51
|
Rivero-Calle I, Gómez-Rial J, Bont L, Gessner BD, Kohn M, Dagan R, Payne DC, Bruni L, Pollard AJ, García-Sastre A, Faustman DL, Osterhaus A, Butler R, Giménez Sánchez F, Álvarez F, Kaforou M, Bello X, Martinón-Torres F. TIPICO X: report of the 10th interactive infectious disease workshop on infectious diseases and vaccines. Hum Vaccin Immunother 2021; 17:759-772. [PMID: 32755474 PMCID: PMC7996078 DOI: 10.1080/21645515.2020.1788301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 11/03/2022] Open
Abstract
TIPICO is an expert meeting and workshop that aims to provide the most recent evidence in the field of infectious diseases and vaccination. The 10th Interactive Infectious Disease TIPICO workshop took place in Santiago de Compostela, Spain, on November 21-22, 2019. Cutting-edge advances in vaccination against respiratory syncytial virus, Streptococcus pneumoniae, rotavirus, human papillomavirus, Neisseria meningitidis, influenza virus, and Salmonella Typhi were discussed. Furthermore, heterologous vaccine effects were updated, including the use of Bacillus Calmette-Guérin (BCG) vaccine as potential treatment for type 1 diabetes. Finally, the workshop also included presentations and discussion on emergent virus and zoonoses, vaccine resilience, building and sustaining confidence in vaccination, approaches to vaccine decision-making, pros and cons of compulsory vaccination, the latest advances in decoding infectious diseases by RNA gene signatures, and the application of big data approaches.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Jose Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Louis Bont
- Wilhelmina’s Children’s Hospital University Medical Center Utrecht, The Netherlands
| | | | - Melvin Kohn
- Vaccines and Infectious Diseases Medical Affairs, Global Medical and Scientific Affairs, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel C. Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laia Bruni
- Cancer Epidemiology Research Program, Institut Català d’Oncologia (ICO) - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Andrew J. Pollard
- Oxford Vaccines Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise L. Faustman
- The Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Osterhaus
- Artemis One Health, Utrecht, The Netherlands
- Research Center Emerging Infections and Zoonoses, Hannover, Germany
| | - Robb Butler
- WHO Regional Office for Europe, Copenhagen, Denmark
| | | | | | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| |
Collapse
|
52
|
Salvesen HA, Whitelaw CBA. Current and prospective control strategies of influenza A virus in swine. Porcine Health Manag 2021; 7:23. [PMID: 33648602 PMCID: PMC7917534 DOI: 10.1186/s40813-021-00196-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Influenza A Viruses (IAV) are endemic pathogens of significant concern in humans and multiple keystone livestock species. Widespread morbidity in swine herds negatively impacts animal welfare standards and economic performance whilst human IAV pandemics have emerged from pigs on multiple occasions. To combat the rising prevalence of swine IAV there must be effective control strategies available. MAIN BODY The most basic form of IAV control on swine farms is through good animal husbandry practices and high animal welfare standards. To control inter-herd transmission, biosecurity considerations such as quarantining of pigs and implementing robust health and safety systems for workers help to reduce the likelihood of swine IAV becoming endemic. Closely complementing the physical on-farm practices are IAV surveillance programs. Epidemiological data is critical in understanding regional distribution and variation to assist in determining an appropriate response to outbreaks and understanding the nature of historical swine IAV epidemics and zoonoses. Medical intervention in pigs is restricted to vaccination, a measure fraught with the intrinsic difficulties of mounting an immune response against a highly mutable virus. It is the best available tool for controlling IAV in swine but is far from being a perfect solution due to its unreliable efficacy and association with an enhanced respiratory disease. Because IAV generally has low mortality rates there is a reticence in the uptake of vaccination. Novel genetic technologies could be a complementary strategy for IAV control in pigs that confers broad-acting resistance. Transgenic pigs with IAV resistance are useful as models, however the complexity of these reaching the consumer market limits them to research models. More promising are gene-editing approaches to prevent viral exploitation of host proteins and modern vaccine technologies that surpass those currently available. CONCLUSION Using the suite of IAV control measures that are available for pigs effectively we can improve the economic productivity of pig farming whilst improving on-farm animal welfare standards and avoid facing the extensive social and financial costs of a pandemic. Fighting 'Flu in pigs will help mitigate the very real threat of a human pandemic emerging, increase security of the global food system and lead to healthier pigs.
Collapse
Affiliation(s)
- Hamish A. Salvesen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - C. Bruce A. Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, UK
| |
Collapse
|
53
|
Kwak C, Nguyen QT, Kim J, Kim TH, Poo H. Influenza Chimeric Protein (3M2e-3HA2-NP) Adjuvanted with PGA/Alum Confers Cross-Protection against Heterologous Influenza A Viruses. J Microbiol Biotechnol 2021; 31:304-316. [PMID: 33263336 PMCID: PMC9705887 DOI: 10.4014/jmb.2011.11029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
Vaccination is the most effective way to prevent influenza virus infections. However, conventional vaccines based on hemagglutinin (HA) have to be annually updated because the HA of influenza viruses constantly mutates. In this study, we produced a 3M2e-3HA2-NP chimeric protein as a vaccine antigen candidate using an Escherichia coli expression system. The vaccination of chimeric protein (15 μg) conferred complete protection against A/Puerto Rico/8/1934 (H1N1; PR8) in mice. It strongly induced influenza virus-specific antibody responses, cytotoxic T lymphocyte activity, and antibody-dependent cellular cytotoxicity. To spare the dose and enhance the cross-reactivity of the chimeric, we used a complex of poly-γ-glutamic acid and alum (PGA/alum) as an adjuvant. PGA/alum-adjuvanted, low-dose chimeric protein (1 or 5 μg) exhibited higher cross-protective effects against influenza A viruses (PR8, CA04, and H3N2) compared with those of chimeric alone or alum-adjuvanted proteins in vaccinated mice. Moreover, the depletion of CD4+ T, CD8+ T, and NK cells reduced the survival rate and efficacy of the PGA/alum-adjuvanted chimeric protein. Collectively, the vaccination of PGA/alum-adjuvanted chimeric protein induced strong protection efficacy against homologous and heterologous influenza viruses in mice, which suggests that it may be a promising universal influenza vaccine candidate.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Alum Compounds/administration & dosage
- Animals
- Antibodies, Viral/immunology
- Cross Reactions
- Female
- Hemagglutinins, Viral
- Humans
- Immunity, Humoral
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nucleocapsid Proteins/administration & dosage
- Nucleocapsid Proteins/genetics
- Nucleocapsid Proteins/immunology
- Polyglutamic Acid/administration & dosage
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Viral Matrix Proteins/administration & dosage
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- Chaewon Kwak
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Quyen Thi Nguyen
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jaemoo Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae-Hwan Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
| | - Haryoung Poo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
54
|
Kerstetter LJ, Buckley S, Bliss CM, Coughlan L. Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses. Front Immunol 2021; 11:607333. [PMID: 33633727 PMCID: PMC7901974 DOI: 10.3389/fimmu.2020.607333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.
Collapse
Affiliation(s)
- Lucas J. Kerstetter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen Buckley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carly M. Bliss
- Division of Cancer & Genetics, Division of Infection & Immunity, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
55
|
McMillan CL, Young PR, Watterson D, Chappell KJ. The Next Generation of Influenza Vaccines: Towards a Universal Solution. Vaccines (Basel) 2021; 9:vaccines9010026. [PMID: 33430278 PMCID: PMC7825669 DOI: 10.3390/vaccines9010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Influenza viruses remain a constant burden in humans, causing millions of infections and hundreds of thousands of deaths each year. Current influenza virus vaccine modalities primarily induce antibodies directed towards the highly variable head domain of the hemagglutinin protein on the virus surface. Such antibodies are often strain-specific, meaning limited cross-protection against divergent influenza viruses is induced, resulting in poor vaccine efficacy. To attempt to counteract this, yearly influenza vaccination with updated formulations containing antigens from more recently circulating viruses is required. This is an expensive and time-consuming exercise, and the constant arms race between host immunity and virus evolution presents an ongoing challenge for effective vaccine development. Furthermore, there exists the constant pandemic threat of highly pathogenic avian influenza viruses with high fatality rates (~30–50%) or the emergence of new, pathogenic reassortants. Current vaccines would likely offer little to no protection from such viruses in the event of an epidemic or pandemic. This highlights the urgent need for improved influenza virus vaccines capable of providing long-lasting, robust protection from both seasonal influenza virus infections as well as potential pandemic threats. In this narrative review, we examine the next generation of influenza virus vaccines for human use and the steps being taken to achieve universal protection.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- Correspondence: (C.L.D.M.); (K.J.C.)
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Keith J. Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (C.L.D.M.); (K.J.C.)
| |
Collapse
|
56
|
Lei H, Gao T, Cen Q. Cross-protective immunity of the haemagglutinin stalk domain presented on the surface of Lactococcus lactis against divergent influenza viruses in mice. Virulence 2020; 12:12-19. [PMID: 33372841 PMCID: PMC7781637 DOI: 10.1080/21505594.2020.1857162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Most of the current approaches to influenza vaccine design focus on antibodies against influenza (HA). However, these influenza vaccines typically provide strain-specific protection against mostly homologous subtypes. There is an urgent need to develop a universal vaccine that confers cross-protection against influenza viruses. Of note, the HA stalk domain (HAsd) is a promising target for such an influenza vaccine. In this study, we generated recombinant Lactococcus lactis (L. lactis)/pNZ8150-phosphatidylglycerophosphate synthetase A (pgsA)-HAsd, in which pgsA was used as an anchor protein, and investigated the immunogenicity of HAsd in a mouse model by oral administration without the use of a mucosal adjuvant. Compared with L. lactis/pNZ8150-pgsA, mice were orally vaccinated with L. lactis/pNZ8150-pgsA-HAsd and then produced strong humoral and mucosal immune responses. Importantly, L. lactis/pNZ8150-pgsA-HAsd provided cross-protection against H5N1, H3N2 and H1N1 virus infections. Our data support the hypothesis that HAsd presented on the surface of L. lactis can provide cross-protective immunity against divergent influenza A viruses. Taken together, these findings suggest that L. lactis/pNZ8150-pgsA-HAsd can be considered an alternative approach to developing a novel universal vaccine during an influenza A pandemic. Abbreviations: HA, HAsd, HA stalk domain; L. lactis, Lactococcus lactis; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; IFA, immunofluorescence assay; PBS, phosphate-buffered saline; pgsA, phosphatidylglycerophosphate synthetase A; SPF, specific pathogen-free; CFU, colony-forming unit; BSL-3, biosafety level-3 laboratory; TCID50, 50% tissue culture infective dose; ELISA, enzyme-linked immunosorbent assay; OD, optical density; LTB, liable enterotoxin B subunit; CTB, cholera toxin B subunit.
Collapse
Affiliation(s)
- Han Lei
- College of Medicine, Southwest Jiaotong University , Chengdu, China
| | - Tong Gao
- College of Medicine, Southwest Jiaotong University , Chengdu, China
| | - Qianhong Cen
- College of Medicine, Southwest Jiaotong University , Chengdu, China
| |
Collapse
|
57
|
Sicard T, Kassardjian A, Julien JP. B cell targeting by molecular adjuvants for enhanced immunogenicity. Expert Rev Vaccines 2020; 19:1023-1039. [PMID: 33252273 DOI: 10.1080/14760584.2020.1857736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Adjuvants are critical components of vaccines to improve the quality and durability of immune responses. Molecular adjuvants are a specific subclass of adjuvants where ligands of known immune-modulatory receptors are directly fused to an antigen. Co-stimulation of the B cell receptor (BCR) and immune-modulatory receptors through this strategy can augment downstream signaling to improve antibody titers and/or potency, and survival in challenge models. AREAS COVERED C3d has been the most extensively studied molecular adjuvant and shown to improve immune responses to a number of antigens. Similarly, tumor necrosis superfamily ligands, such as BAFF and APRIL, as well as CD40, CD180, and immune complex ligands can also improve humoral immunity as molecular adjuvants. EXPERT OPINION However, no single strategy has emerged that improves immune outcomes in all contexts. Thus, systematic exploration of molecular adjuvants that target B cell receptors will be required to realize their full potential as next-generation vaccine technologies.
Collapse
Affiliation(s)
- Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Biochemistry, University of Toronto , ON, Canada
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Immunology, University of Toronto , ON, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Biochemistry, University of Toronto , ON, Canada.,Department of Immunology, University of Toronto , ON, Canada
| |
Collapse
|
58
|
Ninyio NN, Ho KL, Omar AR, Tan WS, Iqbal M, Mariatulqabtiah AR. Virus-like Particle Vaccines: A Prospective Panacea Against an Avian Influenza Panzootic. Vaccines (Basel) 2020; 8:E694. [PMID: 33227887 PMCID: PMC7712863 DOI: 10.3390/vaccines8040694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/04/2023] Open
Abstract
Epizootics of highly pathogenic avian influenza (HPAI) have resulted in the deaths of millions of birds leading to huge financial losses to the poultry industry worldwide. The roles of migratory wild birds in the harbouring, mutation, and transmission of avian influenza viruses (AIVs), and the lack of broad-spectrum prophylactic vaccines present imminent threats of a global panzootic. To prevent this, control measures that include effective AIV surveillance programmes, treatment regimens, and universal vaccines are being developed and analysed for their effectiveness. We reviewed the epidemiology of AIVs with regards to past avian influenza (AI) outbreaks in birds. The AIV surveillance programmes in wild and domestic birds, as well as their roles in AI control were also evaluated. We discussed the limitations of the currently used AI vaccines, which necessitated the development of a universal vaccine. We evaluated the current development of AI vaccines based upon virus-like particles (VLPs), particularly those displaying the matrix-2 ectodomain (M2e) peptide. Finally, we highlighted the prospects of these VLP vaccines as universal vaccines with the potential of preventing an AI panzootic.
Collapse
Affiliation(s)
- Nathaniel Nyakaat Ninyio
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Department of Microbiology, Faculty of Science, Kaduna State University, Kaduna 800241, Nigeria
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Munir Iqbal
- The Pirbright Institute, Woking GU24 0NF, UK;
| | - Abdul Razak Mariatulqabtiah
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
59
|
Desselberger U. Potential of plasmid only based reverse genetics of rotavirus for the development of next-generation vaccines. Curr Opin Virol 2020; 44:1-6. [DOI: 10.1016/j.coviro.2020.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/28/2023]
|
60
|
Stambas J, Lu C, Tripp RA. Innate and adaptive immune responses in respiratory virus infection: implications for the clinic. Expert Rev Respir Med 2020; 14:1141-1147. [PMID: 32762572 DOI: 10.1080/17476348.2020.1807945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The innate immune response is the first line of defense and consists of physical, chemical and cellular defenses. The adaptive immune response is the second line of defense and is pathogen-specific. Innate immunity occurs immediately while adaptive immunity develops upon pathogen exposure, and is long-lasting, highly specific, and sustained by memory T cells. Respiratory virus infection typically induces effective immunity but over-exuberant responses are associated with pathophysiology. Cytokines expressed in response to viral infection can enhance biological responses, activate, and trigger signaling pathways leading to adaptive immunity Vaccines induce immunity, specifically B and T cell responses. Vaccination is generally efficacious, but for many viruses, our understanding of vaccination strategies and immunity is incomplete or in its infancy. Studies that examine innate and adaptive immune responses to respiratory virus infection will aid vaccine development and may reduce the burden of respiratory viral disease. AREAS COVERED A literature search was performed using PubMed. The search covered: innate, adaptive, respiratory virus, vaccine development, B cell, and T cell. EXPERT OPINION Immunity rests on two pillars, i.e. the innate and adaptive immune system, which function together on different tasks to maintain homeostasis. a better understanding of immunity is necessary for disease prevention and intervention.
Collapse
Affiliation(s)
- John Stambas
- School of Medicine, Deakin University , Melbourne, Australia
| | - Chunni Lu
- School of Medicine, Deakin University , Melbourne, Australia
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia , Athens, GA, USA
| |
Collapse
|
61
|
Hwang HS, Chang M, Kim YA. Influenza-Host Interplay and Strategies for Universal Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030548. [PMID: 32962304 PMCID: PMC7564814 DOI: 10.3390/vaccines8030548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Influenza is an annual epidemic and an occasional pandemic caused by pathogens that are responsible for infectious respiratory disease. Humans are highly susceptible to the infection mediated by influenza A viruses (IAV). The entry of the virus is mediated by the influenza virus hemagglutinin (HA) glycoprotein that binds to the cellular sialic acid receptors and facilitates the fusion of the viral membrane with the endosomal membrane. During IAV infection, virus-derived pathogen-associated molecular patterns (PAMPs) are recognized by host intracellular specific sensors including toll-like receptors (TLRs), C-type lectin receptors, retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) either on the cell surface or intracellularly in endosomes. Herein, we comprehensively review the current knowledge available on the entry of the influenza virus into host cells and the molecular details of the influenza virus–host interface. We also highlight certain strategies for the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| |
Collapse
|
62
|
Li Z, Zaiser SA, Shang P, Heiden DL, Hajovsky H, Katwal P, DeVries B, Baker J, Richt JA, Li Y, He B, Fang Y, Huber VC. A chimeric influenza hemagglutinin delivered by parainfluenza virus 5 vector induces broadly protective immunity against genetically divergent influenza a H1 viruses in swine. Vet Microbiol 2020; 250:108859. [PMID: 33039727 PMCID: PMC7500346 DOI: 10.1016/j.vetmic.2020.108859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022]
Abstract
An HA-based vaccine candidate, created by DNA shuffling (HA-113), can be immunogenic when recombinant antigen is expressed by PIV5 (PIV5-113). Immunity induced by the PIV5-113 vaccine can protect mice against infection with 4 of 5 parental HAs used to create the vaccine. Immunity induced by PIV5-113 can protect pigs against infection with an influenza virus isolate that is known to be infectious in pigs.
Pigs are an important reservoir for human influenza viruses, and influenza causes significant economic loss to the swine industry. As demonstrated during the 2009 H1N1 pandemic, control of swine influenza virus infection is a critical step toward blocking emergence of human influenza virus. An effective vaccine that can induce broadly protective immunity against heterologous influenza virus strains is critically needed. In our previous studies [McCormick et al., 2015; PLoS One, 10(6):e0127649], we used molecular breeding (DNA shuffling) strategies to increase the breadth of the variable and conserved epitopes expressed within a single influenza A virus chimeric hemagglutinin (HA) protein. Chimeric HAs were constructed using parental HAs from the 2009 pandemic virus and swine influenza viruses that had a history of zoonotic transmission to humans. In the current study, we used parainfluenza virus 5 (PIV-5) as a vector to express one of these chimeric HA antigens, HA-113. Recombinant PIV-5 expressing HA-113 (PIV5-113) were rescued, and immunogenicity and protective efficacy were tested in both mouse and pig models. The results showed that PIV5-113 can protect mice and pigs against challenge with viruses expressing parental HAs. The protective immunity was extended against other genetically diversified influenza H1-expressing viruses. Our work demonstrates that PIV5-based influenza vaccines are efficacious as vaccines for pigs. The PIV5 vaccine vector and chimeric HA-113 antigen are discussed in the context of the development of universal influenza vaccines and the potential contribution of PIV5-113 as a candidate universal vaccine.
Collapse
Affiliation(s)
- Zhuo Li
- College of Veterinary Medicine, Department of Infectious Disease, University of Georgia, United States
| | - Sarah A Zaiser
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Pengcheng Shang
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Dustin L Heiden
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Heather Hajovsky
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Pratik Katwal
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Baylor DeVries
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Jack Baker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States
| | - Juergen A Richt
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Yanhua Li
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States
| | - Biao He
- College of Veterinary Medicine, Department of Infectious Disease, University of Georgia, United States.
| | - Ying Fang
- College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Kansas State University, United States.
| | - Victor C Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, United States.
| |
Collapse
|
63
|
Progress in the Development of Universal Influenza Vaccines. Viruses 2020; 12:v12091033. [PMID: 32957468 PMCID: PMC7551969 DOI: 10.3390/v12091033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses pose a significant threat to human health. They are responsible for a large number of deaths annually and have a serious impact on the global economy. There are numerous influenza virus subtypes, antigenic variations occur continuously, and epidemic trends are difficult to predict—all of which lead to poor outcomes of routine vaccination against targeted strain subtypes. Therefore, the development of universal influenza vaccines still constitutes the ideal strategy for controlling influenza. This article reviews the progress in development of universal vaccines directed against the conserved regions of hemagglutinin (HA), neuraminidase (NA), and other structural proteins of influenza viruses using new technologies and strategies with the goals of enhancing our understanding of universal influenza vaccines and providing a reference for research into the exploitation of natural immunity against influenza viruses.
Collapse
|
64
|
Abstract
Conventional influenza vaccines are based on predicting the circulating viruses year by year, conferring limited effectiveness since the antigenicity of vaccine strains does not always match the circulating viruses. This necessitates development of universal influenza vaccines that provide broader and lasting protection against pan-influenza viruses. The discovery of the highly conserved immunogens (epitopes) of influenza viruses provides attractive targets for universal vaccine design. Here we review the current understanding with broadly protective immunogens (epitopes) and discuss several important considerations to achieve the goal of universal influenza vaccines.
Collapse
|
65
|
Kim KH, Jung YJ, Lee Y, Park BR, Oh J, Lee YN, Kim MC, Jeeva S, Kang SM. Cross protection by inactivated recombinant influenza viruses containing chimeric hemagglutinin conjugates with a conserved neuraminidase or M2 ectodomain epitope. Virology 2020; 550:51-60. [PMID: 32882637 DOI: 10.1016/j.virol.2020.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
Influenza virus neuraminidase (NA) contains a universally conserved epitope (NAe, NA222-230). However, no studies have reported vaccines targeting this NA conserved epitope and inducing antibodies recognizing NAe. The extracellular domain of M2 (M2e) is considered as an attractive target for a universal influenza vaccine. We generated recombinant influenza H1N1 viruses expressing conserved epitopes in hemagglutinin (HA) molecules: NAe (NAe-HA) or M2e (M2e-HA) within the HA head domain. Inactivated recombinant NAe-HA and M2e-HA viruses were more effective in inducing IgG antibodies specific for an inserted conserved epitope than live recombinant virus. Recombinant inactivated M2e-HA virus vaccination induced cross protection against H3N2 virus with less weight loss compared to NAe-HA and was more effective in inducing humoral and cellular M2e immune responses. This study provides insight into developing recombinant influenza virus vaccines compatible with current platforms to induce antibody responses to conserved poorly immunogenic epitopes.
Collapse
Affiliation(s)
- Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Youri Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Bo Ryoung Park
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Judy Oh
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Min-Chul Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; CARESIDE Co., Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Subbiah Jeeva
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
66
|
Anti-Influenza Protective Efficacy of a H6 Virus-Like Particle in Chickens. Vaccines (Basel) 2020; 8:vaccines8030465. [PMID: 32825685 PMCID: PMC7565593 DOI: 10.3390/vaccines8030465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
H6 avian influenza viruses (AIVs) have a worldwide distribution, and they pose a potential concern for public health. In Taiwan, H6 AIVs have circulated in domestic chickens for more than 40 years, and certain strains have crossed the species barrier to infect mammals. With the goal of containing the disease, there is a pressing need to develop a safe and effective vaccine for pandemic preparedness. In this study, we prepared a virus-like particle (VLP) that consisted of the hemagglutinin (HA) and matrix protein 1 (M1) derived from a H6 AIV as a vaccine antigen, and we examined the immunogenicity and protective efficacy when combined with an adjuvant in a chicken model. Full-length HA and M1 protein genes were cloned and expressed using a baculovirus expression system, and VLPs were purified from the supernatant of insect cell cultures. We performed nanoparticle-tracking analysis and transmission electron microscopy to validate that the particle structure and properties resembled the native virions. In animal experiments, specific-pathogen-free chickens that received the H6 VLPs in combination with an adjuvant showed superior H6N1 virus-specific serum IgG and hemagglutination-inhibition antibody responses, which lasted more than 112 days. Following the H6N1 viral challenge, the vaccinated chickens showed reduced viral replication in the lungs, kidneys and conjunctival/cloacal shedding. The antibodies induced in the chickens by the vaccine were able to cross-react with the H6N1 human isolate and drifted avian H6N1 isolates. In summary, the H6 VLP vaccine elicited superb immunogenicity in vivo, and the use of an adjuvant further enhanced the antiviral protective efficacy. This vaccine formulation could potentially be used to manage H6 influenza virus infections in chickens.
Collapse
|
67
|
Jang YH, Seong BL. Call for a paradigm shift in the design of universal influenza vaccines by harnessing multiple correlates of protection. Expert Opin Drug Discov 2020; 15:1441-1455. [PMID: 32783765 DOI: 10.1080/17460441.2020.1801629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The genetic variability and diversity of influenza viruses, and the expansion of their hosts, present a significant threat to human health. The development of a universal influenza vaccine is urgently needed to tackle seasonal epidemics, pandemics, vaccine mismatch, and zoonotic transmissions to humans. AREAS COVERED Despite the identification of broadly neutralizing antibodies against influenza viruses, designing a universal influenza vaccine that induces such broadly neutralizing antibodies at protective levels in humans has remained challenging. Besides neutralizing antibodies, multiple correlates of protection have recently emerged as crucially important for eliciting broad protection against diverse influenza viruses. This review discusses the immune responses required for broad protection against influenza viruses, and suggests a paradigm shift from an HA stalk-based approach to other approaches that can induce multiple immunological correlates of protection for the development of a universal influenza vaccine. EXPERT OPINION To develop a truly universal influenza vaccine, multiple correlates of protection should be considered, including antibody responses and T cell immunity. Balanced induction of neutralizing antibodies, antibody effector functions, and T cell immunity will contribute to the most effective vaccination strategy. Live-attenuated influenza vaccines provide an attractive platform to improve the breadth and potency of vaccines for broader protection.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University , Andong, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, South Korea.,Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University , Seoul, South Korea
| |
Collapse
|
68
|
Brooks BD, Closmore A, Yang J, Holland M, Cairns T, Cohen GH, Bailey-Kellogg C. Characterizing Epitope Binding Regions of Entire Antibody Panels by Combining Experimental and Computational Analysis of Antibody: Antigen Binding Competition. Molecules 2020; 25:molecules25163659. [PMID: 32796656 PMCID: PMC7464469 DOI: 10.3390/molecules25163659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Vaccines and immunotherapies depend on the ability of antibodies to sensitively and specifically recognize particular antigens and specific epitopes on those antigens. As such, detailed characterization of antibody-antigen binding provides important information to guide development. Due to the time and expense required, high-resolution structural characterization techniques are typically used sparingly and late in a development process. Here, we show that antibody-antigen binding can be characterized early in a process for whole panels of antibodies by combining experimental and computational analyses of competition between monoclonal antibodies for binding to an antigen. Experimental "epitope binning" of monoclonal antibodies uses high-throughput surface plasmon resonance to reveal which antibodies compete, while a new complementary computational analysis that we call "dock binning" evaluates antibody-antigen docking models to identify why and where they might compete, in terms of possible binding sites on the antigen. Experimental and computational characterization of the identified antigenic hotspots then enables the refinement of the competitors and their associated epitope binding regions on the antigen. While not performed at atomic resolution, this approach allows for the group-level identification of functionally related monoclonal antibodies (i.e., communities) and identification of their general binding regions on the antigen. By leveraging extensive epitope characterization data that can be readily generated both experimentally and computationally, researchers can gain broad insights into the basis for antibody-antigen recognition in wide-ranging vaccine and immunotherapy discovery and development programs.
Collapse
Affiliation(s)
- Benjamin D. Brooks
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT 84738, USA
- Inovan Inc., Fargo, ND 58102, USA
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
- Correspondence: ; Tel.: +1-435-222-1403
| | - Adam Closmore
- Department of Pharmacy, North Dakota State University, Fargo, ND 58102, USA;
| | - Juechen Yang
- Department of Biomedical Engineering, North Dakota State University, Fargo, ND 58102, USA; (J.Y.); (M.H.)
| | - Michael Holland
- Department of Biomedical Engineering, North Dakota State University, Fargo, ND 58102, USA; (J.Y.); (M.H.)
| | - Tina Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
| | | |
Collapse
|
69
|
Rungrojcharoenkit K, Sunintaboon P, Ellison D, Macareo L, Midoeng P, Chaisuwirat P, Fernandez S, Ubol S. Development of an adjuvanted nanoparticle vaccine against influenza virus, an in vitro study. PLoS One 2020; 15:e0237218. [PMID: 32760143 PMCID: PMC7410248 DOI: 10.1371/journal.pone.0237218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/22/2020] [Indexed: 12/02/2022] Open
Abstract
Influenza is an infectious respiratory illness caused by influenza viruses. Despite yearly updates, the efficacy of influenza vaccines is significantly curtailed by the virus antigenic drift and antigenic shift. These constant changes to the influenza virus make-up also challenge the development of a universal flu vaccine, which requires conserved antigenic regions shared by influenza viruses of different subtypes. We propose that it is possible to bypass these challenges by the development of an influenza vaccine based on conserved proteins delivered in an adjuvanted nanoparticle system. In this study, we generated influenza nanoparticle constructs using trimethyl chitosan nanoparticles (TMC nPs) as the carrier of recombinant influenza hemagglutinin subunit 2 (HA2) and nucleoprotein (NP). The purified HA2 and NP recombinant proteins were encapsulated into TMC nPs to form HA2-TMC nPs and NP-TMC nPs, respectively. Primary human intranasal epithelium cells (HNEpCs) were used as an in vitro model to measure immunity responses. HA2-TMC nPs, NP-TMC nPs, and HA2-NP-TMC nPs (influenza nanoparticle constructs) showed no toxicity in HNEpCs. The loading efficiency of HA2 and NP into the TMC nPs was 97.9% and 98.5%, respectively. HA2-TMC nPs and NP-TMC nPs more efficiently delivered HA2 and NP proteins to HNEpCs than soluble HA2 and NP proteins alone. The induction of various cytokines and chemokines was more evident in influenza nanoparticle construct-treated HNEpCs than in soluble protein-treated HNEpCs. In addition, soluble factors secreted by influenza nanoparticle construct-treated HNEpCs significantly induced MoDCs maturation markers (CD80, CD83, CD86 and HLA-DR), as compared to soluble factors secreted by protein-treated HNEpCs. HNEpCs treated with the influenza nanoparticle constructs significantly reduced influenza virus replication in an in vitro challenge assay. The results indicate that TMC nPs can be used as influenza vaccine adjuvants and carriers capable of delivering HA2 and NP proteins to HNEpCs.
Collapse
Affiliation(s)
- Kamonthip Rungrojcharoenkit
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Damon Ellison
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Louis Macareo
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panuwat Midoeng
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Preamrudee Chaisuwirat
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- * E-mail: (SF); (SU)
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail: (SF); (SU)
| |
Collapse
|
70
|
Wu NC, Wilson IA. Influenza Hemagglutinin Structures and Antibody Recognition. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038778. [PMID: 31871236 DOI: 10.1101/cshperspect.a038778] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemagglutinin (HA) is most abundant glycoprotein on the influenza virus surface. Influenza HA promotes viral entry by engaging the receptor and mediating virus-host membrane fusion. At the same time, HA is the major antigen of the influenza virus. HA antigenic shift can result in pandemics, whereas antigenic drift allows human circulating strains to escape herd immunity. Most antibody responses against HA are strain-specific. However, antibodies that have neutralizing activities against multiple strains or even subtypes have now been discovered and characterized. These broadly neutralizing antibodies (bnAbs) target conserved regions on HA, such as the receptor-binding site and the stem domain. Structural studies of such bnAbs have provided important insight into universal influenza vaccine and therapeutic design. This review discusses the HA functions as well as HA-antibody interactions from a structural perspective.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
71
|
Biswas M, Yamazaki T, Chiba J, Akashi-Takamura S. Broadly Neutralizing Antibodies for Influenza: Passive Immunotherapy and Intranasal Vaccination. Vaccines (Basel) 2020; 8:vaccines8030424. [PMID: 32751206 PMCID: PMC7565570 DOI: 10.3390/vaccines8030424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Influenza viruses cause annual epidemics and occasional pandemics. The high diversity of viral envelope proteins permits viruses to escape host immunity. Therefore, the development of a universal vaccine and broadly neutralizing antibodies (bnAbs) is essential for controlling various mutant viruses. Here, we review some potentially valuable bnAbs for influenza; one is a novel passive immunotherapy using a variable domain of heavy chain-only antibody (VHH), and the other is polymeric immunoglobulin A (pIgA) induced by intranasal vaccination. Recently, it was reported that a tetravalent multidomain antibody (MDAb) was developed by genetic fusion of four VHHs, which are bnAbs against the influenza A or B viruses. The transfer of a gene encoding the MDAb–Fc fusion protein provided cross-protection against both influenza A and B viruses in vivo. An intranasal universal influenza vaccine, which can induce neutralizing pIgAs in the upper respiratory tract, is currently undergoing clinical studies. A recent study has revealed that tetrameric IgAs formed in nasal mucosa are more broadly protective against influenza than the monomeric and dimeric forms. These broadly neutralizing antibodies have high potential to control the currently circulating influenza virus.
Collapse
Affiliation(s)
- Mrityunjoy Biswas
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan; (M.B.); (S.A.-T.)
| | - Tatsuya Yamazaki
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan; (M.B.); (S.A.-T.)
- Correspondence: ; Tel.: +81-56-162-3311
| | - Joe Chiba
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan;
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan; (M.B.); (S.A.-T.)
| |
Collapse
|
72
|
Hajam IA, Kirthika P, Hewawaduge C, Jawalagatti V, Park S, Senevirathne A, Lee JH. Oral immunization with an attenuated Salmonella Gallinarum encoding the H9N2 haemagglutinin and M2 ectodomain induces protective immune responses against H9N2 infection in chickens. Avian Pathol 2020; 49:486-495. [PMID: 32483989 DOI: 10.1080/03079457.2020.1775782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H9N2, a low pathogenic avian influenza virus, causes significant economic losses in the poultry industry worldwide. Herein, we describe the construction of an attenuated Salmonella Gallinarum (SG) strain for expression and delivery of H9N2 haemagglutinin (HA) 1 (SG-HA1), HA2 (SG-HA2) and/or the conserved matrix protein 2 ectodomain (SG-M2e). We demonstrated that recombinant SG strains expressing HA1, HA2 and M2e antigens were immunogenic and safe in a chicken model. Chickens (n = 8) were vaccinated once orally with SG alone, SG-HA1, SG-HA2, SG-M2e, or mixture of SG-HA1, SG-HA2 and SG-M2e, or vaccinated once intramuscularly with an oil-adjuvant inactivated H9N2 vaccine. Our results demonstrated that vaccination with SG mutants encoding influenza antigens, administered individually or as a mixture, elicited significantly (P < 0.05) greater antigen-specific humoral and cell-mediated immune responses in chickens compared with those vaccinated with SG alone. A conventional H9N2 vaccine induced significantly (P < 0.05) greater HA1 and HA2 antibody responses than SG-based H9N2 vaccine strains, but significantly (P < 0.05) less robust M2e-specific responses. Upon challenge with the virulent H9N2 virus on day 28 post-vaccination, chickens vaccinated with either the SG-based H9N2 or conventional H9N2 vaccines exhibited comparable lung inflammation and viral loads, although both were significantly lower (P < 0.05) than in the group vaccinated with SG alone. In conclusion, our results showed that SG-based vaccination stimulated efficient immune responses against virulent H9N2. Further studies are needed to fully develop this approach as a preventive strategy for low pathogenic avian influenza viruses affecting poultry. RESEARCH HIGHLIGHTS S. gallinarum expressing HA1, HA2 and M2e antigens are immunogenic and safe. Salmonella has dual function of acting as a delivery system and as a natural adjuvant. Vaccine constructs elicit specific humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Perumalraja Kirthika
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | | | - SungWoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
73
|
Nath Neerukonda S, Vassell R, Weiss CD. Neutralizing Antibodies Targeting the Conserved Stem Region of Influenza Hemagglutinin. Vaccines (Basel) 2020; 8:E382. [PMID: 32664628 PMCID: PMC7563823 DOI: 10.3390/vaccines8030382] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza continues to be a public health threat despite the availability of annual vaccines. While vaccines are generally effective at inducing strain-specific immunity, they are sub-optimal or ineffective when drifted or novel pandemic strains arise due to sequence changes in the major surface glycoprotein hemagglutinin (HA). The discovery of a large number of antibodies targeting the highly conserved stem region of HAs that are capable of potently neutralizing a broad range of virus strains and subtypes suggests new ways to protect against influenza. The structural characterization of HA stem epitopes and broadly neutralizing antibody paratopes has enabled the design of novel proteins, mini-proteins, and peptides targeting the HA stem, thus providing a foundation for the design of new vaccines. In this narrative, we comprehensively review the current knowledge about stem-directed broadly neutralizing antibodies and the structural features contributing to virus neutralization.
Collapse
Affiliation(s)
| | | | - Carol D. Weiss
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.N.N.); (R.V.)
| |
Collapse
|
74
|
Freyn AW, Ramos da Silva J, Rosado VC, Bliss CM, Pine M, Mui BL, Tam YK, Madden TD, de Souza Ferreira LC, Weissman D, Krammer F, Coughlan L, Palese P, Pardi N, Nachbagauer R. A Multi-Targeting, Nucleoside-Modified mRNA Influenza Virus Vaccine Provides Broad Protection in Mice. Mol Ther 2020; 28:1569-1584. [PMID: 32359470 PMCID: PMC7335735 DOI: 10.1016/j.ymthe.2020.04.018] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
Influenza viruses are respiratory pathogens of public health concern worldwide with up to 650,000 deaths occurring each year. Seasonal influenza virus vaccines are employed to prevent disease, but with limited effectiveness. Development of a universal influenza virus vaccine with the potential to elicit long-lasting, broadly cross-reactive immune responses is necessary for reducing influenza virus prevalence. In this study, we have utilized lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccines to intradermally deliver a combination of conserved influenza virus antigens (hemagglutinin stalk, neuraminidase, matrix-2 ion channel, and nucleoprotein) and induce strong immune responses with substantial breadth and potency in a murine model. The immunity conferred by nucleoside-modified mRNA-lipid nanoparticle vaccines provided protection from challenge with pandemic H1N1 virus at 500 times the median lethal dose after administration of a single immunization, and the combination vaccine protected from morbidity at a dose of 50 ng per antigen. The broad protective potential of a single dose of combination vaccine was confirmed by challenge with a panel of group 1 influenza A viruses. These findings support the advancement of nucleoside-modified mRNA-lipid nanoparticle vaccines expressing multiple conserved antigens as universal influenza virus vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/metabolism
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Disease Models, Animal
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/chemistry
- Influenza Vaccines/immunology
- Injections, Intradermal
- Liposomes
- Mice
- NIH 3T3 Cells
- Nanoparticles
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Nucleocapsid Proteins/chemistry
- Nucleocapsid Proteins/genetics
- Nucleosides/chemistry
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- mRNA Vaccines
Collapse
Affiliation(s)
- Alec W Freyn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jamile Ramos da Silva
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Victoria C Rosado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carly M Bliss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Pine
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | | | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
75
|
Prospects and Challenges in the Development of Universal Influenza Vaccines. Vaccines (Basel) 2020; 8:vaccines8030361. [PMID: 32640619 PMCID: PMC7563311 DOI: 10.3390/vaccines8030361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/19/2023] Open
Abstract
Current influenza vaccines offer suboptimal protection and depend on annual reformulation and yearly administration. Vaccine technology has rapidly advanced during the last decade, facilitating development of next-generation influenza vaccines that can target a broader range of influenza viruses. The development and licensure of a universal influenza vaccine could provide a game changing option for the control of influenza by protecting against all influenza A and B viruses. Here we review important findings and considerations regarding the development of universal influenza vaccines and what we can learn from this moving forward with a SARS-CoV-2 vaccine design.
Collapse
|
76
|
Knight M, Changrob S, Li L, Wilson PC. Imprinting, immunodominance, and other impediments to generating broad influenza immunity. Immunol Rev 2020; 296:191-204. [PMID: 32666572 DOI: 10.1111/imr.12900] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Natural influenza virus infections and seasonal vaccinations often do not confer broadly neutralizing immunity across diverse influenza strains. In addition, the virus is capable of rapid antigenic drift in order to evade pre-existing immunity. The surface glycoproteins, hemagglutinin, and neuraminidase can easily mutate their immunodominant epitopes without impacting fitness. Skewing human antibody repertoires to target more conserved epitopes is thus an expanding area of research: Many groups are attempting to produce universal influenza vaccines that can protect across a wide variety of strains. Achieving this goal will require a detailed understanding of how infection history impacts humoral responses. It will also require the ability to manipulate or enhance B cell selection in order to expand clones that can recognize subdominant but protective epitopes. In this review, we will discuss what immune imprinting means to immunologists and describe efforts to overcome or silence imprinting in order to improve vaccination efficiency.
Collapse
Affiliation(s)
- Matthew Knight
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
| | - Siriruk Changrob
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
| | - Lei Li
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
77
|
De Jong NMC, Aartse A, Van Gils MJ, Eggink D. Development of broadly reactive influenza vaccines by targeting the conserved regions of the hemagglutinin stem and head domains. Expert Rev Vaccines 2020; 19:563-577. [PMID: 32510256 DOI: 10.1080/14760584.2020.1777861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Influenza virus infections cause serious illness in millions of people each year. Although influenza virus vaccines are available, they are not optimally effective due to mismatches between the influenza virus strains used for the vaccine and the circulating strains. To improve protection by vaccines, a broadly protective or universal vaccine may be required. Strategies to develop universal vaccines aim to elicit broadly reactive antibodies, which target regions on the viral hemagglutinin (HA) protein which are conserved between strains. Broadly reactive antibodies have helped to identify such targets and can guide the design of such a vaccine. AREAS COVERED The first part of this review provides an in-depth overview of broadly reactive anti-HA antibodies, discussing their origin, breadth and their mechanisms of protection. The second part discusses the technical design and mode of action of potential universal vaccine candidates that aim to elicit these broadly reactive antibodies and provide protection against a majority of influenza strains. EXPERT OPINION While great strides have been made in the development of universal influenza vaccine candidates, real-life use still requires improvement of stability, enhancement of their breadth of protection and ease of production, while efficacies need to be determined in human trials.
Collapse
Affiliation(s)
- Nina M C De Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands.,Department of Virology, Biomedical Primate Research Centre , Rijswijk, The Netherlands
| | - Marit J Van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
78
|
Shirvani E, Paldurai A, Varghese BP, Samal SK. Contributions of HA1 and HA2 Subunits of Highly Pathogenic Avian Influenza Virus in Induction of Neutralizing Antibodies and Protection in Chickens. Front Microbiol 2020; 11:1085. [PMID: 32582071 PMCID: PMC7291869 DOI: 10.3389/fmicb.2020.01085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/30/2020] [Indexed: 01/04/2023] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) subtype H5N1 causes a devastating disease in poultry. Vaccination is an effective method of controlling avian influenza virus (AIV) infection in poultry. The hemagglutinin (HA) protein is the major determinant recognized by the immune system of the host. Cleavage of the HA precursor HA0 into HA1 and HA2 subunits is required for infectivity of the AIV. We evaluated the individual contributions of HA1 and HA2 subunits to the induction of HPAIV serum neutralizing antibodies and protective immunity in chickens. Using reverse genetics, recombinant Newcastle disease viruses (rNDVs) were generated, each expressing HA1, HA2, or HA protein of H5N1 HPAIV. Chickens were immunized with rNDVs expressing HA1, HA2, or HA. Immunization with HA induced high titers of serum neutralizing antibodies and prevented death following challenge. Immunization with HA1 or HA2 alone neither induced serum neutralizing antibodies nor prevented death following challenge. Our results suggest that interaction of HA1 and HA2 subunits is necessary for the display of epitopes on HA protein involved in the induction of neutralizing antibodies and protection. These epitopes are lost when the two subunits are separated. Therefore, vaccination with either a HA1 or HA2 subunit may not provide protection against HPAIV.
Collapse
Affiliation(s)
- Edris Shirvani
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Anandan Paldurai
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Berin P Varghese
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
79
|
Dermol-Černe J, Batista Napotnik T, Reberšek M, Miklavčič D. Short microsecond pulses achieve homogeneous electroporation of elongated biological cells irrespective of their orientation in electric field. Sci Rep 2020; 10:9149. [PMID: 32499601 PMCID: PMC7272635 DOI: 10.1038/s41598-020-65830-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
In gene electrotransfer and cardiac ablation with irreversible electroporation, treated muscle cells are typically of elongated shape and their orientation may vary. Orientation of cells in electric field has been reported to affect electroporation, and hence electrodes placement and pulse parameters choice in treatments for achieving homogeneous effect in tissue is important. We investigated how cell orientation influences electroporation with respect to different pulse durations (ns to ms range), both experimentally and numerically. Experimentally detected electroporation (evaluated separately for cells parallel and perpendicular to electric field) via Ca2+ uptake in H9c2 and AC16 cardiomyocytes was numerically modeled using the asymptotic pore equation. Results showed that cell orientation affects electroporation extent: using short, nanosecond pulses, cells perpendicular to electric field are significantly more electroporated than parallel (up to 100-times more pores formed), and with long, millisecond pulses, cells parallel to electric field are more electroporated than perpendicular (up to 1000-times more pores formed). In the range of a few microseconds, cells of both orientations were electroporated to the same extent. Using pulses of a few microseconds lends itself as a new possible strategy in achieving homogeneous electroporation in tissue with elongated cells of different orientation (e.g. electroporation-based cardiac ablation).
Collapse
Affiliation(s)
- Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Matej Reberšek
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
80
|
Potential Role of Nonneutralizing IgA Antibodies in Cross-Protective Immunity against Influenza A Viruses of Multiple Hemagglutinin Subtypes. J Virol 2020; 94:JVI.00408-20. [PMID: 32269119 DOI: 10.1128/jvi.00408-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/28/2020] [Indexed: 11/20/2022] Open
Abstract
IgA antibodies on mucosal surfaces are known to play an important role in protection from influenza A virus (IAV) infection and are believed to be more potent than IgG for cross-protective immunity against IAVs of multiple hemagglutinin (HA) subtypes. However, in general, neutralizing antibodies specific to HA are principally HA subtype specific. Here, we focus on nonneutralizing but broadly cross-reactive HA-specific IgA antibodies. Recombinant IgG, monomeric IgA (mIgA), and polymeric secretory IgA (pSIgA) antibodies were generated based on the sequence of a mouse anti-HA monoclonal antibody (MAb) 5A5 that had no neutralizing activity but showed broad binding capacity to multiple HA subtypes. While confirming that there was no neutralizing activity of the recombinant MAbs against IAV strains A/Puerto Rico/8/1934 (H1N1), A/Adachi/2/1957 (H2N2), A/Hong Kong/483/1997 (H5N1), A/shearwater/South Australia/1/1972 (H6N5), A/duck/England/1/1956 (H11N6), and A/duck/Alberta/60/1976 (H12N5), we found that pSIgA, but not mIgA and IgG, significantly reduced budding and release of most of the viruses from infected cells. Electron microscopy demonstrated that pSIgA deposited newly produced virus particles on the surfaces of infected cells, most likely due to tethering of virus particles. Furthermore, we found that pSIgA showed significantly higher activity to reduce plaque sizes of the viruses than IgG and mIgA. These results suggest that nonneutralizing pSIgA reactive to multiple HA subtypes may play a role in intersubtype cross-protective immunity against IAVs.IMPORTANCE Mucosal immunity represented by pSIgA plays important roles in protection from IAV infection. Furthermore, IAV HA-specific pSIgA antibodies are thought to contribute to cross-protective immunity against multiple IAV subtypes. However, the mechanisms by which pSIgA exerts such versatile antiviral activity are not fully understood. In this study, we generated broadly cross-reactive recombinant IgG and pSIgA having the same antigen-recognition site and compared their antiviral activities in vitro These recombinant antibodies did not show "classical" neutralizing activity, whereas pSIgA, but not IgG, significantly inhibited the production of progeny virus particles from infected cells. Plaque formation was also significantly reduced by pSIgA, but not IgG. These effects were seen in infection with IAVs of several different HA subtypes. Based on our findings, we propose an antibody-mediated host defense mechanism by which mucosal immunity may contribute to broad cross-protection from IAVs of multiple HA subtypes, including viruses with pandemic potential.
Collapse
|
81
|
Abd Raman HS, Tan S, August JT, Khan AM. Dynamics of Influenza A (H5N1) virus protein sequence diversity. PeerJ 2020; 7:e7954. [PMID: 32518710 PMCID: PMC7261124 DOI: 10.7717/peerj.7954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/26/2019] [Indexed: 11/20/2022] Open
Abstract
Background Influenza A (H5N1) virus is a global concern with potential as a pandemic threat. High sequence variability of influenza A viruses is a major challenge for effective vaccine design. A continuing goal towards this is a greater understanding of influenza A (H5N1) proteome sequence diversity in the context of the immune system (antigenic diversity), the dynamics of mutation, and effective strategies to overcome the diversity for vaccine design. Methods Herein, we report a comprehensive study of the dynamics of H5N1 mutations by analysis of the aligned overlapping nonamer positions (1–9, 2–10, etc.) of more than 13,000 protein sequences of avian and human influenza A (H5N1) viruses, reported over at least 50 years. Entropy calculations were performed on 9,408 overlapping nonamer position of the proteome to study the diversity in the context of immune system. The nonamers represent the predominant length of the binding cores for peptides recognized by the cellular immune system. To further dissect the sequence diversity, each overlapping nonamer position was quantitatively analyzed for four patterns of sequence diversity motifs: index, major, minor and unique. Results Almost all of the aligned overlapping nonamer positions of each viral proteome exhibited variants (major, minor, and unique) to the predominant index sequence. Each variant motif displayed a characteristic pattern of incidence change in relation to increased total variants. The major variant exhibited a restrictive pyramidal incidence pattern, with peak incidence at 50% total variants. Post this peak incidence, the minor variants became the predominant motif for majority of the positions. Unique variants, each sequence observed only once, were present at nearly all of the nonamer positions. The diversity motifs (index and variants) demonstrated complex inter-relationships, with motif switching being a common phenomenon. Additionally, 25 highly conserved sequences were identified to be shared across viruses of both hosts, with half conserved to several other influenza A subtypes. Discussion The presence of distinct sequences (nonatypes) at nearly all nonamer positions represents a large repertoire of reported viral variants in the proteome, which influence the variability dynamics of the viral population. This work elucidated and provided important insights on the components that make up the viral diversity, delineating inherent patterns in the organization of sequence changes that function in the viral fitness-selection. Additionally, it provides a catalogue of all the mutational changes involved in the dynamics of H5N1 viral diversity for both avian and human host populations. This work provides data relevant for the design of prophylactics and therapeutics that overcome the diversity of the virus, and can aid in the surveillance of existing and future strains of influenza viruses.
Collapse
Affiliation(s)
| | - Swan Tan
- School of Data Sciences, Perdana University, Serdang, Selangor, Malaysia.,Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States of America
| | - Joseph Thomas August
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Asif M Khan
- School of Data Sciences, Perdana University, Serdang, Selangor, Malaysia.,School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America.,Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul, Turkey
| |
Collapse
|
82
|
Bajic G, Maron MJ, Caradonna TM, Tian M, Mermelstein A, Fera D, Kelsoe G, Kuraoka M, Schmidt AG. Structure-Guided Molecular Grafting of a Complex Broadly Neutralizing Viral Epitope. ACS Infect Dis 2020; 6:1182-1191. [PMID: 32267676 DOI: 10.1021/acsinfecdis.0c00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Antigenic variation and viral evolution have thwarted traditional influenza vaccination strategies. The broad protection afforded by a "universal" influenza vaccine may come from immunogens that elicit humoral immune responses targeting conserved epitopes on the viral hemagglutinin (HA), such as the receptor-binding site (RBS). Here, we engineered candidate immunogens that use noncirculating, avian influenza HAs as molecular scaffolds to present the broadly neutralizing RBS epitope from historical, circulating H1 influenzas. These "resurfaced" HAs (rsHAs) remove epitopes potentially targeted by strain-specific responses in immune-experienced individuals. Through structure-guided optimization, we improved two antigenically different scaffolds to bind a diverse panel of pan-H1 and H1/H3 cross-reactive bnAbs with high affinity. Subsequent serological and single germinal center B cell analyses from murine prime-boost immunizations show that the rsHAs are both immunogenic and can augment the quality of elicited RBS-directed antibodies. Our structure-guided, RBS grafting approach provides candidate immunogens for selectively presenting a conserved viral epitope.
Collapse
Affiliation(s)
- Goran Bajic
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Max J. Maron
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Caradonna
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Ming Tian
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Adam Mermelstein
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina 27710, United States
- Department of Immunology, Duke University, Durham, North Carolina 27710, United States
| | - Masayuki Kuraoka
- Department of Immunology, Duke University, Durham, North Carolina 27710, United States
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
83
|
Abstract
Understanding antigenic variation in influenza virus strains and how the human immune system recognizes strains are central challenges for vaccinologists. Antibodies directed to the 2 major viral surface membrane proteins, hemagglutinin (HA) and neuraminidase (NA), mediate protection against reinfection following natural infection or vaccination, but HA and NA protein sequences in field strains are highly variable. The central questions are how to achieve protective antibody responses in a higher proportion of individuals and how to induce responses with more breadth and durability. Studies using isolation of human monoclonal antibodies followed by structural and functional characterization revealed conserved antigenic sites recognized by broadly cross-reactive antibodies. The antigenic landscape on HA and NA proteins is coming into focus to inform studies of the correlates and mechanisms of immunity. Understanding the antibody determinants of influenza immunity points the way toward development and testing of next-generation vaccines with potential to confer broadly protective immunity.
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
84
|
Zost SJ, Wu NC, Hensley SE, Wilson IA. Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. J Infect Dis 2020; 219:S38-S45. [PMID: 30535315 DOI: 10.1093/infdis/jiy696] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Influenza viruses routinely acquire mutations in their hemagglutinin (HA) and neuraminidase (NA) glycoproteins that abrogate binding of pre-existing antibodies in a process known as antigenic drift. Most human antibodies against HA and NA are directed against epitopes that are hypervariable and not against epitopes that are conserved among different influenza virus strains. Universal influenza vaccines are currently being developed to elicit protective responses against functionally conserved sites on influenza proteins where viral escape mutations can result in large fitness costs [1]. Universal vaccine targets include the highly conserved HA stem domain [2-12], the less conserved HA receptor-binding site (RBS) [13-16], as well as conserved sites on NA [17-19]. One central challenge of universal vaccine efforts is to steer human antibody responses away from immunodominant, variable epitopes and towards subdominant, functionally conserved sites. Overcoming this challenge will require further understanding of the structural basis of broadly neutralizing HA and NA antibody binding epitopes and factors that influence immunodominance hierarchies of human antibody responses.
Collapse
Affiliation(s)
- Seth J Zost
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
85
|
Grødeland G, Baranowska-Hustad M, Abadejos J, Blane TR, Teijaro J, Nemazee D, Bogen B. Induction of Cross-Reactive and Protective Antibody Responses After DNA Vaccination With MHCII-Targeted Stem Domain From Influenza Hemagglutinin. Front Immunol 2020; 11:431. [PMID: 32269566 PMCID: PMC7112135 DOI: 10.3389/fimmu.2020.00431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/25/2020] [Indexed: 12/30/2022] Open
Abstract
Novel and more broadly protective vaccines against influenza are needed to efficiently meet antigenic drift and shift. Relevant to this end, the stem domain of hemagglutinin (HA) is highly conserved, and antibodies specific for epitopes located to the stem have been demonstrated to be able to confer broad protection against various influenza subtypes. However, a remaining challenge is to induce antibodies against the poorly immunogenic stem by vaccination strategies that can be scaled up for prophylactic vaccination of the general population. Here, we have developed DNA vaccines where the conserved stem domain of HA from influenza A/PR/8/34 (H1N1) and A/Shanghai/2/2013 (H7N9) was targeted toward MHC class II molecules on antigen-presenting cells (APC) for increased immunogenicity. Each of these vaccines induced antibodies that cross-reacted with other subtypes in the corresponding phylogenetic influenza groups. Importantly, when mixing the MHCII-targeted stem domains from H1N1 and H7N9 influenza viruses into one vaccine bolus, we observed broad protection against candidate stains from both phylogenetic groups 1 and 2.
Collapse
Affiliation(s)
- Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marta Baranowska-Hustad
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Justin Abadejos
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, CA, United States
| | - Tanya R Blane
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, CA, United States
| | - John Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, CA, United States
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, CA, United States
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
86
|
Demminger DE, Walz L, Dietert K, Hoffmann H, Planz O, Gruber AD, von Messling V, Wolff T. Adeno-associated virus-vectored influenza vaccine elicits neutralizing and Fcγ receptor-activating antibodies. EMBO Mol Med 2020; 12:e10938. [PMID: 32163240 PMCID: PMC7207162 DOI: 10.15252/emmm.201910938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
The current seasonal inactivated influenza vaccine protects only against a narrow range of virus strains as it triggers a dominant antibody response toward the hypervariable hemagglutinin (HA) head region. The discovery of rare broadly protective antibodies against conserved regions in influenza virus proteins has propelled research on distinct antigens and delivery methods to efficiently induce broad immunity toward drifted or shifted virus strains. Here, we report that adeno‐associated virus (AAV) vectors expressing influenza virus HA or chimeric HA protected mice against homologous and heterologous virus challenges. Unexpectedly, immunization even with wild‐type HA induced antibodies recognizing the HA‐stalk and activating FcγR‐dependent responses indicating that AAV‐vectored expression balances HA head‐ and HA stalk‐specific humoral responses. Immunization with AAV‐HA partially protected also ferrets against a harsh virus challenge. Results from this study provide a rationale for further clinical development of AAV vectors as influenza vaccine platform, which could benefit from their approved use in human gene therapy.
Collapse
Affiliation(s)
- Daniel E Demminger
- Unit 17-Influenza and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| | - Lisa Walz
- Veterinary Medicine Division, Paul-Ehrlich-Institute, Langen, Germany
| | - Kristina Dietert
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Berlin, Germany
| | - Helen Hoffmann
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Achim D Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Berlin, Germany
| | | | - Thorsten Wolff
- Unit 17-Influenza and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
87
|
Hajam IA, Senevirathne A, Hewawaduge C, Kim J, Lee JH. Intranasally administered protein coated chitosan nanoparticles encapsulating influenza H9N2 HA2 and M2e mRNA molecules elicit protective immunity against avian influenza viruses in chickens. Vet Res 2020; 51:37. [PMID: 32143695 PMCID: PMC7060564 DOI: 10.1186/s13567-020-00762-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/17/2020] [Indexed: 12/31/2022] Open
Abstract
Chitosan nanoparticles (CNPs) represent an efficient vaccination tool to deliver immunogenic antigens to the antigen-presenting cells (APCs), which subsequently stimulate protective immune responses against infectious diseases. Herein, we prepared CNPs encapsulating mRNA molecules followed by surface coating with conserved H9N2 HA2 and M2e influenza proteins. We demonstrated that CNPs efficiently delivered mRNA molecules into APCs and had effectively penetrated the mucosal barrier to reach to the immune initiation sites. To investigate the potential of CNPs delivering influenza antigens to stimulate protective immunity, we intranasally vaccinated chickens with empty CNPs, CNPs delivering HA2 and M2e in both mRNA and protein formats (CNPs + RNA + Pr) or CNPs delivering antigens in protein format only (CNPs + Pr). Our results demonstrated that chickens vaccinated with CNPs + RNA + Pr elicited significantly (p < 0.05) higher systemic IgG, mucosal IgA antibody responses and cellular immune responses compared to the CNPs + Pr vaccinated group. Consequently, upon challenge with either H7N9 or H9N2 avian influenza viruses (AIVs), efficient protection, in the context of viral load and lung pathology, was observed in chickens vaccinated with CNPs + RNA + Pr than CNPs + Pr vaccinated group. In conclusion, we show that HA2 and M2e antigens elicited a broad spectrum of protection against AIVs and incorporation of mRNAs in vaccine formulation is an effective strategy to induce superior immune responses.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Chamit Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jehyoung Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
88
|
Boyoglu-Barnum S, Hutchinson GB, Boyington JC, Moin SM, Gillespie RA, Tsybovsky Y, Stephens T, Vaile JR, Lederhofer J, Corbett KS, Fisher BE, Yassine HM, Andrews SF, Crank MC, McDermott AB, Mascola JR, Graham BS, Kanekiyo M. Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses. Nat Commun 2020; 11:791. [PMID: 32034141 PMCID: PMC7005838 DOI: 10.1038/s41467-020-14579-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/18/2020] [Indexed: 11/23/2022] Open
Abstract
The conserved hemagglutinin (HA) stem has been a focus of universal influenza vaccine efforts. Influenza A group 1 HA stem-nanoparticles have been demonstrated to confer heterosubtypic protection in animals; however, the protection does not extend to group 2 viruses, due in part to differences in glycosylation between group 1 and 2 stems. Here, we show that introducing the group 2 glycan at Asn38HA1 to a group 1 stem-nanoparticle (gN38 variant) based on A/New Caledonia/20/99 (H1N1) broadens antibody responses to cross-react with group 2 HAs. Immunoglobulins elicited by the gN38 variant provide complete protection against group 2 H7N9 virus infection, while the variant loses protection against a group 1 H5N1 virus. The N38HA1 glycan thus is pivotal in directing antibody responses by controlling access to group-determining stem epitopes. Precise targeting of stem-directed antibody responses to the site of vulnerability by glycan repositioning may be a step towards achieving cross-group influenza protection.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Geoffrey B Hutchinson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, ATRF, 8560 Progressive Drive, Frederick, MD, 21702, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, ATRF, 8560 Progressive Drive, Frederick, MD, 21702, USA
| | - John R Vaile
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, New Research Complex Zone 5, Doha, Qatar
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA.
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
89
|
Vogel OA, Manicassamy B. Broadly Protective Strategies Against Influenza Viruses: Universal Vaccines and Therapeutics. Front Microbiol 2020; 11:135. [PMID: 32117155 PMCID: PMC7020694 DOI: 10.3389/fmicb.2020.00135] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Influenza virus is a respiratory pathogen that can cause disease in humans, with symptoms ranging from mild to life-threatening. The vast majority of influenza virus infections in humans are observed during seasonal epidemics and occasional pandemics. Given the substantial public health burden associated with influenza virus infection, yearly vaccination is recommended for protection against seasonal influenza viruses. Despite vigilant surveillance for new variants and careful selection of seasonal vaccine strains, the efficacy of seasonal vaccines can vary widely from year to year. This often results in lowered protection within the population, regardless of vaccination status. In order to broaden the protection afforded by seasonal influenza vaccines, the National Institute of Allergy and Infectious Diseases (NIAID) has deemed the development of a universal influenza virus vaccine to be a priority in influenza virus vaccine research. This universal vaccine would provide protection against all influenza virus strains, eliminating the need for the yearly reformulations of seasonal influenza vaccines. In addition to universal influenza vaccine efforts, substantial progress has been made in developing novel influenza virus therapeutics that utilize broadly neutralizing antibodies to provide protection against influenza virus infection and to mitigate disease outcomes during infection. In this review, we discuss various approaches toward the goal of improving influenza virus vaccine efficacy through a universal influenza virus vaccine. We also address the novel methods of discovery and utilization of broadly neutralizing antibodies to improve influenza disease outcomes.
Collapse
Affiliation(s)
- Olivia A Vogel
- Department of Microbiology, The University of Chicago, Chicago, IL, United States
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
90
|
Tannock GA, Kim H, Xue L. Why are vaccines against many human viral diseases still unavailable; an historic perspective? J Med Virol 2020; 92:129-138. [PMID: 31502669 PMCID: PMC7166819 DOI: 10.1002/jmv.25593] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/08/2019] [Indexed: 01/10/2023]
Abstract
The number of new and improved human viral vaccines licensed in recent years contrasts sharply with what could be termed the golden era (1955-1990) when vaccines against polio-, measles, mumps, rubella, and hepatitis B viruses first became available. Here, we attempt to explain why vaccines, mainly against viruses other than human immunodeficiency virus and hepatitis C virus, are still unavailable. They include human herpesviruses other than varicella-zoster virus, respiratory syncytial and most other respiratory, enteric and arthropod-borne viruses. Improved oral poliovirus vaccines are also urgently required. Their unavailability is attributable to regulatory/economic factors and the properties of individual viruses, but also to an absence of relevant animal models and ethical problems for the conduct of clinical of trials in pediatric and other critical populations. All are portents of likely difficulties for the licensing of effective vaccines against emerging pathogens, such as avian influenza, Ebola, and Zika viruses.
Collapse
Affiliation(s)
| | - Hyunsuh Kim
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTennessee
| | - Lumin Xue
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
| |
Collapse
|
91
|
Hemagglutinin Quantitative ELISA-based Potency Assay for Trivalent Seasonal Influenza Vaccine Using Group-Specific Universal Monoclonal Antibodies. Sci Rep 2019; 9:19675. [PMID: 31873147 PMCID: PMC6927952 DOI: 10.1038/s41598-019-56169-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
The assurance of vaccine potency is important for the timely release and distribution of influenza vaccines. As an alternative to Single Radial Immunodiffusion (SRID), we report a new quantitative enzyme-linked immunosorbent assay (ELISA) for seasonal trivalent influenza vaccine (TIV). The consensus hemagglutinin (cHA) stalks for group 1 influenza A virus (IAV), group 2 IAV, and influenza B virus (IBV) were designed and produced in bacterial recombinant host in a soluble form, and monoclonal antibodies (mAbs) were generated. The group-specific ‘universal’ mAbs (uAbs) bound to various subtypes of HAs in the same group from recombinant hosts, embryonated eggs, and commercial vaccine lots. The calibration curves were generated to assess the sensitivity, specificity, accuracy, and linear dynamic range. The quantitative ELISA was validated for the potency assay of individual components of TIV- H1, H3, and IBV- with good correlation with the SRID method. This new assay could be extended to pandemic or pre-pandemic mock-up vaccines of H5 of group 1 and H7 virus of group 2, and novel HA stalk-based universal vaccines.
Collapse
|
92
|
Pandemic influenza virus vaccines boost hemagglutinin stalk-specific antibody responses in primed adult and pediatric cohorts. NPJ Vaccines 2019; 4:51. [PMID: 31839997 PMCID: PMC6898674 DOI: 10.1038/s41541-019-0147-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/13/2019] [Indexed: 01/08/2023] Open
Abstract
Licensed influenza virus vaccines target the head domain of the hemagglutinin (HA) glycoprotein which undergoes constant antigenic drift. The highly conserved HA stalk domain is an attractive target to increase immunologic breadth required for universal influenza virus vaccines. We tested the hypothesis that immunization with a pandemic influenza virus vaccine boosts pre-existing anti-stalk antibodies. We used chimeric cH6/1, full length H2 and H18 HA antigens in an ELISA to measure anti-stalk antibodies in recipients participating in clinical trials of A/H1N1, A/H5N1 and A/H9N2 vaccines. The vaccines induced high titers of anti-H1 stalk antibodies in adults and children, with higher titers elicited by AS03-adjuvanted vaccines. We also observed cross-reactivity to H2 and H18 HAs. The A/H9N2 vaccine elicited plasmablast and memory B-cell responses. Post-vaccination serum from vaccinees protected mice against lethal challenge with cH6/1N5 and cH5/3N4 viruses. These findings support the concept of a chimeric HA stalk-based universal influenza virus vaccine. clinicaltrials.gov: NCT02415842. The head domain of influenza virus hemagglutinin (HA), the main target of licensed influenza virus vaccines, undergoes constant antigenic drift. The HA stalk domain, on the other hand, is highly conserved and is thus an attractive target for developing universal influenza vaccine formulations. Raffael Nachbagauer and colleagues now show that vaccination with pandemic influenza virus vaccines boosts pre-existing antibody responses to HA stalk domains in pediatric cohorts. Analysis of serum from individuals immunized with pandemic vaccines A/H1N1, A/H5N1 and A/H9N2, revealed basal levels of anti-stalk antibodies that were increased following immunization. The elicited antibodies had neutralization properties, and plasmablast responses from peripheral blood immune cells recovered from vaccinated individuals were also recorded. These findings support pandemic vaccines as a potential strategy towards universal influenza virus vaccines by expanding pre-existing antibodies against conserved HA stalk structures.
Collapse
|
93
|
Cable J, Srikantiah P, Crowe JE, Pulendran B, Hill A, Ginsberg A, Koff W, Mathew A, Ng T, Jansen K, Glenn G, Permar S, Wilson I, Weiner DB, Weissman D, Rappuoli R. Vaccine innovations for emerging infectious diseases-a symposium report. Ann N Y Acad Sci 2019; 1462:14-26. [PMID: 31659752 DOI: 10.1111/nyas.14235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Abstract
Vaccines have been incredibly successful at stemming the morbidity and mortality of infectious diseases worldwide. However, there are still no effective vaccines for many serious and potentially preventable infectious diseases. Advances in vaccine technology, including new delivery methods and adjuvants, as well as progress in systems biology and an increased understanding of the human immune system, hold the potential to address these issues. In addition, maternal immunization has opened an avenue to address infectious diseases in neonates and very young infants. This report summarizes the presentations from a 1-day symposium at the New York Academy of Sciences entitled "Innovative Vaccines against Resistant Infectious Diseases and Emerging Threats," held on May 20, 2019.
Collapse
Affiliation(s)
| | | | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; and Vanderbilt University, Nashville, Tennessee
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection; Department of Pathology; and Department of Microbiology & Immunology, Stanford University, Stanford, California
| | - Adrian Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ann Ginsberg
- International AIDS Vaccine Initiative, New York, New York
| | - Wayne Koff
- The Human Vaccines Project, New York, New York
| | - Anuja Mathew
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island
| | - Tony Ng
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, New York
| | | | | | | | - Ian Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Drew Weissman
- Department of Medicine, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
94
|
Crowe JE. Influenza Virus-Specific Human Antibody Repertoire Studies. THE JOURNAL OF IMMUNOLOGY 2019; 202:368-373. [PMID: 30617118 DOI: 10.4049/jimmunol.1801459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
The diversity of Ag-specific adaptive receptors on the surface of B cells and in the population of secreted Abs is enormous, but increasingly, we are acquiring the technical capability to interrogate Ab repertoires in great detail. These Ab technologies have been especially pointed at understanding the complex issues of immunity to infection and disease caused by influenza virus, one of the most common and vexing medical problems in man. Influenza immunity is particularly interesting as a model system because the antigenic diversity of influenza strains and proteins is high and constantly evolving. Discovery of canonical features in the subset of the influenza repertoire response that is broadly reactive for diverse influenza strains has spurred the recent optimism for creating universal influenza vaccines. Using new technologies for sequencing Ab repertoires at great depth is helping us to understand the central features of influenza immunity.
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232; .,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and .,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
95
|
Abstract
Influenza viruses remain a severe burden to human health because of their contribution to overall morbidity and mortality. Current seasonal influenza virus vaccines do not provide sufficient protection to alleviate the annual impact of influenza and cannot confer protection against potentially pandemic influenza viruses. The lack of protection is due to rapid changes of the viral epitopes targeted by the vaccine and the often suboptimal immunogenicity of current immunization strategies. Major efforts to improve vaccination approaches are under way. The development of a universal influenza virus vaccine may be possible by combining the lessons learned from redirecting the immune response toward conserved viral epitopes, as well as the use of adjuvants and novel vaccination platforms.
Collapse
Affiliation(s)
- Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| |
Collapse
|
96
|
Jang YH, Seong BL. The Quest for a Truly Universal Influenza Vaccine. Front Cell Infect Microbiol 2019; 9:344. [PMID: 31649895 PMCID: PMC6795694 DOI: 10.3389/fcimb.2019.00344] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
There is an unmet public health need for a universal influenza vaccine (UIV) to provide broad and durable protection from influenza virus infections. The identification of broadly protective antibodies and cross-reactive T cells directed to influenza viral targets present a promising prospect for the development of a UIV. Multiple targets for cross-protection have been identified in the stalk and head of hemagglutinin (HA) to develop a UIV. Recently, neuraminidase (NA) has received significant attention as a critical component for increasing the breadth of protection. The HA stalk-based approaches have shown promising results of broader protection in animal studies, and their feasibility in humans are being evaluated in clinical trials. Mucosal immune responses and cross-reactive T cell immunity across influenza A and B viruses intrinsic to live attenuated influenza vaccine (LAIV) have emerged as essential features to be incorporated into a UIV. Complementing the weakness of the stand-alone approaches, prime-boost vaccination combining HA stalk, and LAIV is under clinical evaluation, with the aim to increase the efficacy and broaden the spectrum of protection. Preexisting immunity in humans established by prior exposure to influenza viruses may affect the hierarchy and magnitude of immune responses elicited by an influenza vaccine, limiting the interpretation of preclinical data based on naive animals, necessitating human challenge studies. A consensus is yet to be achieved on the spectrum of protection, efficacy, target population, and duration of protection to define a “universal” vaccine. This review discusses the recent advancements in the development of UIVs, rationales behind cross-protection and vaccine designs, and challenges faced in obtaining balanced protection potency, a wide spectrum of protection, and safety relevant to UIVs.
Collapse
Affiliation(s)
- Yo Han Jang
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
97
|
Generation of DelNS1 Influenza Viruses: a Strategy for Optimizing Live Attenuated Influenza Vaccines. mBio 2019; 10:mBio.02180-19. [PMID: 31530680 PMCID: PMC6751066 DOI: 10.1128/mbio.02180-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current seasonal influenza vaccines are suboptimal and low in immunogenicity and do not provide long-lasting immunity and cross protection against influenza virus strains that have antigenically drifted. More-effective influenza vaccines which can induce both humoral immunity and T cell immunity are needed. The NS1 protein of influenza virus is a virulence element and the critical factor for regulation of the host immune response during virus infection. Deletion of the NS1 protein is a strategy to make an optimal LAIV vaccine. However, DelNS1 viruses are very difficult to grow in regular vaccine-producing systems, hampering the application of DelNS1 LAIV vaccines in humans. We have generated a panel of both influenza A and influenza B DelNS1 LAIVs which are able to grow in regular vaccine-producing cells. These DelNS1 LAIV vaccines are completely nonpathogenic, exhibit potent and long-lasting immunity, and can be used to express extra viral antigen to induce cross protective immunity against seasonal and emerging influenza. Nonstructural protein 1 (NS1) of influenza virus is a key virulence element with multifunctional roles in virus replication and a potent antagonist of host immune response. Deletion of NS1 (DelNS1) would create a safer and more extensively immunogenic live attenuated influenza virus (LAIV) vaccine. However, DelNS1 viruses are very difficult to grow in regular vaccine-producing systems, which has hampered the application of DelNS1 LAIV vaccines in humans. We have developed two master backbones of deleted-NS1 (DelNS1) viral genomes from influenza A or B viruses which contain novel adaptive mutations to support DelNS1-LAIV replication. These DelNS1-LAIVs are highly attenuated in human cells in vitro and nonpathogenic in mice but replicate well in vaccine-producing cells. Both influenza A and influenza B DelNS1 LAIVs grow better at 33°C than at 37 to 39°C. Vaccination with DelNS1 LAIV performed once is enough to provide potent protection against lethal challenge with homologous virus and strong long-lasting cross protection against heterosubtypic or antigenically distantly related influenza viruses in mice. Mechanistic investigations revealed that DelNS1-LAIVs induce cross protective neutralizing antibody and CD8+ and CD4+ T cell immunities. Importantly, it has been shown that DelNS1-LAIV can be used to enhance specific anti-influenza immunity through expression of additional antigens from the deleted-NS1 site. Generation of DelNS1 viruses which are nonpathogenic and able to grow in vaccine-producing systems is an important strategy for making highly immunogenic LAIV vaccines that induce broad cross protective immunity against seasonal and emerging influenza.
Collapse
|
98
|
Yang B, Schaefer A, Wang YY, McCallen J, Lee P, Newby JM, Arora H, Kumar PA, Zeitlin L, Whaley KJ, McKinley SA, Fischer WA, Harit D, Lai SK. ZMapp Reinforces the Airway Mucosal Barrier Against Ebola Virus. J Infect Dis 2019; 218:901-910. [PMID: 29688496 DOI: 10.1093/infdis/jiy230] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/19/2018] [Indexed: 11/15/2022] Open
Abstract
Filoviruses, including Ebola, have the potential to be transmitted via virus-laden droplets deposited onto mucus membranes. Protecting against such emerging pathogens will require understanding how they may transmit at mucosal surfaces and developing strategies to reinforce the airway mucus barrier. Here, we prepared Ebola pseudovirus (with Zaire strain glycoproteins) and used high-resolution multiple-particle tracking to track the motions of hundreds of individual pseudoviruses in fresh and undiluted human airway mucus isolated from extubated endotracheal tubes. We found that Ebola pseudovirus readily penetrates human airway mucus. Addition of ZMapp, a cocktail of Ebola-binding immunoglobulin G antibodies, effectively reduced mobility of Ebola pseudovirus in the same mucus secretions. Topical delivery of ZMapp to the mouse airways also facilitated rapid elimination of Ebola pseudovirus. Our work demonstrates that antibodies can immobilize virions in airway mucus and reduce access to the airway epithelium, highlighting topical delivery of pathogen-specific antibodies to the lungs as a potential prophylactic or therapeutic approach against emerging viruses or biowarfare agents.
Collapse
Affiliation(s)
- Bing Yang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Alison Schaefer
- University of North Carolina/North Carolina State University Joint Department of Biomedical Engineering, Chapel Hill, North Carolina
| | - Ying-Ying Wang
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Justin McCallen
- University of North Carolina/North Carolina State University Joint Department of Biomedical Engineering, Chapel Hill, North Carolina
| | - Phoebe Lee
- University of North Carolina/North Carolina State University Joint Department of Biomedical Engineering, Chapel Hill, North Carolina
| | - Jay M Newby
- Department of Mathematics and Applied Physical Sciences, Chapel Hill, North Carolina
| | - Harendra Arora
- Department of Anesthesiology, School of Medicine, Chapel Hill, North Carolina
| | - Priya A Kumar
- Department of Anesthesiology, School of Medicine, Chapel Hill, North Carolina
| | | | | | - Scott A McKinley
- Mathematics Department, Tulane University, New Orleans, Louisiana
| | - William A Fischer
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Chapel Hill, North Carolina
| | - Dimple Harit
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, Chapel Hill, North Carolina.,University of North Carolina/North Carolina State University Joint Department of Biomedical Engineering, Chapel Hill, North Carolina.,Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
99
|
Elaish M, Xia M, Ngunjiri JM, Ghorbani A, Jang H, Kc M, Abundo MC, Dhakal S, Gourapura R, Jiang X, Lee CW. Protective immunity against influenza virus challenge by norovirus P particle-M2e and HA2-AtCYN vaccines in chickens. Vaccine 2019; 37:6454-6462. [PMID: 31506195 DOI: 10.1016/j.vaccine.2019.08.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/28/2019] [Accepted: 08/31/2019] [Indexed: 01/12/2023]
Abstract
Development of a broadly reactive influenza vaccine that can provide protection against emerging type A influenza viruses is a big challenge. We previously demonstrated that a vaccine displaying the extracellular domain of the matrix protein 2 (M2e) on the surface loops of norovirus P-particle (M2eP) can partially protect chickens against several subtypes of avian influenza viruses. In the current study, a chimeric vaccine containing a conserved peptide from the subunit 2 of hemagglutinin (HA) glycoprotein (HA2) and Arabidopsis thaliana cyanase protein (AtCYN) (HA2-AtCYN vaccine) was evaluated in 2-weeks-old chickens. Depending on the route of administration, the HA2-AtCYN vaccine was shown to induce various levels of HA2-specific IgA in tears as well as serum IgG, which were associated with partial protection of chickens against tracheal shedding of a low pathogenicity H5N2 challenge virus. Furthermore, intranasal administration with a combination of HA2-AtCYN and M2eP vaccines resulted in enhanced protection compared to each vaccine alone. Simultaneous intranasal administration of the vaccines did not interfere with secretory IgA induction by each vaccine. Additionally, significantly higher M2eP-specific proliferative responses were observed in peripheral blood mononuclear cells of all M2eP-vaccinated groups when compared with the mock-vaccinated group. Although tripling the number of M2e copies did not enhance the protective efficacy of the chimeric vaccine, it significantly reduced immunodominance of P-particle epitopes without affecting the robustness of M2e-specific immune responses. Taken together, our data suggests that mucosal immunization of chickens with combinations of mechanistically different cross-subtype-conserved vaccines has the potential to enhance the protective efficacy against influenza virus challenge.
Collapse
Affiliation(s)
- Mohamed Elaish
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Hyesun Jang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mahesh Kc
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Michael C Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Renukaradhya Gourapura
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
100
|
Xie X, Zhao C, He Q, Qiu T, Yuan S, Ding L, Liu L, Jiang L, Wang J, Zhang L, Zhang C, Wang X, Zhou D, Zhang X, Xu J. Influenza Vaccine With Consensus Internal Antigens as Immunogens Provides Cross-Group Protection Against Influenza A Viruses. Front Microbiol 2019; 10:1630. [PMID: 31379782 PMCID: PMC6647892 DOI: 10.3389/fmicb.2019.01630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022] Open
Abstract
Given that continuing antigenic shift and drift of influenza A viruses result in the escape from previous vaccine-induced immune protection, a universal influenza vaccine has been actively sought. However, there were very few vaccines capable of eliciting cross-group ant-influenza immunity. Here, we designed two novel composite immunogens containing highly conserved T-cell epitopes of six influenza A virus internal antigens, and expressed them in DNA, recombinant adenovirus-based (AdC68) and recombinant vaccinia vectors, respectively, to formulate three vaccine forms. The introduction of the two immunogens via a DNA priming and viral vectored vaccine boosting modality afforded cross-group protection from both PR8 and H7N9 influenza virus challenges in mice. Both respiratory residential and systemic T cells contributed to the protective efficacy. Intranasal but not intramuscular administration of AdC68 based vaccine was capable of raising both T cell subpopulations to confer a full protection from lethal PR8 and H7N9 challenges, and blocking the lymphatic egress of T cells during challenges attenuated the protection. Thus, by targeting highly conserved internal viral epitopes to efficiently generate both respiratory and systemic memory T cells, the sequential vaccination strategy reported here represented a new promising candidate for the development of T-cell based universal influenza vaccines.
Collapse
Affiliation(s)
- Xinci Xie
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianyi Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Longfei Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lang Jiang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Zhang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Wang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|