal screening for expression additives to produce full-length gB. In detail, rapamycin was found to prolong gB intracellular accumulation while inhibiting the infection-induced cell swelling. Not obvious to predict, this inhibition did not affect Baculovirus growth, revealing that the virus-induced cell size increase is a dispensable side phenotype. In parallel, a feeding strategy for the limiting nutrient cysteine has been set up which improved gB stability. This multi-modal scheme allowed the production of full-length, mutation-free gB in the milligram scale. The recombinant full-length gB obtained was embedded into a stable mono-dispersed particle substantially larger than the protein trimer itself, according to the reported association of this protein with detergent-resistant lipid domains.
Collapse
Affiliation(s)
- Marco Patrone
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- * E-mail:
| | - Nuno Carinhas
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos Q. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Claudio Ciferri
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Andrea Carfì
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
59
|
Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. mBio 2014; 5:e00958-13. [PMID: 24425731 PMCID: PMC3903278 DOI: 10.1128/mbio.00958-13] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) establishes latency in neurons and can cause severe disseminated infection with neurological impairment and high mortality. This neurodegeneration is thought to be tightly associated with virus-induced cytoskeleton disruption. Currently, the regulation pattern of the actin cytoskeleton and the involved molecular mechanisms during HSV-1 entry into neurons remain unclear. Here, we demonstrate that the entry of HSV-1 into neuronal cells induces biphasic remodeling of the actin cytoskeleton and an initial inactivation followed by the subsequent activation of cofilin, a member of the actin depolymerizing factor family that is critical for actin reorganization. The disruption of F-actin dynamics or the modulation of cofilin activity by mutation, knockdown, or overexpression affects HSV-1 entry efficacy and virus-mediated cell ruffle formation. Binding of the HSV-1 envelope initiates the epidermal growth factor receptor (EGFR)-phosphatidylinositide 3-kinase (PI3K) signaling pathway, which leads to virus-induced early cofilin phosphorylation and F-actin polymerization. Moreover, the extracellular signal-regulated kinase (ERK) kinase and Rho-associated, coiled-coil-containing protein kinase 1 (ROCK) are recruited as downstream mediators of the HSV-1-induced cofilin inactivation pathway. Inhibitors specific for those kinases significantly reduce the virus infectivity without affecting virus binding to the target cells. Additionally, lipid rafts are clustered to promote EGFR-associated signaling cascade transduction. We propose that HSV-1 hijacks cofilin to initiate infection. These results could promote a better understanding of the pathogenesis of HSV-1-induced neurological diseases. The actin cytoskeleton is involved in many crucial cellular processes and acts as an obstacle to pathogen entry into host cells. Because HSV-1 establishes lifelong latency in neurons and because neuronal cytoskeletal disruption is thought to be the main cause of HSV-1-induced neurodegeneration, understanding the F-actin remodeling pattern by HSV-1 infection and the molecular interactions that facilitate HSV-1 entry into neurons is important. In this study, we showed that HSV-1 infection induces the rearrangement of the cytoskeleton as well as the initial inactivation and subsequent activation of cofilin. Then, we determined that activation of the EGFR-PI3K-Erk1/2 signaling pathway inactivates cofilin and promotes F-actin polymerization. We postulate that by regulating actin cytoskeleton dynamics, cofilin biphasic activation could represent the specific cellular machinery usurped by pathogen infection, and these results will greatly contribute to the understanding of HSV-1-induced early and complex changes in host cells that are closely linked to HSV-1 pathogenesis.
Collapse
|
60
|
McGuinn KP, Mahoney MG. Lipid rafts and detergent-resistant membranes in epithelial keratinocytes. Methods Mol Biol 2014; 1195:133-44. [PMID: 24504930 DOI: 10.1007/7651_2014_71] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our understanding of the plasma membrane has markedly increased since Singer and Nicolson proposed the fluid mosaic model in 1972. While their revolutionary theory of the lipid bilayer remains largely valid, it is now known that lipids and proteins are not randomly dispersed throughout the plasma membrane but instead may be organized within membrane microdomains, commonly referred to as lipid rafts. Lipid rafts are highly dynamic, detergent resistant, and enriched with both cholesterol and glycosphingolipids. The two main types are flotillin-rich planar lipid rafts and caveolin-rich caveolae. It is proposed that flotillin and caveolin proteins regulate cell communication by compartmentalizing and interacting with signal transduction proteins within their respective lipid microdomains. Consequently, membrane rafts play an important role in vital cellular functions including migration, invasion, and signaling; thus, alterations in their microenvironment can initiate signaling pathways that affect cellular function and behavior. Therefore, the identification of lipid rafts and their associated proteins is integral to the study of transmembrane signaling. Here, we review the current standard protocols and biochemical approaches used to isolate and define raft proteins from epithelial cells and tissues. Furthermore, in Section 3 of this chapter, detailed protocols are offered for isolating lipid rafts by subjection to detergent and sucrose density centrifugation, as well as an approach for selectively isolating caveolae. Methods to manipulate rafts with treatments such as methyl-β-cyclodextrin and flotillin III are also described.
Collapse
Affiliation(s)
- Kathleen P McGuinn
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, 233 S. 10th Street, Suite 428 BLSB, Philadelphia, PA, 19107, USA
| | | |
Collapse
|
61
|
Stampfer SD, Heldwein EE. Expression, purification, and crystallization of HSV-1 glycoproteins for structure determination. Methods Mol Biol 2014; 1144:249-63. [PMID: 24671689 PMCID: PMC9903297 DOI: 10.1007/978-1-4939-0428-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
HSV glycoproteins play important roles in the viral infectious cycle, particularly viral entry into the cell. Here we describe the protocol for expression, purification, and crystallization of viral glycoproteins based on those developed for the HSV-1 gB and HSV-2 gH/gL ectodomains. These protocols can be used for generating milligram amounts of wild-type (WT) or mutant gB and gH/gL ectodomains or can be adapted to produce purified ectodomains of other HSV glycoproteins for biochemical and structural studies.
Collapse
Affiliation(s)
- Samuel D Stampfer
- Department of Molecular Biology and Microbiology and Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | | |
Collapse
|
62
|
Mechanism of neutralization of herpes simplex virus by antibodies directed at the fusion domain of glycoprotein B. J Virol 2013; 88:2677-89. [PMID: 24352457 DOI: 10.1128/jvi.03200-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Glycoprotein B (gB), the fusogen of herpes simplex virus (HSV), is a class III fusion protein with a trimeric ectodomain of known structure for the postfusion state. Seen by negative-staining electron microscopy, it presents as a rod with three lobes (base, middle, and crown). gB has four functional regions (FR), defined by the physical location of epitopes recognized by anti-gB neutralizing monoclonal antibodies (MAbs). Located in the base, FR1 contains two internal fusion loops (FLs) and is the site of gB-lipid interaction (the fusion domain). Many of the MAbs to FR1 are neutralizing, block cell-cell fusion, and prevent the association of gB with lipid, suggesting that these MAbs affect FL function. Here we characterize FR1 epitopes by using electron microscopy to visualize purified Fab-gB ectodomain complexes, thus confirming the locations of several epitopes and localizing those of MAbs DL16 and SS63. We also generated MAb-resistant viruses in order to localize the SS55 epitope precisely. Because none of the epitopes of our anti-FR1 MAbs mapped to the FLs, we hyperimmunized rabbits with FL1 or FL2 peptides to generate polyclonal antibodies (PAbs). While the anti-FL1 PAb failed to bind gB, the anti-FL2 PAb had neutralizing activity, implying that the FLs become exposed during virus entry. Unexpectedly, the anti-FL2 PAb (and the anti-FR1 MAbs) bound to liposome-associated gB, suggesting that their epitopes are accessible even when the FLs engage lipid. These studies provide possible mechanisms of action for HSV neutralization and insight into how gB FR1 contributes to viral fusion. IMPORTANCE For herpesviruses, such as HSV, entry into a target cell involves transfer of the capsid-encased genome of the virus to the target cell after fusion of the lipid envelope of the virus with a lipid membrane of the host. Virus-encoded glycoproteins in the envelope are responsible for fusion. Antibodies to these glycoproteins are important biological tools, providing a way of examining how fusion works. Here we used electron microscopy and other techniques to study a panel of anti-gB antibodies. Some, with virus-neutralizing activity, impair gB-lipid association. We also generated a peptide antibody against one of the gB fusion loops; its properties provide insight into the way the fusion loops function as gB transits from its prefusion form to an active fusogen.
Collapse
|
63
|
Carter CJ. Susceptibility genes are enriched in those of the herpes simplex virus 1/host interactome in psychiatric and neurological disorders. Pathog Dis 2013; 69:240-61. [PMID: 23913659 DOI: 10.1111/2049-632x.12077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can promote beta-amyloid deposition and tau phosphorylation, demyelination or cognitive deficits relevant to Alzheimer's disease or multiple sclerosis and to many neuropsychiatric disorders with which it has been implicated. A seroprevalence much higher than disease incidence has called into question any primary causal role. However, as also the case with risk-promoting polymorphisms (also present in control populations), any causal effects are likely to be conditional. During its life cycle, the virus binds to many proteins and modifies the expression of multiple genes creating a host/pathogen interactome involving 1347 host genes. This data set is heavily enriched in the susceptibility genes for multiple sclerosis (P = 1.3E-99) > Alzheimer's disease > schizophrenia > Parkinsonism > depression > bipolar disorder > childhood obesity > chronic fatigue > autism > and anorexia (P = 0.047) but not attention deficit hyperactivity disorder, a relationship maintained for genome-wide association study data sets in multiple sclerosis and Alzheimer's disease. Overlapping susceptibility gene/interactome data sets disrupt signalling networks relevant to each disease, suggesting that disease susceptibility genes may filter the attentions of the pathogen towards particular pathways and pathologies. In this way, the same pathogen could contribute to multiple diseases in a gene-dependent manner and condition the risk-promoting effects of the genes whose function it disrupts.
Collapse
|
64
|
Dual split protein-based fusion assay reveals that mutations to herpes simplex virus (HSV) glycoprotein gB alter the kinetics of cell-cell fusion induced by HSV entry glycoproteins. J Virol 2013; 87:11332-45. [PMID: 23946457 DOI: 10.1128/jvi.01700-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, "slow and fast," emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a "hair trigger." Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion.
Collapse
|
65
|
Maurer UE, Zeev-Ben-Mordehai T, Pandurangan AP, Cairns TM, Hannah BP, Whitbeck JC, Eisenberg RJ, Cohen GH, Topf M, Huiskonen JT, Grünewald K. The structure of herpesvirus fusion glycoprotein B-bilayer complex reveals the protein-membrane and lateral protein-protein interaction. Structure 2013; 21:1396-405. [PMID: 23850455 PMCID: PMC3737472 DOI: 10.1016/j.str.2013.05.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
Glycoprotein B (gB) is a key component of the complex herpesvirus fusion machinery. We studied membrane interaction of two gB ectodomain forms and present an electron cryotomography structure of the gB-bilayer complex. The two forms differed in presence or absence of the membrane proximal region (MPR) but showed an overall similar trimeric shape. The presence of the MPR impeded interaction with liposomes. In contrast, the MPR-lacking form interacted efficiently with liposomes. Lateral interaction resulted in coat formation on the membranes. The structure revealed that interaction of gB with membranes was mediated by the fusion loops and limited to the outer membrane leaflet. The observed intrinsic propensity of gB to cluster on membranes indicates an additional role of gB in driving the fusion process forward beyond the transient fusion pore opening and subsequently leading to fusion pore expansion. Full-length gB ectodomain has a structure similar to the ectodomain lacking the MPR The gB-bilayer structure reveals that the interaction is limited to the outer leaflet gB trimers have an intrinsic propensity to interact laterally and form protein arrays Arrays of gB trimers on membranes render the fusion pore open state irreversible
Collapse
Affiliation(s)
- Ulrike E Maurer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Requirement of cholesterol in the viral envelope for dengue virus infection. Virus Res 2013; 174:78-87. [PMID: 23517753 DOI: 10.1016/j.virusres.2013.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 12/27/2022]
Abstract
The role of cholesterol in the virus envelope or in the cellular membranes for dengue virus (DENV) infection was examined by depletion with methyl-beta-cyclodextrin (MCD) or nystatin. Pretreatment of virions with MCD or nystatin significantly reduced virus infectivity in a dose-dependent manner. By contrast, pre-treatment of diverse human cell lines with MCD or nystatin did not affect DENV infection. The four DENV serotypes were similarly inactivated by cholesterol-extracting drugs and infectivity was partially rescued when virion suspensions were treated with MCD in the presence of bovine serum. The addition of serum or exogenous water-soluble cholesterol after MCD treatment did not produce a reversion of MCD inactivating effect. Furthermore, virion treatment with extra cholesterol exerted also a virucidal effect. Binding and uptake of cholesterol-deficient DENV into the host cell were not impaired, whereas the next step of fusion between virion envelope and endosome membrane leading to virion uncoating and release of nucleocapsids to the cytoplasm appeared to be prevented, as determined by the retention of capsid protein in cells infected with MCD inactivated-DENV virions. Thereafter, the infection was almost completely inhibited, given the failure of viral RNA synthesis and viral protein expression in cells infected with MCD-treated virions. These data suggest that envelope cholesterol is a critical factor in the fusion process for DENV entry.
Collapse
|
67
|
Cheshenko N, Trepanier JB, Stefanidou M, Buckley N, Gonzalez P, Jacobs W, Herold BC. HSV activates Akt to trigger calcium release and promote viral entry: novel candidate target for treatment and suppression. FASEB J 2013; 27:2584-99. [PMID: 23507869 DOI: 10.1096/fj.12-220285] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HSV triggers intracellular calcium release to promote viral entry. We hypothesized that Akt signaling induces the calcium responses and contributes to HSV entry. Exposure of human cervical and primary genital tract epithelial, neuronal, or keratinocyte cells to HSV serotype 2 resulted in rapid phosphorylation of Akt. Silencing of Akt with small interfering RNA prevented the calcium responses, blocked viral entry, and inhibited plaque formation by 90% compared to control siRNA. Susceptibility to infection was partially restored if Akt was reintroduced into silenced cells with an Akt-expressing plasmid. HSV-2 variants deleted in glycoproteins B or D failed to induce Akt phosphorylation, and coimmunoprecipitation studies indicated that Akt interacts with glycoprotein B. Cell-surface expression of Akt was rapidly induced in response to HSV exposure. Miltefosine (50 μM), a licensed drug that blocks Akt phosphorylation, inhibited HSV-induced calcium release, viral entry, and plaque formation following infection with acyclovir-sensitive and resistant clinical isolates. Miltefosine blocked amplification of HSV from explanted ganglia to epithelial cells; viral yields were significantly less in miltefosine compared to control-treated cocultures (P<0.01). Together, these findings identify a novel role for Akt in viral entry, link Akt and calcium signaling, and suggest a new target for HSV treatment and suppression.
Collapse
Affiliation(s)
- Natalia Cheshenko
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Senti G, Iannaccone R, Graf N, Felder M, Tay F, Kündig T. A Randomized, Double-Blind, Placebo-Controlled Study to Test the Efficacy of Topical 2-Hydroxypropyl-Beta-Cyclodextrin in the Prophylaxis of Recurrent Herpes Labialis. Dermatology 2013; 226:247-52. [DOI: 10.1159/000349991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
|
69
|
The membrane-proximal region (MPR) of herpes simplex virus gB regulates association of the fusion loops with lipid membranes. mBio 2012; 3:mBio.00429-12. [PMID: 23170000 PMCID: PMC3509434 DOI: 10.1128/mbio.00429-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycoprotein B (gB), gD, and gH/gL constitute the fusion machinery of herpes simplex virus (HSV). Prior studies indicated that fusion occurs in a stepwise fashion whereby the gD/receptor complex activates the entire process, while gH/gL regulates the fusion reaction carried out by gB. Trimeric gB is a class III fusion protein. Its ectodomain of 773 amino acids contains a membrane-proximal region (MPR) (residues 731 to 773) and two fusion loops (FLs) per protomer. We hypothesized that the highly hydrophobic MPR interacts with the FLs, thereby masking them on virions until fusion begins. To test this hypothesis, we made a series of deletion, truncation, and point mutants of the gB MPR. Although the full-length deletion mutants were expressed in transfected cells, they were not transported to the cell surface, suggesting that removal of even small stretches of the MPR was highly detrimental to gB folding. To circumvent this limitation, we used a baculovirus expression system to generate four soluble proteins, each lacking the transmembrane region and cytoplasmic tail. All retained the FLs and decreasing portions of the MPR [gB(773t) (gB truncated at amino acid 773), gB(759t), gB(749t), and gB(739t)]. Despite the presence of the FLs, all were compromised in their ability to bind liposomes compared to the control, gB(730t), which lacks the MPR. We conclude that residues 731 to 739 are sufficient to mask the FLs, thereby preventing liposome association. Importantly, mutation of two aromatic residues (F732 and F738) to alanine restored the ability of gB(739t) to bind liposomes. Our data suggest that the MPR is important for modulating the association of gB FLs with target membranes. To successfully cause disease, a virus must infect host cells. Viral infection is a highly regulated, multistep process. For herpesviruses, genetic material transfers from the virus to the target cell through fusion of the viral and host cell lipid membranes. Here, we provide evidence that the ability of the herpes simplex virus (HSV) glycoprotein B (gB) fusion protein to interact with the host membrane is regulated by its membrane-proximal region (MPR), which serves to cover or shield its lipid-associating moieties (fusion loops). This in turn prevents the premature binding of gB with host cells and provides a level of regulation to the fusion process. These findings provide important insight into the complex regulatory steps required for successful herpesvirus infection.
Collapse
|
70
|
Herpes virus fusion and entry: a story with many characters. Viruses 2012; 4:800-32. [PMID: 22754650 PMCID: PMC3386629 DOI: 10.3390/v4050800] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 12/13/2022] Open
Abstract
Herpesviridae comprise a large family of enveloped DNA viruses all of whom employ orthologs of the same three glycoproteins, gB, gH and gL. Additionally, herpesviruses often employ accessory proteins to bind receptors and/or bind the heterodimer gH/gL or even to determine cell tropism. Sorting out how these proteins function has been resolved to a large extent by structural biology coupled with supporting biochemical and biologic evidence. Together with the G protein of vesicular stomatitis virus, gB is a charter member of the Class III fusion proteins. Unlike VSV G, gB only functions when partnered with gH/gL. However, gH/gL does not resemble any known viral fusion protein and there is evidence that its function is to upregulate the fusogenic activity of gB. In the case of herpes simplex virus, gH/gL itself is upregulated into an active state by the conformational change that occurs when gD, the receptor binding protein, binds one of its receptors. In this review we focus primarily on prototypes of the three subfamilies of herpesviruses. We will present our model for how herpes simplex virus (HSV) regulates fusion in series of highly regulated steps. Our model highlights what is known and also provides a framework to address mechanistic questions about fusion by HSV and herpesviruses in general.
Collapse
|
71
|
Falanga A, Tarallo R, Vitiello G, Vitiello M, Perillo E, Cantisani M, D'Errico G, Galdiero M, Galdiero S. Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type I virus. PLoS One 2012; 7:e32186. [PMID: 22384173 PMCID: PMC3285657 DOI: 10.1371/journal.pone.0032186] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/23/2012] [Indexed: 12/17/2022] Open
Abstract
The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV) requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes.
Collapse
Affiliation(s)
- Annarita Falanga
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
| | - Rossella Tarallo
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
| | - Giuseppe Vitiello
- Department of Chemistry, University of Naples “Federico II” and Consorzio per lo Studio dei Sistemi a Grande Interfase, CSGI, Monte Sant'Angelo, Napoli, Italy
| | | | - Emiliana Perillo
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
| | - Marco Cantisani
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
| | - Gerardino D'Errico
- Department of Chemistry, University of Naples “Federico II” and Consorzio per lo Studio dei Sistemi a Grande Interfase, CSGI, Monte Sant'Angelo, Napoli, Italy
| | - Massimiliano Galdiero
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
- Department of Experimental Medicine, II University of Naples, Napoli, Italy
| | - Stefania Galdiero
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| |
Collapse
|
72
|
The lipid raft-associated protein CD98 is required for vaccinia virus endocytosis. J Virol 2012; 86:4868-82. [PMID: 22345471 DOI: 10.1128/jvi.06610-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mature vaccinia virus (vaccinia MV) infects a broad range of animals in vivo and cell cultures in vitro; however, the cellular receptors that determine vaccinia MV tropism and entry pathways are poorly characterized. Here, we performed quantitative proteomic analyses of lipid raft-associated proteins upon vaccinia MV entry into HeLa cells. We found that a type II membrane glycoprotein, CD98, is enriched in lipid rafts upon vaccinia MV infection compared to mock-infected HeLa cells. The knockdown of CD98 expression in HeLa cells significantly reduced vaccinia MV entry. Furthermore, CD98 knockout (KO) mouse embryonic fibroblasts (MEFs) also exhibited reduced vaccinia MV infectivity without affecting MV attachment to cells, suggesting a role for CD98 in the postbinding step of virus entry. Further characterization with inhibitors and dominant negative proteins that block different endocytic pathways revealed that vaccinia MV entry into MEFs occurs through a clathrin-independent, caveolin-independent, dynamin-dependent, fluid-phase endocytic pathway, implying that CD98 plays a specific role in the vaccinia MV endocytic pathway. Infections of wild-type and CD98 KO MEF cells with different strains of vaccinia MV provided further evidence that CD98 plays a specific role in MV endocytosis but not in plasma membrane fusion. Finally, different CD98-C69 chimeric proteins were expressed in CD98 KO MEFs, but none were able to reconstitute MV infectivity, suggesting that the overall structure of the CD98 protein is required for vaccinia MV endocytosis.
Collapse
|
73
|
Chakraborty S, Veettil MV, Chandran B. Kaposi's Sarcoma Associated Herpesvirus Entry into Target Cells. Front Microbiol 2012; 3:6. [PMID: 22319516 PMCID: PMC3262161 DOI: 10.3389/fmicb.2012.00006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 01/05/2012] [Indexed: 01/05/2023] Open
Abstract
Herpesvirus infection of target cells is a complex process involving multiple host cell surface molecules (receptors) and multiple viral envelope glycoproteins. Kaposi's sarcoma associated herpesvirus (KSHV or HHV-8) infects a variety of in vivo target cells such as endothelial cells, B cells, monocytes, epithelial cells, and keratinocytes. KSHV also infects a diversity of in vitro target cells and establishes in vitro latency in many of these cell types. KSHV interactions with the host cell surface molecules and its mode of entry in the various target cells are critical for the understanding of KSHV pathogenesis. KSHV is the first herpesvirus shown to interact with adherent target cell integrins and this interaction initiates the host cell pre-existing signal pathways that are utilized for successful infection. This chapter discusses the various aspects of the early stage of KSHV infection of target cells, receptors used and issues that need to be clarified, and future directions. The various signaling events triggered by KSHV infection and the potential role of signaling events in the different stages of infection are summarized providing the framework and starting point for further detailed studies essential to fully comprehend the pathogenesis of KSHV.
Collapse
Affiliation(s)
- Sayan Chakraborty
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and ScienceNorth Chicago, IL, USA
| | - Mohanan Valiya Veettil
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and ScienceNorth Chicago, IL, USA
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and ScienceNorth Chicago, IL, USA
| |
Collapse
|
74
|
Xie N, Huang K, Zhang T, Lei Y, Liu R, Wang K, Zhou S, Li J, Wu J, Wu H, Deng C, Zhao X, Nice EC, Huang C. Comprehensive proteomic analysis of host cell lipid rafts modified by HBV infection. J Proteomics 2012; 75:725-39. [DOI: 10.1016/j.jprot.2011.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/26/2011] [Accepted: 09/17/2011] [Indexed: 12/29/2022]
|
75
|
Sun Y, Xiao S, Wang D, Luo R, Li B, Chen H, Fang L. Cellular membrane cholesterol is required for porcine reproductive and respiratory syndrome virus entry and release in MARC-145 cells. SCIENCE CHINA-LIFE SCIENCES 2011; 54:1011-8. [PMID: 22173307 PMCID: PMC7088586 DOI: 10.1007/s11427-011-4236-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/27/2011] [Indexed: 11/27/2022]
Abstract
Cholesterol represents one of the key constituents of small, dynamic, sterol- and sphingolipid-enriched domains on the plasma membrane. It has been reported that many viruses depend on plasma membrane cholesterol for efficient infection. In this study, the role of the plasma membrane cholesterol in porcine reproductive and respiratory syndrome virus (PRRSV) infection of MARC-145 cells was investigated. Pretreatment of MARC-145 cells with methyl-β-cyclodextrin (MβCD), a drug used to deplete cholesterol from cellular membrane, significantly reduced PRRSV infection in a dose-dependent manner. This inhibition was partially reversed by supplementing exogenous cholesterol following MβCD treatment, suggesting that the inhibition of PRRSV infection was specifically mediated by removal of cellular cholesterol. Further detailed studies showed that depletion of cellular membrane cholesterol significantly inhibited virus entry, especially virus attachment and release. These results indicate that the presence of cholesterol in the cellular membrane is a key component of PRRSV infection.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
76
|
Cholesterol dependence of Newcastle Disease Virus entry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:753-61. [PMID: 22192779 PMCID: PMC7094422 DOI: 10.1016/j.bbamem.2011.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/02/2011] [Accepted: 12/06/2011] [Indexed: 01/13/2023]
Abstract
Lipid rafts are membrane microdomains enriched in cholesterol, sphingolipids, and glycolipids that have been implicated in many biological processes. Since cholesterol is known to play a key role in the entry of some other viruses, we investigated the role of cholesterol and lipid rafts in the host cell plasma membrane in Newcastle Disease Virus (NDV) entry. We used methyl-β-cyclodextrin (MβCD) to deplete cellular cholesterol and disrupt lipid rafts. Our results show that the removal of cellular cholesterol partially reduces viral binding, fusion and infectivity. MβCD had no effect on the expression of sialic acid containing molecule expression, the NDV receptors in the target cell. All the above-described effects were reversed by restoring cholesterol levels in the target cell membrane. The HN viral attachment protein partially localized to detergent-resistant membrane microdomains (DRMs) at 4°C and then shifted to detergent-soluble fractions at 37°C. These results indicate that cellular cholesterol may be required for optimal cell entry in NDV infection cycle.
Collapse
|
77
|
Function of membrane rafts in viral lifecycles and host cellular response. Biochem Res Int 2011; 2011:245090. [PMID: 22191032 PMCID: PMC3235436 DOI: 10.1155/2011/245090] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/31/2022] Open
Abstract
Membrane rafts are small (10–200 nm) sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process) and the late stage (assembly, budding, and release processes of virus particles). In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.
Collapse
|
78
|
Huang L, Zhang YP, Yu YL, Sun MX, Li C, Chen PY, Mao X. Role of lipid rafts in porcine reproductive and respiratory syndrome virus infection in MARC-145 cells. Biochem Biophys Res Commun 2011; 414:545-50. [PMID: 21986526 PMCID: PMC7092942 DOI: 10.1016/j.bbrc.2011.09.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/21/2011] [Indexed: 01/15/2023]
Abstract
Lipid rafts play an important role in the life cycle of many viruses. Cholesterol is a critical structural component of lipid rafts. Although the porcine reproductive and respiratory syndrome virus (PRRSV) has restricted cell tropism for cells of the monocyte/macrophage lineage, a non-macrophage cell MARC-145 was susceptible to PRRSV because of the expression of virus receptor CD163 on the cell surface, therefore MARC-145 cells is used as model cell for PRRSV studies. In order to determine if cholesterol is involved in PRRSV infection in MARC-145 cells, we used three pharmacological agents: methyl-β cyclodextrin (MβCD), mevinolin, and filipin complex to deplete cholesterol in MARC-145. Although these agents act by different mechanisms, they all significantly inhibited PRRSV infection. The inhibition could be prevented by addition of exogenous cholesterol. Cell membrane cholesterol depletion after virus infection had no effect on PRRSV production and cholesterol depletion pre-infection did not reduce the virus attachment, suggesting cholesterol is involved in virus entry. Further results showed that cholesterol depletion did not change expression levels of the PRRSV receptor CD163 in MARC-145, had no effect on clathrin-mediated endocytosis, but disturbed lipid-raft-dependent endocytosis. Collectively, these studies suggest that cholesterol is critical for PRRSV entry, which is likely to be mediated by a lipid-raft-dependent pathway.
Collapse
Affiliation(s)
- Li Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | | | | | | | | | | |
Collapse
|
79
|
Herpes simplex virus infects most cell types in vitro: clues to its success. Virol J 2011; 8:481. [PMID: 22029482 PMCID: PMC3223518 DOI: 10.1186/1743-422x-8-481] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/26/2011] [Indexed: 01/10/2023] Open
Abstract
Herpes simplex virus (HSV) type-1 and type-2 have evolved numerous strategies to infect a wide range of hosts and cell types. The result is a very successful prevalence of the virus in the human population infecting 40-80% of people worldwide. HSV entry into host cell is a multistep process that involves the interaction of the viral glycoproteins with various cell surface receptors. Based on the cell type, HSV enter into host cell using different modes of entry. The combination of various receptors and entry modes has resulted in a virus that is capable of infecting virtually all cell types. Identifying the common rate limiting steps of the infection may help the development of antiviral agents that are capable of preventing the virus entry into host cell. In this review we describe the major features of HSV entry that have contributed to the wide susceptibility of cells to HSV infection.
Collapse
|
80
|
Abstract
BACKGROUND INFORMATION Vaccinia virus (VACV) was used as a surrogate of variola virus (genus Orthopoxvirus), the causative agent of smallpox, to study orthopoxvirus infection. VACV infects cells via attachment and fusion of the viral membrane with the host cell membrane. Glycosphingolipids, expressed in multiple organs, are major components of lipid rafts and have been associated with the infectious route of several pathogens. RESULTS We demonstrate that the VACV-WR (VACV Western-Reserve strain) displays no binding to Cer (ceramide) or to Gal-Cer (galactosylceramide), but binds to a natural sulfated derivative of these molecules: the Sulf (sulfatide) 3' sulfogalactosylceramide. The interaction between Sulf and VACV-WR resulted in a time-dependent inhibition of virus infection. Virus cell attachment was the crucial step inhibited by Sulf. Electron microscopy showed that SUVs (small unilamellar vesicles) enriched in Sulf bound to VACV particles. Both the A27 and L5 viral membrane proteins were shown to interact with Sulf, indicating that they could be the major viral ligands for Sulf. Soluble Sulf was successful in preventing mortality, but not morbidity, in a lethal mouse model infection with VACV-WR. CONCLUSIONS Together the results suggest that Sulf could play a role as an alternate receptor for VACV-WR and probably other Orthopoxviruses.
Collapse
|
81
|
Entry pathways of herpes simplex virus type 1 into human keratinocytes are dynamin- and cholesterol-dependent. PLoS One 2011; 6:e25464. [PMID: 22022400 PMCID: PMC3192061 DOI: 10.1371/journal.pone.0025464] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/05/2011] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) can enter cells via endocytic pathways or direct fusion at the plasma membrane depending on the cell line and receptor(s). Most studies into virus entry have used cultured fibroblasts but since keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin, which demonstrates the requirement for host cholesterol during virus entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require dynamin and host cholesterol.
Collapse
|
82
|
Lipid composition modulates the interaction of peptides deriving from herpes simplex virus type I glycoproteins B and H with biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2517-26. [DOI: 10.1016/j.bbamem.2011.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/01/2011] [Accepted: 07/12/2011] [Indexed: 02/05/2023]
|
83
|
Zhu YZ, Cao MM, Wang WB, Wang W, Ren H, Zhao P, Qi ZT. Association of heat-shock protein 70 with lipid rafts is required for Japanese encephalitis virus infection in Huh7 cells. J Gen Virol 2011; 93:61-71. [PMID: 21940409 DOI: 10.1099/vir.0.034637-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Japanese encephalitis virus (JEV) is an enveloped flavivirus and the most common agent of viral encephalitis. It enters cells through receptor-mediated endocytosis and low pH-triggered membrane fusion. Although lipid rafts, cholesterol-enriched lipid-ordered membrane domains, have been shown to participate in JEV entry, the mechanisms of the early events of JEV infection, including the cellular receptors of JEV, remain largely unknown. In the current study, it was demonstrated that heat-shock protein 70 (HSP70), rather than other members of the HSP70 family, was required for JEV entry into a human cell line. Cell-surface expression of HSP70 and a direct interaction between JEV envelope (E) protein and HSP70 were observed. Biochemical fractionation showed that HSP70 clearly migrated into the raft fraction after virus infection and co-fractioned with E protein. Depletion of cholesterol shifted the E protein and HSP70 to a non-raft membrane and decreased JEV entry without affecting virus binding to host cells. Notably, recruitment of HSP70 into lipid rafts was required for activation of the phosphoinositide 3-kinase/Akt signalling pathway in the early stage of JEV infection. These results indicate that lipid rafts facilitate JEV entry, possibly by providing a convenient platform to concentrate JEV and its receptors on the host-cell membrane.
Collapse
Affiliation(s)
- Yong-Zhe Zhu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - Ming-Mei Cao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - Wen-Bo Wang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - Wen Wang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - Hao Ren
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - Zhong-Tian Qi
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| |
Collapse
|
84
|
Low-pH-dependent changes in the conformation and oligomeric state of the prefusion form of herpes simplex virus glycoprotein B are separable from fusion activity. J Virol 2011; 85:9964-73. [PMID: 21813610 DOI: 10.1128/jvi.05291-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The cellular requirements for activation of herpesvirus fusion and entry remain poorly understood. Low pH triggers change in the antigenic reactivity of the prefusion form of the herpes simplex virus (HSV) fusion protein gB in virions, both in vitro and during viral entry via endocytosis (S. Dollery et al., J. Virol. 84:3759-3766, 2010). However, the mechanism and magnitude of gB conformational change are not clear. Here we show that the conformation and oligomeric state of gB with mutations in the bipartite fusion loops were similarly altered despite the fusion-inactivating mutations. Together with previous studies, this suggests that fusion loop mutants undergo conformational changes but are defective for fusion because they fail to make productive contact with the outer leaflet of the host target membrane. A direct, reversible effect of low pH on the structure of gB was detected by fluorescence spectroscopy. A soluble form of gB containing cytoplasmic tail sequences (s-gB) was triggered by mildly acidic pH to undergo changes in tryptophan fluorescence emission, hydrophobicity, antigenic conformation, and oligomeric structure and thus resembled the prefusion form of gB in the virion. In contrast, soluble gB730, for which the postfusion crystal structure is known, was only marginally affected by pH using these measures. The results underscore the importance of using a prefusion form of gB to assess the activation and extent of conformation change. Further, acidic pH had little to no effect on the conformation or hydrophobicity of gD or on gD's ability to bind nectin-1 or HVEM receptors. Our results support a model in which endosomal low pH serves as a cellular trigger of fusion by activating conformational changes in the fusion protein gB.
Collapse
|
85
|
Capturing the herpes simplex virus core fusion complex (gB-gH/gL) in an acidic environment. J Virol 2011; 85:6175-84. [PMID: 21507973 DOI: 10.1128/jvi.00119-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Herpes simplex virus (HSV) entry requires the core fusion machinery of gH/gL and gB as well as gD and a gD receptor. When gD binds receptor, it undergoes conformational changes that presumably activate gH/gL, which then activates gB to carry out fusion. gB is a class III viral fusion protein, while gH/gL does not resemble any known viral fusion protein. One hallmark of fusion proteins is their ability to bind lipid membranes. We previously used a liposome coflotation assay to show that truncated soluble gB, but not gH/gL or gD, can associate with liposomes at neutral pH. Here, we show that gH/gL cofloats with liposomes but only when it is incubated with gB at pH 5. When gB mutants with single amino acid changes in the fusion loops (known to inhibit the binding of soluble gB to liposomes) were mixed with gH/gL and liposomes at pH 5, gH/gL failed to cofloat with liposomes. These data suggest that gH/gL does not directly associate with liposomes but instead binds to gB, which then binds to liposomes via its fusion loops. Using monoclonal antibodies, we found that many gH and gL epitopes were altered by low pH, whereas the effect on gB epitopes was more limited. Our liposome data support the concept that low pH triggers conformational changes to both proteins that allow gH/gL to physically interact with gB.
Collapse
|
86
|
Carter C. Alzheimer's disease plaques and tangles: Cemeteries of a Pyrrhic victory of the immune defence network against herpes simplex infection at the expense of complement and inflammation-mediated neuronal destruction. Neurochem Int 2011; 58:301-20. [DOI: 10.1016/j.neuint.2010.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/29/2022]
|
87
|
Abstract
AbstractAlzheimer’s disease (AD) is the most frequent cause of dementia in the elderly, characterized by the presence of cerebral amyloid plaques and neurofibrillary tangles. The causes of the disease are not well understood, especially considering that more than 95% of AD patients are non-familial. Due to the similarity of brain regions affected in herpes simplex encephalitis to those mainly affected in AD, and owing to the very high prevalence of latent herpes simplex virus type 1 (HSV1) infection, reactivation of HSV1 was proposed as one of the possible causes of AD. The trigeminal ganglion, located only a few millimeters from the entorhinal cortex, is the primary site of HSV1 latency, although other sites including the sensory neurons, the nodose ganglion of the vagus nerve and other regions of the brain may be involved, possibly in relation to very early neurofibrillary AD changes in the dorsal raphe, locus coeruleus and other brainstem nuclei. Novel data obtained upon infection of cultured neuronal cells and mouse brain with HSV1 further show that HSV1 infection causes intracellular amyloid-beta protein accumulation, as well as abnormal phosphorylation of tau protein, the major component of tangles. Another interesting fact is the existence of a significant degree of homology between HSV1 components and AD susceptibility genes. In this review we summarize findings that reveal connections between the two conditions, as well as different suggestions for the mechanisms of HSV1-induced AD. As most of the available results support a connection of AD and HSV1 infection, antiviral therapy should be taken into consideration for AD treatment following early diagnosis.
Collapse
|
88
|
Arii J, Goto H, Suenaga T, Oyama M, Kozuka-Hata H, Imai T, Minowa A, Akashi H, Arase H, Kawaoka Y, Kawaguchi Y. Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature 2010; 467:859-62. [PMID: 20944748 DOI: 10.1038/nature09420] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 08/16/2010] [Indexed: 01/24/2023]
Abstract
Herpes simplex virus-1 (HSV-1), the prototype of the α-herpesvirus family, causes life-long infections in humans. Although generally associated with various mucocutaneous diseases, HSV-1 is also involved in lethal encephalitis. HSV-1 entry into host cells requires cellular receptors for both envelope glycoproteins B (gB) and D (gD). However, the gB receptors responsible for its broad host range in vitro and infection of critical targets in vivo remain unknown. Here we show that non-muscle myosin heavy chain IIA (NMHC-IIA), a subunit of non-muscle myosin IIA (NM-IIA), functions as an HSV-1 entry receptor by interacting with gB. A cell line that is relatively resistant to HSV-1 infection became highly susceptible to infection by this virus when NMHC-IIA was overexpressed. Antibody to NMHC-IIA blocked HSV-1 infection in naturally permissive target cells. Furthermore, knockdown of NMHC-IIA in the permissive cells inhibited HSV-1 infection as well as cell-cell fusion when gB, gD, gH and gL were coexpressed. Cell-surface expression of NMHC-IIA was markedly and rapidly induced during the initiation of HSV-1 entry. A specific inhibitor of myosin light chain kinase, which regulates NM-IIA by phosphorylation, reduced the redistribution of NMHC-IIA as well as HSV-1 infection in cell culture and in a murine model for herpes stromal keratitis. NMHC-IIA is ubiquitously expressed in various human tissues and cell types and, therefore, is implicated as a functional gB receptor that mediates broad HSV-1 infectivity both in vitro and in vivo. The identification of NMHC-IIA as an HSV-1 entry receptor and the involvement of NM-IIA regulation in HSV-1 infection provide an insight into HSV-1 entry and identify new targets for antiviral drug development.
Collapse
Affiliation(s)
- Jun Arii
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Sousa IP, Carvalho CAM, Ferreira DF, Weissmüller G, Rocha GM, Silva JL, Gomes AMO. Envelope lipid-packing as a critical factor for the biological activity and stability of alphavirus particles isolated from mammalian and mosquito cells. J Biol Chem 2010; 286:1730-6. [PMID: 21075845 DOI: 10.1074/jbc.m110.198002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alphaviruses are enveloped arboviruses. The viral envelope is derived from the host cell and is positioned between two icosahedral protein shells (T = 4). Because the viral envelope contains glycoproteins involved in cell recognition and entry, the integrity of the envelope is critical for the success of the early events of infection. Differing levels of cholesterol in different hosts leads to the production of alphaviruses with distinct levels of this sterol loaded in the envelope. Using Mayaro virus, a New World alphavirus, we investigated the role of cholesterol on the envelope of alphavirus particles assembled in either mammalian or mosquito cells. Our results show that although quite different in their cholesterol content, Mayaro virus particles obtained from both cells share a similar high level of lateral organization in their envelopes. This organization, as well as viral stability and infectivity, is severely compromised when cholesterol is depleted from the envelope of virus particles isolated from mammalian cells, but virus particles isolated from mosquito cells are relatively unaffected by cholesterol depletion. We suggest that it is not cholesterol itself, but rather the organization of the viral envelope, that is critical for the biological activity of alphaviruses.
Collapse
Affiliation(s)
- Ivanildo P Sousa
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21341-902 RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
There is a growing body of evidence that implicates the herpes simplex type 1 virus (HSV-1) in the development of Alzheimer's dementia (AD). HSV-1 has been found to be present in the cerebrum of the great majority of older adults, and in many of the same areas of the brain that are affected by AD. When active, the virus may contribute to the formation of the neuro-fibrillary tangles and amyloid plaques characteristic of AD. Like AD, HSV-1 encephalitis may cause long term memory loss. HSV-1 replication is suppressed in lysine-rich/arginine - poor environments, and population studies suggest that diets high in lysine and low in arginine may be associated with lower rates of AD. There are no prospective studies of the efficacy of lysine supplementation to prevent or reduce the incidence of AD. Supplementation with adequate doses of lysine could prevent the development of AD.
Collapse
|
91
|
Structural basis of local, pH-dependent conformational changes in glycoprotein B from herpes simplex virus type 1. J Virol 2010; 84:12924-33. [PMID: 20943984 DOI: 10.1128/jvi.01750-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Herpesviruses enter cells by membrane fusion either at the plasma membrane or in endosomes, depending on the cell type. Glycoprotein B (gB) is a conserved component of the multiprotein herpesvirus fusion machinery and functions as a fusion protein, with two internal fusion loops, FL1 and FL2. We determined the crystal structures of the ectodomains of two FL1 mutants of herpes simplex virus type 1 (HSV-1) gB to clarify whether their fusion-null phenotypes were due to global or local effects of the mutations on the structure of the gB ectodomain. Each mutant has a single point mutation of a hydrophobic residue in FL1 that eliminates the hydrophobic side chain. We found that neither mutation affected the conformation of FL1, although one mutation slightly altered the conformation of FL2, and we conclude that the fusion-null phenotype is due to the absence of a hydrophobic side chain at the mutated position. Because the ectodomains of the wild-type and the mutant forms of gB crystallized at both low and neutral pH, we were able to determine the effect of pH on gB conformation at the atomic level. For viruses that enter cells by endocytosis, the low pH of the endosome effects major conformational changes in their fusion proteins, thereby promoting fusion of the viral envelope with the endosomal membrane. We show here that upon exposure of gB to low pH, FL2 undergoes a major relocation, probably driven by protonation of a key histidine residue. Relocation of FL2, as well as additional small conformational changes in the gB ectodomain, helps explain previously noted changes in its antigenic and biochemical properties. However, no global pH-dependent changes in gB structure were detected in either the wild-type or the mutant forms of gB. Thus, low pH causes local conformational changes in gB that are very different from the large-scale fusogenic conformational changes in other viral fusion proteins. We propose that these conformational changes, albeit modest, play an important functional role during endocytic entry of HSV.
Collapse
|
92
|
Däumer MP, Schneider B, Giesen DM, Aziz S, Kaiser R, Kupfer B, Schneweis KE, Schneider-Mergener J, Reineke U, Matz B, Eis-Hübinger AM. Characterisation of the epitope for a herpes simplex virus glycoprotein B-specific monoclonal antibody with high protective capacity. Med Microbiol Immunol 2010; 200:85-97. [PMID: 20931340 DOI: 10.1007/s00430-010-0174-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Indexed: 02/07/2023]
Abstract
Monoclonal antibody (MAb) 2c, specific for glycoprotein B of herpes simplex virus (HSV), had been shown to mediate clearance of infection from the mucous membranes of mice, thereby completely inhibiting mucocutaneous inflammation and lethality, even in mice depleted of both CD4(+) and CD8(+) cells. Additionally, ganglionic infection was highly restricted. In vitro, MAb 2c exhibits a potent complement-independent neutralising activity against HSV type 1 and 2, completely inhibits the viral cell-to-cell spread as well as the syncytium formation induced by syncytial HSV strains (Eis-Hübinger et al. in Intervirology 32:351-360, 1991; Eis-Hübinger et al. in J Gen Virol 74:379-385, 1993). Here, we describe the mapping of the epitope for MAb 2c. The antibody was found to recognise a discontinuous epitope comprised of the HSV type 1 glycoprotein B residues 299 to 305 and one or more additional discontinuous regions that can be mimicked by the sequence FEDF. Identification of the epitope was confirmed by loss of antibody binding to mutated glycoprotein B with replacement of the epitopic key residues, expressed in COS-1 cells. Similarly, MAb 2c was not able to neutralise HSV mutants with altered key residues, and MAb 2c was ineffective in mice inoculated with such mutants. Interestingly, identification and fine-mapping of the discontinuous epitope was not achieved by binding studies with truncated glycoprotein B variants expressed in COS cells but by peptide scanning with synthetic overlapping peptides and peptide key motif analysis. Reactivity of MAb 2c was immensely increased towards a peptide composed of the glycoprotein B residues 299 to 305, a glycine linker, and a C-terminal FEDF motif. If it could be demonstrated that antibodies of the specificity and bioactivity of MAb 2c can be induced by the epitope or a peptide mimicking the epitope, strategies for active immunisation might be conceivable.
Collapse
Affiliation(s)
- Martin P Däumer
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Wen M, Arora R, Wang H, Liu L, Kimata JT, Zhou P. GPI-anchored single chain Fv--an effective way to capture transiently-exposed neutralization epitopes on HIV-1 envelope spike. Retrovirology 2010; 7:79. [PMID: 20923574 PMCID: PMC2959034 DOI: 10.1186/1742-4690-7-79] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 10/06/2010] [Indexed: 12/22/2022] Open
Abstract
Background Identification of broad neutralization epitopes in HIV-1 envelope spikes is paramount for HIV-1 vaccine development. A few broad neutralization epitopes identified so far are present on the surface of native HIV-1 envelope spikes whose recognition by antibodies does not depend on conformational changes of the envelope spikes. However, HIV-1 envelope spikes also contain transiently-exposed neutralization epitopes, which are more difficult to identify. Results In this study, we constructed single chain Fvs (scFvs) derived from seven human monoclonal antibodies and genetically linked them with or without a glycosyl-phosphatidylinositol (GPI) attachment signal. We show that with a GPI attachment signal the scFvs are targeted to lipid rafts of plasma membranes. In addition, we demonstrate that four of the GPI-anchored scFvs, but not their secreted counterparts, neutralize HIV-1 with various degrees of breadth and potency. Among them, GPI-anchored scFv (X5) exhibits extremely potent and broad neutralization activity against multiple clades of HIV-1 strains tested. Moreover, we show that GPI-anchored scFv (4E10) also exhibited more potent neutralization activity than its secretory counterpart. Finally, we demonstrate that expression of GPI-anchored scFv (X5) in the lipid raft of plasma membrane of human CD4+ T cells confers long-term resistance to HIV-1 infection, HIV-1 envelope-mediated cell-cell fusion, and the infection of HIV-1 captured and transferred by human DCs. Conclusions Thus GPI-anchored scFv could be used as a general and effective way to identify antibodies that react with transiently-exposed neutralization epitopes in envelope proteins of HIV-1 and other enveloped viruses. The GPI-anchored scFv (X5), because of its breadth and potency, should have a great potential to be developed into anti-viral agent for HIV-1 prevention and therapy.
Collapse
Affiliation(s)
- Michael Wen
- The Unit of Anti-Viral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200025, China
| | | | | | | | | | | |
Collapse
|
94
|
Ruiz A, Hill MS, Schmitt K, Stephens EB. Membrane raft association of the Vpu protein of human immunodeficiency virus type 1 correlates with enhanced virus release. Virology 2010; 408:89-102. [PMID: 20880565 DOI: 10.1016/j.virol.2010.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/05/2010] [Accepted: 08/26/2010] [Indexed: 11/26/2022]
Abstract
The Vpu protein of human immunodeficiency virus type 1 (HIV-1) is known to enhance virion release from certain cell types. To accomplish this function, Vpu interacts with the restriction factor known as bone marrow stromal cell antigen 2 (BST-2)/tetherin. In this study, we analyzed whether the Vpu protein is associated with microdomains known as lipid or membrane rafts. Our results indicate that Vpu partially partitions into detergent-resistant membrane (DRM) fractions when expressed alone or in the context of simian-human immunodeficiency virus (SHIV) infection. The ability to be partitioned into rafts was observed with both subtype B and C Vpu proteins. The use of cholesterol lowering lovastatin/M-β-cyclodextrin and co-patching experiments confirmed that Vpu can be detected in cholesterol rich regions of membranes. Finally, we present data showing that raft association-defective transmembrane mutants of Vpu have impaired enhanced virus release function, but still maintain the ability to down-regulate CD4.
Collapse
Affiliation(s)
- Autumn Ruiz
- Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| | - M Sarah Hill
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| | - Kimberly Schmitt
- Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| | - Edward B Stephens
- Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160.,Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center 3901 Rainbow Blvd. Kansas City, Kansas 66160
| |
Collapse
|
95
|
Desplanques AS, Pontes M, De Corte N, Verheyen N, Nauwynck HJ, Vercauteren D, Favoreel HW. Cholesterol depletion affects infectivity and stability of pseudorabies virus. Virus Res 2010; 152:180-3. [DOI: 10.1016/j.virusres.2010.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/11/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
|
96
|
Ren X, Yin J, Li G, Herrler G. Cholesterol dependence of pseudorabies herpesvirus entry. Curr Microbiol 2010; 62:261-6. [PMID: 20625735 PMCID: PMC7080178 DOI: 10.1007/s00284-010-9700-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 06/22/2010] [Indexed: 12/13/2022]
Abstract
Lipid rafts are special microdomains in the plasma membrane. They are enriched in sphingolipids and cholesterol, playing critical roles in many biological processes. The purpose of this study is to analyze the requirement of cholesterol, a crucial component of lipid rafts for cell infection by pseudorabies virus (PrV). Cholesterol of plasma membrane or viral envelope was depleted with methyl-beta-cyclodextrin (MβCD), and the infectivity of three strains of PrV was determined with plaque assays. The effect of adding cholesterol to MβCD-treated cells and viruses on cell infection was analyzed. Furthermore, effect of post-adsorption cholesterol depletion on PrV infection was investigated. We show that cholesterol depletion of either the plasma membrane or the viral membrane by MβCD significantly impaired the infectivity of PrV strains Kaplan, Becker, and Bartha K-61. The virus was shown to have lower cholesterol content and to respond to lower MβCD concentrations. Exogenous cholesterol added to either MβCD-treated cells or virions partially restored the virus infectivity. Optimal PrV infection requires cholesterol in viral and plasma membranes.
Collapse
Affiliation(s)
- Xiaofeng Ren
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| | | | | | | |
Collapse
|
97
|
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
98
|
Manservigi R, Argnani R, Marconi P. HSV Recombinant Vectors for Gene Therapy. Open Virol J 2010; 4:123-56. [PMID: 20835362 DOI: 10.2174/1874357901004030123] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/13/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022] Open
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
99
|
Bergamaschi A, Pancino G. Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology 2010; 7:31. [PMID: 20374633 PMCID: PMC2868797 DOI: 10.1186/1742-4690-7-31] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/07/2010] [Indexed: 11/29/2022] Open
Abstract
Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types.
Collapse
Affiliation(s)
- Anna Bergamaschi
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France.
| | | |
Collapse
|
100
|
Abstract
Two major structural elements of a cell are the cytoskeleton and the lipid membranes. Actin and cholesterol are key components of the cytoskeleton and membranes, respectively, and are involved in a plethora of different cellular processes. This review summarizes and discusses the interaction of alphaherpesviruses with actin and cholesterol during different stages of the replication cycle: virus entry, replication and assembly in the nucleus, and virus egress. Elucidating these interactions not only yields novel insights into the biology of these important pathogens, but may also shed new light on cell biological aspects of actin and cholesterol, and lead to novel avenues in the design of antiviral strategies.
Collapse
|